intel_dp.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. int dpms_mode;
  48. uint8_t link_bw;
  49. uint8_t lane_count;
  50. uint8_t dpcd[4];
  51. struct i2c_adapter adapter;
  52. struct i2c_algo_dp_aux_data algo;
  53. bool is_pch_edp;
  54. uint8_t train_set[4];
  55. uint8_t link_status[DP_LINK_STATUS_SIZE];
  56. struct drm_property *force_audio_property;
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[0] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[1];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  280. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  281. I915_READ(ch_ctl));
  282. return -EBUSY;
  283. }
  284. /* Must try at least 3 times according to DP spec */
  285. for (try = 0; try < 5; try++) {
  286. /* Load the send data into the aux channel data registers */
  287. for (i = 0; i < send_bytes; i += 4)
  288. I915_WRITE(ch_data + i,
  289. pack_aux(send + i, send_bytes - i));
  290. /* Send the command and wait for it to complete */
  291. I915_WRITE(ch_ctl,
  292. DP_AUX_CH_CTL_SEND_BUSY |
  293. DP_AUX_CH_CTL_TIME_OUT_400us |
  294. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  295. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  296. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  297. DP_AUX_CH_CTL_DONE |
  298. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  299. DP_AUX_CH_CTL_RECEIVE_ERROR);
  300. for (;;) {
  301. status = I915_READ(ch_ctl);
  302. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  303. break;
  304. udelay(100);
  305. }
  306. /* Clear done status and any errors */
  307. I915_WRITE(ch_ctl,
  308. status |
  309. DP_AUX_CH_CTL_DONE |
  310. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  311. DP_AUX_CH_CTL_RECEIVE_ERROR);
  312. if (status & DP_AUX_CH_CTL_DONE)
  313. break;
  314. }
  315. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  316. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  317. return -EBUSY;
  318. }
  319. /* Check for timeout or receive error.
  320. * Timeouts occur when the sink is not connected
  321. */
  322. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  323. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  324. return -EIO;
  325. }
  326. /* Timeouts occur when the device isn't connected, so they're
  327. * "normal" -- don't fill the kernel log with these */
  328. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  329. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  330. return -ETIMEDOUT;
  331. }
  332. /* Unload any bytes sent back from the other side */
  333. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  334. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  335. if (recv_bytes > recv_size)
  336. recv_bytes = recv_size;
  337. for (i = 0; i < recv_bytes; i += 4)
  338. unpack_aux(I915_READ(ch_data + i),
  339. recv + i, recv_bytes - i);
  340. return recv_bytes;
  341. }
  342. /* Write data to the aux channel in native mode */
  343. static int
  344. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *send, int send_bytes)
  346. {
  347. int ret;
  348. uint8_t msg[20];
  349. int msg_bytes;
  350. uint8_t ack;
  351. if (send_bytes > 16)
  352. return -1;
  353. msg[0] = AUX_NATIVE_WRITE << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = send_bytes - 1;
  357. memcpy(&msg[4], send, send_bytes);
  358. msg_bytes = send_bytes + 4;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  361. if (ret < 0)
  362. return ret;
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  364. break;
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. return send_bytes;
  371. }
  372. /* Write a single byte to the aux channel in native mode */
  373. static int
  374. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  375. uint16_t address, uint8_t byte)
  376. {
  377. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  378. }
  379. /* read bytes from a native aux channel */
  380. static int
  381. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t *recv, int recv_bytes)
  383. {
  384. uint8_t msg[4];
  385. int msg_bytes;
  386. uint8_t reply[20];
  387. int reply_bytes;
  388. uint8_t ack;
  389. int ret;
  390. msg[0] = AUX_NATIVE_READ << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address & 0xff;
  393. msg[3] = recv_bytes - 1;
  394. msg_bytes = 4;
  395. reply_bytes = recv_bytes + 1;
  396. for (;;) {
  397. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  398. reply, reply_bytes);
  399. if (ret == 0)
  400. return -EPROTO;
  401. if (ret < 0)
  402. return ret;
  403. ack = reply[0];
  404. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  405. memcpy(recv, reply + 1, ret - 1);
  406. return ret - 1;
  407. }
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. }
  414. static int
  415. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  416. uint8_t write_byte, uint8_t *read_byte)
  417. {
  418. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  419. struct intel_dp *intel_dp = container_of(adapter,
  420. struct intel_dp,
  421. adapter);
  422. uint16_t address = algo_data->address;
  423. uint8_t msg[5];
  424. uint8_t reply[2];
  425. int msg_bytes;
  426. int reply_bytes;
  427. int ret;
  428. /* Set up the command byte */
  429. if (mode & MODE_I2C_READ)
  430. msg[0] = AUX_I2C_READ << 4;
  431. else
  432. msg[0] = AUX_I2C_WRITE << 4;
  433. if (!(mode & MODE_I2C_STOP))
  434. msg[0] |= AUX_I2C_MOT << 4;
  435. msg[1] = address >> 8;
  436. msg[2] = address;
  437. switch (mode) {
  438. case MODE_I2C_WRITE:
  439. msg[3] = 0;
  440. msg[4] = write_byte;
  441. msg_bytes = 5;
  442. reply_bytes = 1;
  443. break;
  444. case MODE_I2C_READ:
  445. msg[3] = 0;
  446. msg_bytes = 4;
  447. reply_bytes = 2;
  448. break;
  449. default:
  450. msg_bytes = 3;
  451. reply_bytes = 1;
  452. break;
  453. }
  454. for (;;) {
  455. ret = intel_dp_aux_ch(intel_dp,
  456. msg, msg_bytes,
  457. reply, reply_bytes);
  458. if (ret < 0) {
  459. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  460. return ret;
  461. }
  462. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  463. case AUX_I2C_REPLY_ACK:
  464. if (mode == MODE_I2C_READ) {
  465. *read_byte = reply[1];
  466. }
  467. return reply_bytes - 1;
  468. case AUX_I2C_REPLY_NACK:
  469. DRM_DEBUG_KMS("aux_ch nack\n");
  470. return -EREMOTEIO;
  471. case AUX_I2C_REPLY_DEFER:
  472. DRM_DEBUG_KMS("aux_ch defer\n");
  473. udelay(100);
  474. break;
  475. default:
  476. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  477. return -EREMOTEIO;
  478. }
  479. }
  480. }
  481. static int
  482. intel_dp_i2c_init(struct intel_dp *intel_dp,
  483. struct intel_connector *intel_connector, const char *name)
  484. {
  485. DRM_DEBUG_KMS("i2c_init %s\n", name);
  486. intel_dp->algo.running = false;
  487. intel_dp->algo.address = 0;
  488. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  489. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  490. intel_dp->adapter.owner = THIS_MODULE;
  491. intel_dp->adapter.class = I2C_CLASS_DDC;
  492. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  493. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  494. intel_dp->adapter.algo_data = &intel_dp->algo;
  495. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  496. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  497. }
  498. static bool
  499. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  500. struct drm_display_mode *adjusted_mode)
  501. {
  502. struct drm_device *dev = encoder->dev;
  503. struct drm_i915_private *dev_priv = dev->dev_private;
  504. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  505. int lane_count, clock;
  506. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  507. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  508. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  509. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  510. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  511. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  512. mode, adjusted_mode);
  513. /*
  514. * the mode->clock is used to calculate the Data&Link M/N
  515. * of the pipe. For the eDP the fixed clock should be used.
  516. */
  517. mode->clock = dev_priv->panel_fixed_mode->clock;
  518. }
  519. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  520. for (clock = 0; clock <= max_clock; clock++) {
  521. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  522. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  523. <= link_avail) {
  524. intel_dp->link_bw = bws[clock];
  525. intel_dp->lane_count = lane_count;
  526. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  527. DRM_DEBUG_KMS("Display port link bw %02x lane "
  528. "count %d clock %d\n",
  529. intel_dp->link_bw, intel_dp->lane_count,
  530. adjusted_mode->clock);
  531. return true;
  532. }
  533. }
  534. }
  535. if (is_edp(intel_dp)) {
  536. /* okay we failed just pick the highest */
  537. intel_dp->lane_count = max_lane_count;
  538. intel_dp->link_bw = bws[max_clock];
  539. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  540. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  541. "count %d clock %d\n",
  542. intel_dp->link_bw, intel_dp->lane_count,
  543. adjusted_mode->clock);
  544. return true;
  545. }
  546. return false;
  547. }
  548. struct intel_dp_m_n {
  549. uint32_t tu;
  550. uint32_t gmch_m;
  551. uint32_t gmch_n;
  552. uint32_t link_m;
  553. uint32_t link_n;
  554. };
  555. static void
  556. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  557. {
  558. while (*num > 0xffffff || *den > 0xffffff) {
  559. *num >>= 1;
  560. *den >>= 1;
  561. }
  562. }
  563. static void
  564. intel_dp_compute_m_n(int bpp,
  565. int nlanes,
  566. int pixel_clock,
  567. int link_clock,
  568. struct intel_dp_m_n *m_n)
  569. {
  570. m_n->tu = 64;
  571. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  572. m_n->gmch_n = link_clock * nlanes;
  573. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  574. m_n->link_m = pixel_clock;
  575. m_n->link_n = link_clock;
  576. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  577. }
  578. void
  579. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  580. struct drm_display_mode *adjusted_mode)
  581. {
  582. struct drm_device *dev = crtc->dev;
  583. struct drm_mode_config *mode_config = &dev->mode_config;
  584. struct drm_encoder *encoder;
  585. struct drm_i915_private *dev_priv = dev->dev_private;
  586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  587. int lane_count = 4, bpp = 24;
  588. struct intel_dp_m_n m_n;
  589. /*
  590. * Find the lane count in the intel_encoder private
  591. */
  592. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  593. struct intel_dp *intel_dp;
  594. if (encoder->crtc != crtc)
  595. continue;
  596. intel_dp = enc_to_intel_dp(encoder);
  597. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  598. lane_count = intel_dp->lane_count;
  599. break;
  600. } else if (is_edp(intel_dp)) {
  601. lane_count = dev_priv->edp.lanes;
  602. bpp = dev_priv->edp.bpp;
  603. break;
  604. }
  605. }
  606. /*
  607. * Compute the GMCH and Link ratios. The '3' here is
  608. * the number of bytes_per_pixel post-LUT, which we always
  609. * set up for 8-bits of R/G/B, or 3 bytes total.
