x86.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/msr.h>
  39. #include <asm/desc.h>
  40. #include <asm/mtrr.h>
  41. #define MAX_IO_MSRS 256
  42. #define CR0_RESERVED_BITS \
  43. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  44. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  45. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  46. #define CR4_RESERVED_BITS \
  47. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  48. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  49. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  50. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  51. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  52. /* EFER defaults:
  53. * - enable syscall per default because its emulated by KVM
  54. * - enable LME and LMA per default on 64 bit KVM
  55. */
  56. #ifdef CONFIG_X86_64
  57. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  58. #else
  59. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  60. #endif
  61. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  62. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  63. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  64. struct kvm_cpuid_entry2 __user *entries);
  65. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  66. u32 function, u32 index);
  67. struct kvm_x86_ops *kvm_x86_ops;
  68. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  69. struct kvm_stats_debugfs_item debugfs_entries[] = {
  70. { "pf_fixed", VCPU_STAT(pf_fixed) },
  71. { "pf_guest", VCPU_STAT(pf_guest) },
  72. { "tlb_flush", VCPU_STAT(tlb_flush) },
  73. { "invlpg", VCPU_STAT(invlpg) },
  74. { "exits", VCPU_STAT(exits) },
  75. { "io_exits", VCPU_STAT(io_exits) },
  76. { "mmio_exits", VCPU_STAT(mmio_exits) },
  77. { "signal_exits", VCPU_STAT(signal_exits) },
  78. { "irq_window", VCPU_STAT(irq_window_exits) },
  79. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  80. { "halt_exits", VCPU_STAT(halt_exits) },
  81. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  82. { "hypercalls", VCPU_STAT(hypercalls) },
  83. { "request_irq", VCPU_STAT(request_irq_exits) },
  84. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  85. { "irq_exits", VCPU_STAT(irq_exits) },
  86. { "host_state_reload", VCPU_STAT(host_state_reload) },
  87. { "efer_reload", VCPU_STAT(efer_reload) },
  88. { "fpu_reload", VCPU_STAT(fpu_reload) },
  89. { "insn_emulation", VCPU_STAT(insn_emulation) },
  90. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  91. { "irq_injections", VCPU_STAT(irq_injections) },
  92. { "nmi_injections", VCPU_STAT(nmi_injections) },
  93. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  94. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  95. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  96. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  97. { "mmu_flooded", VM_STAT(mmu_flooded) },
  98. { "mmu_recycled", VM_STAT(mmu_recycled) },
  99. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  100. { "mmu_unsync", VM_STAT(mmu_unsync) },
  101. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  102. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  103. { "largepages", VM_STAT(lpages) },
  104. { NULL }
  105. };
  106. unsigned long segment_base(u16 selector)
  107. {
  108. struct descriptor_table gdt;
  109. struct desc_struct *d;
  110. unsigned long table_base;
  111. unsigned long v;
  112. if (selector == 0)
  113. return 0;
  114. asm("sgdt %0" : "=m"(gdt));
  115. table_base = gdt.base;
  116. if (selector & 4) { /* from ldt */
  117. u16 ldt_selector;
  118. asm("sldt %0" : "=g"(ldt_selector));
  119. table_base = segment_base(ldt_selector);
  120. }
  121. d = (struct desc_struct *)(table_base + (selector & ~7));
  122. v = d->base0 | ((unsigned long)d->base1 << 16) |
  123. ((unsigned long)d->base2 << 24);
  124. #ifdef CONFIG_X86_64
  125. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  126. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  127. #endif
  128. return v;
  129. }
  130. EXPORT_SYMBOL_GPL(segment_base);
  131. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  132. {
  133. if (irqchip_in_kernel(vcpu->kvm))
  134. return vcpu->arch.apic_base;
  135. else
  136. return vcpu->arch.apic_base;
  137. }
  138. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  139. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  140. {
  141. /* TODO: reserve bits check */
  142. if (irqchip_in_kernel(vcpu->kvm))
  143. kvm_lapic_set_base(vcpu, data);
  144. else
  145. vcpu->arch.apic_base = data;
  146. }
  147. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  148. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = false;
  153. vcpu->arch.exception.nr = nr;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  156. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  157. u32 error_code)
  158. {
  159. ++vcpu->stat.pf_guest;
  160. if (vcpu->arch.exception.pending) {
  161. if (vcpu->arch.exception.nr == PF_VECTOR) {
  162. printk(KERN_DEBUG "kvm: inject_page_fault:"
  163. " double fault 0x%lx\n", addr);
  164. vcpu->arch.exception.nr = DF_VECTOR;
  165. vcpu->arch.exception.error_code = 0;
  166. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  167. /* triple fault -> shutdown */
  168. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  169. }
  170. return;
  171. }
  172. vcpu->arch.cr2 = addr;
  173. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  174. }
  175. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  176. {
  177. vcpu->arch.nmi_pending = 1;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  180. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  181. {
  182. WARN_ON(vcpu->arch.exception.pending);
  183. vcpu->arch.exception.pending = true;
  184. vcpu->arch.exception.has_error_code = true;
  185. vcpu->arch.exception.nr = nr;
  186. vcpu->arch.exception.error_code = error_code;
  187. }
  188. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  189. static void __queue_exception(struct kvm_vcpu *vcpu)
  190. {
  191. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  192. vcpu->arch.exception.has_error_code,
  193. vcpu->arch.exception.error_code);
  194. }
  195. /*
  196. * Load the pae pdptrs. Return true is they are all valid.
  197. */
  198. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  199. {
  200. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  201. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  202. int i;
  203. int ret;
  204. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  205. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  206. offset * sizeof(u64), sizeof(pdpte));
  207. if (ret < 0) {
  208. ret = 0;
  209. goto out;
  210. }
  211. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  212. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  213. ret = 0;
  214. goto out;
  215. }
  216. }
  217. ret = 1;
  218. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  219. out:
  220. return ret;
  221. }
  222. EXPORT_SYMBOL_GPL(load_pdptrs);
  223. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  224. {
  225. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  226. bool changed = true;
  227. int r;
  228. if (is_long_mode(vcpu) || !is_pae(vcpu))
  229. return false;
  230. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  231. if (r < 0)
  232. goto out;
  233. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  234. out:
  235. return changed;
  236. }
  237. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  238. {
  239. if (cr0 & CR0_RESERVED_BITS) {
  240. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  241. cr0, vcpu->arch.cr0);
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  247. kvm_inject_gp(vcpu, 0);
  248. return;
  249. }
  250. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  251. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  252. "and a clear PE flag\n");
  253. kvm_inject_gp(vcpu, 0);
  254. return;
  255. }
  256. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  257. #ifdef CONFIG_X86_64
  258. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  259. int cs_db, cs_l;
  260. if (!is_pae(vcpu)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while PAE is disabled\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  267. if (cs_l) {
  268. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  269. "in long mode while CS.L == 1\n");
  270. kvm_inject_gp(vcpu, 0);
  271. return;
  272. }
  273. } else
  274. #endif
  275. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  277. "reserved bits\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. }
  282. kvm_x86_ops->set_cr0(vcpu, cr0);
  283. vcpu->arch.cr0 = cr0;
  284. kvm_mmu_sync_global(vcpu);
  285. kvm_mmu_reset_context(vcpu);
  286. return;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  289. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  290. {
  291. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  292. KVMTRACE_1D(LMSW, vcpu,
  293. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  294. handler);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_lmsw);
  297. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  298. {
  299. if (cr4 & CR4_RESERVED_BITS) {
  300. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  301. kvm_inject_gp(vcpu, 0);
  302. return;
  303. }
  304. if (is_long_mode(vcpu)) {
  305. if (!(cr4 & X86_CR4_PAE)) {
  306. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  307. "in long mode\n");
  308. kvm_inject_gp(vcpu, 0);
  309. return;
  310. }
  311. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  312. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  313. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  314. kvm_inject_gp(vcpu, 0);
  315. return;
  316. }
  317. if (cr4 & X86_CR4_VMXE) {
  318. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. kvm_x86_ops->set_cr4(vcpu, cr4);
  323. vcpu->arch.cr4 = cr4;
  324. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  325. kvm_mmu_sync_global(vcpu);
  326. kvm_mmu_reset_context(vcpu);
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  329. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  330. {
  331. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  332. kvm_mmu_sync_roots(vcpu);
  333. kvm_mmu_flush_tlb(vcpu);
  334. return;
  335. }
  336. if (is_long_mode(vcpu)) {
  337. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  338. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  339. kvm_inject_gp(vcpu, 0);
  340. return;
  341. }
  342. } else {
  343. if (is_pae(vcpu)) {
  344. if (cr3 & CR3_PAE_RESERVED_BITS) {
  345. printk(KERN_DEBUG
  346. "set_cr3: #GP, reserved bits\n");
  347. kvm_inject_gp(vcpu, 0);
  348. return;
  349. }
  350. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  351. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  352. "reserved bits\n");
  353. kvm_inject_gp(vcpu, 0);
  354. return;
  355. }
  356. }
  357. /*
  358. * We don't check reserved bits in nonpae mode, because
  359. * this isn't enforced, and VMware depends on this.
  360. */
  361. }
  362. /*
  363. * Does the new cr3 value map to physical memory? (Note, we
  364. * catch an invalid cr3 even in real-mode, because it would
  365. * cause trouble later on when we turn on paging anyway.)
  366. *
  367. * A real CPU would silently accept an invalid cr3 and would
  368. * attempt to use it - with largely undefined (and often hard
  369. * to debug) behavior on the guest side.
  370. */
  371. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  372. kvm_inject_gp(vcpu, 0);
  373. else {
  374. vcpu->arch.cr3 = cr3;
  375. vcpu->arch.mmu.new_cr3(vcpu);
  376. }
  377. }
  378. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  379. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  380. {
  381. if (cr8 & CR8_RESERVED_BITS) {
  382. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  383. kvm_inject_gp(vcpu, 0);
  384. return;
  385. }
  386. if (irqchip_in_kernel(vcpu->kvm))
  387. kvm_lapic_set_tpr(vcpu, cr8);
  388. else
  389. vcpu->arch.cr8 = cr8;
  390. }
  391. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  392. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  393. {
  394. if (irqchip_in_kernel(vcpu->kvm))
  395. return kvm_lapic_get_cr8(vcpu);
  396. else
  397. return vcpu->arch.cr8;
  398. }
  399. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  400. static inline u32 bit(int bitno)
  401. {
  402. return 1 << (bitno & 31);
  403. }
  404. /*
  405. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  406. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  407. *
  408. * This list is modified at module load time to reflect the
  409. * capabilities of the host cpu.
  410. */
  411. static u32 msrs_to_save[] = {
  412. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  413. MSR_K6_STAR,
  414. #ifdef CONFIG_X86_64
  415. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  416. #endif
  417. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  418. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  419. };
  420. static unsigned num_msrs_to_save;
  421. static u32 emulated_msrs[] = {
  422. MSR_IA32_MISC_ENABLE,
  423. };
  424. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  425. {
  426. if (efer & efer_reserved_bits) {
  427. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  428. efer);
  429. kvm_inject_gp(vcpu, 0);
  430. return;
  431. }
  432. if (is_paging(vcpu)
  433. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  434. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  435. kvm_inject_gp(vcpu, 0);
  436. return;
  437. }
  438. if (efer & EFER_FFXSR) {
  439. struct kvm_cpuid_entry2 *feat;
  440. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  441. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  442. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  443. kvm_inject_gp(vcpu, 0);
  444. return;
  445. }
  446. }
  447. if (efer & EFER_SVME) {
  448. struct kvm_cpuid_entry2 *feat;
  449. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  450. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  451. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  452. kvm_inject_gp(vcpu, 0);
  453. return;
  454. }
  455. }
  456. kvm_x86_ops->set_efer(vcpu, efer);
  457. efer &= ~EFER_LMA;
  458. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  459. vcpu->arch.shadow_efer = efer;
  460. }
  461. void kvm_enable_efer_bits(u64 mask)
  462. {
  463. efer_reserved_bits &= ~mask;
  464. }
  465. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  466. /*
  467. * Writes msr value into into the appropriate "register".
  468. * Returns 0 on success, non-0 otherwise.
  469. * Assumes vcpu_load() was already called.
  470. */
  471. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  472. {
  473. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  474. }
  475. /*
  476. * Adapt set_msr() to msr_io()'s calling convention
  477. */
  478. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  479. {
  480. return kvm_set_msr(vcpu, index, *data);
  481. }
  482. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  483. {
  484. static int version;
  485. struct pvclock_wall_clock wc;
  486. struct timespec now, sys, boot;
  487. if (!wall_clock)
  488. return;
  489. version++;
  490. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  491. /*
  492. * The guest calculates current wall clock time by adding
  493. * system time (updated by kvm_write_guest_time below) to the
  494. * wall clock specified here. guest system time equals host
  495. * system time for us, thus we must fill in host boot time here.
  496. */
  497. now = current_kernel_time();
  498. ktime_get_ts(&sys);
  499. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  500. wc.sec = boot.tv_sec;
  501. wc.nsec = boot.tv_nsec;
  502. wc.version = version;
  503. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  504. version++;
  505. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  506. }
  507. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  508. {
  509. uint32_t quotient, remainder;
  510. /* Don't try to replace with do_div(), this one calculates
  511. * "(dividend << 32) / divisor" */
  512. __asm__ ( "divl %4"
  513. : "=a" (quotient), "=d" (remainder)
  514. : "0" (0), "1" (dividend), "r" (divisor) );
  515. return quotient;
  516. }
  517. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  518. {
  519. uint64_t nsecs = 1000000000LL;
  520. int32_t shift = 0;
  521. uint64_t tps64;
  522. uint32_t tps32;
  523. tps64 = tsc_khz * 1000LL;
  524. while (tps64 > nsecs*2) {
  525. tps64 >>= 1;
  526. shift--;
  527. }
  528. tps32 = (uint32_t)tps64;
  529. while (tps32 <= (uint32_t)nsecs) {
  530. tps32 <<= 1;
  531. shift++;
  532. }
  533. hv_clock->tsc_shift = shift;
  534. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  535. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  536. __func__, tsc_khz, hv_clock->tsc_shift,
  537. hv_clock->tsc_to_system_mul);
  538. }
  539. static void kvm_write_guest_time(struct kvm_vcpu *v)
  540. {
  541. struct timespec ts;
  542. unsigned long flags;
  543. struct kvm_vcpu_arch *vcpu = &v->arch;
  544. void *shared_kaddr;
  545. if ((!vcpu->time_page))
  546. return;
  547. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  548. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  549. vcpu->hv_clock_tsc_khz = tsc_khz;
  550. }
  551. /* Keep irq disabled to prevent changes to the clock */
  552. local_irq_save(flags);
  553. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  554. &vcpu->hv_clock.tsc_timestamp);
  555. ktime_get_ts(&ts);
  556. local_irq_restore(flags);
  557. /* With all the info we got, fill in the values */
  558. vcpu->hv_clock.system_time = ts.tv_nsec +
  559. (NSEC_PER_SEC * (u64)ts.tv_sec);
  560. /*
  561. * The interface expects us to write an even number signaling that the
  562. * update is finished. Since the guest won't see the intermediate
  563. * state, we just increase by 2 at the end.
