slub.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. #if PAGE_SHIFT <= 12
  140. /*
  141. * Small page size. Make sure that we do not fragment memory
  142. */
  143. #define DEFAULT_MAX_ORDER 1
  144. #define DEFAULT_MIN_OBJECTS 4
  145. #else
  146. /*
  147. * Large page machines are customarily able to handle larger
  148. * page orders.
  149. */
  150. #define DEFAULT_MAX_ORDER 2
  151. #define DEFAULT_MIN_OBJECTS 8
  152. #endif
  153. /*
  154. * Mininum number of partial slabs. These will be left on the partial
  155. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  156. */
  157. #define MIN_PARTIAL 5
  158. /*
  159. * Maximum number of desirable partial slabs.
  160. * The existence of more partial slabs makes kmem_cache_shrink
  161. * sort the partial list by the number of objects in the.
  162. */
  163. #define MAX_PARTIAL 10
  164. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_STORE_USER)
  166. /*
  167. * Set of flags that will prevent slab merging
  168. */
  169. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  170. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  171. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  172. SLAB_CACHE_DMA)
  173. #ifndef ARCH_KMALLOC_MINALIGN
  174. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  175. #endif
  176. #ifndef ARCH_SLAB_MINALIGN
  177. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  178. #endif
  179. /* Internal SLUB flags */
  180. #define __OBJECT_POISON 0x80000000 /* Poison object */
  181. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  182. /* Not all arches define cache_line_size */
  183. #ifndef cache_line_size
  184. #define cache_line_size() L1_CACHE_BYTES
  185. #endif
  186. static int kmem_size = sizeof(struct kmem_cache);
  187. #ifdef CONFIG_SMP
  188. static struct notifier_block slab_notifier;
  189. #endif
  190. static enum {
  191. DOWN, /* No slab functionality available */
  192. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  193. UP, /* Everything works but does not show up in sysfs */
  194. SYSFS /* Sysfs up */
  195. } slab_state = DOWN;
  196. /* A list of all slab caches on the system */
  197. static DECLARE_RWSEM(slub_lock);
  198. static LIST_HEAD(slab_caches);
  199. /*
  200. * Tracking user of a slab.
  201. */
  202. struct track {
  203. void *addr; /* Called from address */
  204. int cpu; /* Was running on cpu */
  205. int pid; /* Pid context */
  206. unsigned long when; /* When did the operation occur */
  207. };
  208. enum track_item { TRACK_ALLOC, TRACK_FREE };
  209. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  210. static int sysfs_slab_add(struct kmem_cache *);
  211. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  212. static void sysfs_slab_remove(struct kmem_cache *);
  213. #else
  214. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  215. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  216. { return 0; }
  217. static inline void sysfs_slab_remove(struct kmem_cache *s)
  218. {
  219. kfree(s);
  220. }
  221. #endif
  222. /********************************************************************
  223. * Core slab cache functions
  224. *******************************************************************/
  225. int slab_is_available(void)
  226. {
  227. return slab_state >= UP;
  228. }
  229. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  230. {
  231. #ifdef CONFIG_NUMA
  232. return s->node[node];
  233. #else
  234. return &s->local_node;
  235. #endif
  236. }
  237. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  238. {
  239. #ifdef CONFIG_SMP
  240. return s->cpu_slab[cpu];
  241. #else
  242. return &s->cpu_slab;
  243. #endif
  244. }
  245. static inline int check_valid_pointer(struct kmem_cache *s,
  246. struct page *page, const void *object)
  247. {
  248. void *base;
  249. if (!object)
  250. return 1;
  251. base = page_address(page);
  252. if (object < base || object >= base + s->objects * s->size ||
  253. (object - base) % s->size) {
  254. return 0;
  255. }
  256. return 1;
  257. }
  258. /*
  259. * Slow version of get and set free pointer.
  260. *
  261. * This version requires touching the cache lines of kmem_cache which
  262. * we avoid to do in the fast alloc free paths. There we obtain the offset
  263. * from the page struct.
  264. */
  265. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  266. {
  267. return *(void **)(object + s->offset);
  268. }
  269. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  270. {
  271. *(void **)(object + s->offset) = fp;
  272. }
  273. /* Loop over all objects in a slab */
  274. #define for_each_object(__p, __s, __addr) \
  275. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  276. __p += (__s)->size)
  277. /* Scan freelist */
  278. #define for_each_free_object(__p, __s, __free) \
  279. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  280. /* Determine object index from a given position */
  281. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  282. {
  283. return (p - addr) / s->size;
  284. }
  285. #ifdef CONFIG_SLUB_DEBUG
  286. /*
  287. * Debug settings:
  288. */
  289. #ifdef CONFIG_SLUB_DEBUG_ON
  290. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  291. #else
  292. static int slub_debug;
  293. #endif
  294. static char *slub_debug_slabs;
  295. /*
  296. * Object debugging
  297. */
  298. static void print_section(char *text, u8 *addr, unsigned int length)
  299. {
  300. int i, offset;
  301. int newline = 1;
  302. char ascii[17];
  303. ascii[16] = 0;
  304. for (i = 0; i < length; i++) {
  305. if (newline) {
  306. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  307. newline = 0;
  308. }
  309. printk(KERN_CONT " %02x", addr[i]);
  310. offset = i % 16;
  311. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  312. if (offset == 15) {
  313. printk(KERN_CONT " %s\n", ascii);
  314. newline = 1;
  315. }
  316. }
  317. if (!newline) {
  318. i %= 16;
  319. while (i < 16) {
  320. printk(KERN_CONT " ");
  321. ascii[i] = ' ';
  322. i++;
  323. }
  324. printk(KERN_CONT " %s\n", ascii);
  325. }
  326. }
  327. static struct track *get_track(struct kmem_cache *s, void *object,
  328. enum track_item alloc)
  329. {
  330. struct track *p;
  331. if (s->offset)
  332. p = object + s->offset + sizeof(void *);
  333. else
  334. p = object + s->inuse;
  335. return p + alloc;
  336. }
  337. static void set_track(struct kmem_cache *s, void *object,
  338. enum track_item alloc, void *addr)
  339. {
  340. struct track *p;
  341. if (s->offset)
  342. p = object + s->offset + sizeof(void *);
  343. else
  344. p = object + s->inuse;
  345. p += alloc;
  346. if (addr) {
  347. p->addr = addr;
  348. p->cpu = smp_processor_id();
  349. p->pid = current ? current->pid : -1;
  350. p->when = jiffies;
  351. } else
  352. memset(p, 0, sizeof(struct track));
  353. }
  354. static void init_tracking(struct kmem_cache *s, void *object)
  355. {
  356. if (!(s->flags & SLAB_STORE_USER))
  357. return;
  358. set_track(s, object, TRACK_FREE, NULL);
  359. set_track(s, object, TRACK_ALLOC, NULL);
  360. }
  361. static void print_track(const char *s, struct track *t)
  362. {
  363. if (!t->addr)
  364. return;
  365. printk(KERN_ERR "INFO: %s in ", s);
  366. __print_symbol("%s", (unsigned long)t->addr);
  367. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  368. }
  369. static void print_tracking(struct kmem_cache *s, void *object)
  370. {
  371. if (!(s->flags & SLAB_STORE_USER))
  372. return;
  373. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  374. print_track("Freed", get_track(s, object, TRACK_FREE));
  375. }
  376. static void print_page_info(struct page *page)
  377. {
  378. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  379. page, page->inuse, page->freelist, page->flags);
  380. }
  381. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  382. {
  383. va_list args;
  384. char buf[100];
  385. va_start(args, fmt);
  386. vsnprintf(buf, sizeof(buf), fmt, args);
  387. va_end(args);
  388. printk(KERN_ERR "========================================"
  389. "=====================================\n");
  390. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  391. printk(KERN_ERR "----------------------------------------"
  392. "-------------------------------------\n\n");
  393. }
  394. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  395. {
  396. va_list args;
  397. char buf[100];
  398. va_start(args, fmt);
  399. vsnprintf(buf, sizeof(buf), fmt, args);
  400. va_end(args);
  401. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  402. }
  403. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  404. {
  405. unsigned int off; /* Offset of last byte */
  406. u8 *addr = page_address(page);
  407. print_tracking(s, p);
  408. print_page_info(page);
  409. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  410. p, p - addr, get_freepointer(s, p));
  411. if (p > addr + 16)
  412. print_section("Bytes b4", p - 16, 16);
  413. print_section("Object", p, min(s->objsize, 128));
  414. if (s->flags & SLAB_RED_ZONE)
  415. print_section("Redzone", p + s->objsize,
  416. s->inuse - s->objsize);
  417. if (s->offset)
  418. off = s->offset + sizeof(void *);
  419. else
  420. off = s->inuse;
  421. if (s->flags & SLAB_STORE_USER)
  422. off += 2 * sizeof(struct track);
  423. if (off != s->size)
  424. /* Beginning of the filler is the free pointer */
  425. print_section("Padding", p + off, s->size - off);
  426. dump_stack();
  427. }
  428. static void object_err(struct kmem_cache *s, struct page *page,
  429. u8 *object, char *reason)
  430. {
  431. slab_bug(s, reason);
  432. print_trailer(s, page, object);
  433. }
  434. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  435. {
  436. va_list args;
  437. char buf[100];
  438. va_start(args, fmt);
  439. vsnprintf(buf, sizeof(buf), fmt, args);
  440. va_end(args);
  441. slab_bug(s, fmt);
  442. print_page_info(page);
  443. dump_stack();
  444. }
  445. static void init_object(struct kmem_cache *s, void *object, int active)
  446. {
  447. u8 *p = object;
  448. if (s->flags & __OBJECT_POISON) {
  449. memset(p, POISON_FREE, s->objsize - 1);
  450. p[s->objsize - 1] = POISON_END;
  451. }
  452. if (s->flags & SLAB_RED_ZONE)
  453. memset(p + s->objsize,
  454. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  455. s->inuse - s->objsize);
  456. }
  457. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  458. {
  459. while (bytes) {
  460. if (*start != (u8)value)
  461. return start;
  462. start++;
  463. bytes--;
  464. }
  465. return NULL;
  466. }
  467. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  468. void *from, void *to)
  469. {
  470. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  471. memset(from, data, to - from);
  472. }
  473. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  474. u8 *object, char *what,
  475. u8 *start, unsigned int value, unsigned int bytes)
  476. {
  477. u8 *fault;
  478. u8 *end;
  479. fault = check_bytes(start, value, bytes);
  480. if (!fault)
  481. return 1;
  482. end = start + bytes;
  483. while (end > fault && end[-1] == value)
  484. end--;
  485. slab_bug(s, "%s overwritten", what);
  486. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  487. fault, end - 1, fault[0], value);
  488. print_trailer(s, page, object);
  489. restore_bytes(s, what, value, fault, end);
  490. return 0;
  491. }
  492. /*
  493. * Object layout:
  494. *
  495. * object address
  496. * Bytes of the object to be managed.
  497. * If the freepointer may overlay the object then the free
  498. * pointer is the first word of the object.
  499. *
  500. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  501. * 0xa5 (POISON_END)
  502. *
  503. * object + s->objsize
  504. * Padding to reach word boundary. This is also used for Redzoning.
  505. * Padding is extended by another word if Redzoning is enabled and
  506. * objsize == inuse.
  507. *
  508. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  509. * 0xcc (RED_ACTIVE) for objects in use.
  510. *
  511. * object + s->inuse
  512. * Meta data starts here.
  513. *
  514. * A. Free pointer (if we cannot overwrite object on free)
  515. * B. Tracking data for SLAB_STORE_USER
  516. * C. Padding to reach required alignment boundary or at mininum
  517. * one word if debuggin is on to be able to detect writes
  518. * before the word boundary.
  519. *
  520. * Padding is done using 0x5a (POISON_INUSE)
  521. *
  522. * object + s->size
  523. * Nothing is used beyond s->size.
  524. *
  525. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  526. * ignored. And therefore no slab options that rely on these boundaries
  527. * may be used with merged slabcaches.