  610. */
  611. intel_dp_compute_m_n(bpp, lane_count,
  612. mode->clock, adjusted_mode->clock, &m_n);
  613. if (HAS_PCH_SPLIT(dev)) {
  614. if (intel_crtc->pipe == 0) {
  615. I915_WRITE(TRANSA_DATA_M1,
  616. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  617. m_n.gmch_m);
  618. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  619. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  620. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  621. } else {
  622. I915_WRITE(TRANSB_DATA_M1,
  623. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  624. m_n.gmch_m);
  625. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  626. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  627. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  628. }
  629. } else {
  630. if (intel_crtc->pipe == 0) {
  631. I915_WRITE(PIPEA_GMCH_DATA_M,
  632. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  633. m_n.gmch_m);
  634. I915_WRITE(PIPEA_GMCH_DATA_N,
  635. m_n.gmch_n);
  636. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  637. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  638. } else {
  639. I915_WRITE(PIPEB_GMCH_DATA_M,
  640. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  641. m_n.gmch_m);
  642. I915_WRITE(PIPEB_GMCH_DATA_N,
  643. m_n.gmch_n);
  644. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  645. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  646. }
  647. }
  648. }
  649. static void
  650. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  651. struct drm_display_mode *adjusted_mode)
  652. {
  653. struct drm_device *dev = encoder->dev;
  654. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  655. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  657. intel_dp->DP = (DP_VOLTAGE_0_4 |
  658. DP_PRE_EMPHASIS_0);
  659. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  660. intel_dp->DP |= DP_SYNC_HS_HIGH;
  661. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  662. intel_dp->DP |= DP_SYNC_VS_HIGH;
  663. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  664. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  665. else
  666. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  667. switch (intel_dp->lane_count) {
  668. case 1:
  669. intel_dp->DP |= DP_PORT_WIDTH_1;
  670. break;
  671. case 2:
  672. intel_dp->DP |= DP_PORT_WIDTH_2;
  673. break;
  674. case 4:
  675. intel_dp->DP |= DP_PORT_WIDTH_4;
  676. break;
  677. }
  678. if (intel_dp->has_audio)
  679. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  680. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  681. intel_dp->link_configuration[0] = intel_dp->link_bw;
  682. intel_dp->link_configuration[1] = intel_dp->lane_count;
  683. /*
  684. * Check for DPCD version > 1.1 and enhanced framing support
  685. */
  686. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  687. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  688. intel_dp->DP |= DP_ENHANCED_FRAMING;
  689. }
  690. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  691. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  692. intel_dp->DP |= DP_PIPEB_SELECT;
  693. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  694. /* don't miss out required setting for eDP */
  695. intel_dp->DP |= DP_PLL_ENABLE;
  696. if (adjusted_mode->clock < 200000)
  697. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  698. else
  699. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  700. }
  701. }
  702. /* Returns true if the panel was already on when called */
  703. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  704. {
  705. struct drm_device *dev = intel_dp->base.base.dev;
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  708. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  709. return true;
  710. pp = I915_READ(PCH_PP_CONTROL);
  711. /* ILK workaround: disable reset around power sequence */
  712. pp &= ~PANEL_POWER_RESET;
  713. I915_WRITE(PCH_PP_CONTROL, pp);
  714. POSTING_READ(PCH_PP_CONTROL);
  715. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  716. I915_WRITE(PCH_PP_CONTROL, pp);
  717. POSTING_READ(PCH_PP_CONTROL);
  718. /* Ouch. We need to wait here for some panels, like Dell e6510
  719. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  720. */
  721. msleep(300);
  722. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  723. 5000))
  724. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  725. I915_READ(PCH_PP_STATUS));
  726. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  727. I915_WRITE(PCH_PP_CONTROL, pp);
  728. POSTING_READ(PCH_PP_CONTROL);
  729. return false;
  730. }
  731. static void ironlake_edp_panel_off (struct drm_device *dev)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  735. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  736. pp = I915_READ(PCH_PP_CONTROL);
  737. /* ILK workaround: disable reset around power sequence */
  738. pp &= ~PANEL_POWER_RESET;
  739. I915_WRITE(PCH_PP_CONTROL, pp);
  740. POSTING_READ(PCH_PP_CONTROL);
  741. pp &= ~POWER_TARGET_ON;
  742. I915_WRITE(PCH_PP_CONTROL, pp);
  743. POSTING_READ(PCH_PP_CONTROL);
  744. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  745. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  746. I915_READ(PCH_PP_STATUS));
  747. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  748. I915_WRITE(PCH_PP_CONTROL, pp);
  749. POSTING_READ(PCH_PP_CONTROL);
  750. /* Ouch. We need to wait here for some panels, like Dell e6510
  751. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  752. */
  753. msleep(300);
  754. }
  755. static void ironlake_edp_backlight_on (struct drm_device *dev)
  756. {
  757. struct drm_i915_private *dev_priv = dev->dev_private;
  758. u32 pp;
  759. DRM_DEBUG_KMS("\n");
  760. /*
  761. * If we enable the backlight right away following a panel power
  762. * on, we may see slight flicker as the panel syncs with the eDP
  763. * link. So delay a bit to make sure the image is solid before
  764. * allowing it to appear.
