cls_flow.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660
  1. /*
  2. * net/sched/cls_flow.c Generic flow classifier
  3. *
  4. * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version 2
  9. * of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/list.h>
  14. #include <linux/jhash.h>
  15. #include <linux/random.h>
  16. #include <linux/pkt_cls.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/in.h>
  19. #include <linux/ip.h>
  20. #include <linux/ipv6.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/route.h>
  24. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  25. #include <net/netfilter/nf_conntrack.h>
  26. #endif
  27. struct flow_head {
  28. struct list_head filters;
  29. };
  30. struct flow_filter {
  31. struct list_head list;
  32. struct tcf_exts exts;
  33. struct tcf_ematch_tree ematches;
  34. u32 handle;
  35. u32 nkeys;
  36. u32 keymask;
  37. u32 mode;
  38. u32 mask;
  39. u32 xor;
  40. u32 rshift;
  41. u32 addend;
  42. u32 divisor;
  43. u32 baseclass;
  44. };
  45. static u32 flow_hashrnd __read_mostly;
  46. static int flow_hashrnd_initted __read_mostly;
  47. static const struct tcf_ext_map flow_ext_map = {
  48. .action = TCA_FLOW_ACT,
  49. .police = TCA_FLOW_POLICE,
  50. };
  51. static inline u32 addr_fold(void *addr)
  52. {
  53. unsigned long a = (unsigned long)addr;
  54. return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
  55. }
  56. static u32 flow_get_src(const struct sk_buff *skb)
  57. {
  58. switch (skb->protocol) {
  59. case __constant_htons(ETH_P_IP):
  60. return ntohl(ip_hdr(skb)->saddr);
  61. case __constant_htons(ETH_P_IPV6):
  62. return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
  63. default:
  64. return addr_fold(skb->sk);
  65. }
  66. }
  67. static u32 flow_get_dst(const struct sk_buff *skb)
  68. {
  69. switch (skb->protocol) {
  70. case __constant_htons(ETH_P_IP):
  71. return ntohl(ip_hdr(skb)->daddr);
  72. case __constant_htons(ETH_P_IPV6):
  73. return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
  74. default:
  75. return addr_fold(skb->dst) ^ (__force u16)skb->protocol;
  76. }
  77. }
  78. static u32 flow_get_proto(const struct sk_buff *skb)
  79. {
  80. switch (skb->protocol) {
  81. case __constant_htons(ETH_P_IP):
  82. return ip_hdr(skb)->protocol;
  83. case __constant_htons(ETH_P_IPV6):
  84. return ipv6_hdr(skb)->nexthdr;
  85. default:
  86. return 0;
  87. }
  88. }
  89. static int has_ports(u8 protocol)
  90. {
  91. switch (protocol) {
  92. case IPPROTO_TCP:
  93. case IPPROTO_UDP:
  94. case IPPROTO_UDPLITE:
  95. case IPPROTO_SCTP:
  96. case IPPROTO_DCCP:
  97. case IPPROTO_ESP:
  98. return 1;
  99. default:
  100. return 0;
  101. }
  102. }
  103. static u32 flow_get_proto_src(const struct sk_buff *skb)
  104. {
  105. u32 res = 0;
  106. switch (skb->protocol) {
  107. case __constant_htons(ETH_P_IP): {
  108. struct iphdr *iph = ip_hdr(skb);
  109. if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
  110. has_ports(iph->protocol))
  111. res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4));
  112. break;
  113. }
  114. case __constant_htons(ETH_P_IPV6): {
  115. struct ipv6hdr *iph = ipv6_hdr(skb);
  116. if (has_ports(iph->nexthdr))
  117. res = ntohs(*(__be16 *)&iph[1]);
  118. break;
  119. }
  120. default:
  121. res = addr_fold(skb->sk);
  122. }
  123. return res;
  124. }
  125. static u32 flow_get_proto_dst(const struct sk_buff *skb)