  564. */
  565. vcpu->hv_clock.version += 2;
  566. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  567. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  568. sizeof(vcpu->hv_clock));
  569. kunmap_atomic(shared_kaddr, KM_USER0);
  570. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  571. }
  572. static bool msr_mtrr_valid(unsigned msr)
  573. {
  574. switch (msr) {
  575. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  576. case MSR_MTRRfix64K_00000:
  577. case MSR_MTRRfix16K_80000:
  578. case MSR_MTRRfix16K_A0000:
  579. case MSR_MTRRfix4K_C0000:
  580. case MSR_MTRRfix4K_C8000:
  581. case MSR_MTRRfix4K_D0000:
  582. case MSR_MTRRfix4K_D8000:
  583. case MSR_MTRRfix4K_E0000:
  584. case MSR_MTRRfix4K_E8000:
  585. case MSR_MTRRfix4K_F0000:
  586. case MSR_MTRRfix4K_F8000:
  587. case MSR_MTRRdefType:
  588. case MSR_IA32_CR_PAT:
  589. return true;
  590. case 0x2f8:
  591. return true;
  592. }
  593. return false;
  594. }
  595. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  596. {
  597. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  598. if (!msr_mtrr_valid(msr))
  599. return 1;
  600. if (msr == MSR_MTRRdefType) {
  601. vcpu->arch.mtrr_state.def_type = data;
  602. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  603. } else if (msr == MSR_MTRRfix64K_00000)
  604. p[0] = data;
  605. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  606. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  607. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  608. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  609. else if (msr == MSR_IA32_CR_PAT)
  610. vcpu->arch.pat = data;
  611. else { /* Variable MTRRs */
  612. int idx, is_mtrr_mask;
  613. u64 *pt;
  614. idx = (msr - 0x200) / 2;
  615. is_mtrr_mask = msr - 0x200 - 2 * idx;
  616. if (!is_mtrr_mask)
  617. pt =
  618. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  619. else
  620. pt =
  621. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  622. *pt = data;
  623. }
  624. kvm_mmu_reset_context(vcpu);
  625. return 0;
  626. }
  627. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  628. {
  629. switch (msr) {
  630. case MSR_EFER:
  631. set_efer(vcpu, data);
  632. break;
  633. case MSR_IA32_MC0_STATUS:
  634. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  635. __func__, data);
  636. break;
  637. case MSR_IA32_MCG_STATUS:
  638. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  639. __func__, data);
  640. break;
  641. case MSR_IA32_MCG_CTL:
  642. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  643. __func__, data);
  644. break;
  645. case MSR_IA32_DEBUGCTLMSR:
  646. if (!data) {
  647. /* We support the non-activated case already */
  648. break;
  649. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  650. /* Values other than LBR and BTF are vendor-specific,
  651. thus reserved and should throw a #GP */
  652. return 1;
  653. }
  654. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  655. __func__, data);
  656. break;
  657. case MSR_IA32_UCODE_REV:
  658. case MSR_IA32_UCODE_WRITE:
  659. case MSR_VM_HSAVE_PA:
  660. break;
  661. case 0x200 ... 0x2ff:
  662. return set_msr_mtrr(vcpu, msr, data);
  663. case MSR_IA32_APICBASE:
  664. kvm_set_apic_base(vcpu, data);
  665. break;
  666. case MSR_IA32_MISC_ENABLE:
  667. vcpu->arch.ia32_misc_enable_msr = data;
  668. break;
  669. case MSR_KVM_WALL_CLOCK:
  670. vcpu->kvm->arch.wall_clock = data;
  671. kvm_write_wall_clock(vcpu->kvm, data);
  672. break;
  673. case MSR_KVM_SYSTEM_TIME: {
  674. if (vcpu->arch.time_page) {
  675. kvm_release_page_dirty(vcpu->arch.time_page);
  676. vcpu->arch.time_page = NULL;
  677. }
  678. vcpu->arch.time = data;
  679. /* we verify if the enable bit is set... */
  680. if (!(data & 1))
  681. break;
  682. /* ...but clean it before doing the actual write */
  683. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  684. vcpu->arch.time_page =
  685. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  686. if (is_error_page(vcpu->arch.time_page)) {
  687. kvm_release_page_clean(vcpu->arch.time_page);
  688. vcpu->arch.time_page = NULL;
  689. }
  690. kvm_write_guest_time(vcpu);
  691. break;
  692. }
  693. default:
  694. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  695. return 1;
  696. }
  697. return 0;
  698. }
  699. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  700. /*
  701. * Reads an msr value (of 'msr_index') into 'pdata'.
  702. * Returns 0 on success, non-0 otherwise.
  703. * Assumes vcpu_load() was already called.
  704. */
  705. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  706. {
  707. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  708. }
  709. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  710. {
  711. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  712. if (!msr_mtrr_valid(msr))
  713. return 1;
  714. if (msr == MSR_MTRRdefType)
  715. *pdata = vcpu->arch.mtrr_state.def_type +
  716. (vcpu->arch.mtrr_state.enabled << 10);
  717. else if (msr == MSR_MTRRfix64K_00000)
  718. *pdata = p[0];
  719. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  720. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  721. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  722. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  723. else if (msr == MSR_IA32_CR_PAT)
  724. *pdata = vcpu->arch.pat;
  725. else { /* Variable MTRRs */
  726. int idx, is_mtrr_mask;
  727. u64 *pt;
  728. idx = (msr - 0x200) / 2;
  729. is_mtrr_mask = msr - 0x200 - 2 * idx;
  730. if (!is_mtrr_mask)
  731. pt =
  732. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  733. else
  734. pt =
  735. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  736. *pdata = *pt;
  737. }
  738. return 0;
  739. }
  740. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  741. {
  742. u64 data;
  743. switch (msr) {
  744. case 0xc0010010: /* SYSCFG */
  745. case 0xc0010015: /* HWCR */
  746. case MSR_IA32_PLATFORM_ID:
  747. case MSR_IA32_P5_MC_ADDR:
  748. case MSR_IA32_P5_MC_TYPE:
  749. case MSR_IA32_MC0_CTL:
  750. case MSR_IA32_MCG_STATUS:
  751. case MSR_IA32_MCG_CAP:
  752. case MSR_IA32_MCG_CTL:
  753. case MSR_IA32_MC0_MISC:
  754. case MSR_IA32_MC0_MISC+4:
  755. case MSR_IA32_MC0_MISC+8:
  756. case MSR_IA32_MC0_MISC+12:
  757. case MSR_IA32_MC0_MISC+16:
  758. case MSR_IA32_MC0_MISC+20:
  759. case MSR_IA32_UCODE_REV:
  760. case MSR_IA32_EBL_CR_POWERON:
  761. case MSR_IA32_DEBUGCTLMSR:
  762. case MSR_IA32_LASTBRANCHFROMIP:
  763. case MSR_IA32_LASTBRANCHTOIP:
  764. case MSR_IA32_LASTINTFROMIP:
  765. case MSR_IA32_LASTINTTOIP:
  766. case MSR_VM_HSAVE_PA:
  767. data = 0;
  768. break;
  769. case MSR_MTRRcap:
  770. data = 0x500 | KVM_NR_VAR_MTRR;
  771. break;
  772. case 0x200 ... 0x2ff:
  773. return get_msr_mtrr(vcpu, msr, pdata);
  774. case 0xcd: /* fsb frequency */
  775. data = 3;
  776. break;
  777. case MSR_IA32_APICBASE:
  778. data = kvm_get_apic_base(vcpu);
  779. break;
  780. case MSR_IA32_MISC_ENABLE:
  781. data = vcpu->arch.ia32_misc_enable_msr;
  782. break;
  783. case MSR_IA32_PERF_STATUS:
  784. /* TSC increment by tick */
  785. data = 1000ULL;
  786. /* CPU multiplier */
  787. data |= (((uint64_t)4ULL) << 40);
  788. break;
  789. case MSR_EFER:
  790. data = vcpu->arch.shadow_efer;
  791. break;
  792. case MSR_KVM_WALL_CLOCK:
  793. data = vcpu->kvm->arch.wall_clock;
  794. break;
  795. case MSR_KVM_SYSTEM_TIME:
  796. data = vcpu->arch.time;
  797. break;
  798. default:
  799. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  800. return 1;
  801. }
  802. *pdata = data;
  803. return 0;
  804. }
  805. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  806. /*
  807. * Read or write a bunch of msrs. All parameters are kernel addresses.
  808. *
  809. * @return number of msrs set successfully.
  810. */
  811. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  812. struct kvm_msr_entry *entries,
  813. int (*do_msr)(struct kvm_vcpu *vcpu,
  814. unsigned index, u64 *data))
  815. {
  816. int i;
  817. vcpu_load(vcpu);
  818. down_read(&vcpu->kvm->slots_lock);
  819. for (i = 0; i < msrs->nmsrs; ++i)
  820. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  821. break;
  822. up_read(&vcpu->kvm->slots_lock);
  823. vcpu_put(vcpu);
  824. return i;
  825. }
  826. /*
  827. * Read or write a bunch of msrs. Parameters are user addresses.
  828. *
  829. * @return number of msrs set successfully.