  528. */
  529. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  530. {
  531. unsigned long off = s->inuse; /* The end of info */
  532. if (s->offset)
  533. /* Freepointer is placed after the object. */
  534. off += sizeof(void *);
  535. if (s->flags & SLAB_STORE_USER)
  536. /* We also have user information there */
  537. off += 2 * sizeof(struct track);
  538. if (s->size == off)
  539. return 1;
  540. return check_bytes_and_report(s, page, p, "Object padding",
  541. p + off, POISON_INUSE, s->size - off);
  542. }
  543. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  544. {
  545. u8 *start;
  546. u8 *fault;
  547. u8 *end;
  548. int length;
  549. int remainder;
  550. if (!(s->flags & SLAB_POISON))
  551. return 1;
  552. start = page_address(page);
  553. end = start + (PAGE_SIZE << s->order);
  554. length = s->objects * s->size;
  555. remainder = end - (start + length);
  556. if (!remainder)
  557. return 1;
  558. fault = check_bytes(start + length, POISON_INUSE, remainder);
  559. if (!fault)
  560. return 1;
  561. while (end > fault && end[-1] == POISON_INUSE)
  562. end--;
  563. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  564. print_section("Padding", start, length);
  565. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  566. return 0;
  567. }
  568. static int check_object(struct kmem_cache *s, struct page *page,
  569. void *object, int active)
  570. {
  571. u8 *p = object;
  572. u8 *endobject = object + s->objsize;
  573. if (s->flags & SLAB_RED_ZONE) {
  574. unsigned int red =
  575. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  576. if (!check_bytes_and_report(s, page, object, "Redzone",
  577. endobject, red, s->inuse - s->objsize))
  578. return 0;
  579. } else {
  580. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  581. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  582. POISON_INUSE, s->inuse - s->objsize);
  583. }
  584. if (s->flags & SLAB_POISON) {
  585. if (!active && (s->flags & __OBJECT_POISON) &&
  586. (!check_bytes_and_report(s, page, p, "Poison", p,
  587. POISON_FREE, s->objsize - 1) ||
  588. !check_bytes_and_report(s, page, p, "Poison",
  589. p + s->objsize - 1, POISON_END, 1)))
  590. return 0;
  591. /*
  592. * check_pad_bytes cleans up on its own.
  593. */
  594. check_pad_bytes(s, page, p);
  595. }
  596. if (!s->offset && active)
  597. /*
  598. * Object and freepointer overlap. Cannot check
  599. * freepointer while object is allocated.
  600. */
  601. return 1;
  602. /* Check free pointer validity */
  603. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  604. object_err(s, page, p, "Freepointer corrupt");
  605. /*
  606. * No choice but to zap it and thus loose the remainder
  607. * of the free objects in this slab. May cause
  608. * another error because the object count is now wrong.
  609. */
  610. set_freepointer(s, p, NULL);
  611. return 0;
  612. }
  613. return 1;
  614. }
  615. static int check_slab(struct kmem_cache *s, struct page *page)
  616. {
  617. VM_BUG_ON(!irqs_disabled());
  618. if (!PageSlab(page)) {
  619. slab_err(s, page, "Not a valid slab page");
  620. return 0;
  621. }
  622. if (page->inuse > s->objects) {
  623. slab_err(s, page, "inuse %u > max %u",
  624. s->name, page->inuse, s->objects);
  625. return 0;
  626. }
  627. /* Slab_pad_check fixes things up after itself */
  628. slab_pad_check(s, page);
  629. return 1;
  630. }
  631. /*
  632. * Determine if a certain object on a page is on the freelist. Must hold the
  633. * slab lock to guarantee that the chains are in a consistent state.
  634. */
  635. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  636. {
  637. int nr = 0;
  638. void *fp = page->freelist;
  639. void *object = NULL;
  640. while (fp && nr <= s->objects) {
  641. if (fp == search)
  642. return 1;
  643. if (!check_valid_pointer(s, page, fp)) {
  644. if (object) {
  645. object_err(s, page, object,
  646. "Freechain corrupt");
  647. set_freepointer(s, object, NULL);
  648. break;
  649. } else {
  650. slab_err(s, page, "Freepointer corrupt");
  651. page->freelist = NULL;
  652. page->inuse = s->objects;
  653. slab_fix(s, "Freelist cleared");
  654. return 0;
  655. }
  656. break;
  657. }
  658. object = fp;
  659. fp = get_freepointer(s, object);
  660. nr++;
  661. }
  662. if (page->inuse != s->objects - nr) {
  663. slab_err(s, page, "Wrong object count. Counter is %d but "
  664. "counted were %d", page->inuse, s->objects - nr);
  665. page->inuse = s->objects - nr;
  666. slab_fix(s, "Object count adjusted.");
  667. }
  668. return search == NULL;
  669. }
  670. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  671. {
  672. if (s->flags & SLAB_TRACE) {
  673. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  674. s->name,
  675. alloc ? "alloc" : "free",
  676. object, page->inuse,
  677. page->freelist);
  678. if (!alloc)
  679. print_section("Object", (void *)object, s->objsize);
  680. dump_stack();
  681. }
  682. }
  683. /*
  684. * Tracking of fully allocated slabs for debugging purposes.
  685. */
  686. static void add_full(struct kmem_cache_node *n, struct page *page)
  687. {
  688. spin_lock(&n->list_lock);
  689. list_add(&page->lru, &n->full);
  690. spin_unlock(&n->list_lock);
  691. }
  692. static void remove_full(struct kmem_cache *s, struct page *page)
  693. {
  694. struct kmem_cache_node *n;
  695. if (!(s->flags & SLAB_STORE_USER))
  696. return;
  697. n = get_node(s, page_to_nid(page));
  698. spin_lock(&n->list_lock);
  699. list_del(&page->lru);
  700. spin_unlock(&n->list_lock);
  701. }
  702. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  703. void *object)
  704. {
  705. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  706. return;
  707. init_object(s, object, 0);
  708. init_tracking(s, object);
  709. }
  710. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  711. void *object, void *addr)
  712. {
  713. if (!check_slab(s, page))
  714. goto bad;
  715. if (object && !on_freelist(s, page, object)) {
  716. object_err(s, page, object, "Object already allocated");
  717. goto bad;
  718. }
  719. if (!check_valid_pointer(s, page, object)) {
  720. object_err(s, page, object, "Freelist Pointer check fails");
  721. goto bad;
  722. }
  723. if (object && !check_object(s, page, object, 0))
  724. goto bad;
  725. /* Success perform special debug activities for allocs */
  726. if (s->flags & SLAB_STORE_USER)
  727. set_track(s, object, TRACK_ALLOC, addr);
  728. trace(s, page, object, 1);
  729. init_object(s, object, 1);
  730. return 1;
  731. bad:
  732. if (PageSlab(page)) {
  733. /*
  734. * If this is a slab page then lets do the best we can
  735. * to avoid issues in the future. Marking all objects
  736. * as used avoids touching the remaining objects.
  737. */
  738. slab_fix(s, "Marking all objects used");
  739. page->inuse = s->objects;
  740. page->freelist = NULL;
  741. }
  742. return 0;
  743. }
  744. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  745. void *object, void *addr)
  746. {
  747. if (!check_slab(s, page))
  748. goto fail;
  749. if (!check_valid_pointer(s, page, object)) {
  750. slab_err(s, page, "Invalid object pointer 0x%p", object);
  751. goto fail;
  752. }
  753. if (on_freelist(s, page, object)) {
  754. object_err(s, page, object, "Object already free");
  755. goto fail;
  756. }
  757. if (!check_object(s, page, object, 1))
  758. return 0;
  759. if (unlikely(s != page->slab)) {
  760. if (!PageSlab(page))
  761. slab_err(s, page, "Attempt to free object(0x%p) "
  762. "outside of slab", object);
  763. else
  764. if (!page->slab) {
  765. printk(KERN_ERR
  766. "SLUB <none>: no slab for object 0x%p.\n",
  767. object);
  768. dump_stack();
  769. } else
  770. object_err(s, page, object,
  771. "page slab pointer corrupt.");
  772. goto fail;
  773. }
  774. /* Special debug activities for freeing objects */
  775. if (!SlabFrozen(page) && !page->freelist)
  776. remove_full(s, page);
  777. if (s->flags & SLAB_STORE_USER)
  778. set_track(s, object, TRACK_FREE, addr);
  779. trace(s, page, object, 0);
  780. init_object(s, object, 0);
  781. return 1;
  782. fail:
  783. slab_fix(s, "Object at 0x%p not freed", object);
  784. return 0;
  785. }
  786. static int __init setup_slub_debug(char *str)
  787. {
  788. slub_debug = DEBUG_DEFAULT_FLAGS;
  789. if (*str++ != '=' || !*str)
  790. /*
  791. * No options specified. Switch on full debugging.
  792. */
  793. goto out;
  794. if (*str == ',')
  795. /*
  796. * No options but restriction on slabs. This means full
  797. * debugging for slabs matching a pattern.
  798. */
  799. goto check_slabs;
  800. slub_debug = 0;
  801. if (*str == '-')
  802. /*
  803. * Switch off all debugging measures.
  804. */
  805. goto out;
  806. /*
  807. * Determine which debug features should be switched on
  808. */
  809. for (; *str && *str != ','; str++) {
  810. switch (tolower(*str)) {
  811. case 'f':
  812. slub_debug |= SLAB_DEBUG_FREE;
  813. break;
  814. case 'z':
  815. slub_debug |= SLAB_RED_ZONE;
  816. break;
  817. case 'p':
  818. slub_debug |= SLAB_POISON;
  819. break;
  820. case 'u':
  821. slub_debug |= SLAB_STORE_USER;
  822. break;
  823. case 't':
  824. slub_debug |= SLAB_TRACE;
  825. break;
  826. default:
  827. printk(KERN_ERR "slub_debug option '%c' "
  828. "unknown. skipped\n", *str);
  829. }
  830. }
  831. check_slabs:
  832. if (*str == ',')
  833. slub_debug_slabs = str + 1;
  834. out:
  835. return 1;
  836. }
  837. __setup("slub_debug", setup_slub_debug);
  838. static unsigned long kmem_cache_flags(unsigned long objsize,
  839. unsigned long flags, const char *name,
  840. void (*ctor)(struct kmem_cache *, void *))
  841. {
  842. /*
  843. * The page->offset field is only 16 bit wide. This is an offset
  844. * in units of words from the beginning of an object. If the slab
  845. * size is bigger then we cannot move the free pointer behind the
  846. * object anymore.
  847. *
  848. * On 32 bit platforms the limit is 256k. On 64bit platforms
  849. * the limit is 512k.
  850. *
  851. * Debugging or ctor may create a need to move the free
  852. * pointer. Fail if this happens.
  853. */
  854. if (objsize >= 65535 * sizeof(void *)) {
  855. BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
  856. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  857. BUG_ON(ctor);
  858. } else {
  859. /*
  860. * Enable debugging if selected on the kernel commandline.