  126. {
  127. u32 res = 0;
  128. switch (skb->protocol) {
  129. case __constant_htons(ETH_P_IP): {
  130. struct iphdr *iph = ip_hdr(skb);
  131. if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
  132. has_ports(iph->protocol))
  133. res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 + 2));
  134. break;
  135. }
  136. case __constant_htons(ETH_P_IPV6): {
  137. struct ipv6hdr *iph = ipv6_hdr(skb);
  138. if (has_ports(iph->nexthdr))
  139. res = ntohs(*(__be16 *)((void *)&iph[1] + 2));
  140. break;
  141. }
  142. default:
  143. res = addr_fold(skb->dst) ^ (__force u16)skb->protocol;
  144. }
  145. return res;
  146. }
  147. static u32 flow_get_iif(const struct sk_buff *skb)
  148. {
  149. return skb->iif;
  150. }
  151. static u32 flow_get_priority(const struct sk_buff *skb)
  152. {
  153. return skb->priority;
  154. }
  155. static u32 flow_get_mark(const struct sk_buff *skb)
  156. {
  157. return skb->mark;
  158. }
  159. static u32 flow_get_nfct(const struct sk_buff *skb)
  160. {
  161. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  162. return addr_fold(skb->nfct);
  163. #else
  164. return 0;
  165. #endif
  166. }
  167. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  168. #define CTTUPLE(skb, member) \
  169. ({ \
  170. enum ip_conntrack_info ctinfo; \
  171. struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
  172. if (ct == NULL) \
  173. goto fallback; \
  174. ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
  175. })
  176. #else
  177. #define CTTUPLE(skb, member) \
  178. ({ \
  179. goto fallback; \
  180. 0; \
  181. })
  182. #endif
  183. static u32 flow_get_nfct_src(const struct sk_buff *skb)
  184. {
  185. switch (skb->protocol) {
  186. case __constant_htons(ETH_P_IP):
  187. return ntohl(CTTUPLE(skb, src.u3.ip));
  188. case __constant_htons(ETH_P_IPV6):
  189. return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
  190. }
  191. fallback:
  192. return flow_get_src(skb);
  193. }
  194. static u32 flow_get_nfct_dst(const struct sk_buff *skb)
  195. {
  196. switch (skb->protocol) {
  197. case __constant_htons(ETH_P_IP):
  198. return ntohl(CTTUPLE(skb, dst.u3.ip));
  199. case __constant_htons(ETH_P_IPV6):
  200. return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
  201. }
  202. fallback:
  203. return flow_get_dst(skb);
  204. }
  205. static u32 flow_get_nfct_proto_src(const struct sk_buff *skb)
  206. {
  207. return ntohs(CTTUPLE(skb, src.u.all));
  208. fallback:
  209. return flow_get_proto_src(skb);
  210. }
  211. static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb)
  212. {
  213. return ntohs(CTTUPLE(skb, dst.u.all));
  214. fallback:
  215. return flow_get_proto_dst(skb);
  216. }
  217. static u32 flow_get_rtclassid(const struct sk_buff *skb)
  218. {
  219. #ifdef CONFIG_NET_CLS_ROUTE
  220. if (skb->dst)
  221. return skb->dst->tclassid;
  222. #endif
  223. return 0;
  224. }
  225. static u32 flow_get_skuid(const struct sk_buff *skb)
  226. {
  227. if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
  228. return skb->sk->sk_socket->file->f_uid;
  229. return 0;
  230. }
  231. static u32 flow_get_skgid(const struct sk_buff *skb)
  232. {
  233. if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
  234. return skb->sk->sk_socket->file->f_gid;
  235. return 0;
  236. }
  237. static u32 flow_key_get(const struct sk_buff *skb, int key)
  238. {
  239. switch (key) {