  830. */
  831. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  832. int (*do_msr)(struct kvm_vcpu *vcpu,
  833. unsigned index, u64 *data),
  834. int writeback)
  835. {
  836. struct kvm_msrs msrs;
  837. struct kvm_msr_entry *entries;
  838. int r, n;
  839. unsigned size;
  840. r = -EFAULT;
  841. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  842. goto out;
  843. r = -E2BIG;
  844. if (msrs.nmsrs >= MAX_IO_MSRS)
  845. goto out;
  846. r = -ENOMEM;
  847. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  848. entries = vmalloc(size);
  849. if (!entries)
  850. goto out;
  851. r = -EFAULT;
  852. if (copy_from_user(entries, user_msrs->entries, size))
  853. goto out_free;
  854. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  855. if (r < 0)
  856. goto out_free;
  857. r = -EFAULT;
  858. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  859. goto out_free;
  860. r = n;
  861. out_free:
  862. vfree(entries);
  863. out:
  864. return r;
  865. }
  866. int kvm_dev_ioctl_check_extension(long ext)
  867. {
  868. int r;
  869. switch (ext) {
  870. case KVM_CAP_IRQCHIP:
  871. case KVM_CAP_HLT:
  872. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  873. case KVM_CAP_SET_TSS_ADDR:
  874. case KVM_CAP_EXT_CPUID:
  875. case KVM_CAP_PIT:
  876. case KVM_CAP_NOP_IO_DELAY:
  877. case KVM_CAP_MP_STATE:
  878. case KVM_CAP_SYNC_MMU:
  879. case KVM_CAP_REINJECT_CONTROL:
  880. r = 1;
  881. break;
  882. case KVM_CAP_COALESCED_MMIO:
  883. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  884. break;
  885. case KVM_CAP_VAPIC:
  886. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  887. break;
  888. case KVM_CAP_NR_VCPUS:
  889. r = KVM_MAX_VCPUS;
  890. break;
  891. case KVM_CAP_NR_MEMSLOTS:
  892. r = KVM_MEMORY_SLOTS;
  893. break;
  894. case KVM_CAP_PV_MMU:
  895. r = !tdp_enabled;
  896. break;
  897. case KVM_CAP_IOMMU:
  898. r = iommu_found();
  899. break;
  900. case KVM_CAP_CLOCKSOURCE:
  901. r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
  902. break;
  903. default:
  904. r = 0;
  905. break;
  906. }
  907. return r;
  908. }
  909. long kvm_arch_dev_ioctl(struct file *filp,
  910. unsigned int ioctl, unsigned long arg)
  911. {
  912. void __user *argp = (void __user *)arg;
  913. long r;
  914. switch (ioctl) {
  915. case KVM_GET_MSR_INDEX_LIST: {
  916. struct kvm_msr_list __user *user_msr_list = argp;
  917. struct kvm_msr_list msr_list;
  918. unsigned n;
  919. r = -EFAULT;
  920. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  921. goto out;
  922. n = msr_list.nmsrs;
  923. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  924. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  925. goto out;
  926. r = -E2BIG;
  927. if (n < num_msrs_to_save)
  928. goto out;
  929. r = -EFAULT;
  930. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  931. num_msrs_to_save * sizeof(u32)))
  932. goto out;
  933. if (copy_to_user(user_msr_list->indices
  934. + num_msrs_to_save * sizeof(u32),
  935. &emulated_msrs,
  936. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  937. goto out;
  938. r = 0;
  939. break;
  940. }
  941. case KVM_GET_SUPPORTED_CPUID: {
  942. struct kvm_cpuid2 __user *cpuid_arg = argp;
  943. struct kvm_cpuid2 cpuid;
  944. r = -EFAULT;
  945. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  946. goto out;
  947. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  948. cpuid_arg->entries);
  949. if (r)
  950. goto out;
  951. r = -EFAULT;
  952. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  953. goto out;
  954. r = 0;
  955. break;
  956. }
  957. default:
  958. r = -EINVAL;
  959. }
  960. out:
  961. return r;
  962. }
  963. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  964. {
  965. kvm_x86_ops->vcpu_load(vcpu, cpu);
  966. kvm_write_guest_time(vcpu);
  967. }
  968. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  969. {
  970. kvm_x86_ops->vcpu_put(vcpu);
  971. kvm_put_guest_fpu(vcpu);
  972. }
  973. static int is_efer_nx(void)
  974. {
  975. u64 efer;
  976. rdmsrl(MSR_EFER, efer);
  977. return efer & EFER_NX;
  978. }
  979. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  980. {
  981. int i;
  982. struct kvm_cpuid_entry2 *e, *entry;
  983. entry = NULL;
  984. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  985. e = &vcpu->arch.cpuid_entries[i];
  986. if (e->function == 0x80000001) {
  987. entry = e;
  988. break;
  989. }
  990. }
  991. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  992. entry->edx &= ~(1 << 20);
  993. printk(KERN_INFO "kvm: guest NX capability removed\n");
  994. }
  995. }
  996. /* when an old userspace process fills a new kernel module */
  997. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  998. struct kvm_cpuid *cpuid,
  999. struct kvm_cpuid_entry __user *entries)
  1000. {
  1001. int r, i;
  1002. struct kvm_cpuid_entry *cpuid_entries;
  1003. r = -E2BIG;
  1004. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1005. goto out;
  1006. r = -ENOMEM;
  1007. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1008. if (!cpuid_entries)
  1009. goto out;
  1010. r = -EFAULT;
  1011. if (copy_from_user(cpuid_entries, entries,
  1012. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1013. goto out_free;
  1014. for (i = 0; i < cpuid->nent; i++) {
  1015. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1016. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1017. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1018. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1019. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1020. vcpu->arch.cpuid_entries[i].index = 0;
  1021. vcpu->arch.cpuid_entries[i].flags = 0;
  1022. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1023. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1024. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1025. }
  1026. vcpu->arch.cpuid_nent = cpuid->nent;
  1027. cpuid_fix_nx_cap(vcpu);
  1028. r = 0;
  1029. out_free:
  1030. vfree(cpuid_entries);
  1031. out:
  1032. return r;
  1033. }
  1034. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1035. struct kvm_cpuid2 *cpuid,
  1036. struct kvm_cpuid_entry2 __user *entries)
  1037. {
  1038. int r;
  1039. r = -E2BIG;
  1040. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1041. goto out;
  1042. r = -EFAULT;
  1043. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1044. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1045. goto out;
  1046. vcpu->arch.cpuid_nent = cpuid->nent;
  1047. return 0;
  1048. out:
  1049. return r;
  1050. }
  1051. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1052. struct kvm_cpuid2 *cpuid,
  1053. struct kvm_cpuid_entry2 __user *entries)
  1054. {
  1055. int r;
  1056. r = -E2BIG;
  1057. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1058. goto out;
  1059. r = -EFAULT;
  1060. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1061. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1062. goto out;
  1063. return 0;
  1064. out:
  1065. cpuid->nent = vcpu->arch.cpuid_nent;
  1066. return r;
  1067. }
  1068. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1069. u32 index)
  1070. {
  1071. entry->function = function;
  1072. entry->index = index;
  1073. cpuid_count(entry->function, entry->index,
  1074. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1075. entry->flags = 0;
  1076. }
  1077. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1078. u32 index, int *nent, int maxnent)
  1079. {
  1080. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1081. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1082. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1083. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1084. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1085. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1086. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1087. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1088. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1089. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1090. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1091. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1092. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1093. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1094. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1095. bit(X86_FEATURE_PGE) |
  1096. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1097. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1098. bit(X86_FEATURE_SYSCALL) |
  1099. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1100. #ifdef CONFIG_X86_64
  1101. bit(X86_FEATURE_LM) |
  1102. #endif
  1103. bit(X86_FEATURE_FXSR_OPT) |
  1104. bit(X86_FEATURE_MMXEXT) |
  1105. bit(X86_FEATURE_3DNOWEXT) |
  1106. bit(X86_FEATURE_3DNOW);
  1107. const u32 kvm_supported_word3_x86_features =
  1108. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1109. const u32 kvm_supported_word6_x86_features =
  1110. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
  1111. bit(X86_FEATURE_SVM);
  1112. /* all calls to cpuid_count() should be made on the same cpu */
  1113. get_cpu();
  1114. do_cpuid_1_ent(entry, function, index);
  1115. ++*nent;
  1116. switch (function) {
  1117. case 0:
  1118. entry->eax = min(entry->eax, (u32)0xb);
  1119. break;
  1120. case 1:
  1121. entry->edx &= kvm_supported_word0_x86_features;
  1122. entry->ecx &= kvm_supported_word3_x86_features;
  1123. break;
  1124. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1125. * may return different values. This forces us to get_cpu() before
  1126. * issuing the first command, and also to emulate this annoying behavior
  1127. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1128. case 2: {
  1129. int t, times = entry->eax & 0xff;
  1130. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1131. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1132. for (t = 1; t < times && *nent < maxnent; ++t) {
  1133. do_cpuid_1_ent(&entry[t], function, 0);
  1134. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1135. ++*nent;
  1136. }
  1137. break;
  1138. }
  1139. /* function 4 and 0xb have additional index. */
  1140. case 4: {
  1141. int i, cache_type;
  1142. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1143. /* read more entries until cache_type is zero */
  1144. for (i = 1; *nent < maxnent; ++i) {
  1145. cache_type = entry[i - 1].eax & 0x1f;
  1146. if (!cache_type)
  1147. break;
  1148. do_cpuid_1_ent(&entry[i], function, i);
  1149. entry[i].flags |=
  1150. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1151. ++*nent;
  1152. }
  1153. break;
  1154. }
  1155. case 0xb: {
  1156. int i, level_type;
  1157. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1158. /* read more entries until level_type is zero */
  1159. for (i = 1; *nent < maxnent; ++i) {
  1160. level_type = entry[i - 1].ecx & 0xff00;
  1161. if (!level_type)
  1162. break;
  1163. do_cpuid_1_ent(&entry[i], function, i);
  1164. entry[i].flags |=
  1165. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1166. ++*nent;
  1167. }
  1168. break;
  1169. }
  1170. case 0x80000000:
  1171. entry->eax = min(entry->eax, 0x8000001a);
  1172. break;
  1173. case 0x80000001:
  1174. entry->edx &= kvm_supported_word1_x86_features;
  1175. entry->ecx &= kvm_supported_word6_x86_features;
  1176. break;
  1177. }
  1178. put_cpu();
  1179. }
  1180. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1181. struct kvm_cpuid_entry2 __user *entries)
  1182. {
  1183. struct kvm_cpuid_entry2 *cpuid_entries;
  1184. int limit, nent = 0, r = -E2BIG;
  1185. u32 func;
  1186. if (cpuid->nent < 1)
  1187. goto out;
  1188. r = -ENOMEM;
  1189. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1190. if (!cpuid_entries)
  1191. goto out;
  1192. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1193. limit = cpuid_entries[0].eax;
  1194. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1195. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1196. &nent, cpuid->nent);
  1197. r = -E2BIG;
  1198. if (nent >= cpuid->nent)
  1199. goto out_free;
  1200. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1201. limit = cpuid_entries[nent - 1].eax;
  1202. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1203. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1204. &nent, cpuid->nent);
  1205. r = -EFAULT;
  1206. if (copy_to_user(entries, cpuid_entries,
  1207. nent * sizeof(struct kvm_cpuid_entry2)))
  1208. goto out_free;
  1209. cpuid->nent = nent;
  1210. r = 0;
  1211. out_free:
  1212. vfree(cpuid_entries);
  1213. out:
  1214. return r;
  1215. }
  1216. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1217. struct kvm_lapic_state *s)
  1218. {
  1219. vcpu_load(vcpu);
  1220. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1221. vcpu_put(vcpu);
  1222. return 0;
  1223. }
  1224. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1225. struct kvm_lapic_state *s)
  1226. {
  1227. vcpu_load(vcpu);
  1228. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1229. kvm_apic_post_state_restore(vcpu);
  1230. vcpu_put(vcpu);
  1231. return 0;
  1232. }
  1233. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1234. struct kvm_interrupt *irq)
  1235. {
  1236. if (irq->irq < 0 || irq->irq >= 256)
  1237. return -EINVAL;
  1238. if (irqchip_in_kernel(vcpu->kvm))
  1239. return -ENXIO;
  1240. vcpu_load(vcpu);
  1241. set_bit(irq->irq, vcpu->arch.irq_pending);
  1242. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1243. vcpu_put(vcpu);
  1244. return 0;
  1245. }
  1246. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1247. {
  1248. vcpu_load(vcpu);
  1249. kvm_inject_nmi(vcpu);
  1250. vcpu_put(vcpu);
  1251. return 0;
  1252. }
  1253. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1254. struct kvm_tpr_access_ctl *tac)
  1255. {
  1256. if (tac->flags)
  1257. return -EINVAL;
  1258. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1259. return 0;
  1260. }
  1261. long kvm_arch_vcpu_ioctl(struct file *filp,
  1262. unsigned int ioctl, unsigned long arg)
  1263. {
  1264. struct kvm_vcpu *vcpu = filp->private_data;
  1265. void __user *argp = (void __user *)arg;
  1266. int r;
  1267. struct kvm_lapic_state *lapic = NULL;
  1268. switch (ioctl) {
  1269. case KVM_GET_LAPIC: {
  1270. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1271. r = -ENOMEM;
  1272. if (!lapic)
  1273. goto out;
  1274. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1275. if (r)
  1276. goto out;
  1277. r = -EFAULT;
  1278. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1279. goto out;
  1280. r = 0;
  1281. break;
  1282. }
  1283. case KVM_SET_LAPIC: {
  1284. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1285. r = -ENOMEM;
  1286. if (!lapic)
  1287. goto out;
  1288. r = -EFAULT;
  1289. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1290. goto out;
  1291. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1292. if (r)
  1293. goto out;
  1294. r = 0;
  1295. break;
  1296. }
  1297. case KVM_INTERRUPT: {
  1298. struct kvm_interrupt irq;
  1299. r = -EFAULT;
  1300. if (copy_from_user(&irq, argp, sizeof irq))
  1301. goto out;
  1302. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1303. if (r)
  1304. goto out;
  1305. r = 0;
  1306. break;
  1307. }
  1308. case KVM_NMI: {
  1309. r = kvm_vcpu_ioctl_nmi(vcpu);
  1310. if (r)
  1311. goto out;
  1312. r = 0;
  1313. break;
  1314. }
  1315. case KVM_SET_CPUID: {
  1316. struct kvm_cpuid __user *cpuid_arg = argp;
  1317. struct kvm_cpuid cpuid;
  1318. r = -EFAULT;
  1319. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1320. goto out;
  1321. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1322. if (r)
  1323. goto out;
  1324. break;
  1325. }
  1326. case KVM_SET_CPUID2: {
  1327. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1328. struct kvm_cpuid2 cpuid;
  1329. r = -EFAULT;
  1330. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1331. goto out;
  1332. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1333. cpuid_arg->entries);
  1334. if (r)
  1335. goto out;
  1336. break;
  1337. }
  1338. case KVM_GET_CPUID2: {
  1339. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1340. struct kvm_cpuid2 cpuid;
  1341. r = -EFAULT;
  1342. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1343. goto out;
  1344. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1345. cpuid_arg->entries);
  1346. if (r)
  1347. goto out;
  1348. r = -EFAULT;
  1349. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1350. goto out;
  1351. r = 0;
  1352. break;
  1353. }
  1354. case KVM_GET_MSRS:
  1355. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1356. break;
  1357. case KVM_SET_MSRS:
  1358. r = msr_io(vcpu, argp, do_set_msr, 0);
  1359. break;
  1360. case KVM_TPR_ACCESS_REPORTING: {
  1361. struct kvm_tpr_access_ctl tac;
  1362. r = -EFAULT;
  1363. if (copy_from_user(&tac, argp, sizeof tac))
  1364. goto out;
  1365. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1366. if (r)
  1367. goto out;
  1368. r = -EFAULT;
  1369. if (copy_to_user(argp, &tac, sizeof tac))
  1370. goto out;
  1371. r = 0;
  1372. break;
  1373. };
  1374. case KVM_SET_VAPIC_ADDR: {
  1375. struct kvm_vapic_addr va;
  1376. r = -EINVAL;
  1377. if (!irqchip_in_kernel(vcpu->kvm))
  1378. goto out;
  1379. r = -EFAULT;
  1380. if (copy_from_user(&va, argp, sizeof va))
  1381. goto out;
  1382. r = 0;
  1383. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1384. break;
  1385. }
  1386. default:
  1387. r = -EINVAL;
  1388. }
  1389. out:
  1390. if (lapic)
  1391. kfree(lapic);
  1392. return r;
  1393. }
  1394. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1395. {
  1396. int ret;
  1397. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1398. return -1;
  1399. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1400. return ret;
  1401. }
  1402. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1403. u32 kvm_nr_mmu_pages)
  1404. {
  1405. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1406. return -EINVAL;
  1407. down_write(&kvm->slots_lock);
  1408. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1409. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1410. up_write(&kvm->slots_lock);
  1411. return 0;
  1412. }
  1413. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1414. {
  1415. return kvm->arch.n_alloc_mmu_pages;
  1416. }
  1417. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1418. {
  1419. int i;
  1420. struct kvm_mem_alias *alias;
  1421. for (i = 0; i < kvm->arch.naliases; ++i) {
  1422. alias = &kvm->arch.aliases[i];
  1423. if (gfn >= alias->base_gfn
  1424. && gfn < alias->base_gfn + alias->npages)
  1425. return alias->target_gfn + gfn - alias->base_gfn;
  1426. }
  1427. return gfn;
  1428. }
  1429. /*
  1430. * Set a new alias region. Aliases map a portion of physical memory into
  1431. * another portion. This is useful for memory windows, for example the PC
  1432. * VGA region.