  861. */
  862. if (slub_debug && (!slub_debug_slabs ||
  863. strncmp(slub_debug_slabs, name,
  864. strlen(slub_debug_slabs)) == 0))
  865. flags |= slub_debug;
  866. }
  867. return flags;
  868. }
  869. #else
  870. static inline void setup_object_debug(struct kmem_cache *s,
  871. struct page *page, void *object) {}
  872. static inline int alloc_debug_processing(struct kmem_cache *s,
  873. struct page *page, void *object, void *addr) { return 0; }
  874. static inline int free_debug_processing(struct kmem_cache *s,
  875. struct page *page, void *object, void *addr) { return 0; }
  876. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  877. { return 1; }
  878. static inline int check_object(struct kmem_cache *s, struct page *page,
  879. void *object, int active) { return 1; }
  880. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  881. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  882. unsigned long flags, const char *name,
  883. void (*ctor)(struct kmem_cache *, void *))
  884. {
  885. return flags;
  886. }
  887. #define slub_debug 0
  888. #endif
  889. /*
  890. * Slab allocation and freeing
  891. */
  892. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  893. {
  894. struct page *page;
  895. int pages = 1 << s->order;
  896. if (s->order)
  897. flags |= __GFP_COMP;
  898. if (s->flags & SLAB_CACHE_DMA)
  899. flags |= SLUB_DMA;
  900. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  901. flags |= __GFP_RECLAIMABLE;
  902. if (node == -1)
  903. page = alloc_pages(flags, s->order);
  904. else
  905. page = alloc_pages_node(node, flags, s->order);
  906. if (!page)
  907. return NULL;
  908. mod_zone_page_state(page_zone(page),
  909. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  910. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  911. pages);
  912. return page;
  913. }
  914. static void setup_object(struct kmem_cache *s, struct page *page,
  915. void *object)
  916. {
  917. setup_object_debug(s, page, object);
  918. if (unlikely(s->ctor))
  919. s->ctor(s, object);
  920. }
  921. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  922. {
  923. struct page *page;
  924. struct kmem_cache_node *n;
  925. void *start;
  926. void *last;
  927. void *p;
  928. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  929. page = allocate_slab(s,
  930. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  931. if (!page)
  932. goto out;
  933. n = get_node(s, page_to_nid(page));
  934. if (n)
  935. atomic_long_inc(&n->nr_slabs);
  936. page->slab = s;
  937. page->flags |= 1 << PG_slab;
  938. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  939. SLAB_STORE_USER | SLAB_TRACE))
  940. SetSlabDebug(page);
  941. start = page_address(page);
  942. if (unlikely(s->flags & SLAB_POISON))
  943. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  944. last = start;
  945. for_each_object(p, s, start) {
  946. setup_object(s, page, last);
  947. set_freepointer(s, last, p);
  948. last = p;
  949. }
  950. setup_object(s, page, last);
  951. set_freepointer(s, last, NULL);
  952. page->freelist = start;
  953. page->inuse = 0;
  954. out:
  955. return page;
  956. }
  957. static void __free_slab(struct kmem_cache *s, struct page *page)
  958. {
  959. int pages = 1 << s->order;
  960. if (unlikely(SlabDebug(page))) {
  961. void *p;
  962. slab_pad_check(s, page);
  963. for_each_object(p, s, page_address(page))
  964. check_object(s, page, p, 0);
  965. ClearSlabDebug(page);
  966. }
  967. mod_zone_page_state(page_zone(page),
  968. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  969. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  970. -pages);
  971. __free_pages(page, s->order);
  972. }
  973. static void rcu_free_slab(struct rcu_head *h)
  974. {
  975. struct page *page;
  976. page = container_of((struct list_head *)h, struct page, lru);
  977. __free_slab(page->slab, page);
  978. }
  979. static void free_slab(struct kmem_cache *s, struct page *page)
  980. {
  981. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  982. /*
  983. * RCU free overloads the RCU head over the LRU
  984. */
  985. struct rcu_head *head = (void *)&page->lru;
  986. call_rcu(head, rcu_free_slab);
  987. } else
  988. __free_slab(s, page);
  989. }
  990. static void discard_slab(struct kmem_cache *s, struct page *page)
  991. {
  992. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  993. atomic_long_dec(&n->nr_slabs);
  994. reset_page_mapcount(page);
  995. __ClearPageSlab(page);
  996. free_slab(s, page);
  997. }
  998. /*
  999. * Per slab locking using the pagelock
  1000. */
  1001. static __always_inline void slab_lock(struct page *page)
  1002. {
  1003. bit_spin_lock(PG_locked, &page->flags);
  1004. }
  1005. static __always_inline void slab_unlock(struct page *page)
  1006. {
  1007. bit_spin_unlock(PG_locked, &page->flags);
  1008. }
  1009. static __always_inline int slab_trylock(struct page *page)
  1010. {
  1011. int rc = 1;
  1012. rc = bit_spin_trylock(PG_locked, &page->flags);
  1013. return rc;
  1014. }
  1015. /*
  1016. * Management of partially allocated slabs
  1017. */
  1018. static void add_partial(struct kmem_cache_node *n,
  1019. struct page *page, int tail)
  1020. {
  1021. spin_lock(&n->list_lock);
  1022. n->nr_partial++;
  1023. if (tail)
  1024. list_add_tail(&page->lru, &n->partial);
  1025. else
  1026. list_add(&page->lru, &n->partial);
  1027. spin_unlock(&n->list_lock);
  1028. }
  1029. static void remove_partial(struct kmem_cache *s,
  1030. struct page *page)
  1031. {
  1032. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1033. spin_lock(&n->list_lock);
  1034. list_del(&page->lru);
  1035. n->nr_partial--;
  1036. spin_unlock(&n->list_lock);
  1037. }
  1038. /*
  1039. * Lock slab and remove from the partial list.
  1040. *
  1041. * Must hold list_lock.
  1042. */
  1043. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1044. {
  1045. if (slab_trylock(page)) {
  1046. list_del(&page->lru);
  1047. n->nr_partial--;
  1048. SetSlabFrozen(page);
  1049. return 1;
  1050. }
  1051. return 0;
  1052. }
  1053. /*
  1054. * Try to allocate a partial slab from a specific node.
  1055. */
  1056. static struct page *get_partial_node(struct kmem_cache_node *n)
  1057. {
  1058. struct page *page;
  1059. /*
  1060. * Racy check. If we mistakenly see no partial slabs then we
  1061. * just allocate an empty slab. If we mistakenly try to get a
  1062. * partial slab and there is none available then get_partials()
  1063. * will return NULL.
  1064. */
  1065. if (!n || !n->nr_partial)
  1066. return NULL;
  1067. spin_lock(&n->list_lock);
  1068. list_for_each_entry(page, &n->partial, lru)
  1069. if (lock_and_freeze_slab(n, page))
  1070. goto out;
  1071. page = NULL;
  1072. out:
  1073. spin_unlock(&n->list_lock);
  1074. return page;
  1075. }
  1076. /*
  1077. * Get a page from somewhere. Search in increasing NUMA distances.
  1078. */
  1079. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1080. {
  1081. #ifdef CONFIG_NUMA
  1082. struct zonelist *zonelist;
  1083. struct zone **z;
  1084. struct page *page;
  1085. /*
  1086. * The defrag ratio allows a configuration of the tradeoffs between
  1087. * inter node defragmentation and node local allocations. A lower
  1088. * defrag_ratio increases the tendency to do local allocations
  1089. * instead of attempting to obtain partial slabs from other nodes.
  1090. *
  1091. * If the defrag_ratio is set to 0 then kmalloc() always
  1092. * returns node local objects. If the ratio is higher then kmalloc()
  1093. * may return off node objects because partial slabs are obtained
  1094. * from other nodes and filled up.
  1095. *
  1096. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1097. * defrag_ratio = 1000) then every (well almost) allocation will
  1098. * first attempt to defrag slab caches on other nodes. This means
  1099. * scanning over all nodes to look for partial slabs which may be
  1100. * expensive if we do it every time we are trying to find a slab
  1101. * with available objects.
  1102. */
  1103. if (!s->remote_node_defrag_ratio ||
  1104. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1105. return NULL;
  1106. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1107. ->node_zonelists[gfp_zone(flags)];
  1108. for (z = zonelist->zones; *z; z++) {
  1109. struct kmem_cache_node *n;
  1110. n = get_node(s, zone_to_nid(*z));
  1111. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1112. n->nr_partial > MIN_PARTIAL) {
  1113. page = get_partial_node(n);
  1114. if (page)
  1115. return page;
  1116. }
  1117. }
  1118. #endif
  1119. return NULL;
  1120. }
  1121. /*
  1122. * Get a partial page, lock it and return it.
  1123. */
  1124. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1125. {
  1126. struct page *page;
  1127. int searchnode = (node == -1) ? numa_node_id() : node;
  1128. page = get_partial_node(get_node(s, searchnode));
  1129. if (page || (flags & __GFP_THISNODE))
  1130. return page;
  1131. return get_any_partial(s, flags);
  1132. }
  1133. /*
  1134. * Move a page back to the lists.
  1135. *
  1136. * Must be called with the slab lock held.
  1137. *
  1138. * On exit the slab lock will have been dropped.
  1139. */
  1140. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1141. {
  1142. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1143. ClearSlabFrozen(page);
  1144. if (page->inuse) {
  1145. if (page->freelist)
  1146. add_partial(n, page, tail);
  1147. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1148. add_full(n, page);
  1149. slab_unlock(page);
  1150. } else {
  1151. if (n->nr_partial < MIN_PARTIAL) {
  1152. /*
  1153. * Adding an empty slab to the partial slabs in order
  1154. * to avoid page allocator overhead. This slab needs
  1155. * to come after the other slabs with objects in
  1156. * order to fill them up. That way the size of the
  1157. * partial list stays small. kmem_cache_shrink can
  1158. * reclaim empty slabs from the partial list.
  1159. */
  1160. add_partial(n, page, 1);
  1161. slab_unlock(page);
  1162. } else {
  1163. slab_unlock(page);
  1164. discard_slab(s, page);
  1165. }
  1166. }
  1167. }
  1168. /*
  1169. * Remove the cpu slab
  1170. */
  1171. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1172. {
  1173. struct page *page = c->page;
  1174. int tail = 1;
  1175. /*
  1176. * Merge cpu freelist into freelist. Typically we get here
  1177. * because both freelists are empty. So this is unlikely
  1178. * to occur.
  1179. */
  1180. while (unlikely(c->freelist)) {
  1181. void **object;
  1182. tail = 0; /* Hot objects. Put the slab first */
  1183. /* Retrieve object from cpu_freelist */
  1184. object = c->freelist;
  1185. c->freelist = c->freelist[c->offset];
  1186. /* And put onto the regular freelist */
  1187. object[c->offset] = page->freelist;
  1188. page->freelist = object;
  1189. page->inuse--;
  1190. }
  1191. c->page = NULL;
  1192. unfreeze_slab(s, page, tail);
  1193. }
  1194. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1195. {
  1196. slab_lock(c->page);
  1197. deactivate_slab(s, c);
  1198. }
  1199. /*
  1200. * Flush cpu slab.
  1201. * Called from IPI handler with interrupts disabled.
  1202. */
  1203. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1204. {
  1205. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1206. if (likely(c && c->page))
  1207. flush_slab(s, c);
  1208. }
  1209. static void flush_cpu_slab(void *d)
  1210. {
  1211. struct kmem_cache *s = d;
  1212. __flush_cpu_slab(s, smp_processor_id());
  1213. }
  1214. static void flush_all(struct kmem_cache *s)
  1215. {
  1216. #ifdef CONFIG_SMP
  1217. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1218. #else
  1219. unsigned long flags;
  1220. local_irq_save(flags);
  1221. flush_cpu_slab(s);
  1222. local_irq_restore(flags);
  1223. #endif
  1224. }
  1225. /*
  1226. * Check if the objects in a per cpu structure fit numa
  1227. * locality expectations.
  1228. */
  1229. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1230. {
  1231. #ifdef CONFIG_NUMA
  1232. if (node != -1 && c->node != node)
  1233. return 0;
  1234. #endif
  1235. return 1;
  1236. }
  1237. /*
  1238. * Slow path. The lockless freelist is empty or we need to perform
  1239. * debugging duties.
  1240. *
  1241. * Interrupts are disabled.
  1242. *
  1243. * Processing is still very fast if new objects have been freed to the
  1244. * regular freelist. In that case we simply take over the regular freelist
  1245. * as the lockless freelist and zap the regular freelist.
  1246. *
  1247. * If that is not working then we fall back to the partial lists. We take the
  1248. * first element of the freelist as the object to allocate now and move the
  1249. * rest of the freelist to the lockless freelist.
  1250. *
  1251. * And if we were unable to get a new slab from the partial slab lists then
  1252. * we need to allocate a new slab. This is slowest path since we may sleep.
  1253. */
  1254. static void *__slab_alloc(struct kmem_cache *s,
  1255. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1256. {
  1257. void **object;
  1258. struct page *new;
  1259. if (!c->page)
  1260. goto new_slab;
  1261. slab_lock(c->page);
  1262. if (unlikely(!node_match(c, node)))
  1263. goto another_slab;
  1264. load_freelist:
  1265. object = c->page->freelist;
  1266. if (unlikely(!object))
  1267. goto another_slab;
  1268. if (unlikely(SlabDebug(c->page)))
  1269. goto debug;
  1270. object = c->page->freelist;
  1271. c->freelist = object[c->offset];
  1272. c->page->inuse = s->objects;
  1273. c->page->freelist = NULL;
  1274. c->node = page_to_nid(c->page);
  1275. slab_unlock(c->page);
  1276. return object;
  1277. another_slab:
  1278. deactivate_slab(s, c);
  1279. new_slab:
  1280. new = get_partial(s, gfpflags, node);
  1281. if (new) {
  1282. c->page = new;
  1283. goto load_freelist;
  1284. }
  1285. if (gfpflags & __GFP_WAIT)
  1286. local_irq_enable();
  1287. new = new_slab(s, gfpflags, node);
  1288. if (gfpflags & __GFP_WAIT)
  1289. local_irq_disable();
  1290. if (new) {
  1291. c = get_cpu_slab(s, smp_processor_id());
  1292. if (c->page)
  1293. flush_slab(s, c);
  1294. slab_lock(new);
  1295. SetSlabFrozen(new);
  1296. c->page = new;
  1297. goto load_freelist;
  1298. }
  1299. return NULL;
  1300. debug:
  1301. object = c->page->freelist;
  1302. if (!alloc_debug_processing(s, c->page, object, addr))
  1303. goto another_slab;
  1304. c->page->inuse++;
  1305. c->page->freelist = object[c->offset];
  1306. c->node = -1;
  1307. slab_unlock(c->page);
  1308. return object;
  1309. }
  1310. /*
  1311. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1312. * have the fastpath folded into their functions. So no function call
  1313. * overhead for requests that can be satisfied on the fastpath.
  1314. *
  1315. * The fastpath works by first checking if the lockless freelist can be used.
  1316. * If not then __slab_alloc is called for slow processing.
  1317. *
  1318. * Otherwise we can simply pick the next object from the lockless free list.
