perf_event.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/perf_event.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/cputype.h>
  22. #include <asm/irq.h>
  23. #include <asm/irq_regs.h>
  24. #include <asm/pmu.h>
  25. #include <asm/stacktrace.h>
  26. /*
  27. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  28. * another platform that supports more, we need to increase this to be the
  29. * largest of all platforms.
  30. *
  31. * ARMv7 supports up to 32 events:
  32. * cycle counter CCNT + 31 events counters CNT0..30.
  33. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  34. */
  35. #define ARMPMU_MAX_HWEVENTS 32
  36. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  37. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  38. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  39. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  40. /* Set at runtime when we know what CPU type we are. */
  41. static struct arm_pmu *cpu_pmu;
  42. const char *perf_pmu_name(void)
  43. {
  44. if (!cpu_pmu)
  45. return NULL;
  46. return cpu_pmu->pmu.name;
  47. }
  48. EXPORT_SYMBOL_GPL(perf_pmu_name);
  49. int perf_num_counters(void)
  50. {
  51. int max_events = 0;
  52. if (cpu_pmu != NULL)
  53. max_events = cpu_pmu->num_events;
  54. return max_events;
  55. }
  56. EXPORT_SYMBOL_GPL(perf_num_counters);
  57. #define HW_OP_UNSUPPORTED 0xFFFF
  58. #define C(_x) \
  59. PERF_COUNT_HW_CACHE_##_x
  60. #define CACHE_OP_UNSUPPORTED 0xFFFF
  61. static int
  62. armpmu_map_cache_event(const unsigned (*cache_map)
  63. [PERF_COUNT_HW_CACHE_MAX]
  64. [PERF_COUNT_HW_CACHE_OP_MAX]
  65. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  66. u64 config)
  67. {
  68. unsigned int cache_type, cache_op, cache_result, ret;
  69. cache_type = (config >> 0) & 0xff;
  70. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  71. return -EINVAL;
  72. cache_op = (config >> 8) & 0xff;
  73. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  74. return -EINVAL;
  75. cache_result = (config >> 16) & 0xff;
  76. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  77. return -EINVAL;
  78. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  79. if (ret == CACHE_OP_UNSUPPORTED)
  80. return -ENOENT;
  81. return ret;
  82. }
  83. static int
  84. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  85. {
  86. int mapping = (*event_map)[config];
  87. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  88. }
  89. static int
  90. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  91. {
  92. return (int)(config & raw_event_mask);
  93. }
  94. static int map_cpu_event(struct perf_event *event,
  95. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  96. const unsigned (*cache_map)
  97. [PERF_COUNT_HW_CACHE_MAX]
  98. [PERF_COUNT_HW_CACHE_OP_MAX]
  99. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  100. u32 raw_event_mask)
  101. {
  102. u64 config = event->attr.config;
  103. switch (event->attr.type) {
  104. case PERF_TYPE_HARDWARE:
  105. return armpmu_map_event(event_map, config);
  106. case PERF_TYPE_HW_CACHE:
  107. return armpmu_map_cache_event(cache_map, config);
  108. case PERF_TYPE_RAW:
  109. return armpmu_map_raw_event(raw_event_mask, config);
  110. }
  111. return -ENOENT;
  112. }
  113. int
  114. armpmu_event_set_period(struct perf_event *event,
  115. struct hw_perf_event *hwc,
  116. int idx)
  117. {
  118. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  119. s64 left = local64_read(&hwc->period_left);
  120. s64 period = hwc->sample_period;
  121. int ret = 0;
  122. if (unlikely(left <= -period)) {
  123. left = period;
  124. local64_set(&hwc->period_left, left);
  125. hwc->last_period = period;
  126. ret = 1;
  127. }
  128. if (unlikely(left <= 0)) {
  129. left += period;