  1433. */
  1434. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1435. struct kvm_memory_alias *alias)
  1436. {
  1437. int r, n;
  1438. struct kvm_mem_alias *p;
  1439. r = -EINVAL;
  1440. /* General sanity checks */
  1441. if (alias->memory_size & (PAGE_SIZE - 1))
  1442. goto out;
  1443. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1444. goto out;
  1445. if (alias->slot >= KVM_ALIAS_SLOTS)
  1446. goto out;
  1447. if (alias->guest_phys_addr + alias->memory_size
  1448. < alias->guest_phys_addr)
  1449. goto out;
  1450. if (alias->target_phys_addr + alias->memory_size
  1451. < alias->target_phys_addr)
  1452. goto out;
  1453. down_write(&kvm->slots_lock);
  1454. spin_lock(&kvm->mmu_lock);
  1455. p = &kvm->arch.aliases[alias->slot];
  1456. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1457. p->npages = alias->memory_size >> PAGE_SHIFT;
  1458. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1459. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1460. if (kvm->arch.aliases[n - 1].npages)
  1461. break;
  1462. kvm->arch.naliases = n;
  1463. spin_unlock(&kvm->mmu_lock);
  1464. kvm_mmu_zap_all(kvm);
  1465. up_write(&kvm->slots_lock);
  1466. return 0;
  1467. out:
  1468. return r;
  1469. }
  1470. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1471. {
  1472. int r;
  1473. r = 0;
  1474. switch (chip->chip_id) {
  1475. case KVM_IRQCHIP_PIC_MASTER:
  1476. memcpy(&chip->chip.pic,
  1477. &pic_irqchip(kvm)->pics[0],
  1478. sizeof(struct kvm_pic_state));
  1479. break;
  1480. case KVM_IRQCHIP_PIC_SLAVE:
  1481. memcpy(&chip->chip.pic,
  1482. &pic_irqchip(kvm)->pics[1],
  1483. sizeof(struct kvm_pic_state));
  1484. break;
  1485. case KVM_IRQCHIP_IOAPIC:
  1486. memcpy(&chip->chip.ioapic,
  1487. ioapic_irqchip(kvm),
  1488. sizeof(struct kvm_ioapic_state));
  1489. break;
  1490. default:
  1491. r = -EINVAL;
  1492. break;
  1493. }
  1494. return r;
  1495. }
  1496. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1497. {
  1498. int r;
  1499. r = 0;
  1500. switch (chip->chip_id) {
  1501. case KVM_IRQCHIP_PIC_MASTER:
  1502. memcpy(&pic_irqchip(kvm)->pics[0],
  1503. &chip->chip.pic,
  1504. sizeof(struct kvm_pic_state));
  1505. break;
  1506. case KVM_IRQCHIP_PIC_SLAVE:
  1507. memcpy(&pic_irqchip(kvm)->pics[1],
  1508. &chip->chip.pic,
  1509. sizeof(struct kvm_pic_state));
  1510. break;
  1511. case KVM_IRQCHIP_IOAPIC:
  1512. memcpy(ioapic_irqchip(kvm),
  1513. &chip->chip.ioapic,
  1514. sizeof(struct kvm_ioapic_state));
  1515. break;
  1516. default:
  1517. r = -EINVAL;
  1518. break;
  1519. }
  1520. kvm_pic_update_irq(pic_irqchip(kvm));
  1521. return r;
  1522. }
  1523. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1524. {
  1525. int r = 0;
  1526. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1527. return r;
  1528. }
  1529. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1530. {
  1531. int r = 0;
  1532. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1533. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1534. return r;
  1535. }
  1536. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1537. struct kvm_reinject_control *control)
  1538. {
  1539. if (!kvm->arch.vpit)
  1540. return -ENXIO;
  1541. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1542. return 0;
  1543. }
  1544. /*
  1545. * Get (and clear) the dirty memory log for a memory slot.
  1546. */
  1547. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1548. struct kvm_dirty_log *log)
  1549. {
  1550. int r;
  1551. int n;
  1552. struct kvm_memory_slot *memslot;
  1553. int is_dirty = 0;
  1554. down_write(&kvm->slots_lock);
  1555. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1556. if (r)
  1557. goto out;
  1558. /* If nothing is dirty, don't bother messing with page tables. */
  1559. if (is_dirty) {
  1560. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1561. kvm_flush_remote_tlbs(kvm);
  1562. memslot = &kvm->memslots[log->slot];
  1563. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1564. memset(memslot->dirty_bitmap, 0, n);
  1565. }
  1566. r = 0;
  1567. out:
  1568. up_write(&kvm->slots_lock);
  1569. return r;
  1570. }
  1571. long kvm_arch_vm_ioctl(struct file *filp,
  1572. unsigned int ioctl, unsigned long arg)
  1573. {
  1574. struct kvm *kvm = filp->private_data;
  1575. void __user *argp = (void __user *)arg;
  1576. int r = -EINVAL;
  1577. /*
  1578. * This union makes it completely explicit to gcc-3.x
  1579. * that these two variables' stack usage should be
  1580. * combined, not added together.
  1581. */
  1582. union {
  1583. struct kvm_pit_state ps;
  1584. struct kvm_memory_alias alias;
  1585. } u;
  1586. switch (ioctl) {
  1587. case KVM_SET_TSS_ADDR:
  1588. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1589. if (r < 0)
  1590. goto out;
  1591. break;
  1592. case KVM_SET_MEMORY_REGION: {
  1593. struct kvm_memory_region kvm_mem;
  1594. struct kvm_userspace_memory_region kvm_userspace_mem;
  1595. r = -EFAULT;
  1596. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1597. goto out;
  1598. kvm_userspace_mem.slot = kvm_mem.slot;
  1599. kvm_userspace_mem.flags = kvm_mem.flags;
  1600. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1601. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1602. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1603. if (r)
  1604. goto out;
  1605. break;
  1606. }
  1607. case KVM_SET_NR_MMU_PAGES:
  1608. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1609. if (r)
  1610. goto out;
  1611. break;
  1612. case KVM_GET_NR_MMU_PAGES:
  1613. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1614. break;
  1615. case KVM_SET_MEMORY_ALIAS:
  1616. r = -EFAULT;
  1617. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1618. goto out;
  1619. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1620. if (r)
  1621. goto out;
  1622. break;
  1623. case KVM_CREATE_IRQCHIP:
  1624. r = -ENOMEM;
  1625. kvm->arch.vpic = kvm_create_pic(kvm);
  1626. if (kvm->arch.vpic) {
  1627. r = kvm_ioapic_init(kvm);
  1628. if (r) {
  1629. kfree(kvm->arch.vpic);
  1630. kvm->arch.vpic = NULL;
  1631. goto out;
  1632. }
  1633. } else
  1634. goto out;
  1635. r = kvm_setup_default_irq_routing(kvm);
  1636. if (r) {
  1637. kfree(kvm->arch.vpic);
  1638. kfree(kvm->arch.vioapic);
  1639. goto out;
  1640. }
  1641. break;
  1642. case KVM_CREATE_PIT:
  1643. mutex_lock(&kvm->lock);
  1644. r = -EEXIST;
  1645. if (kvm->arch.vpit)
  1646. goto create_pit_unlock;
  1647. r = -ENOMEM;
  1648. kvm->arch.vpit = kvm_create_pit(kvm);
  1649. if (kvm->arch.vpit)
  1650. r = 0;
  1651. create_pit_unlock:
  1652. mutex_unlock(&kvm->lock);
  1653. break;
  1654. case KVM_IRQ_LINE: {
  1655. struct kvm_irq_level irq_event;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1658. goto out;
  1659. if (irqchip_in_kernel(kvm)) {
  1660. mutex_lock(&kvm->lock);
  1661. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1662. irq_event.irq, irq_event.level);
  1663. mutex_unlock(&kvm->lock);
  1664. r = 0;
  1665. }
  1666. break;
  1667. }
  1668. case KVM_GET_IRQCHIP: {
  1669. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1670. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1671. r = -ENOMEM;
  1672. if (!chip)
  1673. goto out;
  1674. r = -EFAULT;
  1675. if (copy_from_user(chip, argp, sizeof *chip))
  1676. goto get_irqchip_out;
  1677. r = -ENXIO;
  1678. if (!irqchip_in_kernel(kvm))
  1679. goto get_irqchip_out;
  1680. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1681. if (r)
  1682. goto get_irqchip_out;
  1683. r = -EFAULT;
  1684. if (copy_to_user(argp, chip, sizeof *chip))
  1685. goto get_irqchip_out;
  1686. r = 0;
  1687. get_irqchip_out:
  1688. kfree(chip);
  1689. if (r)
  1690. goto out;
  1691. break;
  1692. }
  1693. case KVM_SET_IRQCHIP: {
  1694. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1695. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1696. r = -ENOMEM;
  1697. if (!chip)
  1698. goto out;
  1699. r = -EFAULT;
  1700. if (copy_from_user(chip, argp, sizeof *chip))
  1701. goto set_irqchip_out;
  1702. r = -ENXIO;
  1703. if (!irqchip_in_kernel(kvm))
  1704. goto set_irqchip_out;
  1705. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1706. if (r)
  1707. goto set_irqchip_out;
  1708. r = 0;
  1709. set_irqchip_out:
  1710. kfree(chip);
  1711. if (r)
  1712. goto out;
  1713. break;
  1714. }
  1715. case KVM_GET_PIT: {
  1716. r = -EFAULT;
  1717. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1718. goto out;
  1719. r = -ENXIO;
  1720. if (!kvm->arch.vpit)
  1721. goto out;
  1722. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1723. if (r)
  1724. goto out;
  1725. r = -EFAULT;
  1726. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1727. goto out;
  1728. r = 0;
  1729. break;
  1730. }
  1731. case KVM_SET_PIT: {
  1732. r = -EFAULT;
  1733. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1734. goto out;
  1735. r = -ENXIO;
  1736. if (!kvm->arch.vpit)
  1737. goto out;
  1738. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1739. if (r)
  1740. goto out;
  1741. r = 0;
  1742. break;
  1743. }
  1744. case KVM_REINJECT_CONTROL: {
  1745. struct kvm_reinject_control control;
  1746. r = -EFAULT;
  1747. if (copy_from_user(&control, argp, sizeof(control)))
  1748. goto out;
  1749. r = kvm_vm_ioctl_reinject(kvm, &control);
  1750. if (r)
  1751. goto out;
  1752. r = 0;
  1753. break;
  1754. }
  1755. default:
  1756. ;
  1757. }
  1758. out:
  1759. return r;
  1760. }
  1761. static void kvm_init_msr_list(void)
  1762. {
  1763. u32 dummy[2];
  1764. unsigned i, j;
  1765. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1766. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1767. continue;
  1768. if (j < i)
  1769. msrs_to_save[j] = msrs_to_save[i];
  1770. j++;
  1771. }
  1772. num_msrs_to_save = j;
  1773. }
  1774. /*
  1775. * Only apic need an MMIO device hook, so shortcut now..
  1776. */
  1777. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1778. gpa_t addr, int len,
  1779. int is_write)
  1780. {
  1781. struct kvm_io_device *dev;
  1782. if (vcpu->arch.apic) {
  1783. dev = &vcpu->arch.apic->dev;
  1784. if (dev->in_range(dev, addr, len, is_write))
  1785. return dev;
  1786. }
  1787. return NULL;
  1788. }
  1789. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1790. gpa_t addr, int len,
  1791. int is_write)
  1792. {
  1793. struct kvm_io_device *dev;
  1794. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1795. if (dev == NULL)
  1796. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1797. is_write);
  1798. return dev;
  1799. }
  1800. int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1801. struct kvm_vcpu *vcpu)
  1802. {
  1803. void *data = val;
  1804. int r = X86EMUL_CONTINUE;
  1805. while (bytes) {
  1806. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1807. unsigned offset = addr & (PAGE_SIZE-1);
  1808. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1809. int ret;
  1810. if (gpa == UNMAPPED_GVA) {
  1811. r = X86EMUL_PROPAGATE_FAULT;
  1812. goto out;
  1813. }
  1814. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1815. if (ret < 0) {
  1816. r = X86EMUL_UNHANDLEABLE;
  1817. goto out;
  1818. }
  1819. bytes -= toread;
  1820. data += toread;
  1821. addr += toread;
  1822. }
  1823. out:
  1824. return r;
  1825. }
  1826. int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1827. struct kvm_vcpu *vcpu)
  1828. {
  1829. void *data = val;
  1830. int r = X86EMUL_CONTINUE;
  1831. while (bytes) {
  1832. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1833. unsigned offset = addr & (PAGE_SIZE-1);
  1834. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1835. int ret;
  1836. if (gpa == UNMAPPED_GVA) {
  1837. r = X86EMUL_PROPAGATE_FAULT;
  1838. goto out;
  1839. }
  1840. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1841. if (ret < 0) {
  1842. r = X86EMUL_UNHANDLEABLE;
  1843. goto out;
  1844. }
  1845. bytes -= towrite;
  1846. data += towrite;
  1847. addr += towrite;
  1848. }
  1849. out:
  1850. return r;
  1851. }
  1852. static int emulator_read_emulated(unsigned long addr,
  1853. void *val,
  1854. unsigned int bytes,
  1855. struct kvm_vcpu *vcpu)
  1856. {
  1857. struct kvm_io_device *mmio_dev;
  1858. gpa_t gpa;
  1859. if (vcpu->mmio_read_completed) {
  1860. memcpy(val, vcpu->mmio_data, bytes);
  1861. vcpu->mmio_read_completed = 0;
  1862. return X86EMUL_CONTINUE;
  1863. }
  1864. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1865. /* For APIC access vmexit */
  1866. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1867. goto mmio;
  1868. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1869. == X86EMUL_CONTINUE)
  1870. return X86EMUL_CONTINUE;
  1871. if (gpa == UNMAPPED_GVA)
  1872. return X86EMUL_PROPAGATE_FAULT;
  1873. mmio:
  1874. /*
  1875. * Is this MMIO handled locally?