  1319. */
  1320. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1321. gfp_t gfpflags, int node, void *addr)
  1322. {
  1323. void **object;
  1324. unsigned long flags;
  1325. struct kmem_cache_cpu *c;
  1326. local_irq_save(flags);
  1327. c = get_cpu_slab(s, smp_processor_id());
  1328. if (unlikely(!c->freelist || !node_match(c, node)))
  1329. object = __slab_alloc(s, gfpflags, node, addr, c);
  1330. else {
  1331. object = c->freelist;
  1332. c->freelist = object[c->offset];
  1333. }
  1334. local_irq_restore(flags);
  1335. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1336. memset(object, 0, c->objsize);
  1337. return object;
  1338. }
  1339. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1340. {
  1341. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1342. }
  1343. EXPORT_SYMBOL(kmem_cache_alloc);
  1344. #ifdef CONFIG_NUMA
  1345. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1346. {
  1347. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1348. }
  1349. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1350. #endif
  1351. /*
  1352. * Slow patch handling. This may still be called frequently since objects
  1353. * have a longer lifetime than the cpu slabs in most processing loads.
  1354. *
  1355. * So we still attempt to reduce cache line usage. Just take the slab
  1356. * lock and free the item. If there is no additional partial page
  1357. * handling required then we can return immediately.
  1358. */
  1359. static void __slab_free(struct kmem_cache *s, struct page *page,
  1360. void *x, void *addr, unsigned int offset)
  1361. {
  1362. void *prior;
  1363. void **object = (void *)x;
  1364. slab_lock(page);
  1365. if (unlikely(SlabDebug(page)))
  1366. goto debug;
  1367. checks_ok:
  1368. prior = object[offset] = page->freelist;
  1369. page->freelist = object;
  1370. page->inuse--;
  1371. if (unlikely(SlabFrozen(page)))
  1372. goto out_unlock;
  1373. if (unlikely(!page->inuse))
  1374. goto slab_empty;
  1375. /*
  1376. * Objects left in the slab. If it
  1377. * was not on the partial list before
  1378. * then add it.
  1379. */
  1380. if (unlikely(!prior))
  1381. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1382. out_unlock:
  1383. slab_unlock(page);
  1384. return;
  1385. slab_empty:
  1386. if (prior)
  1387. /*
  1388. * Slab still on the partial list.
  1389. */
  1390. remove_partial(s, page);
  1391. slab_unlock(page);
  1392. discard_slab(s, page);
  1393. return;
  1394. debug:
  1395. if (!free_debug_processing(s, page, x, addr))
  1396. goto out_unlock;
  1397. goto checks_ok;
  1398. }
  1399. /*
  1400. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1401. * can perform fastpath freeing without additional function calls.
  1402. *
  1403. * The fastpath is only possible if we are freeing to the current cpu slab
  1404. * of this processor. This typically the case if we have just allocated
  1405. * the item before.
  1406. *
  1407. * If fastpath is not possible then fall back to __slab_free where we deal
  1408. * with all sorts of special processing.
  1409. */
  1410. static __always_inline void slab_free(struct kmem_cache *s,
  1411. struct page *page, void *x, void *addr)
  1412. {
  1413. void **object = (void *)x;
  1414. unsigned long flags;
  1415. struct kmem_cache_cpu *c;
  1416. local_irq_save(flags);
  1417. debug_check_no_locks_freed(object, s->objsize);
  1418. c = get_cpu_slab(s, smp_processor_id());
  1419. if (likely(page == c->page && c->node >= 0)) {
  1420. object[c->offset] = c->freelist;
  1421. c->freelist = object;
  1422. } else
  1423. __slab_free(s, page, x, addr, c->offset);
  1424. local_irq_restore(flags);
  1425. }
  1426. void kmem_cache_free(struct kmem_cache *s, void *x)
  1427. {
  1428. struct page *page;
  1429. page = virt_to_head_page(x);
  1430. slab_free(s, page, x, __builtin_return_address(0));
  1431. }
  1432. EXPORT_SYMBOL(kmem_cache_free);
  1433. /* Figure out on which slab object the object resides */
  1434. static struct page *get_object_page(const void *x)
  1435. {
  1436. struct page *page = virt_to_head_page(x);
  1437. if (!PageSlab(page))
  1438. return NULL;
  1439. return page;
  1440. }
  1441. /*
  1442. * Object placement in a slab is made very easy because we always start at
  1443. * offset 0. If we tune the size of the object to the alignment then we can
  1444. * get the required alignment by putting one properly sized object after
  1445. * another.
  1446. *
  1447. * Notice that the allocation order determines the sizes of the per cpu
  1448. * caches. Each processor has always one slab available for allocations.
  1449. * Increasing the allocation order reduces the number of times that slabs
  1450. * must be moved on and off the partial lists and is therefore a factor in
  1451. * locking overhead.
  1452. */
  1453. /*
  1454. * Mininum / Maximum order of slab pages. This influences locking overhead
  1455. * and slab fragmentation. A higher order reduces the number of partial slabs
  1456. * and increases the number of allocations possible without having to
  1457. * take the list_lock.
  1458. */
  1459. static int slub_min_order;
  1460. static int slub_max_order = DEFAULT_MAX_ORDER;
  1461. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1462. /*
  1463. * Merge control. If this is set then no merging of slab caches will occur.
  1464. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1465. */
  1466. static int slub_nomerge;
  1467. /*
  1468. * Calculate the order of allocation given an slab object size.
  1469. *
  1470. * The order of allocation has significant impact on performance and other
  1471. * system components. Generally order 0 allocations should be preferred since
  1472. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1473. * be problematic to put into order 0 slabs because there may be too much
  1474. * unused space left. We go to a higher order if more than 1/8th of the slab
  1475. * would be wasted.
  1476. *
  1477. * In order to reach satisfactory performance we must ensure that a minimum
  1478. * number of objects is in one slab. Otherwise we may generate too much
  1479. * activity on the partial lists which requires taking the list_lock. This is
  1480. * less a concern for large slabs though which are rarely used.
  1481. *
  1482. * slub_max_order specifies the order where we begin to stop considering the
  1483. * number of objects in a slab as critical. If we reach slub_max_order then
  1484. * we try to keep the page order as low as possible. So we accept more waste
  1485. * of space in favor of a small page order.
  1486. *
  1487. * Higher order allocations also allow the placement of more objects in a
  1488. * slab and thereby reduce object handling overhead. If the user has
  1489. * requested a higher mininum order then we start with that one instead of
  1490. * the smallest order which will fit the object.
  1491. */
  1492. static inline int slab_order(int size, int min_objects,
  1493. int max_order, int fract_leftover)
  1494. {
  1495. int order;
  1496. int rem;
  1497. int min_order = slub_min_order;
  1498. for (order = max(min_order,
  1499. fls(min_objects * size - 1) - PAGE_SHIFT);
  1500. order <= max_order; order++) {
  1501. unsigned long slab_size = PAGE_SIZE << order;
  1502. if (slab_size < min_objects * size)
  1503. continue;
  1504. rem = slab_size % size;
  1505. if (rem <= slab_size / fract_leftover)
  1506. break;
  1507. }
  1508. return order;
  1509. }
  1510. static inline int calculate_order(int size)
  1511. {
  1512. int order;
  1513. int min_objects;
  1514. int fraction;
  1515. /*
  1516. * Attempt to find best configuration for a slab. This
  1517. * works by first attempting to generate a layout with
  1518. * the best configuration and backing off gradually.
  1519. *
  1520. * First we reduce the acceptable waste in a slab. Then
  1521. * we reduce the minimum objects required in a slab.
  1522. */
  1523. min_objects = slub_min_objects;
  1524. while (min_objects > 1) {
  1525. fraction = 8;
  1526. while (fraction >= 4) {
  1527. order = slab_order(size, min_objects,
  1528. slub_max_order, fraction);
  1529. if (order <= slub_max_order)
  1530. return order;
  1531. fraction /= 2;
  1532. }
  1533. min_objects /= 2;
  1534. }
  1535. /*
  1536. * We were unable to place multiple objects in a slab. Now
  1537. * lets see if we can place a single object there.
  1538. */
  1539. order = slab_order(size, 1, slub_max_order, 1);
  1540. if (order <= slub_max_order)
  1541. return order;
  1542. /*
  1543. * Doh this slab cannot be placed using slub_max_order.
  1544. */
  1545. order = slab_order(size, 1, MAX_ORDER, 1);
  1546. if (order <= MAX_ORDER)
  1547. return order;
  1548. return -ENOSYS;
  1549. }
  1550. /*
  1551. * Figure out what the alignment of the objects will be.
  1552. */
  1553. static unsigned long calculate_alignment(unsigned long flags,
  1554. unsigned long align, unsigned long size)
  1555. {
  1556. /*
  1557. * If the user wants hardware cache aligned objects then
  1558. * follow that suggestion if the object is sufficiently
  1559. * large.
  1560. *
  1561. * The hardware cache alignment cannot override the
  1562. * specified alignment though. If that is greater
  1563. * then use it.
  1564. */
  1565. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1566. size > cache_line_size() / 2)
  1567. return max_t(unsigned long, align, cache_line_size());
  1568. if (align < ARCH_SLAB_MINALIGN)
  1569. return ARCH_SLAB_MINALIGN;
  1570. return ALIGN(align, sizeof(void *));
  1571. }
  1572. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1573. struct kmem_cache_cpu *c)
  1574. {
  1575. c->page = NULL;
  1576. c->freelist = NULL;
  1577. c->node = 0;
  1578. c->offset = s->offset / sizeof(void *);
  1579. c->objsize = s->objsize;
  1580. }
  1581. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1582. {
  1583. n->nr_partial = 0;
  1584. atomic_long_set(&n->nr_slabs, 0);
  1585. spin_lock_init(&n->list_lock);
  1586. INIT_LIST_HEAD(&n->partial);
  1587. #ifdef CONFIG_SLUB_DEBUG
  1588. INIT_LIST_HEAD(&n->full);
  1589. #endif
  1590. }
  1591. #ifdef CONFIG_SMP
  1592. /*
  1593. * Per cpu array for per cpu structures.
  1594. *
  1595. * The per cpu array places all kmem_cache_cpu structures from one processor
  1596. * close together meaning that it becomes possible that multiple per cpu
  1597. * structures are contained in one cacheline. This may be particularly
  1598. * beneficial for the kmalloc caches.
  1599. *
  1600. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1601. * likely able to get per cpu structures for all caches from the array defined
  1602. * here. We must be able to cover all kmalloc caches during bootstrap.
  1603. *
  1604. * If the per cpu array is exhausted then fall back to kmalloc
  1605. * of individual cachelines. No sharing is possible then.
  1606. */
  1607. #define NR_KMEM_CACHE_CPU 100
  1608. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1609. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1610. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1611. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1612. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1613. int cpu, gfp_t flags)
  1614. {
  1615. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1616. if (c)
  1617. per_cpu(kmem_cache_cpu_free, cpu) =
  1618. (void *)c->freelist;
  1619. else {
  1620. /* Table overflow: So allocate ourselves */
  1621. c = kmalloc_node(
  1622. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1623. flags, cpu_to_node(cpu));
  1624. if (!c)
  1625. return NULL;
  1626. }
  1627. init_kmem_cache_cpu(s, c);
  1628. return c;
  1629. }
  1630. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1631. {
  1632. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1633. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1634. kfree(c);
  1635. return;
  1636. }
  1637. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1638. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1639. }
  1640. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1641. {
  1642. int cpu;
  1643. for_each_online_cpu(cpu) {
  1644. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1645. if (c) {
  1646. s->cpu_slab[cpu] = NULL;
  1647. free_kmem_cache_cpu(c, cpu);
  1648. }
  1649. }
  1650. }
  1651. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1652. {
  1653. int cpu;
  1654. for_each_online_cpu(cpu) {
  1655. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1656. if (c)
  1657. continue;
  1658. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1659. if (!c) {
  1660. free_kmem_cache_cpus(s);
  1661. return 0;
  1662. }
  1663. s->cpu_slab[cpu] = c;
  1664. }
  1665. return 1;
  1666. }
  1667. /*
  1668. * Initialize the per cpu array.
  1669. */
  1670. static void init_alloc_cpu_cpu(int cpu)
  1671. {
  1672. int i;
  1673. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1674. return;
  1675. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1676. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1677. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1678. }
  1679. static void __init init_alloc_cpu(void)
  1680. {
  1681. int cpu;
  1682. for_each_online_cpu(cpu)
  1683. init_alloc_cpu_cpu(cpu);
  1684. }
  1685. #else
  1686. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1687. static inline void init_alloc_cpu(void) {}
  1688. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1689. {
  1690. init_kmem_cache_cpu(s, &s->cpu_slab);
  1691. return 1;
  1692. }
  1693. #endif
  1694. #ifdef CONFIG_NUMA
  1695. /*
  1696. * No kmalloc_node yet so do it by hand. We know that this is the first
  1697. * slab on the node for this slabcache. There are no concurrent accesses
  1698. * possible.
  1699. *
  1700. * Note that this function only works on the kmalloc_node_cache
  1701. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1702. * memory on a fresh node that has no slab structures yet.