  765. */
  766. msleep(300);
  767. pp = I915_READ(PCH_PP_CONTROL);
  768. pp |= EDP_BLC_ENABLE;
  769. I915_WRITE(PCH_PP_CONTROL, pp);
  770. }
  771. static void ironlake_edp_backlight_off (struct drm_device *dev)
  772. {
  773. struct drm_i915_private *dev_priv = dev->dev_private;
  774. u32 pp;
  775. DRM_DEBUG_KMS("\n");
  776. pp = I915_READ(PCH_PP_CONTROL);
  777. pp &= ~EDP_BLC_ENABLE;
  778. I915_WRITE(PCH_PP_CONTROL, pp);
  779. }
  780. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  781. {
  782. struct drm_device *dev = encoder->dev;
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. u32 dpa_ctl;
  785. DRM_DEBUG_KMS("\n");
  786. dpa_ctl = I915_READ(DP_A);
  787. dpa_ctl |= DP_PLL_ENABLE;
  788. I915_WRITE(DP_A, dpa_ctl);
  789. POSTING_READ(DP_A);
  790. udelay(200);
  791. }
  792. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  793. {
  794. struct drm_device *dev = encoder->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. u32 dpa_ctl;
  797. dpa_ctl = I915_READ(DP_A);
  798. dpa_ctl &= ~DP_PLL_ENABLE;
  799. I915_WRITE(DP_A, dpa_ctl);
  800. POSTING_READ(DP_A);
  801. udelay(200);
  802. }
  803. static void intel_dp_prepare(struct drm_encoder *encoder)
  804. {
  805. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  806. struct drm_device *dev = encoder->dev;
  807. if (is_edp(intel_dp)) {
  808. ironlake_edp_backlight_off(dev);
  809. ironlake_edp_panel_on(intel_dp);
  810. if (!is_pch_edp(intel_dp))
  811. ironlake_edp_pll_on(encoder);
  812. else
  813. ironlake_edp_pll_off(encoder);
  814. }
  815. intel_dp_link_down(intel_dp);
  816. }
  817. static void intel_dp_commit(struct drm_encoder *encoder)
  818. {
  819. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  820. struct drm_device *dev = encoder->dev;
  821. intel_dp_start_link_train(intel_dp);
  822. if (is_edp(intel_dp))
  823. ironlake_edp_panel_on(intel_dp);
  824. intel_dp_complete_link_train(intel_dp);
  825. if (is_edp(intel_dp))
  826. ironlake_edp_backlight_on(dev);
  827. }
  828. static void
  829. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  830. {
  831. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  832. struct drm_device *dev = encoder->dev;
  833. struct drm_i915_private *dev_priv = dev->dev_private;
  834. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  835. if (mode != DRM_MODE_DPMS_ON) {
  836. if (is_edp(intel_dp))
  837. ironlake_edp_backlight_off(dev);
  838. intel_dp_link_down(intel_dp);
  839. if (is_edp(intel_dp))
  840. ironlake_edp_panel_off(dev);
  841. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  842. ironlake_edp_pll_off(encoder);
  843. } else {
  844. if (is_edp(intel_dp))
  845. ironlake_edp_panel_on(intel_dp);
  846. if (!(dp_reg & DP_PORT_EN)) {
  847. intel_dp_start_link_train(intel_dp);
  848. intel_dp_complete_link_train(intel_dp);
  849. }
  850. if (is_edp(intel_dp))
  851. ironlake_edp_backlight_on(dev);
  852. }
  853. intel_dp->dpms_mode = mode;
  854. }
  855. /*
  856. * Fetch AUX CH registers 0x202 - 0x207 which contain
  857. * link status information
  858. */
  859. static bool
  860. intel_dp_get_link_status(struct intel_dp *intel_dp)
  861. {
  862. int ret;
  863. ret = intel_dp_aux_native_read(intel_dp,
  864. DP_LANE0_1_STATUS,
  865. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  866. if (ret != DP_LINK_STATUS_SIZE)
  867. return false;
  868. return true;
  869. }
  870. static uint8_t
  871. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  872. int r)
  873. {
  874. return link_status[r - DP_LANE0_1_STATUS];
  875. }
  876. static uint8_t
  877. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  878. int lane)
  879. {
  880. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  881. int s = ((lane & 1) ?
  882. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  883. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  884. uint8_t l = intel_dp_link_status(link_status, i);
  885. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  886. }
  887. static uint8_t
  888. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  889. int lane)
  890. {
  891. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  892. int s = ((lane & 1) ?
  893. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  894. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  895. uint8_t l = intel_dp_link_status(link_status, i);
  896. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  897. }
  898. #if 0
  899. static char *voltage_names[] = {
  900. "0.4V", "0.6V", "0.8V", "1.2V"
  901. };
  902. static char *pre_emph_names[] = {
  903. "0dB", "3.5dB", "6dB", "9.5dB"
  904. };
  905. static char *link_train_names[] = {
  906. "pattern 1", "pattern 2", "idle", "off"
  907. };
  908. #endif
  909. /*
  910. * These are source-specific values; current Intel hardware supports
  911. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  912. */
  913. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  914. static uint8_t
  915. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  916. {
  917. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  918. case DP_TRAIN_VOLTAGE_SWING_400:
  919. return DP_TRAIN_PRE_EMPHASIS_6;
  920. case DP_TRAIN_VOLTAGE_SWING_600:
  921. return DP_TRAIN_PRE_EMPHASIS_6;
  922. case DP_TRAIN_VOLTAGE_SWING_800:
  923. return DP_TRAIN_PRE_EMPHASIS_3_5;
  924. case DP_TRAIN_VOLTAGE_SWING_1200:
  925. default:
  926. return DP_TRAIN_PRE_EMPHASIS_0;
  927. }
  928. }
  929. static void
  930. intel_get_adjust_train(struct intel_dp *intel_dp)
  931. {
  932. uint8_t v = 0;
  933. uint8_t p = 0;
  934. int lane;
  935. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  936. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  937. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  938. if (this_v > v)
  939. v = this_v;
  940. if (this_p > p)
  941. p = this_p;
  942. }
  943. if (v >= I830_DP_VOLTAGE_MAX)
  944. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  945. if (p >= intel_dp_pre_emphasis_max(v))
  946. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  947. for (lane = 0; lane < 4; lane++)
  948. intel_dp->train_set[lane] = v | p;
  949. }
  950. static uint32_t
  951. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  952. {
  953. uint32_t signal_levels = 0;
  954. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  955. case DP_TRAIN_VOLTAGE_SWING_400:
  956. default:
  957. signal_levels |= DP_VOLTAGE_0_4;
  958. break;
  959. case DP_TRAIN_VOLTAGE_SWING_600:
  960. signal_levels |= DP_VOLTAGE_0_6;
  961. break;
  962. case DP_TRAIN_VOLTAGE_SWING_800:
  963. signal_levels |= DP_VOLTAGE_0_8;
  964. break;
  965. case DP_TRAIN_VOLTAGE_SWING_1200:
  966. signal_levels |= DP_VOLTAGE_1_2;
  967. break;
  968. }
  969. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  970. case DP_TRAIN_PRE_EMPHASIS_0:
  971. default:
  972. signal_levels |= DP_PRE_EMPHASIS_0;
  973. break;
  974. case DP_TRAIN_PRE_EMPHASIS_3_5:
  975. signal_levels |= DP_PRE_EMPHASIS_3_5;
  976. break;
  977. case DP_TRAIN_PRE_EMPHASIS_6:
  978. signal_levels |= DP_PRE_EMPHASIS_6;
  979. break;
  980. case DP_TRAIN_PRE_EMPHASIS_9_5:
  981. signal_levels |= DP_PRE_EMPHASIS_9_5;
  982. break;
  983. }
  984. return signal_levels;
  985. }
  986. /* Gen6's DP voltage swing and pre-emphasis control */
  987. static uint32_t
  988. intel_gen6_edp_signal_levels(uint8_t train_set)
  989. {
  990. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  991. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  992. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  993. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  994. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  995. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  996. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  997. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  998. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  999. default:
  1000. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  1001. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1002. }
  1003. }
  1004. static uint8_t
  1005. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1006. int lane)
  1007. {
  1008. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1009. int s = (lane & 1) * 4;
  1010. uint8_t l = intel_dp_link_status(link_status, i);
  1011. return (l >> s) & 0xf;
  1012. }
  1013. /* Check for clock recovery is done on all channels */
  1014. static bool
  1015. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1016. {
  1017. int lane;
  1018. uint8_t lane_status;
  1019. for (lane = 0; lane < lane_count; lane++) {
  1020. lane_status = intel_get_lane_status(link_status, lane);
  1021. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1022. return false;
  1023. }
  1024. return true;
  1025. }
  1026. /* Check to see if channel eq is done on all channels */
  1027. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1028. DP_LANE_CHANNEL_EQ_DONE|\
  1029. DP_LANE_SYMBOL_LOCKED)
  1030. static bool
  1031. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1032. {
  1033. uint8_t lane_align;
  1034. uint8_t lane_status;
  1035. int lane;
  1036. lane_align = intel_dp_link_status(intel_dp->link_status,
  1037. DP_LANE_ALIGN_STATUS_UPDATED);
  1038. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1039. return false;
  1040. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1041. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1042. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1043. return false;
  1044. }
  1045. return true;
  1046. }
  1047. static bool
  1048. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1049. uint32_t dp_reg_value,
  1050. uint8_t dp_train_pat)
  1051. {
  1052. struct drm_device *dev = intel_dp->base.base.dev;
  1053. struct drm_i915_private *dev_priv = dev->dev_private;
  1054. int ret;
  1055. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1056. POSTING_READ(intel_dp->output_reg);
  1057. intel_dp_aux_native_write_1(intel_dp,
  1058. DP_TRAINING_PATTERN_SET,
  1059. dp_train_pat);
  1060. ret = intel_dp_aux_native_write(intel_dp,
  1061. DP_TRAINING_LANE0_SET,
  1062. intel_dp->train_set, 4);
  1063. if (ret != 4)
  1064. return false;
  1065. return true;
  1066. }
  1067. /* Enable corresponding port and start training pattern 1 */
  1068. static void
  1069. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1070. {
  1071. struct drm_device *dev = intel_dp->base.base.dev;
  1072. struct drm_i915_private *dev_priv = dev->dev_private;
  1073. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1074. int i;
  1075. uint8_t voltage;
  1076. bool clock_recovery = false;
  1077. int tries;
  1078. u32 reg;
  1079. uint32_t DP = intel_dp->DP;
  1080. /* Enable output, wait for it to become active */
  1081. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1082. POSTING_READ(intel_dp->output_reg);
  1083. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1084. /* Write the link configuration data */
  1085. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1086. intel_dp->link_configuration,
  1087. DP_LINK_CONFIGURATION_SIZE);
  1088. DP |= DP_PORT_EN;
  1089. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1090. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1091. else
  1092. DP &= ~DP_LINK_TRAIN_MASK;
  1093. memset(intel_dp->train_set, 0, 4);
  1094. voltage = 0xff;
  1095. tries = 0;
  1096. clock_recovery = false;
  1097. for (;;) {
  1098. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1099. uint32_t signal_levels;
  1100. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1101. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1102. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1103. } else {
  1104. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1105. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1106. }
  1107. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1108. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1109. else
  1110. reg = DP | DP_LINK_TRAIN_PAT_1;
  1111. if (!intel_dp_set_link_train(intel_dp, reg,
  1112. DP_TRAINING_PATTERN_1))
  1113. break;
  1114. /* Set training pattern 1 */
  1115. udelay(100);
  1116. if (!intel_dp_get_link_status(intel_dp))
  1117. break;
  1118. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1119. clock_recovery = true;
  1120. break;
  1121. }
  1122. /* Check to see if we've tried the max voltage */
  1123. for (i = 0; i < intel_dp->lane_count; i++)
  1124. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1125. break;
  1126. if (i == intel_dp->lane_count)
  1127. break;
  1128. /* Check to see if we've tried the same voltage 5 times */
  1129. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1130. ++tries;
  1131. if (tries == 5)
  1132. break;
  1133. } else
  1134. tries = 0;