  130. local64_set(&hwc->period_left, left);
  131. hwc->last_period = period;
  132. ret = 1;
  133. }
  134. if (left > (s64)armpmu->max_period)
  135. left = armpmu->max_period;
  136. local64_set(&hwc->prev_count, (u64)-left);
  137. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  138. perf_event_update_userpage(event);
  139. return ret;
  140. }
  141. u64
  142. armpmu_event_update(struct perf_event *event,
  143. struct hw_perf_event *hwc,
  144. int idx)
  145. {
  146. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  147. u64 delta, prev_raw_count, new_raw_count;
  148. again:
  149. prev_raw_count = local64_read(&hwc->prev_count);
  150. new_raw_count = armpmu->read_counter(idx);
  151. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  152. new_raw_count) != prev_raw_count)
  153. goto again;
  154. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  155. local64_add(delta, &event->count);
  156. local64_sub(delta, &hwc->period_left);
  157. return new_raw_count;
  158. }
  159. static void
  160. armpmu_read(struct perf_event *event)
  161. {
  162. struct hw_perf_event *hwc = &event->hw;
  163. /* Don't read disabled counters! */
  164. if (hwc->idx < 0)
  165. return;
  166. armpmu_event_update(event, hwc, hwc->idx);
  167. }
  168. static void
  169. armpmu_stop(struct perf_event *event, int flags)
  170. {
  171. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  172. struct hw_perf_event *hwc = &event->hw;
  173. /*
  174. * ARM pmu always has to update the counter, so ignore
  175. * PERF_EF_UPDATE, see comments in armpmu_start().
  176. */
  177. if (!(hwc->state & PERF_HES_STOPPED)) {
  178. armpmu->disable(hwc, hwc->idx);
  179. barrier(); /* why? */
  180. armpmu_event_update(event, hwc, hwc->idx);
  181. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  182. }
  183. }
  184. static void
  185. armpmu_start(struct perf_event *event, int flags)
  186. {
  187. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  188. struct hw_perf_event *hwc = &event->hw;
  189. /*
  190. * ARM pmu always has to reprogram the period, so ignore
  191. * PERF_EF_RELOAD, see the comment below.
  192. */
  193. if (flags & PERF_EF_RELOAD)
  194. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  195. hwc->state = 0;
  196. /*
  197. * Set the period again. Some counters can't be stopped, so when we
  198. * were stopped we simply disabled the IRQ source and the counter
  199. * may have been left counting. If we don't do this step then we may
  200. * get an interrupt too soon or *way* too late if the overflow has
  201. * happened since disabling.
  202. */
  203. armpmu_event_set_period(event, hwc, hwc->idx);
  204. armpmu->enable(hwc, hwc->idx);
  205. }
  206. static void
  207. armpmu_del(struct perf_event *event, int flags)
  208. {
  209. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  210. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  211. struct hw_perf_event *hwc = &event->hw;
  212. int idx = hwc->idx;
  213. WARN_ON(idx < 0);
  214. armpmu_stop(event, PERF_EF_UPDATE);
  215. hw_events->events[idx] = NULL;
  216. clear_bit(idx, hw_events->used_mask);
  217. perf_event_update_userpage(event);
  218. }
  219. static int
  220. armpmu_add(struct perf_event *event, int flags)
  221. {
  222. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  223. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  224. struct hw_perf_event *hwc = &event->hw;
  225. int idx;
  226. int err = 0;
  227. perf_pmu_disable(event->pmu);
  228. /* If we don't have a space for the counter then finish early. */
  229. idx = armpmu->get_event_idx(hw_events, hwc);
  230. if (idx < 0) {
  231. err = idx;
  232. goto out;
  233. }
  234. /*
  235. * If there is an event in the counter we are going to use then make
  236. * sure it is disabled.