  1703. */
  1704. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1705. int node)
  1706. {
  1707. struct page *page;
  1708. struct kmem_cache_node *n;
  1709. unsigned long flags;
  1710. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1711. page = new_slab(kmalloc_caches, gfpflags, node);
  1712. BUG_ON(!page);
  1713. if (page_to_nid(page) != node) {
  1714. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1715. "node %d\n", node);
  1716. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1717. "in order to be able to continue\n");
  1718. }
  1719. n = page->freelist;
  1720. BUG_ON(!n);
  1721. page->freelist = get_freepointer(kmalloc_caches, n);
  1722. page->inuse++;
  1723. kmalloc_caches->node[node] = n;
  1724. #ifdef CONFIG_SLUB_DEBUG
  1725. init_object(kmalloc_caches, n, 1);
  1726. init_tracking(kmalloc_caches, n);
  1727. #endif
  1728. init_kmem_cache_node(n);
  1729. atomic_long_inc(&n->nr_slabs);
  1730. /*
  1731. * lockdep requires consistent irq usage for each lock
  1732. * so even though there cannot be a race this early in
  1733. * the boot sequence, we still disable irqs.
  1734. */
  1735. local_irq_save(flags);
  1736. add_partial(n, page, 0);
  1737. local_irq_restore(flags);
  1738. return n;
  1739. }
  1740. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1741. {
  1742. int node;
  1743. for_each_node_state(node, N_NORMAL_MEMORY) {
  1744. struct kmem_cache_node *n = s->node[node];
  1745. if (n && n != &s->local_node)
  1746. kmem_cache_free(kmalloc_caches, n);
  1747. s->node[node] = NULL;
  1748. }
  1749. }
  1750. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1751. {
  1752. int node;
  1753. int local_node;
  1754. if (slab_state >= UP)
  1755. local_node = page_to_nid(virt_to_page(s));
  1756. else
  1757. local_node = 0;
  1758. for_each_node_state(node, N_NORMAL_MEMORY) {
  1759. struct kmem_cache_node *n;
  1760. if (local_node == node)
  1761. n = &s->local_node;
  1762. else {
  1763. if (slab_state == DOWN) {
  1764. n = early_kmem_cache_node_alloc(gfpflags,
  1765. node);
  1766. continue;
  1767. }
  1768. n = kmem_cache_alloc_node(kmalloc_caches,
  1769. gfpflags, node);
  1770. if (!n) {
  1771. free_kmem_cache_nodes(s);
  1772. return 0;
  1773. }
  1774. }
  1775. s->node[node] = n;
  1776. init_kmem_cache_node(n);
  1777. }
  1778. return 1;
  1779. }
  1780. #else
  1781. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1782. {
  1783. }
  1784. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1785. {
  1786. init_kmem_cache_node(&s->local_node);
  1787. return 1;
  1788. }
  1789. #endif
  1790. /*
  1791. * calculate_sizes() determines the order and the distribution of data within
  1792. * a slab object.
  1793. */
  1794. static int calculate_sizes(struct kmem_cache *s)
  1795. {
  1796. unsigned long flags = s->flags;
  1797. unsigned long size = s->objsize;
  1798. unsigned long align = s->align;
  1799. /*
  1800. * Determine if we can poison the object itself. If the user of
  1801. * the slab may touch the object after free or before allocation
  1802. * then we should never poison the object itself.
  1803. */
  1804. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1805. !s->ctor)
  1806. s->flags |= __OBJECT_POISON;
  1807. else
  1808. s->flags &= ~__OBJECT_POISON;
  1809. /*
  1810. * Round up object size to the next word boundary. We can only
  1811. * place the free pointer at word boundaries and this determines
  1812. * the possible location of the free pointer.
  1813. */
  1814. size = ALIGN(size, sizeof(void *));
  1815. #ifdef CONFIG_SLUB_DEBUG
  1816. /*
  1817. * If we are Redzoning then check if there is some space between the
  1818. * end of the object and the free pointer. If not then add an
  1819. * additional word to have some bytes to store Redzone information.
  1820. */
  1821. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1822. size += sizeof(void *);
  1823. #endif
  1824. /*
  1825. * With that we have determined the number of bytes in actual use
  1826. * by the object. This is the potential offset to the free pointer.
  1827. */
  1828. s->inuse = size;
  1829. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1830. s->ctor)) {
  1831. /*
  1832. * Relocate free pointer after the object if it is not
  1833. * permitted to overwrite the first word of the object on
  1834. * kmem_cache_free.
  1835. *
  1836. * This is the case if we do RCU, have a constructor or
  1837. * destructor or are poisoning the objects.
  1838. */
  1839. s->offset = size;
  1840. size += sizeof(void *);
  1841. }
  1842. #ifdef CONFIG_SLUB_DEBUG
  1843. if (flags & SLAB_STORE_USER)
  1844. /*
  1845. * Need to store information about allocs and frees after
  1846. * the object.
  1847. */
  1848. size += 2 * sizeof(struct track);
  1849. if (flags & SLAB_RED_ZONE)
  1850. /*
  1851. * Add some empty padding so that we can catch
  1852. * overwrites from earlier objects rather than let
  1853. * tracking information or the free pointer be
  1854. * corrupted if an user writes before the start
  1855. * of the object.
  1856. */
  1857. size += sizeof(void *);
  1858. #endif
  1859. /*
  1860. * Determine the alignment based on various parameters that the
  1861. * user specified and the dynamic determination of cache line size
  1862. * on bootup.
  1863. */
  1864. align = calculate_alignment(flags, align, s->objsize);
  1865. /*
  1866. * SLUB stores one object immediately after another beginning from
  1867. * offset 0. In order to align the objects we have to simply size
  1868. * each object to conform to the alignment.
  1869. */
  1870. size = ALIGN(size, align);
  1871. s->size = size;
  1872. s->order = calculate_order(size);
  1873. if (s->order < 0)
  1874. return 0;
  1875. /*
  1876. * Determine the number of objects per slab
  1877. */
  1878. s->objects = (PAGE_SIZE << s->order) / size;
  1879. return !!s->objects;
  1880. }
  1881. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1882. const char *name, size_t size,
  1883. size_t align, unsigned long flags,
  1884. void (*ctor)(struct kmem_cache *, void *))
  1885. {
  1886. memset(s, 0, kmem_size);
  1887. s->name = name;
  1888. s->ctor = ctor;
  1889. s->objsize = size;
  1890. s->align = align;
  1891. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1892. if (!calculate_sizes(s))
  1893. goto error;
  1894. s->refcount = 1;
  1895. #ifdef CONFIG_NUMA
  1896. s->remote_node_defrag_ratio = 100;
  1897. #endif
  1898. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1899. goto error;
  1900. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1901. return 1;
  1902. free_kmem_cache_nodes(s);
  1903. error:
  1904. if (flags & SLAB_PANIC)
  1905. panic("Cannot create slab %s size=%lu realsize=%u "
  1906. "order=%u offset=%u flags=%lx\n",
  1907. s->name, (unsigned long)size, s->size, s->order,
  1908. s->offset, flags);
  1909. return 0;
  1910. }
  1911. /*
  1912. * Check if a given pointer is valid
  1913. */
  1914. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1915. {
  1916. struct page *page;
  1917. page = get_object_page(object);
  1918. if (!page || s != page->slab)
  1919. /* No slab or wrong slab */
  1920. return 0;
  1921. if (!check_valid_pointer(s, page, object))
  1922. return 0;
  1923. /*
  1924. * We could also check if the object is on the slabs freelist.
  1925. * But this would be too expensive and it seems that the main
  1926. * purpose of kmem_ptr_valid is to check if the object belongs
  1927. * to a certain slab.
  1928. */
  1929. return 1;
  1930. }
  1931. EXPORT_SYMBOL(kmem_ptr_validate);
  1932. /*
  1933. * Determine the size of a slab object
  1934. */
  1935. unsigned int kmem_cache_size(struct kmem_cache *s)
  1936. {
  1937. return s->objsize;
  1938. }
  1939. EXPORT_SYMBOL(kmem_cache_size);
  1940. const char *kmem_cache_name(struct kmem_cache *s)
  1941. {
  1942. return s->name;
  1943. }
  1944. EXPORT_SYMBOL(kmem_cache_name);
  1945. /*
  1946. * Attempt to free all slabs on a node. Return the number of slabs we
  1947. * were unable to free.
  1948. */
  1949. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1950. struct list_head *list)
  1951. {
  1952. int slabs_inuse = 0;
  1953. unsigned long flags;
  1954. struct page *page, *h;
  1955. spin_lock_irqsave(&n->list_lock, flags);
  1956. list_for_each_entry_safe(page, h, list, lru)
  1957. if (!page->inuse) {
  1958. list_del(&page->lru);
  1959. discard_slab(s, page);
  1960. } else
  1961. slabs_inuse++;
  1962. spin_unlock_irqrestore(&n->list_lock, flags);
  1963. return slabs_inuse;
  1964. }
  1965. /*
  1966. * Release all resources used by a slab cache.
  1967. */
  1968. static inline int kmem_cache_close(struct kmem_cache *s)
  1969. {
  1970. int node;
  1971. flush_all(s);
  1972. /* Attempt to free all objects */
  1973. free_kmem_cache_cpus(s);
  1974. for_each_node_state(node, N_NORMAL_MEMORY) {
  1975. struct kmem_cache_node *n = get_node(s, node);
  1976. n->nr_partial -= free_list(s, n, &n->partial);
  1977. if (atomic_long_read(&n->nr_slabs))
  1978. return 1;
  1979. }
  1980. free_kmem_cache_nodes(s);
  1981. return 0;
  1982. }
  1983. /*
  1984. * Close a cache and release the kmem_cache structure
  1985. * (must be used for caches created using kmem_cache_create)
  1986. */
  1987. void kmem_cache_destroy(struct kmem_cache *s)
  1988. {
  1989. down_write(&slub_lock);
  1990. s->refcount--;
  1991. if (!s->refcount) {
  1992. list_del(&s->list);
  1993. up_write(&slub_lock);
  1994. if (kmem_cache_close(s))
  1995. WARN_ON(1);
  1996. sysfs_slab_remove(s);
  1997. } else
  1998. up_write(&slub_lock);
  1999. }
  2000. EXPORT_SYMBOL(kmem_cache_destroy);
  2001. /********************************************************************
  2002. * Kmalloc subsystem
  2003. *******************************************************************/
  2004. struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
  2005. EXPORT_SYMBOL(kmalloc_caches);
  2006. #ifdef CONFIG_ZONE_DMA
  2007. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
  2008. #endif
  2009. static int __init setup_slub_min_order(char *str)
  2010. {
  2011. get_option(&str, &slub_min_order);
  2012. return 1;
  2013. }
  2014. __setup("slub_min_order=", setup_slub_min_order);
  2015. static int __init setup_slub_max_order(char *str)
  2016. {
  2017. get_option(&str, &slub_max_order);
  2018. return 1;
  2019. }
  2020. __setup("slub_max_order=", setup_slub_max_order);
  2021. static int __init setup_slub_min_objects(char *str)
  2022. {
  2023. get_option(&str, &slub_min_objects);
  2024. return 1;
  2025. }
  2026. __setup("slub_min_objects=", setup_slub_min_objects);
  2027. static int __init setup_slub_nomerge(char *str)
  2028. {
  2029. slub_nomerge = 1;
  2030. return 1;
  2031. }
  2032. __setup("slub_nomerge", setup_slub_nomerge);
  2033. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2034. const char *name, int size, gfp_t gfp_flags)
  2035. {
  2036. unsigned int flags = 0;
  2037. if (gfp_flags & SLUB_DMA)
  2038. flags = SLAB_CACHE_DMA;
  2039. down_write(&slub_lock);
  2040. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2041. flags, NULL))
  2042. goto panic;
  2043. list_add(&s->list, &slab_caches);
  2044. up_write(&slub_lock);
  2045. if (sysfs_slab_add(s))
  2046. goto panic;
  2047. return s;
  2048. panic:
  2049. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2050. }
  2051. #ifdef CONFIG_ZONE_DMA
  2052. static void sysfs_add_func(struct work_struct *w)
  2053. {
  2054. struct kmem_cache *s;
  2055. down_write(&slub_lock);
  2056. list_for_each_entry(s, &slab_caches, list) {
  2057. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2058. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2059. sysfs_slab_add(s);
  2060. }
  2061. }
  2062. up_write(&slub_lock);
  2063. }
  2064. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2065. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2066. {
  2067. struct kmem_cache *s;
  2068. char *text;
  2069. size_t realsize;
  2070. s = kmalloc_caches_dma[index];
  2071. if (s)
  2072. return s;
  2073. /* Dynamically create dma cache */
  2074. if (flags & __GFP_WAIT)
  2075. down_write(&slub_lock);
  2076. else {
  2077. if (!down_write_trylock(&slub_lock))
  2078. goto out;
  2079. }
  2080. if (kmalloc_caches_dma[index])
  2081. goto unlock_out;
  2082. realsize = kmalloc_caches[index].objsize;
  2083. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
  2084. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2085. if (!s || !text || !kmem_cache_open(s, flags, text,
  2086. realsize, ARCH_KMALLOC_MINALIGN,
  2087. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2088. kfree(s);
  2089. kfree(text);
  2090. goto unlock_out;
  2091. }
  2092. list_add(&s->list, &slab_caches);
  2093. kmalloc_caches_dma[index] = s;
  2094. schedule_work(&sysfs_add_work);
  2095. unlock_out:
  2096. up_write(&slub_lock);
  2097. out:
  2098. return kmalloc_caches_dma[index];
  2099. }
  2100. #endif
  2101. /*
  2102. * Conversion table for small slabs sizes / 8 to the index in the
  2103. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2104. * of two cache sizes there. The size of larger slabs can be determined using
  2105. * fls.