  240. case FLOW_KEY_SRC:
  241. return flow_get_src(skb);
  242. case FLOW_KEY_DST:
  243. return flow_get_dst(skb);
  244. case FLOW_KEY_PROTO:
  245. return flow_get_proto(skb);
  246. case FLOW_KEY_PROTO_SRC:
  247. return flow_get_proto_src(skb);
  248. case FLOW_KEY_PROTO_DST:
  249. return flow_get_proto_dst(skb);
  250. case FLOW_KEY_IIF:
  251. return flow_get_iif(skb);
  252. case FLOW_KEY_PRIORITY:
  253. return flow_get_priority(skb);
  254. case FLOW_KEY_MARK:
  255. return flow_get_mark(skb);
  256. case FLOW_KEY_NFCT:
  257. return flow_get_nfct(skb);
  258. case FLOW_KEY_NFCT_SRC:
  259. return flow_get_nfct_src(skb);
  260. case FLOW_KEY_NFCT_DST:
  261. return flow_get_nfct_dst(skb);
  262. case FLOW_KEY_NFCT_PROTO_SRC:
  263. return flow_get_nfct_proto_src(skb);
  264. case FLOW_KEY_NFCT_PROTO_DST:
  265. return flow_get_nfct_proto_dst(skb);
  266. case FLOW_KEY_RTCLASSID:
  267. return flow_get_rtclassid(skb);
  268. case FLOW_KEY_SKUID:
  269. return flow_get_skuid(skb);
  270. case FLOW_KEY_SKGID:
  271. return flow_get_skgid(skb);
  272. default:
  273. WARN_ON(1);
  274. return 0;
  275. }
  276. }
  277. static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
  278. struct tcf_result *res)
  279. {
  280. struct flow_head *head = tp->root;
  281. struct flow_filter *f;
  282. u32 keymask;
  283. u32 classid;
  284. unsigned int n, key;
  285. int r;
  286. list_for_each_entry(f, &head->filters, list) {
  287. u32 keys[f->nkeys];
  288. if (!tcf_em_tree_match(skb, &f->ematches, NULL))
  289. continue;
  290. keymask = f->keymask;
  291. for (n = 0; n < f->nkeys; n++) {
  292. key = ffs(keymask) - 1;
  293. keymask &= ~(1 << key);
  294. keys[n] = flow_key_get(skb, key);
  295. }
  296. if (f->mode == FLOW_MODE_HASH)
  297. classid = jhash2(keys, f->nkeys, flow_hashrnd);
  298. else {
  299. classid = keys[0];
  300. classid = (classid & f->mask) ^ f->xor;
  301. classid = (classid >> f->rshift) + f->addend;
  302. }
  303. if (f->divisor)
  304. classid %= f->divisor;
  305. res->class = 0;
  306. res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
  307. r = tcf_exts_exec(skb, &f->exts, res);
  308. if (r < 0)
  309. continue;
  310. return r;
  311. }
  312. return -1;
  313. }
  314. static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
  315. [TCA_FLOW_KEYS] = { .type = NLA_U32 },
  316. [TCA_FLOW_MODE] = { .type = NLA_U32 },
  317. [TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
  318. [TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
  319. [TCA_FLOW_ADDEND] = { .type = NLA_U32 },
  320. [TCA_FLOW_MASK] = { .type = NLA_U32 },
  321. [TCA_FLOW_XOR] = { .type = NLA_U32 },
  322. [TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
  323. [TCA_FLOW_ACT] = { .type = NLA_NESTED },
  324. [TCA_FLOW_POLICE] = { .type = NLA_NESTED },
  325. [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
  326. };
  327. static int flow_change(struct tcf_proto *tp, unsigned long base,
  328. u32 handle, struct nlattr **tca,
  329. unsigned long *arg)
  330. {
  331. struct flow_head *head = tp->root;
  332. struct flow_filter *f;
  333. struct nlattr *opt = tca[TCA_OPTIONS];
  334. struct nlattr *tb[TCA_FLOW_MAX + 1];
  335. struct tcf_exts e;
  336. struct tcf_ematch_tree t;
  337. unsigned int nkeys = 0;
  338. u32 baseclass = 0;
  339. u32 keymask = 0;
  340. u32 mode;
  341. int err;
  342. if (opt == NULL)
  343. return -EINVAL;
  344. err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