  237. */
  238. event->hw.idx = idx;
  239. armpmu->disable(hwc, idx);
  240. hw_events->events[idx] = event;
  241. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  242. if (flags & PERF_EF_START)
  243. armpmu_start(event, PERF_EF_RELOAD);
  244. /* Propagate our changes to the userspace mapping. */
  245. perf_event_update_userpage(event);
  246. out:
  247. perf_pmu_enable(event->pmu);
  248. return err;
  249. }
  250. static int
  251. validate_event(struct pmu_hw_events *hw_events,
  252. struct perf_event *event)
  253. {
  254. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  255. struct hw_perf_event fake_event = event->hw;
  256. struct pmu *leader_pmu = event->group_leader->pmu;
  257. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  258. return 1;
  259. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  260. }
  261. static int
  262. validate_group(struct perf_event *event)
  263. {
  264. struct perf_event *sibling, *leader = event->group_leader;
  265. struct pmu_hw_events fake_pmu;
  266. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  267. /*
  268. * Initialise the fake PMU. We only need to populate the
  269. * used_mask for the purposes of validation.
  270. */
  271. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  272. fake_pmu.used_mask = fake_used_mask;
  273. if (!validate_event(&fake_pmu, leader))
  274. return -EINVAL;
  275. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  276. if (!validate_event(&fake_pmu, sibling))
  277. return -EINVAL;
  278. }
  279. if (!validate_event(&fake_pmu, event))
  280. return -EINVAL;
  281. return 0;
  282. }
  283. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  284. {
  285. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  286. struct platform_device *plat_device = armpmu->plat_device;
  287. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  288. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  289. }
  290. static void
  291. armpmu_release_hardware(struct arm_pmu *armpmu)
  292. {
  293. int i, irq, irqs;
  294. struct platform_device *pmu_device = armpmu->plat_device;
  295. struct arm_pmu_platdata *plat =
  296. dev_get_platdata(&pmu_device->dev);
  297. irqs = min(pmu_device->num_resources, num_possible_cpus());
  298. for (i = 0; i < irqs; ++i) {
  299. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  300. continue;
  301. irq = platform_get_irq(pmu_device, i);
  302. if (irq >= 0) {
  303. if (plat && plat->disable_irq)
  304. plat->disable_irq(irq);
  305. free_irq(irq, armpmu);
  306. }
  307. }
  308. release_pmu(armpmu->type);
  309. }
  310. static int
  311. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  312. {
  313. struct arm_pmu_platdata *plat;
  314. irq_handler_t handle_irq;
  315. int i, err, irq, irqs;
  316. struct platform_device *pmu_device = armpmu->plat_device;
  317. if (!pmu_device)
  318. return -ENODEV;
  319. err = reserve_pmu(armpmu->type);
  320. if (err) {
  321. pr_warning("unable to reserve pmu\n");
  322. return err;
  323. }
  324. plat = dev_get_platdata(&pmu_device->dev);
  325. if (plat && plat->handle_irq)
  326. handle_irq = armpmu_platform_irq;
  327. else
  328. handle_irq = armpmu->handle_irq;
  329. irqs = min(pmu_device->num_resources, num_possible_cpus());
  330. if (irqs < 1) {
  331. pr_err("no irqs for PMUs defined\n");
  332. return -ENODEV;
  333. }
  334. for (i = 0; i < irqs; ++i) {
  335. err = 0;
  336. irq = platform_get_irq(pmu_device, i);
  337. if (irq < 0)
  338. continue;
  339. /*
  340. * If we have a single PMU interrupt that we can't shift,
  341. * assume that we're running on a uniprocessor machine and
  342. * continue. Otherwise, continue without this interrupt.