  2106. */
  2107. static s8 size_index[24] = {
  2108. 3, /* 8 */
  2109. 4, /* 16 */
  2110. 5, /* 24 */
  2111. 5, /* 32 */
  2112. 6, /* 40 */
  2113. 6, /* 48 */
  2114. 6, /* 56 */
  2115. 6, /* 64 */
  2116. 1, /* 72 */
  2117. 1, /* 80 */
  2118. 1, /* 88 */
  2119. 1, /* 96 */
  2120. 7, /* 104 */
  2121. 7, /* 112 */
  2122. 7, /* 120 */
  2123. 7, /* 128 */
  2124. 2, /* 136 */
  2125. 2, /* 144 */
  2126. 2, /* 152 */
  2127. 2, /* 160 */
  2128. 2, /* 168 */
  2129. 2, /* 176 */
  2130. 2, /* 184 */
  2131. 2 /* 192 */
  2132. };
  2133. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2134. {
  2135. int index;
  2136. if (size <= 192) {
  2137. if (!size)
  2138. return ZERO_SIZE_PTR;
  2139. index = size_index[(size - 1) / 8];
  2140. } else
  2141. index = fls(size - 1);
  2142. #ifdef CONFIG_ZONE_DMA
  2143. if (unlikely((flags & SLUB_DMA)))
  2144. return dma_kmalloc_cache(index, flags);
  2145. #endif
  2146. return &kmalloc_caches[index];
  2147. }
  2148. void *__kmalloc(size_t size, gfp_t flags)
  2149. {
  2150. struct kmem_cache *s;
  2151. if (unlikely(size > PAGE_SIZE / 2))
  2152. return (void *)__get_free_pages(flags | __GFP_COMP,
  2153. get_order(size));
  2154. s = get_slab(size, flags);
  2155. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2156. return s;
  2157. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2158. }
  2159. EXPORT_SYMBOL(__kmalloc);
  2160. #ifdef CONFIG_NUMA
  2161. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2162. {
  2163. struct kmem_cache *s;
  2164. if (unlikely(size > PAGE_SIZE / 2))
  2165. return (void *)__get_free_pages(flags | __GFP_COMP,
  2166. get_order(size));
  2167. s = get_slab(size, flags);
  2168. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2169. return s;
  2170. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2171. }
  2172. EXPORT_SYMBOL(__kmalloc_node);
  2173. #endif
  2174. size_t ksize(const void *object)
  2175. {
  2176. struct page *page;
  2177. struct kmem_cache *s;
  2178. BUG_ON(!object);
  2179. if (unlikely(object == ZERO_SIZE_PTR))
  2180. return 0;
  2181. page = virt_to_head_page(object);
  2182. BUG_ON(!page);
  2183. if (unlikely(!PageSlab(page)))
  2184. return PAGE_SIZE << compound_order(page);
  2185. s = page->slab;
  2186. BUG_ON(!s);
  2187. /*
  2188. * Debugging requires use of the padding between object
  2189. * and whatever may come after it.
  2190. */
  2191. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2192. return s->objsize;
  2193. /*
  2194. * If we have the need to store the freelist pointer
  2195. * back there or track user information then we can
  2196. * only use the space before that information.
  2197. */
  2198. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2199. return s->inuse;
  2200. /*
  2201. * Else we can use all the padding etc for the allocation
  2202. */
  2203. return s->size;
  2204. }
  2205. EXPORT_SYMBOL(ksize);
  2206. void kfree(const void *x)
  2207. {
  2208. struct page *page;
  2209. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2210. return;
  2211. page = virt_to_head_page(x);
  2212. if (unlikely(!PageSlab(page))) {
  2213. put_page(page);
  2214. return;
  2215. }
  2216. slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
  2217. }
  2218. EXPORT_SYMBOL(kfree);
  2219. static unsigned long count_partial(struct kmem_cache_node *n)
  2220. {
  2221. unsigned long flags;
  2222. unsigned long x = 0;
  2223. struct page *page;
  2224. spin_lock_irqsave(&n->list_lock, flags);
  2225. list_for_each_entry(page, &n->partial, lru)
  2226. x += page->inuse;
  2227. spin_unlock_irqrestore(&n->list_lock, flags);
  2228. return x;
  2229. }
  2230. /*
  2231. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2232. * the remaining slabs by the number of items in use. The slabs with the
  2233. * most items in use come first. New allocations will then fill those up
  2234. * and thus they can be removed from the partial lists.
  2235. *
  2236. * The slabs with the least items are placed last. This results in them
  2237. * being allocated from last increasing the chance that the last objects
  2238. * are freed in them.
  2239. */
  2240. int kmem_cache_shrink(struct kmem_cache *s)
  2241. {
  2242. int node;
  2243. int i;
  2244. struct kmem_cache_node *n;
  2245. struct page *page;
  2246. struct page *t;
  2247. struct list_head *slabs_by_inuse =
  2248. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2249. unsigned long flags;
  2250. if (!slabs_by_inuse)
  2251. return -ENOMEM;
  2252. flush_all(s);
  2253. for_each_node_state(node, N_NORMAL_MEMORY) {
  2254. n = get_node(s, node);
  2255. if (!n->nr_partial)
  2256. continue;
  2257. for (i = 0; i < s->objects; i++)
  2258. INIT_LIST_HEAD(slabs_by_inuse + i);
  2259. spin_lock_irqsave(&n->list_lock, flags);
  2260. /*
  2261. * Build lists indexed by the items in use in each slab.
  2262. *
  2263. * Note that concurrent frees may occur while we hold the
  2264. * list_lock. page->inuse here is the upper limit.
  2265. */
  2266. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2267. if (!page->inuse && slab_trylock(page)) {
  2268. /*
  2269. * Must hold slab lock here because slab_free
  2270. * may have freed the last object and be
  2271. * waiting to release the slab.
  2272. */
  2273. list_del(&page->lru);
  2274. n->nr_partial--;
  2275. slab_unlock(page);
  2276. discard_slab(s, page);
  2277. } else {
  2278. list_move(&page->lru,
  2279. slabs_by_inuse + page->inuse);
  2280. }
  2281. }
  2282. /*
  2283. * Rebuild the partial list with the slabs filled up most
  2284. * first and the least used slabs at the end.
  2285. */
  2286. for (i = s->objects - 1; i >= 0; i--)
  2287. list_splice(slabs_by_inuse + i, n->partial.prev);
  2288. spin_unlock_irqrestore(&n->list_lock, flags);
  2289. }
  2290. kfree(slabs_by_inuse);
  2291. return 0;
  2292. }
  2293. EXPORT_SYMBOL(kmem_cache_shrink);
  2294. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2295. static int slab_mem_going_offline_callback(void *arg)
  2296. {
  2297. struct kmem_cache *s;
  2298. down_read(&slub_lock);
  2299. list_for_each_entry(s, &slab_caches, list)
  2300. kmem_cache_shrink(s);
  2301. up_read(&slub_lock);
  2302. return 0;
  2303. }
  2304. static void slab_mem_offline_callback(void *arg)
  2305. {
  2306. struct kmem_cache_node *n;
  2307. struct kmem_cache *s;
  2308. struct memory_notify *marg = arg;
  2309. int offline_node;
  2310. offline_node = marg->status_change_nid;
  2311. /*
  2312. * If the node still has available memory. we need kmem_cache_node
  2313. * for it yet.
  2314. */
  2315. if (offline_node < 0)
  2316. return;
  2317. down_read(&slub_lock);
  2318. list_for_each_entry(s, &slab_caches, list) {
  2319. n = get_node(s, offline_node);
  2320. if (n) {
  2321. /*
  2322. * if n->nr_slabs > 0, slabs still exist on the node
  2323. * that is going down. We were unable to free them,
  2324. * and offline_pages() function shoudn't call this
  2325. * callback. So, we must fail.
  2326. */
  2327. BUG_ON(atomic_long_read(&n->nr_slabs));
  2328. s->node[offline_node] = NULL;
  2329. kmem_cache_free(kmalloc_caches, n);
  2330. }
  2331. }
  2332. up_read(&slub_lock);
  2333. }
  2334. static int slab_mem_going_online_callback(void *arg)
  2335. {
  2336. struct kmem_cache_node *n;
  2337. struct kmem_cache *s;
  2338. struct memory_notify *marg = arg;
  2339. int nid = marg->status_change_nid;
  2340. int ret = 0;
  2341. /*
  2342. * If the node's memory is already available, then kmem_cache_node is
  2343. * already created. Nothing to do.
  2344. */
  2345. if (nid < 0)
  2346. return 0;
  2347. /*
  2348. * We are bringing a node online. No memory is availabe yet. We must
  2349. * allocate a kmem_cache_node structure in order to bring the node
  2350. * online.
  2351. */
  2352. down_read(&slub_lock);
  2353. list_for_each_entry(s, &slab_caches, list) {
  2354. /*
  2355. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2356. * since memory is not yet available from the node that
  2357. * is brought up.
  2358. */
  2359. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2360. if (!n) {
  2361. ret = -ENOMEM;
  2362. goto out;
  2363. }
  2364. init_kmem_cache_node(n);
  2365. s->node[nid] = n;
  2366. }
  2367. out:
  2368. up_read(&slub_lock);
  2369. return ret;
  2370. }
  2371. static int slab_memory_callback(struct notifier_block *self,
  2372. unsigned long action, void *arg)
  2373. {
  2374. int ret = 0;
  2375. switch (action) {
  2376. case MEM_GOING_ONLINE:
  2377. ret = slab_mem_going_online_callback(arg);
  2378. break;
  2379. case MEM_GOING_OFFLINE:
  2380. ret = slab_mem_going_offline_callback(arg);
  2381. break;
  2382. case MEM_OFFLINE:
  2383. case MEM_CANCEL_ONLINE:
  2384. slab_mem_offline_callback(arg);
  2385. break;
  2386. case MEM_ONLINE:
  2387. case MEM_CANCEL_OFFLINE:
  2388. break;
  2389. }
  2390. ret = notifier_from_errno(ret);
  2391. return ret;
  2392. }
  2393. #endif /* CONFIG_MEMORY_HOTPLUG */
  2394. /********************************************************************
  2395. * Basic setup of slabs
  2396. *******************************************************************/
  2397. void __init kmem_cache_init(void)
  2398. {
  2399. int i;
  2400. int caches = 0;
  2401. init_alloc_cpu();
  2402. #ifdef CONFIG_NUMA
  2403. /*
  2404. * Must first have the slab cache available for the allocations of the
  2405. * struct kmem_cache_node's. There is special bootstrap code in
  2406. * kmem_cache_open for slab_state == DOWN.
  2407. */
  2408. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2409. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2410. kmalloc_caches[0].refcount = -1;
  2411. caches++;
  2412. hotplug_memory_notifier(slab_memory_callback, 1);
  2413. #endif
  2414. /* Able to allocate the per node structures */
  2415. slab_state = PARTIAL;
  2416. /* Caches that are not of the two-to-the-power-of size */
  2417. if (KMALLOC_MIN_SIZE <= 64) {
  2418. create_kmalloc_cache(&kmalloc_caches[1],
  2419. "kmalloc-96", 96, GFP_KERNEL);
  2420. caches++;
  2421. }
  2422. if (KMALLOC_MIN_SIZE <= 128) {
  2423. create_kmalloc_cache(&kmalloc_caches[2],
  2424. "kmalloc-192", 192, GFP_KERNEL);
  2425. caches++;
  2426. }
  2427. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
  2428. create_kmalloc_cache(&kmalloc_caches[i],
  2429. "kmalloc", 1 << i, GFP_KERNEL);
  2430. caches++;
  2431. }
  2432. /*
  2433. * Patch up the size_index table if we have strange large alignment
  2434. * requirements for the kmalloc array. This is only the case for
  2435. * mips it seems. The standard arches will not generate any code here.
  2436. *
  2437. * Largest permitted alignment is 256 bytes due to the way we
  2438. * handle the index determination for the smaller caches.