  345. if (err < 0)
  346. return err;
  347. if (tb[TCA_FLOW_BASECLASS]) {
  348. baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
  349. if (TC_H_MIN(baseclass) == 0)
  350. return -EINVAL;
  351. }
  352. if (tb[TCA_FLOW_KEYS]) {
  353. keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
  354. if (fls(keymask) - 1 > FLOW_KEY_MAX)
  355. return -EOPNOTSUPP;
  356. nkeys = hweight32(keymask);
  357. if (nkeys == 0)
  358. return -EINVAL;
  359. }
  360. err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
  361. if (err < 0)
  362. return err;
  363. err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
  364. if (err < 0)
  365. goto err1;
  366. f = (struct flow_filter *)*arg;
  367. if (f != NULL) {
  368. err = -EINVAL;
  369. if (f->handle != handle && handle)
  370. goto err2;
  371. mode = f->mode;
  372. if (tb[TCA_FLOW_MODE])
  373. mode = nla_get_u32(tb[TCA_FLOW_MODE]);
  374. if (mode != FLOW_MODE_HASH && nkeys > 1)
  375. goto err2;
  376. } else {
  377. err = -EINVAL;
  378. if (!handle)
  379. goto err2;
  380. if (!tb[TCA_FLOW_KEYS])
  381. goto err2;
  382. mode = FLOW_MODE_MAP;
  383. if (tb[TCA_FLOW_MODE])
  384. mode = nla_get_u32(tb[TCA_FLOW_MODE]);
  385. if (mode != FLOW_MODE_HASH && nkeys > 1)
  386. goto err2;
  387. if (TC_H_MAJ(baseclass) == 0)
  388. baseclass = TC_H_MAKE(tp->q->handle, baseclass);
  389. if (TC_H_MIN(baseclass) == 0)
  390. baseclass = TC_H_MAKE(baseclass, 1);
  391. err = -ENOBUFS;
  392. f = kzalloc(sizeof(*f), GFP_KERNEL);
  393. if (f == NULL)
  394. goto err2;
  395. f->handle = handle;
  396. f->mask = ~0U;
  397. }
  398. tcf_exts_change(tp, &f->exts, &e);
  399. tcf_em_tree_change(tp, &f->ematches, &t);
  400. tcf_tree_lock(tp);
  401. if (tb[TCA_FLOW_KEYS]) {
  402. f->keymask = keymask;
  403. f->nkeys = nkeys;
  404. }
  405. f->mode = mode;
  406. if (tb[TCA_FLOW_MASK])
  407. f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
  408. if (tb[TCA_FLOW_XOR])
  409. f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
  410. if (tb[TCA_FLOW_RSHIFT])
  411. f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
  412. if (tb[TCA_FLOW_ADDEND])
  413. f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
  414. if (tb[TCA_FLOW_DIVISOR])
  415. f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
  416. if (baseclass)
  417. f->baseclass = baseclass;
  418. if (*arg == 0)
  419. list_add_tail(&f->list, &head->filters);
  420. tcf_tree_unlock(tp);
  421. *arg = (unsigned long)f;
  422. return 0;
  423. err2:
  424. tcf_em_tree_destroy(tp, &t);
  425. err1:
  426. tcf_exts_destroy(tp, &e);
  427. return err;
  428. }
  429. static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
  430. {
  431. tcf_exts_destroy(tp, &f->exts);
  432. tcf_em_tree_destroy(tp, &f->ematches);
  433. kfree(f);
  434. }
  435. static int flow_delete(struct tcf_proto *tp, unsigned long arg)
  436. {
  437. struct flow_filter *f = (struct flow_filter *)arg;
  438. tcf_tree_lock(tp);
  439. list_del(&f->list);
  440. tcf_tree_unlock(tp);
  441. flow_destroy_filter(tp, f);
  442. return 0;
  443. }
  444. static int flow_init(struct tcf_proto *tp)
  445. {
  446. struct flow_head *head;
  447. if (!flow_hashrnd_initted) {
  448. get_random_bytes(&flow_hashrnd, 4);
  449. flow_hashrnd_initted = 1;
  450. }
  451. head = kzalloc(sizeof(*head), GFP_KERNEL);
  452. if (head == NULL)
  453. return -ENOBUFS;
  454. INIT_LIST_HEAD(&head->filters);