  1135. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1136. /* Compute new intel_dp->train_set as requested by target */
  1137. intel_get_adjust_train(intel_dp);
  1138. }
  1139. intel_dp->DP = DP;
  1140. }
  1141. static void
  1142. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1143. {
  1144. struct drm_device *dev = intel_dp->base.base.dev;
  1145. struct drm_i915_private *dev_priv = dev->dev_private;
  1146. bool channel_eq = false;
  1147. int tries;
  1148. u32 reg;
  1149. uint32_t DP = intel_dp->DP;
  1150. /* channel equalization */
  1151. tries = 0;
  1152. channel_eq = false;
  1153. for (;;) {
  1154. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1155. uint32_t signal_levels;
  1156. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1157. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1158. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1159. } else {
  1160. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1161. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1162. }
  1163. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1164. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1165. else
  1166. reg = DP | DP_LINK_TRAIN_PAT_2;
  1167. /* channel eq pattern */
  1168. if (!intel_dp_set_link_train(intel_dp, reg,
  1169. DP_TRAINING_PATTERN_2))
  1170. break;
  1171. udelay(400);
  1172. if (!intel_dp_get_link_status(intel_dp))
  1173. break;
  1174. if (intel_channel_eq_ok(intel_dp)) {
  1175. channel_eq = true;
  1176. break;
  1177. }
  1178. /* Try 5 times */
  1179. if (tries > 5)
  1180. break;
  1181. /* Compute new intel_dp->train_set as requested by target */
  1182. intel_get_adjust_train(intel_dp);
  1183. ++tries;
  1184. }
  1185. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1186. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1187. else
  1188. reg = DP | DP_LINK_TRAIN_OFF;
  1189. I915_WRITE(intel_dp->output_reg, reg);
  1190. POSTING_READ(intel_dp->output_reg);
  1191. intel_dp_aux_native_write_1(intel_dp,
  1192. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1193. }
  1194. static void
  1195. intel_dp_link_down(struct intel_dp *intel_dp)
  1196. {
  1197. struct drm_device *dev = intel_dp->base.base.dev;
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. uint32_t DP = intel_dp->DP;
  1200. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1201. return;
  1202. DRM_DEBUG_KMS("\n");
  1203. if (is_edp(intel_dp)) {
  1204. DP &= ~DP_PLL_ENABLE;
  1205. I915_WRITE(intel_dp->output_reg, DP);
  1206. POSTING_READ(intel_dp->output_reg);
  1207. udelay(100);
  1208. }
  1209. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1210. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1211. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1212. } else {
  1213. DP &= ~DP_LINK_TRAIN_MASK;
  1214. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1215. }
  1216. POSTING_READ(intel_dp->output_reg);
  1217. msleep(17);
  1218. if (is_edp(intel_dp))
  1219. DP |= DP_LINK_TRAIN_OFF;
  1220. if (!HAS_PCH_CPT(dev) &&
  1221. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1222. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1223. /* Hardware workaround: leaving our transcoder select
  1224. * set to transcoder B while it's off will prevent the
  1225. * corresponding HDMI output on transcoder A.
  1226. *
  1227. * Combine this with another hardware workaround:
  1228. * transcoder select bit can only be cleared while the
  1229. * port is enabled.
  1230. */
  1231. DP &= ~DP_PIPEB_SELECT;
  1232. I915_WRITE(intel_dp->output_reg, DP);
  1233. /* Changes to enable or select take place the vblank
  1234. * after being written.
  1235. */
  1236. intel_wait_for_vblank(intel_dp->base.base.dev,
  1237. intel_crtc->pipe);
  1238. }
  1239. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1240. POSTING_READ(intel_dp->output_reg);
  1241. }
  1242. /*
  1243. * According to DP spec
  1244. * 5.1.2:
  1245. * 1. Read DPCD
  1246. * 2. Configure link according to Receiver Capabilities
  1247. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1248. * 4. Check link status on receipt of hot-plug interrupt
  1249. */
  1250. static void
  1251. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1252. {
  1253. if (!intel_dp->base.base.crtc)
  1254. return;
  1255. if (!intel_dp_get_link_status(intel_dp)) {
  1256. intel_dp_link_down(intel_dp);
  1257. return;
  1258. }
  1259. if (!intel_channel_eq_ok(intel_dp)) {
  1260. intel_dp_start_link_train(intel_dp);
  1261. intel_dp_complete_link_train(intel_dp);
  1262. }
  1263. }
  1264. static enum drm_connector_status
  1265. ironlake_dp_detect(struct intel_dp *intel_dp)
  1266. {
  1267. enum drm_connector_status status;
  1268. /* Can't disconnect eDP */
  1269. if (is_edp(intel_dp))
  1270. return connector_status_connected;
  1271. status = connector_status_disconnected;
  1272. if (intel_dp_aux_native_read(intel_dp,
  1273. 0x000, intel_dp->dpcd,
  1274. sizeof (intel_dp->dpcd))
  1275. == sizeof(intel_dp->dpcd)) {
  1276. if (intel_dp->dpcd[0] != 0)
  1277. status = connector_status_connected;
  1278. }
  1279. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1280. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1281. return status;
  1282. }
  1283. static enum drm_connector_status
  1284. g4x_dp_detect(struct intel_dp *intel_dp)
  1285. {
  1286. struct drm_device *dev = intel_dp->base.base.dev;
  1287. struct drm_i915_private *dev_priv = dev->dev_private;
  1288. enum drm_connector_status status;
  1289. uint32_t temp, bit;
  1290. switch (intel_dp->output_reg) {
  1291. case DP_B:
  1292. bit = DPB_HOTPLUG_INT_STATUS;
  1293. break;
  1294. case DP_C:
  1295. bit = DPC_HOTPLUG_INT_STATUS;
  1296. break;
  1297. case DP_D:
  1298. bit = DPD_HOTPLUG_INT_STATUS;
  1299. break;
  1300. default:
  1301. return connector_status_unknown;
  1302. }
  1303. temp = I915_READ(PORT_HOTPLUG_STAT);
  1304. if ((temp & bit) == 0)
  1305. return connector_status_disconnected;
  1306. status = connector_status_disconnected;
  1307. if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
  1308. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1309. {
  1310. if (intel_dp->dpcd[0] != 0)
  1311. status = connector_status_connected;
  1312. }
  1313. return status;
  1314. }
  1315. /**
  1316. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1317. *
  1318. * \return true if DP port is connected.