  2439. *
  2440. * Make sure that nothing crazy happens if someone starts tinkering
  2441. * around with ARCH_KMALLOC_MINALIGN
  2442. */
  2443. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2444. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2445. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2446. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2447. slab_state = UP;
  2448. /* Provide the correct kmalloc names now that the caches are up */
  2449. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
  2450. kmalloc_caches[i]. name =
  2451. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2452. #ifdef CONFIG_SMP
  2453. register_cpu_notifier(&slab_notifier);
  2454. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2455. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2456. #else
  2457. kmem_size = sizeof(struct kmem_cache);
  2458. #endif
  2459. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2460. " CPUs=%d, Nodes=%d\n",
  2461. caches, cache_line_size(),
  2462. slub_min_order, slub_max_order, slub_min_objects,
  2463. nr_cpu_ids, nr_node_ids);
  2464. }
  2465. /*
  2466. * Find a mergeable slab cache
  2467. */
  2468. static int slab_unmergeable(struct kmem_cache *s)
  2469. {
  2470. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2471. return 1;
  2472. if (s->ctor)
  2473. return 1;
  2474. /*
  2475. * We may have set a slab to be unmergeable during bootstrap.
  2476. */
  2477. if (s->refcount < 0)
  2478. return 1;
  2479. return 0;
  2480. }
  2481. static struct kmem_cache *find_mergeable(size_t size,
  2482. size_t align, unsigned long flags, const char *name,
  2483. void (*ctor)(struct kmem_cache *, void *))
  2484. {
  2485. struct kmem_cache *s;
  2486. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2487. return NULL;
  2488. if (ctor)
  2489. return NULL;
  2490. size = ALIGN(size, sizeof(void *));
  2491. align = calculate_alignment(flags, align, size);
  2492. size = ALIGN(size, align);
  2493. flags = kmem_cache_flags(size, flags, name, NULL);
  2494. list_for_each_entry(s, &slab_caches, list) {
  2495. if (slab_unmergeable(s))
  2496. continue;
  2497. if (size > s->size)
  2498. continue;
  2499. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2500. continue;
  2501. /*
  2502. * Check if alignment is compatible.
  2503. * Courtesy of Adrian Drzewiecki
  2504. */
  2505. if ((s->size & ~(align - 1)) != s->size)
  2506. continue;
  2507. if (s->size - size >= sizeof(void *))
  2508. continue;
  2509. return s;
  2510. }
  2511. return NULL;
  2512. }
  2513. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2514. size_t align, unsigned long flags,
  2515. void (*ctor)(struct kmem_cache *, void *))
  2516. {
  2517. struct kmem_cache *s;
  2518. down_write(&slub_lock);
  2519. s = find_mergeable(size, align, flags, name, ctor);
  2520. if (s) {
  2521. int cpu;
  2522. s->refcount++;
  2523. /*
  2524. * Adjust the object sizes so that we clear
  2525. * the complete object on kzalloc.
  2526. */
  2527. s->objsize = max(s->objsize, (int)size);
  2528. /*
  2529. * And then we need to update the object size in the
  2530. * per cpu structures
  2531. */
  2532. for_each_online_cpu(cpu)
  2533. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2534. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2535. up_write(&slub_lock);
  2536. if (sysfs_slab_alias(s, name))
  2537. goto err;
  2538. return s;
  2539. }
  2540. s = kmalloc(kmem_size, GFP_KERNEL);
  2541. if (s) {
  2542. if (kmem_cache_open(s, GFP_KERNEL, name,
  2543. size, align, flags, ctor)) {
  2544. list_add(&s->list, &slab_caches);
  2545. up_write(&slub_lock);
  2546. if (sysfs_slab_add(s))
  2547. goto err;
  2548. return s;
  2549. }
  2550. kfree(s);
  2551. }
  2552. up_write(&slub_lock);
  2553. err:
  2554. if (flags & SLAB_PANIC)
  2555. panic("Cannot create slabcache %s\n", name);
  2556. else
  2557. s = NULL;
  2558. return s;
  2559. }
  2560. EXPORT_SYMBOL(kmem_cache_create);
  2561. #ifdef CONFIG_SMP
  2562. /*
  2563. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2564. * necessary.
  2565. */
  2566. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2567. unsigned long action, void *hcpu)
  2568. {
  2569. long cpu = (long)hcpu;
  2570. struct kmem_cache *s;
  2571. unsigned long flags;
  2572. switch (action) {
  2573. case CPU_UP_PREPARE:
  2574. case CPU_UP_PREPARE_FROZEN:
  2575. init_alloc_cpu_cpu(cpu);
  2576. down_read(&slub_lock);
  2577. list_for_each_entry(s, &slab_caches, list)
  2578. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2579. GFP_KERNEL);
  2580. up_read(&slub_lock);
  2581. break;
  2582. case CPU_UP_CANCELED:
  2583. case CPU_UP_CANCELED_FROZEN:
  2584. case CPU_DEAD:
  2585. case CPU_DEAD_FROZEN:
  2586. down_read(&slub_lock);
  2587. list_for_each_entry(s, &slab_caches, list) {
  2588. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2589. local_irq_save(flags);
  2590. __flush_cpu_slab(s, cpu);
  2591. local_irq_restore(flags);
  2592. free_kmem_cache_cpu(c, cpu);
  2593. s->cpu_slab[cpu] = NULL;
  2594. }
  2595. up_read(&slub_lock);
  2596. break;
  2597. default:
  2598. break;
  2599. }
  2600. return NOTIFY_OK;
  2601. }
  2602. static struct notifier_block __cpuinitdata slab_notifier = {
  2603. &slab_cpuup_callback, NULL, 0
  2604. };
  2605. #endif
  2606. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2607. {
  2608. struct kmem_cache *s;
  2609. if (unlikely(size > PAGE_SIZE / 2))
  2610. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2611. get_order(size));
  2612. s = get_slab(size, gfpflags);
  2613. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2614. return s;
  2615. return slab_alloc(s, gfpflags, -1, caller);
  2616. }
  2617. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2618. int node, void *caller)
  2619. {
  2620. struct kmem_cache *s;
  2621. if (unlikely(size > PAGE_SIZE / 2))
  2622. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2623. get_order(size));
  2624. s = get_slab(size, gfpflags);
  2625. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2626. return s;
  2627. return slab_alloc(s, gfpflags, node, caller);
  2628. }
  2629. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2630. static int validate_slab(struct kmem_cache *s, struct page *page,
  2631. unsigned long *map)
  2632. {
  2633. void *p;
  2634. void *addr = page_address(page);
  2635. if (!check_slab(s, page) ||
  2636. !on_freelist(s, page, NULL))
  2637. return 0;
  2638. /* Now we know that a valid freelist exists */
  2639. bitmap_zero(map, s->objects);
  2640. for_each_free_object(p, s, page->freelist) {
  2641. set_bit(slab_index(p, s, addr), map);
  2642. if (!check_object(s, page, p, 0))
  2643. return 0;
  2644. }
  2645. for_each_object(p, s, addr)
  2646. if (!test_bit(slab_index(p, s, addr), map))
  2647. if (!check_object(s, page, p, 1))
  2648. return 0;
  2649. return 1;
  2650. }
  2651. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2652. unsigned long *map)
  2653. {
  2654. if (slab_trylock(page)) {
  2655. validate_slab(s, page, map);
  2656. slab_unlock(page);
  2657. } else
  2658. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2659. s->name, page);
  2660. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2661. if (!SlabDebug(page))
  2662. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2663. "on slab 0x%p\n", s->name, page);
  2664. } else {
  2665. if (SlabDebug(page))
  2666. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2667. "slab 0x%p\n", s->name, page);
  2668. }
  2669. }
  2670. static int validate_slab_node(struct kmem_cache *s,
  2671. struct kmem_cache_node *n, unsigned long *map)
  2672. {
  2673. unsigned long count = 0;
  2674. struct page *page;
  2675. unsigned long flags;
  2676. spin_lock_irqsave(&n->list_lock, flags);
  2677. list_for_each_entry(page, &n->partial, lru) {
  2678. validate_slab_slab(s, page, map);
  2679. count++;
  2680. }
  2681. if (count != n->nr_partial)
  2682. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2683. "counter=%ld\n", s->name, count, n->nr_partial);
  2684. if (!(s->flags & SLAB_STORE_USER))
  2685. goto out;
  2686. list_for_each_entry(page, &n->full, lru) {
  2687. validate_slab_slab(s, page, map);
  2688. count++;
  2689. }
  2690. if (count != atomic_long_read(&n->nr_slabs))
  2691. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2692. "counter=%ld\n", s->name, count,
  2693. atomic_long_read(&n->nr_slabs));
  2694. out:
  2695. spin_unlock_irqrestore(&n->list_lock, flags);
  2696. return count;
  2697. }
  2698. static long validate_slab_cache(struct kmem_cache *s)
  2699. {
  2700. int node;
  2701. unsigned long count = 0;
  2702. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2703. sizeof(unsigned long), GFP_KERNEL);
  2704. if (!map)
  2705. return -ENOMEM;
  2706. flush_all(s);
  2707. for_each_node_state(node, N_NORMAL_MEMORY) {
  2708. struct kmem_cache_node *n = get_node(s, node);
  2709. count += validate_slab_node(s, n, map);
  2710. }
  2711. kfree(map);
  2712. return count;
  2713. }
  2714. #ifdef SLUB_RESILIENCY_TEST
  2715. static void resiliency_test(void)
  2716. {
  2717. u8 *p;
  2718. printk(KERN_ERR "SLUB resiliency testing\n");
  2719. printk(KERN_ERR "-----------------------\n");
  2720. printk(KERN_ERR "A. Corruption after allocation\n");
  2721. p = kzalloc(16, GFP_KERNEL);
  2722. p[16] = 0x12;
  2723. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2724. " 0x12->0x%p\n\n", p + 16);
  2725. validate_slab_cache(kmalloc_caches + 4);
  2726. /* Hmmm... The next two are dangerous */
  2727. p = kzalloc(32, GFP_KERNEL);
  2728. p[32 + sizeof(void *)] = 0x34;
  2729. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2730. " 0x34 -> -0x%p\n", p);
  2731. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2732. validate_slab_cache(kmalloc_caches + 5);
  2733. p = kzalloc(64, GFP_KERNEL);
  2734. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2735. *p = 0x56;
  2736. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2737. p);
  2738. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2739. validate_slab_cache(kmalloc_caches + 6);
  2740. printk(KERN_ERR "\nB. Corruption after free\n");
  2741. p = kzalloc(128, GFP_KERNEL);
  2742. kfree(p);
  2743. *p = 0x78;
  2744. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2745. validate_slab_cache(kmalloc_caches + 7);
  2746. p = kzalloc(256, GFP_KERNEL);
  2747. kfree(p);
  2748. p[50] = 0x9a;
  2749. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2750. validate_slab_cache(kmalloc_caches + 8);
  2751. p = kzalloc(512, GFP_KERNEL);
  2752. kfree(p);
  2753. p[512] = 0xab;
  2754. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2755. validate_slab_cache(kmalloc_caches + 9);
  2756. }
  2757. #else
  2758. static void resiliency_test(void) {};
  2759. #endif
  2760. /*
  2761. * Generate lists of code addresses where slabcache objects are allocated
  2762. * and freed.
  2763. */
  2764. struct location {
  2765. unsigned long count;
  2766. void *addr;
  2767. long long sum_time;
  2768. long min_time;
  2769. long max_time;
  2770. long min_pid;
  2771. long max_pid;
  2772. cpumask_t cpus;
  2773. nodemask_t nodes;
  2774. };
  2775. struct loc_track {
  2776. unsigned long max;
  2777. unsigned long count;
  2778. struct location *loc;
  2779. };
  2780. static void free_loc_track(struct loc_track *t)
  2781. {
  2782. if (t->max)
  2783. free_pages((unsigned long)t->loc,
  2784. get_order(sizeof(struct location) * t->max));
  2785. }
  2786. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2787. {
  2788. struct location *l;
  2789. int order;
  2790. order = get_order(sizeof(struct location) * max);
  2791. l = (void *)__get_free_pages(flags, order);
  2792. if (!l)
  2793. return 0;
  2794. if (t->count) {
  2795. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2796. free_loc_track(t);
  2797. }
  2798. t->max = max;
  2799. t->loc = l;
  2800. return 1;
  2801. }
  2802. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2803. const struct track *track)
  2804. {
  2805. long start, end, pos;
  2806. struct location *l;
  2807. void *caddr;
  2808. unsigned long age = jiffies - track->when;
  2809. start = -1;
  2810. end = t->count;
  2811. for ( ; ; ) {
  2812. pos = start + (end - start + 1) / 2;
  2813. /*
  2814. * There is nothing at "end". If we end up there
  2815. * we need to add something to before end.