  1876. */
  1877. mutex_lock(&vcpu->kvm->lock);
  1878. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1879. if (mmio_dev) {
  1880. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1881. mutex_unlock(&vcpu->kvm->lock);
  1882. return X86EMUL_CONTINUE;
  1883. }
  1884. mutex_unlock(&vcpu->kvm->lock);
  1885. vcpu->mmio_needed = 1;
  1886. vcpu->mmio_phys_addr = gpa;
  1887. vcpu->mmio_size = bytes;
  1888. vcpu->mmio_is_write = 0;
  1889. return X86EMUL_UNHANDLEABLE;
  1890. }
  1891. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1892. const void *val, int bytes)
  1893. {
  1894. int ret;
  1895. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1896. if (ret < 0)
  1897. return 0;
  1898. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1899. return 1;
  1900. }
  1901. static int emulator_write_emulated_onepage(unsigned long addr,
  1902. const void *val,
  1903. unsigned int bytes,
  1904. struct kvm_vcpu *vcpu)
  1905. {
  1906. struct kvm_io_device *mmio_dev;
  1907. gpa_t gpa;
  1908. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1909. if (gpa == UNMAPPED_GVA) {
  1910. kvm_inject_page_fault(vcpu, addr, 2);
  1911. return X86EMUL_PROPAGATE_FAULT;
  1912. }
  1913. /* For APIC access vmexit */
  1914. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1915. goto mmio;
  1916. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1917. return X86EMUL_CONTINUE;
  1918. mmio:
  1919. /*
  1920. * Is this MMIO handled locally?
  1921. */
  1922. mutex_lock(&vcpu->kvm->lock);
  1923. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1924. if (mmio_dev) {
  1925. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1926. mutex_unlock(&vcpu->kvm->lock);
  1927. return X86EMUL_CONTINUE;
  1928. }
  1929. mutex_unlock(&vcpu->kvm->lock);
  1930. vcpu->mmio_needed = 1;
  1931. vcpu->mmio_phys_addr = gpa;
  1932. vcpu->mmio_size = bytes;
  1933. vcpu->mmio_is_write = 1;
  1934. memcpy(vcpu->mmio_data, val, bytes);
  1935. return X86EMUL_CONTINUE;
  1936. }
  1937. int emulator_write_emulated(unsigned long addr,
  1938. const void *val,
  1939. unsigned int bytes,
  1940. struct kvm_vcpu *vcpu)
  1941. {
  1942. /* Crossing a page boundary? */
  1943. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1944. int rc, now;
  1945. now = -addr & ~PAGE_MASK;
  1946. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1947. if (rc != X86EMUL_CONTINUE)
  1948. return rc;
  1949. addr += now;
  1950. val += now;
  1951. bytes -= now;
  1952. }
  1953. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1954. }
  1955. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1956. static int emulator_cmpxchg_emulated(unsigned long addr,
  1957. const void *old,
  1958. const void *new,
  1959. unsigned int bytes,
  1960. struct kvm_vcpu *vcpu)
  1961. {
  1962. static int reported;
  1963. if (!reported) {
  1964. reported = 1;
  1965. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1966. }
  1967. #ifndef CONFIG_X86_64
  1968. /* guests cmpxchg8b have to be emulated atomically */
  1969. if (bytes == 8) {
  1970. gpa_t gpa;
  1971. struct page *page;
  1972. char *kaddr;
  1973. u64 val;
  1974. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1975. if (gpa == UNMAPPED_GVA ||
  1976. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1977. goto emul_write;
  1978. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1979. goto emul_write;
  1980. val = *(u64 *)new;
  1981. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1982. kaddr = kmap_atomic(page, KM_USER0);
  1983. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1984. kunmap_atomic(kaddr, KM_USER0);
  1985. kvm_release_page_dirty(page);
  1986. }
  1987. emul_write:
  1988. #endif
  1989. return emulator_write_emulated(addr, new, bytes, vcpu);
  1990. }
  1991. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1992. {
  1993. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1994. }
  1995. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1996. {
  1997. kvm_mmu_invlpg(vcpu, address);
  1998. return X86EMUL_CONTINUE;
  1999. }
  2000. int emulate_clts(struct kvm_vcpu *vcpu)
  2001. {
  2002. KVMTRACE_0D(CLTS, vcpu, handler);
  2003. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2004. return X86EMUL_CONTINUE;
  2005. }
  2006. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2007. {
  2008. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2009. switch (dr) {
  2010. case 0 ... 3:
  2011. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2012. return X86EMUL_CONTINUE;
  2013. default:
  2014. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2015. return X86EMUL_UNHANDLEABLE;
  2016. }
  2017. }
  2018. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2019. {
  2020. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2021. int exception;
  2022. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2023. if (exception) {
  2024. /* FIXME: better handling */
  2025. return X86EMUL_UNHANDLEABLE;
  2026. }
  2027. return X86EMUL_CONTINUE;
  2028. }
  2029. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2030. {
  2031. u8 opcodes[4];
  2032. unsigned long rip = kvm_rip_read(vcpu);
  2033. unsigned long rip_linear;
  2034. if (!printk_ratelimit())
  2035. return;
  2036. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2037. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2038. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2039. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2040. }
  2041. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2042. static struct x86_emulate_ops emulate_ops = {
  2043. .read_std = kvm_read_guest_virt,
  2044. .read_emulated = emulator_read_emulated,
  2045. .write_emulated = emulator_write_emulated,
  2046. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2047. };
  2048. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2049. {
  2050. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2051. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2052. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2053. vcpu->arch.regs_dirty = ~0;
  2054. }
  2055. int emulate_instruction(struct kvm_vcpu *vcpu,
  2056. struct kvm_run *run,
  2057. unsigned long cr2,
  2058. u16 error_code,
  2059. int emulation_type)
  2060. {
  2061. int r;
  2062. struct decode_cache *c;
  2063. kvm_clear_exception_queue(vcpu);
  2064. vcpu->arch.mmio_fault_cr2 = cr2;
  2065. /*
  2066. * TODO: fix x86_emulate.c to use guest_read/write_register
  2067. * instead of direct ->regs accesses, can save hundred cycles
  2068. * on Intel for instructions that don't read/change RSP, for
  2069. * for example.
  2070. */
  2071. cache_all_regs(vcpu);
  2072. vcpu->mmio_is_write = 0;
  2073. vcpu->arch.pio.string = 0;
  2074. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2075. int cs_db, cs_l;
  2076. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2077. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2078. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2079. vcpu->arch.emulate_ctxt.mode =
  2080. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2081. ? X86EMUL_MODE_REAL : cs_l
  2082. ? X86EMUL_MODE_PROT64 : cs_db
  2083. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2084. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2085. /* Reject the instructions other than VMCALL/VMMCALL when
  2086. * try to emulate invalid opcode */
  2087. c = &vcpu->arch.emulate_ctxt.decode;
  2088. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2089. (!(c->twobyte && c->b == 0x01 &&
  2090. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2091. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2092. return EMULATE_FAIL;
  2093. ++vcpu->stat.insn_emulation;
  2094. if (r) {
  2095. ++vcpu->stat.insn_emulation_fail;
  2096. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2097. return EMULATE_DONE;
  2098. return EMULATE_FAIL;
  2099. }
  2100. }
  2101. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2102. if (vcpu->arch.pio.string)
  2103. return EMULATE_DO_MMIO;
  2104. if ((r || vcpu->mmio_is_write) && run) {
  2105. run->exit_reason = KVM_EXIT_MMIO;
  2106. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2107. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2108. run->mmio.len = vcpu->mmio_size;
  2109. run->mmio.is_write = vcpu->mmio_is_write;
  2110. }
  2111. if (r) {
  2112. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2113. return EMULATE_DONE;
  2114. if (!vcpu->mmio_needed) {
  2115. kvm_report_emulation_failure(vcpu, "mmio");
  2116. return EMULATE_FAIL;
  2117. }
  2118. return EMULATE_DO_MMIO;
  2119. }
  2120. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2121. if (vcpu->mmio_is_write) {
  2122. vcpu->mmio_needed = 0;
  2123. return EMULATE_DO_MMIO;
  2124. }
  2125. return EMULATE_DONE;
  2126. }
  2127. EXPORT_SYMBOL_GPL(emulate_instruction);
  2128. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2129. {
  2130. void *p = vcpu->arch.pio_data;
  2131. gva_t q = vcpu->arch.pio.guest_gva;
  2132. unsigned bytes;
  2133. int ret;
  2134. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2135. if (vcpu->arch.pio.in)
  2136. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2137. else
  2138. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2139. return ret;
  2140. }
  2141. int complete_pio(struct kvm_vcpu *vcpu)
  2142. {
  2143. struct kvm_pio_request *io = &vcpu->arch.pio;
  2144. long delta;
  2145. int r;
  2146. unsigned long val;
  2147. if (!io->string) {
  2148. if (io->in) {
  2149. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2150. memcpy(&val, vcpu->arch.pio_data, io->size);
  2151. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2152. }
  2153. } else {
  2154. if (io->in) {
  2155. r = pio_copy_data(vcpu);
  2156. if (r)
  2157. return r;
  2158. }
  2159. delta = 1;
  2160. if (io->rep) {
  2161. delta *= io->cur_count;
  2162. /*
  2163. * The size of the register should really depend on
  2164. * current address size.
  2165. */
  2166. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2167. val -= delta;
  2168. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2169. }
  2170. if (io->down)
  2171. delta = -delta;
  2172. delta *= io->size;
  2173. if (io->in) {
  2174. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2175. val += delta;
  2176. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2177. } else {
  2178. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2179. val += delta;
  2180. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2181. }
  2182. }
  2183. io->count -= io->cur_count;
  2184. io->cur_count = 0;
  2185. return 0;
  2186. }
  2187. static void kernel_pio(struct kvm_io_device *pio_dev,
  2188. struct kvm_vcpu *vcpu,
  2189. void *pd)
  2190. {
  2191. /* TODO: String I/O for in kernel device */
  2192. mutex_lock(&vcpu->kvm->lock);
  2193. if (vcpu->arch.pio.in)
  2194. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2195. vcpu->arch.pio.size,
  2196. pd);
  2197. else
  2198. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2199. vcpu->arch.pio.size,
  2200. pd);
  2201. mutex_unlock(&vcpu->kvm->lock);
  2202. }
  2203. static void pio_string_write(struct kvm_io_device *pio_dev,
  2204. struct kvm_vcpu *vcpu)
  2205. {
  2206. struct kvm_pio_request *io = &vcpu->arch.pio;
  2207. void *pd = vcpu->arch.pio_data;
  2208. int i;
  2209. mutex_lock(&vcpu->kvm->lock);
  2210. for (i = 0; i < io->cur_count; i++) {
  2211. kvm_iodevice_write(pio_dev, io->port,
  2212. io->size,
  2213. pd);
  2214. pd += io->size;
  2215. }
  2216. mutex_unlock(&vcpu->kvm->lock);
  2217. }
  2218. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2219. gpa_t addr, int len,
  2220. int is_write)
  2221. {
  2222. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2223. }
  2224. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2225. int size, unsigned port)
  2226. {
  2227. struct kvm_io_device *pio_dev;
  2228. unsigned long val;
  2229. vcpu->run->exit_reason = KVM_EXIT_IO;
  2230. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2231. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2232. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2233. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2234. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2235. vcpu->arch.pio.in = in;
  2236. vcpu->arch.pio.string = 0;
  2237. vcpu->arch.pio.down = 0;
  2238. vcpu->arch.pio.rep = 0;
  2239. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2240. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2241. handler);
  2242. else
  2243. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2244. handler);
  2245. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2246. memcpy(vcpu->arch.pio_data, &val, 4);
  2247. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2248. if (pio_dev) {
  2249. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2250. complete_pio(vcpu);
  2251. return 1;
  2252. }
  2253. return 0;
  2254. }
  2255. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2256. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2257. int size, unsigned long count, int down,
  2258. gva_t address, int rep, unsigned port)
  2259. {
  2260. unsigned now, in_page;
  2261. int ret = 0;
  2262. struct kvm_io_device *pio_dev;
  2263. vcpu->run->exit_reason = KVM_EXIT_IO;
  2264. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2265. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2266. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2267. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2268. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2269. vcpu->arch.pio.in = in;
  2270. vcpu->arch.pio.string = 1;
  2271. vcpu->arch.pio.down = down;
  2272. vcpu->arch.pio.rep = rep;
  2273. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2274. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2275. handler);
  2276. else
  2277. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2278. handler);
  2279. if (!count) {
  2280. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2281. return 1;
  2282. }
  2283. if (!down)
  2284. in_page = PAGE_SIZE - offset_in_page(address);
  2285. else
  2286. in_page = offset_in_page(address) + size;
  2287. now = min(count, (unsigned long)in_page / size);
  2288. if (!now)
  2289. now = 1;
  2290. if (down) {
  2291. /*
  2292. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2293. */
  2294. pr_unimpl(vcpu, "guest string pio down\n");
  2295. kvm_inject_gp(vcpu, 0);
  2296. return 1;
  2297. }
  2298. vcpu->run->io.count = now;
  2299. vcpu->arch.pio.cur_count = now;
  2300. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2301. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2302. vcpu->arch.pio.guest_gva = address;
  2303. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2304. vcpu->arch.pio.cur_count,
  2305. !vcpu->arch.pio.in);
  2306. if (!vcpu->arch.pio.in) {
  2307. /* string PIO write */
  2308. ret = pio_copy_data(vcpu);
  2309. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2310. kvm_inject_gp(vcpu, 0);
  2311. return 1;
  2312. }
  2313. if (ret == 0 && pio_dev) {
  2314. pio_string_write(pio_dev, vcpu);
  2315. complete_pio(vcpu);
  2316. if (vcpu->arch.pio.count == 0)
  2317. ret = 1;
  2318. }
  2319. } else if (pio_dev)
  2320. pr_unimpl(vcpu, "no string pio read support yet, "
  2321. "port %x size %d count %ld\n",
  2322. port, size, count);
  2323. return ret;
  2324. }
  2325. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2326. int kvm_arch_init(void *opaque)
  2327. {
  2328. int r;
  2329. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2330. if (kvm_x86_ops) {
  2331. printk(KERN_ERR "kvm: already loaded the other module\n");
  2332. r = -EEXIST;
  2333. goto out;
  2334. }
  2335. if (!ops->cpu_has_kvm_support()) {
  2336. printk(KERN_ERR "kvm: no hardware support\n");
  2337. r = -EOPNOTSUPP;
  2338. goto out;
  2339. }
  2340. if (ops->disabled_by_bios()) {
  2341. printk(KERN_ERR "kvm: disabled by bios\n");
  2342. r = -EOPNOTSUPP;
  2343. goto out;
  2344. }
  2345. r = kvm_mmu_module_init();
  2346. if (r)
  2347. goto out;
  2348. kvm_init_msr_list();
  2349. kvm_x86_ops = ops;
  2350. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2351. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2352. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2353. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2354. return 0;
  2355. out:
  2356. return r;
  2357. }
  2358. void kvm_arch_exit(void)
  2359. {
  2360. kvm_x86_ops = NULL;
  2361. kvm_mmu_module_exit();
  2362. }
  2363. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2364. {
  2365. ++vcpu->stat.halt_exits;
  2366. KVMTRACE_0D(HLT, vcpu, handler);
  2367. if (irqchip_in_kernel(vcpu->kvm)) {
  2368. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2369. return 1;
  2370. } else {
  2371. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2372. return 0;
  2373. }
  2374. }
  2375. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2376. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2377. unsigned long a1)
  2378. {
  2379. if (is_long_mode(vcpu))
  2380. return a0;
  2381. else
  2382. return a0 | ((gpa_t)a1 << 32);
  2383. }
  2384. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2385. {
  2386. unsigned long nr, a0, a1, a2, a3, ret;
  2387. int r = 1;
  2388. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2389. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2390. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2391. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2392. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2393. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2394. if (!is_long_mode(vcpu)) {
  2395. nr &= 0xFFFFFFFF;
  2396. a0 &= 0xFFFFFFFF;
  2397. a1 &= 0xFFFFFFFF;
  2398. a2 &= 0xFFFFFFFF;
  2399. a3 &= 0xFFFFFFFF;
  2400. }
  2401. switch (nr) {
  2402. case KVM_HC_VAPIC_POLL_IRQ:
  2403. ret = 0;
  2404. break;
  2405. case KVM_HC_MMU_OP:
  2406. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2407. break;
  2408. default:
  2409. ret = -KVM_ENOSYS;
  2410. break;
  2411. }
  2412. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2413. ++vcpu->stat.hypercalls;
  2414. return r;
  2415. }
  2416. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2417. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2418. {
  2419. char instruction[3];
  2420. int ret = 0;
  2421. unsigned long rip = kvm_rip_read(vcpu);
  2422. /*
  2423. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2424. * to ensure that the updated hypercall appears atomically across all
  2425. * VCPUs.