  1319. * \return false if DP port is disconnected.
  1320. */
  1321. static enum drm_connector_status
  1322. intel_dp_detect(struct drm_connector *connector, bool force)
  1323. {
  1324. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1325. struct drm_device *dev = intel_dp->base.base.dev;
  1326. enum drm_connector_status status;
  1327. struct edid *edid = NULL;
  1328. intel_dp->has_audio = false;
  1329. if (HAS_PCH_SPLIT(dev))
  1330. status = ironlake_dp_detect(intel_dp);
  1331. else
  1332. status = g4x_dp_detect(intel_dp);
  1333. if (status != connector_status_connected)
  1334. return status;
  1335. if (intel_dp->force_audio) {
  1336. intel_dp->has_audio = intel_dp->force_audio > 0;
  1337. } else {
  1338. edid = drm_get_edid(connector, &intel_dp->adapter);
  1339. if (edid) {
  1340. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1341. connector->display_info.raw_edid = NULL;
  1342. kfree(edid);
  1343. }
  1344. }
  1345. return connector_status_connected;
  1346. }
  1347. static int intel_dp_get_modes(struct drm_connector *connector)
  1348. {
  1349. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1350. struct drm_device *dev = intel_dp->base.base.dev;
  1351. struct drm_i915_private *dev_priv = dev->dev_private;
  1352. int ret;
  1353. /* We should parse the EDID data and find out if it has an audio sink
  1354. */
  1355. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1356. if (ret) {
  1357. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1358. struct drm_display_mode *newmode;
  1359. list_for_each_entry(newmode, &connector->probed_modes,
  1360. head) {
  1361. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1362. dev_priv->panel_fixed_mode =
  1363. drm_mode_duplicate(dev, newmode);
  1364. break;
  1365. }
  1366. }
  1367. }
  1368. return ret;
  1369. }
  1370. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1371. if (is_edp(intel_dp)) {
  1372. if (dev_priv->panel_fixed_mode != NULL) {
  1373. struct drm_display_mode *mode;
  1374. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1375. drm_mode_probed_add(connector, mode);
  1376. return 1;
  1377. }
  1378. }
  1379. return 0;
  1380. }
  1381. static int
  1382. intel_dp_set_property(struct drm_connector *connector,
  1383. struct drm_property *property,
  1384. uint64_t val)
  1385. {
  1386. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1387. int ret;
  1388. ret = drm_connector_property_set_value(connector, property, val);
  1389. if (ret)
  1390. return ret;
  1391. if (property == intel_dp->force_audio_property) {
  1392. if (val == intel_dp->force_audio)
  1393. return 0;
  1394. intel_dp->force_audio = val;
  1395. if (val > 0 && intel_dp->has_audio)
  1396. return 0;
  1397. if (val < 0 && !intel_dp->has_audio)
  1398. return 0;
  1399. intel_dp->has_audio = val > 0;
  1400. goto done;
  1401. }
  1402. return -EINVAL;
  1403. done:
  1404. if (intel_dp->base.base.crtc) {
  1405. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1406. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1407. crtc->x, crtc->y,
  1408. crtc->fb);
  1409. }
  1410. return 0;
  1411. }
  1412. static void
  1413. intel_dp_destroy (struct drm_connector *connector)
  1414. {
  1415. drm_sysfs_connector_remove(connector);
  1416. drm_connector_cleanup(connector);
  1417. kfree(connector);
  1418. }
  1419. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1420. {
  1421. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1422. i2c_del_adapter(&intel_dp->adapter);
  1423. drm_encoder_cleanup(encoder);
  1424. kfree(intel_dp);
  1425. }
  1426. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1427. .dpms = intel_dp_dpms,
  1428. .mode_fixup = intel_dp_mode_fixup,
  1429. .prepare = intel_dp_prepare,
  1430. .mode_set = intel_dp_mode_set,
  1431. .commit = intel_dp_commit,
  1432. };
  1433. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1434. .dpms = drm_helper_connector_dpms,
  1435. .detect = intel_dp_detect,
  1436. .fill_modes = drm_helper_probe_single_connector_modes,
  1437. .set_property = intel_dp_set_property,
  1438. .destroy = intel_dp_destroy,
  1439. };
  1440. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1441. .get_modes = intel_dp_get_modes,
  1442. .mode_valid = intel_dp_mode_valid,
  1443. .best_encoder = intel_best_encoder,
  1444. };
  1445. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1446. .destroy = intel_dp_encoder_destroy,
  1447. };
  1448. static void
  1449. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1450. {
  1451. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1452. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1453. intel_dp_check_link_status(intel_dp);
  1454. }
  1455. /* Return which DP Port should be selected for Transcoder DP control */
  1456. int
  1457. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1458. {
  1459. struct drm_device *dev = crtc->dev;
  1460. struct drm_mode_config *mode_config = &dev->mode_config;
  1461. struct drm_encoder *encoder;
  1462. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1463. struct intel_dp *intel_dp;
  1464. if (encoder->crtc != crtc)
  1465. continue;
  1466. intel_dp = enc_to_intel_dp(encoder);
  1467. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1468. return intel_dp->output_reg;
  1469. }
  1470. return -1;
  1471. }
  1472. /* check the VBT to see whether the eDP is on DP-D port */