  455. tp->root = head;
  456. return 0;
  457. }
  458. static void flow_destroy(struct tcf_proto *tp)
  459. {
  460. struct flow_head *head = tp->root;
  461. struct flow_filter *f, *next;
  462. list_for_each_entry_safe(f, next, &head->filters, list) {
  463. list_del(&f->list);
  464. flow_destroy_filter(tp, f);
  465. }
  466. kfree(head);
  467. }
  468. static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
  469. {
  470. struct flow_head *head = tp->root;
  471. struct flow_filter *f;
  472. list_for_each_entry(f, &head->filters, list)
  473. if (f->handle == handle)
  474. return (unsigned long)f;
  475. return 0;
  476. }
  477. static void flow_put(struct tcf_proto *tp, unsigned long f)
  478. {
  479. return;
  480. }
  481. static int flow_dump(struct tcf_proto *tp, unsigned long fh,
  482. struct sk_buff *skb, struct tcmsg *t)
  483. {
  484. struct flow_filter *f = (struct flow_filter *)fh;
  485. struct nlattr *nest;
  486. if (f == NULL)
  487. return skb->len;
  488. t->tcm_handle = f->handle;
  489. nest = nla_nest_start(skb, TCA_OPTIONS);
  490. if (nest == NULL)
  491. goto nla_put_failure;
  492. NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
  493. NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
  494. if (f->mask != ~0 || f->xor != 0) {
  495. NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
  496. NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
  497. }
  498. if (f->rshift)
  499. NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
  500. if (f->addend)
  501. NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
  502. if (f->divisor)
  503. NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
  504. if (f->baseclass)
  505. NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
  506. if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
  507. goto nla_put_failure;
  508. if (f->ematches.hdr.nmatches &&
  509. tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
  510. goto nla_put_failure;
  511. nla_nest_end(skb, nest);
  512. if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
  513. goto nla_put_failure;
  514. return skb->len;
  515. nla_put_failure:
  516. nlmsg_trim(skb, nest);
  517. return -1;
  518. }
  519. static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  520. {
  521. struct flow_head *head = tp->root;
  522. struct flow_filter *f;
  523. list_for_each_entry(f, &head->filters, list) {
  524. if (arg->count < arg->skip)
  525. goto skip;
  526. if (arg->fn(tp, (unsigned long)f, arg) < 0) {
  527. arg->stop = 1;
  528. break;
  529. }
  530. skip:
  531. arg->count++;
  532. }
  533. }
  534. static struct tcf_proto_ops cls_flow_ops __read_mostly = {
  535. .kind = "flow",
  536. .classify = flow_classify,
  537. .init = flow_init,
  538. .destroy = flow_destroy,
  539. .change = flow_change,
  540. .delete = flow_delete,
  541. .get = flow_get,
  542. .put = flow_put,
  543. .dump = flow_dump,
  544. .walk = flow_walk,
  545. .owner = THIS_MODULE,
  546. };
  547. static int __init cls_flow_init(void)
  548. {
  549. return register_tcf_proto_ops(&cls_flow_ops);
  550. }
  551. static void __exit cls_flow_exit(void)
  552. {
  553. unregister_tcf_proto_ops(&cls_flow_ops);
  554. }
  555. module_init(cls_flow_init);
  556. module_exit(cls_flow_exit);
  557. MODULE_LICENSE("GPL");
  558. MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
  559. MODULE_DESCRIPTION("TC flow classifier");