  2426. */
  2427. kvm_mmu_zap_all(vcpu->kvm);
  2428. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2429. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2430. != X86EMUL_CONTINUE)
  2431. ret = -EFAULT;
  2432. return ret;
  2433. }
  2434. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2435. {
  2436. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2437. }
  2438. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2439. {
  2440. struct descriptor_table dt = { limit, base };
  2441. kvm_x86_ops->set_gdt(vcpu, &dt);
  2442. }
  2443. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2444. {
  2445. struct descriptor_table dt = { limit, base };
  2446. kvm_x86_ops->set_idt(vcpu, &dt);
  2447. }
  2448. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2449. unsigned long *rflags)
  2450. {
  2451. kvm_lmsw(vcpu, msw);
  2452. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2453. }
  2454. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2455. {
  2456. unsigned long value;
  2457. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2458. switch (cr) {
  2459. case 0:
  2460. value = vcpu->arch.cr0;
  2461. break;
  2462. case 2:
  2463. value = vcpu->arch.cr2;
  2464. break;
  2465. case 3:
  2466. value = vcpu->arch.cr3;
  2467. break;
  2468. case 4:
  2469. value = vcpu->arch.cr4;
  2470. break;
  2471. case 8:
  2472. value = kvm_get_cr8(vcpu);
  2473. break;
  2474. default:
  2475. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2476. return 0;
  2477. }
  2478. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2479. (u32)((u64)value >> 32), handler);
  2480. return value;
  2481. }
  2482. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2483. unsigned long *rflags)
  2484. {
  2485. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2486. (u32)((u64)val >> 32), handler);
  2487. switch (cr) {
  2488. case 0:
  2489. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2490. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2491. break;
  2492. case 2:
  2493. vcpu->arch.cr2 = val;
  2494. break;
  2495. case 3:
  2496. kvm_set_cr3(vcpu, val);
  2497. break;
  2498. case 4:
  2499. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2500. break;
  2501. case 8:
  2502. kvm_set_cr8(vcpu, val & 0xfUL);
  2503. break;
  2504. default:
  2505. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2506. }
  2507. }
  2508. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2509. {
  2510. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2511. int j, nent = vcpu->arch.cpuid_nent;
  2512. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2513. /* when no next entry is found, the current entry[i] is reselected */
  2514. for (j = i + 1; ; j = (j + 1) % nent) {
  2515. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2516. if (ej->function == e->function) {
  2517. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2518. return j;
  2519. }
  2520. }
  2521. return 0; /* silence gcc, even though control never reaches here */
  2522. }
  2523. /* find an entry with matching function, matching index (if needed), and that
  2524. * should be read next (if it's stateful) */
  2525. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2526. u32 function, u32 index)
  2527. {
  2528. if (e->function != function)
  2529. return 0;
  2530. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2531. return 0;
  2532. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2533. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2534. return 0;
  2535. return 1;
  2536. }
  2537. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2538. u32 function, u32 index)
  2539. {
  2540. int i;
  2541. struct kvm_cpuid_entry2 *best = NULL;
  2542. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2543. struct kvm_cpuid_entry2 *e;
  2544. e = &vcpu->arch.cpuid_entries[i];
  2545. if (is_matching_cpuid_entry(e, function, index)) {
  2546. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2547. move_to_next_stateful_cpuid_entry(vcpu, i);
  2548. best = e;
  2549. break;
  2550. }
  2551. /*
  2552. * Both basic or both extended?
  2553. */
  2554. if (((e->function ^ function) & 0x80000000) == 0)
  2555. if (!best || e->function > best->function)
  2556. best = e;
  2557. }
  2558. return best;
  2559. }
  2560. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2561. {
  2562. u32 function, index;
  2563. struct kvm_cpuid_entry2 *best;
  2564. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2565. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2566. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2567. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2568. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2569. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2570. best = kvm_find_cpuid_entry(vcpu, function, index);
  2571. if (best) {
  2572. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2573. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2574. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2575. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2576. }
  2577. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2578. KVMTRACE_5D(CPUID, vcpu, function,
  2579. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2580. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2581. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2582. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2583. }
  2584. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2585. /*
  2586. * Check if userspace requested an interrupt window, and that the
  2587. * interrupt window is open.
  2588. *
  2589. * No need to exit to userspace if we already have an interrupt queued.
  2590. */
  2591. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2592. struct kvm_run *kvm_run)
  2593. {
  2594. return (!vcpu->arch.irq_summary &&
  2595. kvm_run->request_interrupt_window &&
  2596. vcpu->arch.interrupt_window_open &&
  2597. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2598. }
  2599. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2600. struct kvm_run *kvm_run)
  2601. {
  2602. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2603. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2604. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2605. if (irqchip_in_kernel(vcpu->kvm))
  2606. kvm_run->ready_for_interrupt_injection = 1;
  2607. else
  2608. kvm_run->ready_for_interrupt_injection =
  2609. (vcpu->arch.interrupt_window_open &&
  2610. vcpu->arch.irq_summary == 0);
  2611. }
  2612. static void vapic_enter(struct kvm_vcpu *vcpu)
  2613. {
  2614. struct kvm_lapic *apic = vcpu->arch.apic;
  2615. struct page *page;
  2616. if (!apic || !apic->vapic_addr)
  2617. return;
  2618. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2619. vcpu->arch.apic->vapic_page = page;
  2620. }
  2621. static void vapic_exit(struct kvm_vcpu *vcpu)
  2622. {
  2623. struct kvm_lapic *apic = vcpu->arch.apic;
  2624. if (!apic || !apic->vapic_addr)
  2625. return;
  2626. down_read(&vcpu->kvm->slots_lock);
  2627. kvm_release_page_dirty(apic->vapic_page);
  2628. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2629. up_read(&vcpu->kvm->slots_lock);
  2630. }
  2631. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2632. {
  2633. int r;
  2634. if (vcpu->requests)
  2635. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2636. kvm_mmu_unload(vcpu);
  2637. r = kvm_mmu_reload(vcpu);
  2638. if (unlikely(r))
  2639. goto out;
  2640. if (vcpu->requests) {
  2641. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2642. __kvm_migrate_timers(vcpu);
  2643. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2644. kvm_mmu_sync_roots(vcpu);
  2645. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2646. kvm_x86_ops->tlb_flush(vcpu);
  2647. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2648. &vcpu->requests)) {
  2649. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2650. r = 0;
  2651. goto out;
  2652. }
  2653. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2654. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2655. r = 0;
  2656. goto out;
  2657. }
  2658. }
  2659. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2660. kvm_inject_pending_timer_irqs(vcpu);
  2661. preempt_disable();
  2662. kvm_x86_ops->prepare_guest_switch(vcpu);
  2663. kvm_load_guest_fpu(vcpu);
  2664. local_irq_disable();
  2665. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2666. local_irq_enable();
  2667. preempt_enable();
  2668. r = 1;
  2669. goto out;
  2670. }
  2671. vcpu->guest_mode = 1;
  2672. /*
  2673. * Make sure that guest_mode assignment won't happen after
  2674. * testing the pending IRQ vector bitmap.
  2675. */
  2676. smp_wmb();
  2677. if (vcpu->arch.exception.pending)
  2678. __queue_exception(vcpu);
  2679. else if (irqchip_in_kernel(vcpu->kvm))
  2680. kvm_x86_ops->inject_pending_irq(vcpu);
  2681. else
  2682. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2683. kvm_lapic_sync_to_vapic(vcpu);
  2684. up_read(&vcpu->kvm->slots_lock);
  2685. kvm_guest_enter();
  2686. get_debugreg(vcpu->arch.host_dr6, 6);
  2687. get_debugreg(vcpu->arch.host_dr7, 7);
  2688. if (unlikely(vcpu->arch.switch_db_regs)) {
  2689. get_debugreg(vcpu->arch.host_db[0], 0);
  2690. get_debugreg(vcpu->arch.host_db[1], 1);
  2691. get_debugreg(vcpu->arch.host_db[2], 2);
  2692. get_debugreg(vcpu->arch.host_db[3], 3);
  2693. set_debugreg(0, 7);
  2694. set_debugreg(vcpu->arch.eff_db[0], 0);
  2695. set_debugreg(vcpu->arch.eff_db[1], 1);
  2696. set_debugreg(vcpu->arch.eff_db[2], 2);
  2697. set_debugreg(vcpu->arch.eff_db[3], 3);
  2698. }
  2699. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2700. kvm_x86_ops->run(vcpu, kvm_run);
  2701. if (unlikely(vcpu->arch.switch_db_regs)) {
  2702. set_debugreg(0, 7);
  2703. set_debugreg(vcpu->arch.host_db[0], 0);
  2704. set_debugreg(vcpu->arch.host_db[1], 1);
  2705. set_debugreg(vcpu->arch.host_db[2], 2);
  2706. set_debugreg(vcpu->arch.host_db[3], 3);
  2707. }
  2708. set_debugreg(vcpu->arch.host_dr6, 6);
  2709. set_debugreg(vcpu->arch.host_dr7, 7);
  2710. vcpu->guest_mode = 0;
  2711. local_irq_enable();
  2712. ++vcpu->stat.exits;
  2713. /*
  2714. * We must have an instruction between local_irq_enable() and
  2715. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2716. * the interrupt shadow. The stat.exits increment will do nicely.
  2717. * But we need to prevent reordering, hence this barrier():
  2718. */
  2719. barrier();
  2720. kvm_guest_exit();
  2721. preempt_enable();
  2722. down_read(&vcpu->kvm->slots_lock);
  2723. /*
  2724. * Profile KVM exit RIPs:
  2725. */
  2726. if (unlikely(prof_on == KVM_PROFILING)) {
  2727. unsigned long rip = kvm_rip_read(vcpu);
  2728. profile_hit(KVM_PROFILING, (void *)rip);
  2729. }
  2730. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2731. vcpu->arch.exception.pending = false;
  2732. kvm_lapic_sync_from_vapic(vcpu);
  2733. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2734. out:
  2735. return r;
  2736. }
  2737. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2738. {
  2739. int r;
  2740. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2741. pr_debug("vcpu %d received sipi with vector # %x\n",
  2742. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2743. kvm_lapic_reset(vcpu);
  2744. r = kvm_arch_vcpu_reset(vcpu);
  2745. if (r)
  2746. return r;
  2747. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2748. }
  2749. down_read(&vcpu->kvm->slots_lock);
  2750. vapic_enter(vcpu);
  2751. r = 1;
  2752. while (r > 0) {
  2753. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2754. r = vcpu_enter_guest(vcpu, kvm_run);
  2755. else {
  2756. up_read(&vcpu->kvm->slots_lock);
  2757. kvm_vcpu_block(vcpu);
  2758. down_read(&vcpu->kvm->slots_lock);
  2759. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2760. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2761. vcpu->arch.mp_state =
  2762. KVM_MP_STATE_RUNNABLE;
  2763. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2764. r = -EINTR;
  2765. }
  2766. if (r > 0) {
  2767. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2768. r = -EINTR;
  2769. kvm_run->exit_reason = KVM_EXIT_INTR;
  2770. ++vcpu->stat.request_irq_exits;
  2771. }
  2772. if (signal_pending(current)) {
  2773. r = -EINTR;
  2774. kvm_run->exit_reason = KVM_EXIT_INTR;
  2775. ++vcpu->stat.signal_exits;
  2776. }
  2777. if (need_resched()) {
  2778. up_read(&vcpu->kvm->slots_lock);
  2779. kvm_resched(vcpu);
  2780. down_read(&vcpu->kvm->slots_lock);
  2781. }
  2782. }
  2783. }
  2784. up_read(&vcpu->kvm->slots_lock);
  2785. post_kvm_run_save(vcpu, kvm_run);
  2786. vapic_exit(vcpu);
  2787. return r;
  2788. }
  2789. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2790. {
  2791. int r;
  2792. sigset_t sigsaved;
  2793. vcpu_load(vcpu);
  2794. if (vcpu->sigset_active)
  2795. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2796. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2797. kvm_vcpu_block(vcpu);
  2798. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2799. r = -EAGAIN;
  2800. goto out;
  2801. }
  2802. /* re-sync apic's tpr */
  2803. if (!irqchip_in_kernel(vcpu->kvm))
  2804. kvm_set_cr8(vcpu, kvm_run->cr8);
  2805. if (vcpu->arch.pio.cur_count) {
  2806. r = complete_pio(vcpu);
  2807. if (r)
  2808. goto out;
  2809. }
  2810. #if CONFIG_HAS_IOMEM
  2811. if (vcpu->mmio_needed) {
  2812. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2813. vcpu->mmio_read_completed = 1;
  2814. vcpu->mmio_needed = 0;
  2815. down_read(&vcpu->kvm->slots_lock);
  2816. r = emulate_instruction(vcpu, kvm_run,
  2817. vcpu->arch.mmio_fault_cr2, 0,
  2818. EMULTYPE_NO_DECODE);
  2819. up_read(&vcpu->kvm->slots_lock);
  2820. if (r == EMULATE_DO_MMIO) {
  2821. /*
  2822. * Read-modify-write. Back to userspace.