  1473. bool intel_dpd_is_edp(struct drm_device *dev)
  1474. {
  1475. struct drm_i915_private *dev_priv = dev->dev_private;
  1476. struct child_device_config *p_child;
  1477. int i;
  1478. if (!dev_priv->child_dev_num)
  1479. return false;
  1480. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1481. p_child = dev_priv->child_dev + i;
  1482. if (p_child->dvo_port == PORT_IDPD &&
  1483. p_child->device_type == DEVICE_TYPE_eDP)
  1484. return true;
  1485. }
  1486. return false;
  1487. }
  1488. static void
  1489. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1490. {
  1491. struct drm_device *dev = connector->dev;
  1492. intel_dp->force_audio_property =
  1493. drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
  1494. if (intel_dp->force_audio_property) {
  1495. intel_dp->force_audio_property->values[0] = -1;
  1496. intel_dp->force_audio_property->values[1] = 1;
  1497. drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
  1498. }
  1499. }
  1500. void
  1501. intel_dp_init(struct drm_device *dev, int output_reg)
  1502. {
  1503. struct drm_i915_private *dev_priv = dev->dev_private;
  1504. struct drm_connector *connector;
  1505. struct intel_dp *intel_dp;
  1506. struct intel_encoder *intel_encoder;
  1507. struct intel_connector *intel_connector;
  1508. const char *name = NULL;
  1509. int type;
  1510. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1511. if (!intel_dp)
  1512. return;
  1513. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1514. if (!intel_connector) {
  1515. kfree(intel_dp);
  1516. return;
  1517. }
  1518. intel_encoder = &intel_dp->base;
  1519. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1520. if (intel_dpd_is_edp(dev))
  1521. intel_dp->is_pch_edp = true;
  1522. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1523. type = DRM_MODE_CONNECTOR_eDP;
  1524. intel_encoder->type = INTEL_OUTPUT_EDP;
  1525. } else {
  1526. type = DRM_MODE_CONNECTOR_DisplayPort;
  1527. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1528. }
  1529. connector = &intel_connector->base;
  1530. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1531. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1532. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1533. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1534. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1535. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1536. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1537. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1538. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1539. if (is_edp(intel_dp))
  1540. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1541. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1542. connector->interlace_allowed = true;
  1543. connector->doublescan_allowed = 0;
  1544. intel_dp->output_reg = output_reg;
  1545. intel_dp->has_audio = false;
  1546. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1547. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1548. DRM_MODE_ENCODER_TMDS);
  1549. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1550. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1551. drm_sysfs_connector_add(connector);
  1552. /* Set up the DDC bus. */
  1553. switch (output_reg) {
  1554. case DP_A:
  1555. name = "DPDDC-A";
  1556. break;
  1557. case DP_B:
  1558. case PCH_DP_B:
  1559. dev_priv->hotplug_supported_mask |=
  1560. HDMIB_HOTPLUG_INT_STATUS;
  1561. name = "DPDDC-B";
  1562. break;
  1563. case DP_C:
  1564. case PCH_DP_C:
  1565. dev_priv->hotplug_supported_mask |=
  1566. HDMIC_HOTPLUG_INT_STATUS;
  1567. name = "DPDDC-C";
  1568. break;
  1569. case DP_D:
  1570. case PCH_DP_D:
  1571. dev_priv->hotplug_supported_mask |=
  1572. HDMID_HOTPLUG_INT_STATUS;
  1573. name = "DPDDC-D";
  1574. break;
  1575. }
  1576. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1577. /* Cache some DPCD data in the eDP case */
  1578. if (is_edp(intel_dp)) {
  1579. int ret;
  1580. bool was_on;
  1581. was_on = ironlake_edp_panel_on(intel_dp);
  1582. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1583. intel_dp->dpcd,
  1584. sizeof(intel_dp->dpcd));
  1585. if (ret == sizeof(intel_dp->dpcd)) {
  1586. if (intel_dp->dpcd[0] >= 0x11)
  1587. dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
  1588. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1589. } else {
  1590. DRM_ERROR("failed to retrieve link info\n");
  1591. }
  1592. if (!was_on)
  1593. ironlake_edp_panel_off(dev);
  1594. }
  1595. intel_encoder->hot_plug = intel_dp_hot_plug;
  1596. if (is_edp(intel_dp)) {
  1597. /* initialize panel mode from VBT if available for eDP */
  1598. if (dev_priv->lfp_lvds_vbt_mode) {
  1599. dev_priv->panel_fixed_mode =
  1600. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1601. if (dev_priv->panel_fixed_mode) {
  1602. dev_priv->panel_fixed_mode->type |=
  1603. DRM_MODE_TYPE_PREFERRED;
  1604. }
  1605. }
  1606. }
  1607. intel_dp_add_properties(intel_dp, connector);
  1608. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1609. * 0xd. Failure to do so will result in spurious interrupts being
  1610. * generated on the port when a cable is not attached.
  1611. */
  1612. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1613. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1614. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1615. }
  1616. }