  343. */
  344. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  345. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  346. irq, i);
  347. continue;
  348. }
  349. err = request_irq(irq, handle_irq,
  350. IRQF_DISABLED | IRQF_NOBALANCING,
  351. "arm-pmu", armpmu);
  352. if (err) {
  353. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  354. irq);
  355. armpmu_release_hardware(armpmu);
  356. return err;
  357. } else if (plat && plat->enable_irq)
  358. plat->enable_irq(irq);
  359. cpumask_set_cpu(i, &armpmu->active_irqs);
  360. }
  361. return 0;
  362. }
  363. static void
  364. hw_perf_event_destroy(struct perf_event *event)
  365. {
  366. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  367. atomic_t *active_events = &armpmu->active_events;
  368. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  369. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  370. armpmu_release_hardware(armpmu);
  371. mutex_unlock(pmu_reserve_mutex);
  372. }
  373. }
  374. static int
  375. event_requires_mode_exclusion(struct perf_event_attr *attr)
  376. {
  377. return attr->exclude_idle || attr->exclude_user ||
  378. attr->exclude_kernel || attr->exclude_hv;
  379. }
  380. static int
  381. __hw_perf_event_init(struct perf_event *event)
  382. {
  383. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  384. struct hw_perf_event *hwc = &event->hw;
  385. int mapping, err;
  386. mapping = armpmu->map_event(event);
  387. if (mapping < 0) {
  388. pr_debug("event %x:%llx not supported\n", event->attr.type,
  389. event->attr.config);
  390. return mapping;
  391. }
  392. /*
  393. * We don't assign an index until we actually place the event onto
  394. * hardware. Use -1 to signify that we haven't decided where to put it
  395. * yet. For SMP systems, each core has it's own PMU so we can't do any
  396. * clever allocation or constraints checking at this point.
  397. */
  398. hwc->idx = -1;
  399. hwc->config_base = 0;
  400. hwc->config = 0;
  401. hwc->event_base = 0;
  402. /*
  403. * Check whether we need to exclude the counter from certain modes.
  404. */
  405. if ((!armpmu->set_event_filter ||
  406. armpmu->set_event_filter(hwc, &event->attr)) &&
  407. event_requires_mode_exclusion(&event->attr)) {
  408. pr_debug("ARM performance counters do not support "
  409. "mode exclusion\n");
  410. return -EOPNOTSUPP;
  411. }
  412. /*
  413. * Store the event encoding into the config_base field.
  414. */
  415. hwc->config_base |= (unsigned long)mapping;
  416. if (!hwc->sample_period) {
  417. /*
  418. * For non-sampling runs, limit the sample_period to half
  419. * of the counter width. That way, the new counter value
  420. * is far less likely to overtake the previous one unless
  421. * you have some serious IRQ latency issues.
  422. */
  423. hwc->sample_period = armpmu->max_period >> 1;
  424. hwc->last_period = hwc->sample_period;
  425. local64_set(&hwc->period_left, hwc->sample_period);
  426. }
  427. err = 0;
  428. if (event->group_leader != event) {
  429. err = validate_group(event);
  430. if (err)
  431. return -EINVAL;
  432. }
  433. return err;
  434. }
  435. static int armpmu_event_init(struct perf_event *event)
  436. {
  437. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  438. int err = 0;
  439. atomic_t *active_events = &armpmu->active_events;
  440. /* does not support taken branch sampling */
  441. if (has_branch_stack(event))
  442. return -EOPNOTSUPP;
  443. if (armpmu->map_event(event) == -ENOENT)
  444. return -ENOENT;
  445. event->destroy = hw_perf_event_destroy;
  446. if (!atomic_inc_not_zero(active_events)) {
  447. mutex_lock(&armpmu->reserve_mutex);
  448. if (atomic_read(active_events) == 0)
  449. err = armpmu_reserve_hardware(armpmu);
  450. if (!err)
  451. atomic_inc(active_events);
  452. mutex_unlock(&armpmu->reserve_mutex);
  453. }
  454. if (err)
  455. return err;
  456. err = __hw_perf_event_init(event);
  457. if (err)
  458. hw_perf_event_destroy(event);
  459. return err;
  460. }
  461. static void armpmu_enable(struct pmu *pmu)
  462. {
  463. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  464. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  465. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  466. if (enabled)
  467. armpmu->start();
  468. }
  469. static void armpmu_disable(struct pmu *pmu)
  470. {
  471. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  472. armpmu->stop();
  473. }
  474. static void __init armpmu_init(struct arm_pmu *armpmu)
  475. {
  476. atomic_set(&armpmu->active_events, 0);
  477. mutex_init(&armpmu->reserve_mutex);
  478. armpmu->pmu = (struct pmu) {
  479. .pmu_enable = armpmu_enable,
  480. .pmu_disable = armpmu_disable,
  481. .event_init = armpmu_event_init,
  482. .add = armpmu_add,
  483. .del = armpmu_del,
  484. .start = armpmu_start,
  485. .stop = armpmu_stop,
  486. .read = armpmu_read,
  487. };
  488. }
  489. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  490. {
  491. armpmu_init(armpmu);
  492. return perf_pmu_register(&armpmu->pmu, name, type);
  493. }
  494. /* Include the PMU-specific implementations. */
  495. #include "perf_event_xscale.c"
  496. #include "perf_event_v6.c"
  497. #include "perf_event_v7.c"
  498. /*
  499. * Ensure the PMU has sane values out of reset.