  2823. */
  2824. r = 0;
  2825. goto out;
  2826. }
  2827. }
  2828. #endif
  2829. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2830. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2831. kvm_run->hypercall.ret);
  2832. r = __vcpu_run(vcpu, kvm_run);
  2833. out:
  2834. if (vcpu->sigset_active)
  2835. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2836. vcpu_put(vcpu);
  2837. return r;
  2838. }
  2839. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2840. {
  2841. vcpu_load(vcpu);
  2842. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2843. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2844. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2845. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2846. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2847. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2848. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2849. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2850. #ifdef CONFIG_X86_64
  2851. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2852. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2853. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2854. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2855. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2856. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2857. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2858. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2859. #endif
  2860. regs->rip = kvm_rip_read(vcpu);
  2861. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2862. /*
  2863. * Don't leak debug flags in case they were set for guest debugging
  2864. */
  2865. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2866. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2867. vcpu_put(vcpu);
  2868. return 0;
  2869. }
  2870. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2871. {
  2872. vcpu_load(vcpu);
  2873. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2874. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2875. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2876. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2877. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2878. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2879. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2880. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2881. #ifdef CONFIG_X86_64
  2882. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2883. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2884. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2885. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2886. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2887. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2888. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2889. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2890. #endif
  2891. kvm_rip_write(vcpu, regs->rip);
  2892. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2893. vcpu->arch.exception.pending = false;
  2894. vcpu_put(vcpu);
  2895. return 0;
  2896. }
  2897. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2898. struct kvm_segment *var, int seg)
  2899. {
  2900. kvm_x86_ops->get_segment(vcpu, var, seg);
  2901. }
  2902. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2903. {
  2904. struct kvm_segment cs;
  2905. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2906. *db = cs.db;
  2907. *l = cs.l;
  2908. }
  2909. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2910. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2911. struct kvm_sregs *sregs)
  2912. {
  2913. struct descriptor_table dt;
  2914. int pending_vec;
  2915. vcpu_load(vcpu);
  2916. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2917. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2918. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2919. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2920. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2921. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2922. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2923. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2924. kvm_x86_ops->get_idt(vcpu, &dt);
  2925. sregs->idt.limit = dt.limit;
  2926. sregs->idt.base = dt.base;
  2927. kvm_x86_ops->get_gdt(vcpu, &dt);
  2928. sregs->gdt.limit = dt.limit;
  2929. sregs->gdt.base = dt.base;
  2930. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2931. sregs->cr0 = vcpu->arch.cr0;
  2932. sregs->cr2 = vcpu->arch.cr2;
  2933. sregs->cr3 = vcpu->arch.cr3;
  2934. sregs->cr4 = vcpu->arch.cr4;
  2935. sregs->cr8 = kvm_get_cr8(vcpu);
  2936. sregs->efer = vcpu->arch.shadow_efer;
  2937. sregs->apic_base = kvm_get_apic_base(vcpu);
  2938. if (irqchip_in_kernel(vcpu->kvm)) {
  2939. memset(sregs->interrupt_bitmap, 0,
  2940. sizeof sregs->interrupt_bitmap);
  2941. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2942. if (pending_vec >= 0)
  2943. set_bit(pending_vec,
  2944. (unsigned long *)sregs->interrupt_bitmap);
  2945. } else
  2946. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2947. sizeof sregs->interrupt_bitmap);
  2948. vcpu_put(vcpu);
  2949. return 0;
  2950. }
  2951. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2952. struct kvm_mp_state *mp_state)
  2953. {
  2954. vcpu_load(vcpu);
  2955. mp_state->mp_state = vcpu->arch.mp_state;
  2956. vcpu_put(vcpu);
  2957. return 0;
  2958. }
  2959. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2960. struct kvm_mp_state *mp_state)
  2961. {
  2962. vcpu_load(vcpu);
  2963. vcpu->arch.mp_state = mp_state->mp_state;
  2964. vcpu_put(vcpu);
  2965. return 0;
  2966. }
  2967. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2968. struct kvm_segment *var, int seg)
  2969. {
  2970. kvm_x86_ops->set_segment(vcpu, var, seg);
  2971. }
  2972. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2973. struct kvm_segment *kvm_desct)
  2974. {
  2975. kvm_desct->base = seg_desc->base0;
  2976. kvm_desct->base |= seg_desc->base1 << 16;
  2977. kvm_desct->base |= seg_desc->base2 << 24;
  2978. kvm_desct->limit = seg_desc->limit0;
  2979. kvm_desct->limit |= seg_desc->limit << 16;
  2980. if (seg_desc->g) {
  2981. kvm_desct->limit <<= 12;
  2982. kvm_desct->limit |= 0xfff;
  2983. }
  2984. kvm_desct->selector = selector;
  2985. kvm_desct->type = seg_desc->type;
  2986. kvm_desct->present = seg_desc->p;
  2987. kvm_desct->dpl = seg_desc->dpl;
  2988. kvm_desct->db = seg_desc->d;
  2989. kvm_desct->s = seg_desc->s;
  2990. kvm_desct->l = seg_desc->l;
  2991. kvm_desct->g = seg_desc->g;
  2992. kvm_desct->avl = seg_desc->avl;
  2993. if (!selector)
  2994. kvm_desct->unusable = 1;
  2995. else
  2996. kvm_desct->unusable = 0;
  2997. kvm_desct->padding = 0;
  2998. }
  2999. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3000. u16 selector,
  3001. struct descriptor_table *dtable)
  3002. {
  3003. if (selector & 1 << 2) {
  3004. struct kvm_segment kvm_seg;
  3005. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3006. if (kvm_seg.unusable)
  3007. dtable->limit = 0;
  3008. else
  3009. dtable->limit = kvm_seg.limit;
  3010. dtable->base = kvm_seg.base;
  3011. }
  3012. else
  3013. kvm_x86_ops->get_gdt(vcpu, dtable);
  3014. }
  3015. /* allowed just for 8 bytes segments */
  3016. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3017. struct desc_struct *seg_desc)
  3018. {
  3019. gpa_t gpa;
  3020. struct descriptor_table dtable;
  3021. u16 index = selector >> 3;
  3022. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3023. if (dtable.limit < index * 8 + 7) {
  3024. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3025. return 1;
  3026. }
  3027. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3028. gpa += index * 8;
  3029. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3030. }
  3031. /* allowed just for 8 bytes segments */
  3032. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3033. struct desc_struct *seg_desc)
  3034. {
  3035. gpa_t gpa;
  3036. struct descriptor_table dtable;
  3037. u16 index = selector >> 3;
  3038. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3039. if (dtable.limit < index * 8 + 7)
  3040. return 1;
  3041. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3042. gpa += index * 8;
  3043. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3044. }
  3045. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3046. struct desc_struct *seg_desc)
  3047. {
  3048. u32 base_addr;
  3049. base_addr = seg_desc->base0;
  3050. base_addr |= (seg_desc->base1 << 16);
  3051. base_addr |= (seg_desc->base2 << 24);
  3052. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3053. }
  3054. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3055. {
  3056. struct kvm_segment kvm_seg;
  3057. kvm_get_segment(vcpu, &kvm_seg, seg);
  3058. return kvm_seg.selector;
  3059. }
  3060. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3061. u16 selector,
  3062. struct kvm_segment *kvm_seg)
  3063. {
  3064. struct desc_struct seg_desc;
  3065. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3066. return 1;
  3067. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3068. return 0;
  3069. }
  3070. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3071. {
  3072. struct kvm_segment segvar = {
  3073. .base = selector << 4,
  3074. .limit = 0xffff,
  3075. .selector = selector,
  3076. .type = 3,
  3077. .present = 1,
  3078. .dpl = 3,
  3079. .db = 0,
  3080. .s = 1,
  3081. .l = 0,
  3082. .g = 0,
  3083. .avl = 0,
  3084. .unusable = 0,
  3085. };
  3086. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3087. return 0;
  3088. }
  3089. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3090. int type_bits, int seg)
  3091. {
  3092. struct kvm_segment kvm_seg;
  3093. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3094. return kvm_load_realmode_segment(vcpu, selector, seg);
  3095. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3096. return 1;
  3097. kvm_seg.type |= type_bits;
  3098. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3099. seg != VCPU_SREG_LDTR)
  3100. if (!kvm_seg.s)
  3101. kvm_seg.unusable = 1;
  3102. kvm_set_segment(vcpu, &kvm_seg, seg);
  3103. return 0;
  3104. }
  3105. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3106. struct tss_segment_32 *tss)
  3107. {
  3108. tss->cr3 = vcpu->arch.cr3;
  3109. tss->eip = kvm_rip_read(vcpu);
  3110. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3111. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3112. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3113. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3114. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3115. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3116. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3117. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3118. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3119. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3120. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3121. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3122. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3123. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3124. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3125. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3126. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3127. }
  3128. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3129. struct tss_segment_32 *tss)
  3130. {
  3131. kvm_set_cr3(vcpu, tss->cr3);
  3132. kvm_rip_write(vcpu, tss->eip);
  3133. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3134. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3135. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3136. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3137. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3138. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3139. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3140. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3141. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3142. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3143. return 1;
  3144. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3145. return 1;
  3146. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3147. return 1;
  3148. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3149. return 1;
  3150. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3151. return 1;
  3152. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3153. return 1;
  3154. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3155. return 1;
  3156. return 0;
  3157. }
  3158. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3159. struct tss_segment_16 *tss)
  3160. {
  3161. tss->ip = kvm_rip_read(vcpu);
  3162. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3163. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3164. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3165. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3166. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3167. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3168. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3169. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3170. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3171. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3172. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3173. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3174. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3175. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3176. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3177. }
  3178. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3179. struct tss_segment_16 *tss)
  3180. {
  3181. kvm_rip_write(vcpu, tss->ip);
  3182. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3183. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3184. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3185. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3186. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3187. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3188. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3189. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3190. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3191. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3192. return 1;
  3193. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3194. return 1;
  3195. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3196. return 1;
  3197. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3198. return 1;
  3199. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3200. return 1;
  3201. return 0;
  3202. }
  3203. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3204. u32 old_tss_base,
  3205. struct desc_struct *nseg_desc)
  3206. {
  3207. struct tss_segment_16 tss_segment_16;
  3208. int ret = 0;
  3209. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3210. sizeof tss_segment_16))
  3211. goto out;
  3212. save_state_to_tss16(vcpu, &tss_segment_16);
  3213. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3214. sizeof tss_segment_16))
  3215. goto out;
  3216. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3217. &tss_segment_16, sizeof tss_segment_16))
  3218. goto out;
  3219. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3220. goto out;
  3221. ret = 1;
  3222. out:
  3223. return ret;
  3224. }
  3225. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3226. u32 old_tss_base,
  3227. struct desc_struct *nseg_desc)
  3228. {
  3229. struct tss_segment_32 tss_segment_32;
  3230. int ret = 0;
  3231. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3232. sizeof tss_segment_32))
  3233. goto out;
  3234. save_state_to_tss32(vcpu, &tss_segment_32);
  3235. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3236. sizeof tss_segment_32))
  3237. goto out;
  3238. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3239. &tss_segment_32, sizeof tss_segment_32))
  3240. goto out;
  3241. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3242. goto out;
  3243. ret = 1;
  3244. out:
  3245. return ret;
  3246. }
  3247. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3248. {
  3249. struct kvm_segment tr_seg;
  3250. struct desc_struct cseg_desc;
  3251. struct desc_struct nseg_desc;
  3252. int ret = 0;
  3253. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3254. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3255. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3256. /* FIXME: Handle errors. Failure to read either TSS or their
  3257. * descriptors should generate a pagefault.
  3258. */
  3259. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3260. goto out;
  3261. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3262. goto out;
  3263. if (reason != TASK_SWITCH_IRET) {
  3264. int cpl;
  3265. cpl = kvm_x86_ops->get_cpl(vcpu);
  3266. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3267. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3268. return 1;
  3269. }
  3270. }
  3271. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3272. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3273. return 1;
  3274. }
  3275. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3276. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3277. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3278. }
  3279. if (reason == TASK_SWITCH_IRET) {
  3280. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3281. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3282. }
  3283. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3284. if (nseg_desc.type & 8)
  3285. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3286. &nseg_desc);
  3287. else
  3288. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3289. &nseg_desc);
  3290. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3291. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3292. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3293. }
  3294. if (reason != TASK_SWITCH_IRET) {
  3295. nseg_desc.type |= (1 << 1);
  3296. save_guest_segment_descriptor(vcpu, tss_selector,
  3297. &nseg_desc);
  3298. }
  3299. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3300. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3301. tr_seg.type = 11;
  3302. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3303. out:
  3304. return ret;
  3305. }
  3306. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3307. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3308. struct kvm_sregs *sregs)
  3309. {
  3310. int mmu_reset_needed = 0;
  3311. int i, pending_vec, max_bits;
  3312. struct descriptor_table dt;
  3313. vcpu_load(vcpu);
  3314. dt.limit = sregs->idt.limit;
  3315. dt.base = sregs->idt.base;
  3316. kvm_x86_ops->set_idt(vcpu, &dt);
  3317. dt.limit = sregs->gdt.limit;
  3318. dt.base = sregs->gdt.base;
  3319. kvm_x86_ops->set_gdt(vcpu, &dt);
  3320. vcpu->arch.cr2 = sregs->cr2;
  3321. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3322. vcpu->arch.cr3 = sregs->cr3;
  3323. kvm_set_cr8(vcpu, sregs->cr8);
  3324. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3325. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3326. kvm_set_apic_base(vcpu, sregs->apic_base);
  3327. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3328. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3329. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3330. vcpu->arch.cr0 = sregs->cr0;
  3331. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3332. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3333. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3334. load_pdptrs(vcpu, vcpu->arch.cr3);
  3335. if (mmu_reset_needed)
  3336. kvm_mmu_reset_context(vcpu);
  3337. if (!irqchip_in_kernel(vcpu->kvm)) {
  3338. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3339. sizeof vcpu->arch.irq_pending);
  3340. vcpu->arch.irq_summary = 0;
  3341. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3342. if (vcpu->arch.irq_pending[i])
  3343. __set_bit(i, &vcpu->arch.irq_summary);
  3344. } else {
  3345. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3346. pending_vec = find_first_bit(
  3347. (const unsigned long *)sregs->interrupt_bitmap,
  3348. max_bits);
  3349. /* Only pending external irq is handled here */
  3350. if (pending_vec < max_bits) {
  3351. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3352. pr_debug("Set back pending irq %d\n",
  3353. pending_vec);
  3354. }
  3355. kvm_pic_clear_isr_ack(vcpu->kvm);
  3356. }
  3357. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3358. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3359. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3360. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3361. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3362. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3363. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3364. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3365. /* Older userspace won't unhalt the vcpu on reset. */
  3366. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3367. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3368. !(vcpu->arch.cr0 & X86_CR0_PE))
  3369. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3370. vcpu_put(vcpu);
  3371. return 0;
  3372. }
  3373. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3374. struct kvm_guest_debug *dbg)
  3375. {
  3376. int i, r;
  3377. vcpu_load(vcpu);
  3378. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3379. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3380. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3381. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3382. vcpu->arch.switch_db_regs =
  3383. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3384. } else {
  3385. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3386. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3387. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3388. }
  3389. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3390. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3391. kvm_queue_exception(vcpu, DB_VECTOR);
  3392. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3393. kvm_queue_exception(vcpu, BP_VECTOR);
  3394. vcpu_put(vcpu);
  3395. return r;
  3396. }
  3397. /*
  3398. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3399. * we have asm/x86/processor.h
  3400. */
  3401. struct fxsave {
  3402. u16 cwd;
  3403. u16 swd;
  3404. u16 twd;
  3405. u16 fop;
  3406. u64 rip;
  3407. u64 rdp;
  3408. u32 mxcsr;
  3409. u32 mxcsr_mask;
  3410. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3411. #ifdef CONFIG_X86_64
  3412. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3413. #else
  3414. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3415. #endif
  3416. };
  3417. /*
  3418. * Translate a guest virtual address to a guest physical address.
  3419. */
  3420. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3421. struct kvm_translation *tr)
  3422. {
  3423. unsigned long vaddr = tr->linear_address;
  3424. gpa_t gpa;
  3425. vcpu_load(vcpu);
  3426. down_read(&vcpu->kvm->slots_lock);
  3427. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3428. up_read(&vcpu->kvm->slots_lock);
  3429. tr->physical_address = gpa;
  3430. tr->valid = gpa != UNMAPPED_GVA;
  3431. tr->writeable = 1;
  3432. tr->usermode = 0;
  3433. vcpu_put(vcpu);
  3434. return 0;
  3435. }
  3436. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3437. {
  3438. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3439. vcpu_load(vcpu);
  3440. memcpy(fpu->fpr, fxsave->st_space, 128);
  3441. fpu->fcw = fxsave->cwd;
  3442. fpu->fsw = fxsave->swd;
  3443. fpu->ftwx = fxsave->twd;
  3444. fpu->last_opcode = fxsave->fop;
  3445. fpu->last_ip = fxsave->rip;
  3446. fpu->last_dp = fxsave->rdp;
  3447. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3448. vcpu_put(vcpu);
  3449. return 0;
  3450. }
  3451. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3452. {
  3453. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3454. vcpu_load(vcpu);
  3455. memcpy(fxsave->st_space, fpu->fpr, 128);
  3456. fxsave->cwd = fpu->fcw;
  3457. fxsave->swd = fpu->fsw;
  3458. fxsave->twd = fpu->ftwx;
  3459. fxsave->fop = fpu->last_opcode;
  3460. fxsave->rip = fpu->last_ip;
  3461. fxsave->rdp = fpu->last_dp;
  3462. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3463. vcpu_put(vcpu);
  3464. return 0;
  3465. }
  3466. void fx_init(struct kvm_vcpu *vcpu)
  3467. {
  3468. unsigned after_mxcsr_mask;
  3469. /*
  3470. * Touch the fpu the first time in non atomic context as if
  3471. * this is the first fpu instruction the exception handler
  3472. * will fire before the instruction returns and it'll have to
  3473. * allocate ram with GFP_KERNEL.
  3474. */
  3475. if (!used_math())
  3476. kvm_fx_save(&vcpu->arch.host_fx_image);
  3477. /* Initialize guest FPU by resetting ours and saving into guest's */
  3478. preempt_disable();
  3479. kvm_fx_save(&vcpu->arch.host_fx_image);
  3480. kvm_fx_finit();
  3481. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3482. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3483. preempt_enable();
  3484. vcpu->arch.cr0 |= X86_CR0_ET;
  3485. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3486. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3487. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3488. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3489. }
  3490. EXPORT_SYMBOL_GPL(fx_init);
  3491. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3492. {
  3493. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3494. return;
  3495. vcpu->guest_fpu_loaded = 1;
  3496. kvm_fx_save(&vcpu->arch.host_fx_image);
  3497. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3498. }
  3499. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3500. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3501. {
  3502. if (!vcpu->guest_fpu_loaded)
  3503. return;
  3504. vcpu->guest_fpu_loaded = 0;
  3505. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3506. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3507. ++vcpu->stat.fpu_reload;
  3508. }
  3509. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3510. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3511. {
  3512. kvm_x86_ops->vcpu_free(vcpu);
  3513. }
  3514. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3515. unsigned int id)
  3516. {
  3517. return kvm_x86_ops->vcpu_create(kvm, id);
  3518. }
  3519. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3520. {
  3521. int r;
  3522. /* We do fxsave: this must be aligned. */
  3523. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3524. vcpu->arch.mtrr_state.have_fixed = 1;
  3525. vcpu_load(vcpu);
  3526. r = kvm_arch_vcpu_reset(vcpu);
  3527. if (r == 0)
  3528. r = kvm_mmu_setup(vcpu);
  3529. vcpu_put(vcpu);
  3530. if (r < 0)
  3531. goto free_vcpu;
  3532. return 0;
  3533. free_vcpu:
  3534. kvm_x86_ops->vcpu_free(vcpu);
  3535. return r;
  3536. }
  3537. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3538. {
  3539. vcpu_load(vcpu);
  3540. kvm_mmu_unload(vcpu);
  3541. vcpu_put(vcpu);
  3542. kvm_x86_ops->vcpu_free(vcpu);
  3543. }
  3544. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3545. {
  3546. vcpu->arch.nmi_pending = false;
  3547. vcpu->arch.nmi_injected = false;
  3548. vcpu->arch.switch_db_regs = 0;
  3549. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3550. vcpu->arch.dr6 = DR6_FIXED_1;
  3551. vcpu->arch.dr7 = DR7_FIXED_1;
  3552. return kvm_x86_ops->vcpu_reset(vcpu);
  3553. }
  3554. void kvm_arch_hardware_enable(void *garbage)
  3555. {
  3556. kvm_x86_ops->hardware_enable(garbage);
  3557. }
  3558. void kvm_arch_hardware_disable(void *garbage)
  3559. {
  3560. kvm_x86_ops->hardware_disable(garbage);
  3561. }
  3562. int kvm_arch_hardware_setup(void)
  3563. {
  3564. return kvm_x86_ops->hardware_setup();
  3565. }
  3566. void kvm_arch_hardware_unsetup(void)
  3567. {
  3568. kvm_x86_ops->hardware_unsetup();
  3569. }
  3570. void kvm_arch_check_processor_compat(void *rtn)
  3571. {
  3572. kvm_x86_ops->check_processor_compatibility(rtn);
  3573. }
  3574. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3575. {
  3576. struct page *page;
  3577. struct kvm *kvm;
  3578. int r;
  3579. BUG_ON(vcpu->kvm == NULL);
  3580. kvm = vcpu->kvm;
  3581. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3582. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3583. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3584. else
  3585. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3586. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3587. if (!page) {
  3588. r = -ENOMEM;
  3589. goto fail;
  3590. }
  3591. vcpu->arch.pio_data = page_address(page);
  3592. r = kvm_mmu_create(vcpu);
  3593. if (r < 0)
  3594. goto fail_free_pio_data;
  3595. if (irqchip_in_kernel(kvm)) {
  3596. r = kvm_create_lapic(vcpu);
  3597. if (r < 0)
  3598. goto fail_mmu_destroy;
  3599. }
  3600. return 0;
  3601. fail_mmu_destroy:
  3602. kvm_mmu_destroy(vcpu);
  3603. fail_free_pio_data:
  3604. free_page((unsigned long)vcpu->arch.pio_data);
  3605. fail:
  3606. return r;
  3607. }
  3608. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3609. {
  3610. kvm_free_lapic(vcpu);
  3611. down_read(&vcpu->kvm->slots_lock);
  3612. kvm_mmu_destroy(vcpu);
  3613. up_read(&vcpu->kvm->slots_lock);
  3614. free_page((unsigned long)vcpu->arch.pio_data);
  3615. }
  3616. struct kvm *kvm_arch_create_vm(void)
  3617. {
  3618. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3619. if (!kvm)
  3620. return ERR_PTR(-ENOMEM);
  3621. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3622. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3623. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3624. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3625. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3626. rdtscll(kvm->arch.vm_init_tsc);
  3627. return kvm;
  3628. }
  3629. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3630. {
  3631. vcpu_load(vcpu);
  3632. kvm_mmu_unload(vcpu);
  3633. vcpu_put(vcpu);
  3634. }
  3635. static void kvm_free_vcpus(struct kvm *kvm)
  3636. {
  3637. unsigned int i;
  3638. /*
  3639. * Unpin any mmu pages first.
  3640. */
  3641. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3642. if (kvm->vcpus[i])
  3643. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3644. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3645. if (kvm->vcpus[i]) {
  3646. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3647. kvm->vcpus[i] = NULL;
  3648. }
  3649. }
  3650. }
  3651. void kvm_arch_sync_events(struct kvm *kvm)
  3652. {
  3653. kvm_free_all_assigned_devices(kvm);
  3654. }
  3655. void kvm_arch_destroy_vm(struct kvm *kvm)
  3656. {
  3657. kvm_iommu_unmap_guest(kvm);
  3658. kvm_free_pit(kvm);
  3659. kfree(kvm->arch.vpic);
  3660. kfree(kvm->arch.vioapic);
  3661. kvm_free_vcpus(kvm);
  3662. kvm_free_physmem(kvm);
  3663. if (kvm->arch.apic_access_page)
  3664. put_page(kvm->arch.apic_access_page);
  3665. if (kvm->arch.ept_identity_pagetable)
  3666. put_page(kvm->arch.ept_identity_pagetable);
  3667. kfree(kvm);
  3668. }
  3669. int kvm_arch_set_memory_region(struct kvm *kvm,
  3670. struct kvm_userspace_memory_region *mem,
  3671. struct kvm_memory_slot old,
  3672. int user_alloc)
  3673. {
  3674. int npages = mem->memory_size >> PAGE_SHIFT;
  3675. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3676. /*To keep backward compatibility with older userspace,
  3677. *x86 needs to hanlde !user_alloc case.
  3678. */
  3679. if (!user_alloc) {
  3680. if (npages && !old.rmap) {
  3681. unsigned long userspace_addr;
  3682. down_write(&current->mm->mmap_sem);
  3683. userspace_addr = do_mmap(NULL, 0,
  3684. npages * PAGE_SIZE,
  3685. PROT_READ | PROT_WRITE,
  3686. MAP_PRIVATE | MAP_ANONYMOUS,
  3687. 0);
  3688. up_write(&current->mm->mmap_sem);
  3689. if (IS_ERR((void *)userspace_addr))
  3690. return PTR_ERR((void *)userspace_addr);
  3691. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3692. spin_lock(&kvm->mmu_lock);
  3693. memslot->userspace_addr = userspace_addr;
  3694. spin_unlock(&kvm->mmu_lock);
  3695. } else {
  3696. if (!old.user_alloc && old.rmap) {
  3697. int ret;
  3698. down_write(&current->mm->mmap_sem);
  3699. ret = do_munmap(current->mm, old.userspace_addr,
  3700. old.npages * PAGE_SIZE);
  3701. up_write(&current->mm->mmap_sem);
  3702. if (ret < 0)
  3703. printk(KERN_WARNING
  3704. "kvm_vm_ioctl_set_memory_region: "
  3705. "failed to munmap memory\n");
  3706. }
  3707. }
  3708. }
  3709. if (!kvm->arch.n_requested_mmu_pages) {
  3710. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3711. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3712. }
  3713. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3714. kvm_flush_remote_tlbs(kvm);
  3715. return 0;
  3716. }
  3717. void kvm_arch_flush_shadow(struct kvm *kvm)
  3718. {
  3719. kvm_mmu_zap_all(kvm);
  3720. }
  3721. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3722. {
  3723. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3724. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3725. || vcpu->arch.nmi_pending;
  3726. }
  3727. static void vcpu_kick_intr(void *info)
  3728. {
  3729. #ifdef DEBUG
  3730. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3731. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3732. #endif
  3733. }
  3734. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3735. {
  3736. int ipi_pcpu = vcpu->cpu;
  3737. int cpu = get_cpu();
  3738. if (waitqueue_active(&vcpu->wq)) {
  3739. wake_up_interruptible(&vcpu->wq);
  3740. ++vcpu->stat.halt_wakeup;
  3741. }
  3742. /*
  3743. * We may be called synchronously with irqs disabled in guest mode,
  3744. * So need not to call smp_call_function_single() in that case.
  3745. */
  3746. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3747. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3748. put_cpu();
  3749. }