  500. * This requires SMP to be available, so exists as a separate initcall.
  501. */
  502. static int __init
  503. cpu_pmu_reset(void)
  504. {
  505. if (cpu_pmu && cpu_pmu->reset)
  506. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  507. return 0;
  508. }
  509. arch_initcall(cpu_pmu_reset);
  510. /*
  511. * PMU platform driver and devicetree bindings.
  512. */
  513. static struct of_device_id armpmu_of_device_ids[] = {
  514. {.compatible = "arm,cortex-a9-pmu"},
  515. {.compatible = "arm,cortex-a8-pmu"},
  516. {.compatible = "arm,arm1136-pmu"},
  517. {.compatible = "arm,arm1176-pmu"},
  518. {},
  519. };
  520. static struct platform_device_id armpmu_plat_device_ids[] = {
  521. {.name = "arm-pmu"},
  522. {},
  523. };
  524. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  525. {
  526. if (!cpu_pmu)
  527. return -ENODEV;
  528. cpu_pmu->plat_device = pdev;
  529. return 0;
  530. }
  531. static struct platform_driver armpmu_driver = {
  532. .driver = {
  533. .name = "arm-pmu",
  534. .of_match_table = armpmu_of_device_ids,
  535. },
  536. .probe = armpmu_device_probe,
  537. .id_table = armpmu_plat_device_ids,
  538. };
  539. static int __init register_pmu_driver(void)
  540. {
  541. return platform_driver_register(&armpmu_driver);
  542. }
  543. device_initcall(register_pmu_driver);
  544. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  545. {
  546. return &__get_cpu_var(cpu_hw_events);
  547. }
  548. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  549. {
  550. int cpu;
  551. for_each_possible_cpu(cpu) {
  552. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  553. events->events = per_cpu(hw_events, cpu);
  554. events->used_mask = per_cpu(used_mask, cpu);
  555. raw_spin_lock_init(&events->pmu_lock);
  556. }
  557. armpmu->get_hw_events = armpmu_get_cpu_events;
  558. armpmu->type = ARM_PMU_DEVICE_CPU;
  559. }
  560. /*
  561. * PMU hardware loses all context when a CPU goes offline.
  562. * When a CPU is hotplugged back in, since some hardware registers are
  563. * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
  564. * junk values out of them.
  565. */
  566. static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
  567. unsigned long action, void *hcpu)
  568. {
  569. if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
  570. return NOTIFY_DONE;
  571. if (cpu_pmu && cpu_pmu->reset)
  572. cpu_pmu->reset(NULL);
  573. return NOTIFY_OK;
  574. }
  575. static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
  576. .notifier_call = pmu_cpu_notify,
  577. };
  578. /*
  579. * CPU PMU identification and registration.
  580. */
  581. static int __init
  582. init_hw_perf_events(void)
  583. {
  584. unsigned long cpuid = read_cpuid_id();
  585. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  586. unsigned long part_number = (cpuid & 0xFFF0);
  587. /* ARM Ltd CPUs. */
  588. if (0x41 == implementor) {
  589. switch (part_number) {
  590. case 0xB360: /* ARM1136 */
  591. case 0xB560: /* ARM1156 */
  592. case 0xB760: /* ARM1176 */
  593. cpu_pmu = armv6pmu_init();
  594. break;
  595. case 0xB020: /* ARM11mpcore */
  596. cpu_pmu = armv6mpcore_pmu_init();
  597. break;
  598. case 0xC080: /* Cortex-A8 */
  599. cpu_pmu = armv7_a8_pmu_init();
  600. break;
  601. case 0xC090: /* Cortex-A9 */
  602. cpu_pmu = armv7_a9_pmu_init();
  603. break;
  604. case 0xC050: /* Cortex-A5 */
  605. cpu_pmu = armv7_a5_pmu_init();
  606. break;
  607. case 0xC0F0: /* Cortex-A15 */
  608. cpu_pmu = armv7_a15_pmu_init();
  609. break;
  610. case 0xC070: /* Cortex-A7 */
  611. cpu_pmu = armv7_a7_pmu_init();
  612. break;
  613. }
  614. /* Intel CPUs [xscale]. */
  615. } else if (0x69 == implementor) {
  616. part_number = (cpuid >> 13) & 0x7;
  617. switch (part_number) {
  618. case 1:
  619. cpu_pmu = xscale1pmu_init();
  620. break;
  621. case 2:
  622. cpu_pmu = xscale2pmu_init();
  623. break;
  624. }
  625. }
  626. if (cpu_pmu) {
  627. pr_info("enabled with %s PMU driver, %d counters available\n",
  628. cpu_pmu->name, cpu_pmu->num_events);
  629. cpu_pmu_init(cpu_pmu);
  630. register_cpu_notifier(&pmu_cpu_notifier);
  631. armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW);
  632. } else {
  633. pr_info("no hardware support available\n");
  634. }
  635. return 0;
  636. }
  637. early_initcall(init_hw_perf_events);
  638. /*
  639. * Callchain handling code.
  640. */
  641. /*
  642. * The registers we're interested in are at the end of the variable
  643. * length saved register structure. The fp points at the end of this
  644. * structure so the address of this struct is:
  645. * (struct frame_tail *)(xxx->fp)-1
  646. *
  647. * This code has been adapted from the ARM OProfile support.
  648. */
  649. struct frame_tail {
  650. struct frame_tail __user *fp;
  651. unsigned long sp;
  652. unsigned long lr;
  653. } __attribute__((packed));
  654. /*
  655. * Get the return address for a single stackframe and return a pointer to the
  656. * next frame tail.
  657. */
  658. static struct frame_tail __user *
  659. user_backtrace(struct frame_tail __user *tail,
  660. struct perf_callchain_entry *entry)
  661. {
  662. struct frame_tail buftail;
  663. /* Also check accessibility of one struct frame_tail beyond */
  664. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  665. return NULL;
  666. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  667. return NULL;
  668. perf_callchain_store(entry, buftail.lr);
  669. /*
  670. * Frame pointers should strictly progress back up the stack
  671. * (towards higher addresses).
  672. */
  673. if (tail + 1 >= buftail.fp)
  674. return NULL;
  675. return buftail.fp - 1;
  676. }
  677. void
  678. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  679. {
  680. struct frame_tail __user *tail;
  681. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  682. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  683. tail && !((unsigned long)tail & 0x3))
  684. tail = user_backtrace(tail, entry);
  685. }
  686. /*
  687. * Gets called by walk_stackframe() for every stackframe. This will be called
  688. * whist unwinding the stackframe and is like a subroutine return so we use
  689. * the PC.
  690. */
  691. static int
  692. callchain_trace(struct stackframe *fr,
  693. void *data)
  694. {
  695. struct perf_callchain_entry *entry = data;
  696. perf_callchain_store(entry, fr->pc);
  697. return 0;
  698. }
  699. void
  700. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  701. {
  702. struct stackframe fr;
  703. fr.fp = regs->ARM_fp;
  704. fr.sp = regs->ARM_sp;
  705. fr.lr = regs->ARM_lr;
  706. fr.pc = regs->ARM_pc;
  707. walk_stackframe(&fr, callchain_trace, entry);
  708. }