  2816. */
  2817. if (pos == end)
  2818. break;
  2819. caddr = t->loc[pos].addr;
  2820. if (track->addr == caddr) {
  2821. l = &t->loc[pos];
  2822. l->count++;
  2823. if (track->when) {
  2824. l->sum_time += age;
  2825. if (age < l->min_time)
  2826. l->min_time = age;
  2827. if (age > l->max_time)
  2828. l->max_time = age;
  2829. if (track->pid < l->min_pid)
  2830. l->min_pid = track->pid;
  2831. if (track->pid > l->max_pid)
  2832. l->max_pid = track->pid;
  2833. cpu_set(track->cpu, l->cpus);
  2834. }
  2835. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2836. return 1;
  2837. }
  2838. if (track->addr < caddr)
  2839. end = pos;
  2840. else
  2841. start = pos;
  2842. }
  2843. /*
  2844. * Not found. Insert new tracking element.
  2845. */
  2846. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2847. return 0;
  2848. l = t->loc + pos;
  2849. if (pos < t->count)
  2850. memmove(l + 1, l,
  2851. (t->count - pos) * sizeof(struct location));
  2852. t->count++;
  2853. l->count = 1;
  2854. l->addr = track->addr;
  2855. l->sum_time = age;
  2856. l->min_time = age;
  2857. l->max_time = age;
  2858. l->min_pid = track->pid;
  2859. l->max_pid = track->pid;
  2860. cpus_clear(l->cpus);
  2861. cpu_set(track->cpu, l->cpus);
  2862. nodes_clear(l->nodes);
  2863. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2864. return 1;
  2865. }
  2866. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2867. struct page *page, enum track_item alloc)
  2868. {
  2869. void *addr = page_address(page);
  2870. DECLARE_BITMAP(map, s->objects);
  2871. void *p;
  2872. bitmap_zero(map, s->objects);
  2873. for_each_free_object(p, s, page->freelist)
  2874. set_bit(slab_index(p, s, addr), map);
  2875. for_each_object(p, s, addr)
  2876. if (!test_bit(slab_index(p, s, addr), map))
  2877. add_location(t, s, get_track(s, p, alloc));
  2878. }
  2879. static int list_locations(struct kmem_cache *s, char *buf,
  2880. enum track_item alloc)
  2881. {
  2882. int len = 0;
  2883. unsigned long i;
  2884. struct loc_track t = { 0, 0, NULL };
  2885. int node;
  2886. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2887. GFP_TEMPORARY))
  2888. return sprintf(buf, "Out of memory\n");
  2889. /* Push back cpu slabs */
  2890. flush_all(s);
  2891. for_each_node_state(node, N_NORMAL_MEMORY) {
  2892. struct kmem_cache_node *n = get_node(s, node);
  2893. unsigned long flags;
  2894. struct page *page;
  2895. if (!atomic_long_read(&n->nr_slabs))
  2896. continue;
  2897. spin_lock_irqsave(&n->list_lock, flags);
  2898. list_for_each_entry(page, &n->partial, lru)
  2899. process_slab(&t, s, page, alloc);
  2900. list_for_each_entry(page, &n->full, lru)
  2901. process_slab(&t, s, page, alloc);
  2902. spin_unlock_irqrestore(&n->list_lock, flags);
  2903. }
  2904. for (i = 0; i < t.count; i++) {
  2905. struct location *l = &t.loc[i];
  2906. if (len > PAGE_SIZE - 100)
  2907. break;
  2908. len += sprintf(buf + len, "%7ld ", l->count);
  2909. if (l->addr)
  2910. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  2911. else
  2912. len += sprintf(buf + len, "<not-available>");
  2913. if (l->sum_time != l->min_time) {
  2914. unsigned long remainder;
  2915. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  2916. l->min_time,
  2917. div_long_long_rem(l->sum_time, l->count, &remainder),
  2918. l->max_time);
  2919. } else
  2920. len += sprintf(buf + len, " age=%ld",
  2921. l->min_time);
  2922. if (l->min_pid != l->max_pid)
  2923. len += sprintf(buf + len, " pid=%ld-%ld",
  2924. l->min_pid, l->max_pid);
  2925. else
  2926. len += sprintf(buf + len, " pid=%ld",
  2927. l->min_pid);
  2928. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2929. len < PAGE_SIZE - 60) {
  2930. len += sprintf(buf + len, " cpus=");
  2931. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  2932. l->cpus);
  2933. }
  2934. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2935. len < PAGE_SIZE - 60) {
  2936. len += sprintf(buf + len, " nodes=");
  2937. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  2938. l->nodes);
  2939. }
  2940. len += sprintf(buf + len, "\n");
  2941. }
  2942. free_loc_track(&t);
  2943. if (!t.count)
  2944. len += sprintf(buf, "No data\n");
  2945. return len;
  2946. }
  2947. enum slab_stat_type {
  2948. SL_FULL,
  2949. SL_PARTIAL,
  2950. SL_CPU,
  2951. SL_OBJECTS
  2952. };
  2953. #define SO_FULL (1 << SL_FULL)
  2954. #define SO_PARTIAL (1 << SL_PARTIAL)
  2955. #define SO_CPU (1 << SL_CPU)
  2956. #define SO_OBJECTS (1 << SL_OBJECTS)
  2957. static unsigned long slab_objects(struct kmem_cache *s,
  2958. char *buf, unsigned long flags)
  2959. {
  2960. unsigned long total = 0;
  2961. int cpu;
  2962. int node;
  2963. int x;
  2964. unsigned long *nodes;
  2965. unsigned long *per_cpu;
  2966. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  2967. per_cpu = nodes + nr_node_ids;
  2968. for_each_possible_cpu(cpu) {
  2969. struct page *page;
  2970. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2971. if (!c)
  2972. continue;
  2973. page = c->page;
  2974. node = c->node;
  2975. if (node < 0)
  2976. continue;
  2977. if (page) {
  2978. if (flags & SO_CPU) {
  2979. if (flags & SO_OBJECTS)
  2980. x = page->inuse;
  2981. else
  2982. x = 1;
  2983. total += x;
  2984. nodes[node] += x;
  2985. }
  2986. per_cpu[node]++;
  2987. }
  2988. }
  2989. for_each_node_state(node, N_NORMAL_MEMORY) {
  2990. struct kmem_cache_node *n = get_node(s, node);
  2991. if (flags & SO_PARTIAL) {
  2992. if (flags & SO_OBJECTS)
  2993. x = count_partial(n);
  2994. else
  2995. x = n->nr_partial;
  2996. total += x;
  2997. nodes[node] += x;
  2998. }
  2999. if (flags & SO_FULL) {
  3000. int full_slabs = atomic_long_read(&n->nr_slabs)
  3001. - per_cpu[node]
  3002. - n->nr_partial;
  3003. if (flags & SO_OBJECTS)
  3004. x = full_slabs * s->objects;
  3005. else
  3006. x = full_slabs;
  3007. total += x;
  3008. nodes[node] += x;
  3009. }
  3010. }
  3011. x = sprintf(buf, "%lu", total);
  3012. #ifdef CONFIG_NUMA
  3013. for_each_node_state(node, N_NORMAL_MEMORY)
  3014. if (nodes[node])
  3015. x += sprintf(buf + x, " N%d=%lu",
  3016. node, nodes[node]);
  3017. #endif
  3018. kfree(nodes);
  3019. return x + sprintf(buf + x, "\n");
  3020. }
  3021. static int any_slab_objects(struct kmem_cache *s)
  3022. {
  3023. int node;
  3024. int cpu;
  3025. for_each_possible_cpu(cpu) {
  3026. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3027. if (c && c->page)
  3028. return 1;
  3029. }
  3030. for_each_online_node(node) {
  3031. struct kmem_cache_node *n = get_node(s, node);
  3032. if (!n)
  3033. continue;
  3034. if (n->nr_partial || atomic_long_read(&n->nr_slabs))
  3035. return 1;
  3036. }
  3037. return 0;
  3038. }
  3039. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3040. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3041. struct slab_attribute {
  3042. struct attribute attr;
  3043. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3044. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3045. };
  3046. #define SLAB_ATTR_RO(_name) \
  3047. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3048. #define SLAB_ATTR(_name) \
  3049. static struct slab_attribute _name##_attr = \
  3050. __ATTR(_name, 0644, _name##_show, _name##_store)
  3051. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3052. {
  3053. return sprintf(buf, "%d\n", s->size);
  3054. }
  3055. SLAB_ATTR_RO(slab_size);
  3056. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3057. {
  3058. return sprintf(buf, "%d\n", s->align);
  3059. }
  3060. SLAB_ATTR_RO(align);
  3061. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3062. {
  3063. return sprintf(buf, "%d\n", s->objsize);
  3064. }
  3065. SLAB_ATTR_RO(object_size);
  3066. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3067. {
  3068. return sprintf(buf, "%d\n", s->objects);
  3069. }
  3070. SLAB_ATTR_RO(objs_per_slab);
  3071. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3072. {
  3073. return sprintf(buf, "%d\n", s->order);
  3074. }
  3075. SLAB_ATTR_RO(order);
  3076. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3077. {
  3078. if (s->ctor) {
  3079. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3080. return n + sprintf(buf + n, "\n");
  3081. }
  3082. return 0;
  3083. }
  3084. SLAB_ATTR_RO(ctor);
  3085. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3086. {
  3087. return sprintf(buf, "%d\n", s->refcount - 1);
  3088. }
  3089. SLAB_ATTR_RO(aliases);
  3090. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3091. {
  3092. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  3093. }
  3094. SLAB_ATTR_RO(slabs);
  3095. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3096. {
  3097. return slab_objects(s, buf, SO_PARTIAL);
  3098. }
  3099. SLAB_ATTR_RO(partial);
  3100. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3101. {
  3102. return slab_objects(s, buf, SO_CPU);
  3103. }
  3104. SLAB_ATTR_RO(cpu_slabs);
  3105. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3106. {
  3107. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  3108. }
  3109. SLAB_ATTR_RO(objects);
  3110. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3111. {
  3112. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3113. }
  3114. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3115. const char *buf, size_t length)
  3116. {
  3117. s->flags &= ~SLAB_DEBUG_FREE;
  3118. if (buf[0] == '1')
  3119. s->flags |= SLAB_DEBUG_FREE;
  3120. return length;
  3121. }
  3122. SLAB_ATTR(sanity_checks);
  3123. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3124. {
  3125. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3126. }
  3127. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3128. size_t length)
  3129. {
  3130. s->flags &= ~SLAB_TRACE;
  3131. if (buf[0] == '1')
  3132. s->flags |= SLAB_TRACE;
  3133. return length;
  3134. }
  3135. SLAB_ATTR(trace);
  3136. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3137. {
  3138. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3139. }
  3140. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3141. const char *buf, size_t length)
  3142. {
  3143. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3144. if (buf[0] == '1')
  3145. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3146. return length;
  3147. }
  3148. SLAB_ATTR(reclaim_account);
  3149. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3150. {
  3151. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3152. }
  3153. SLAB_ATTR_RO(hwcache_align);
  3154. #ifdef CONFIG_ZONE_DMA
  3155. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3156. {
  3157. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3158. }
  3159. SLAB_ATTR_RO(cache_dma);
  3160. #endif
  3161. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3162. {
  3163. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3164. }
  3165. SLAB_ATTR_RO(destroy_by_rcu);
  3166. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3167. {
  3168. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3169. }
  3170. static ssize_t red_zone_store(struct kmem_cache *s,
  3171. const char *buf, size_t length)
  3172. {
  3173. if (any_slab_objects(s))
  3174. return -EBUSY;
  3175. s->flags &= ~SLAB_RED_ZONE;
  3176. if (buf[0] == '1')
  3177. s->flags |= SLAB_RED_ZONE;
  3178. calculate_sizes(s);
  3179. return length;
  3180. }
  3181. SLAB_ATTR(red_zone);
  3182. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3183. {
  3184. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3185. }
  3186. static ssize_t poison_store(struct kmem_cache *s,
  3187. const char *buf, size_t length)
  3188. {
  3189. if (any_slab_objects(s))
  3190. return -EBUSY;
  3191. s->flags &= ~SLAB_POISON;
  3192. if (buf[0] == '1')
  3193. s->flags |= SLAB_POISON;
  3194. calculate_sizes(s);
  3195. return length;
  3196. }
  3197. SLAB_ATTR(poison);
  3198. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3199. {
  3200. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3201. }
  3202. static ssize_t store_user_store(struct kmem_cache *s,
  3203. const char *buf, size_t length)
  3204. {
  3205. if (any_slab_objects(s))
  3206. return -EBUSY;
  3207. s->flags &= ~SLAB_STORE_USER;
  3208. if (buf[0] == '1')
  3209. s->flags |= SLAB_STORE_USER;
  3210. calculate_sizes(s);
  3211. return length;
  3212. }
  3213. SLAB_ATTR(store_user);
  3214. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3215. {
  3216. return 0;
  3217. }
  3218. static ssize_t validate_store(struct kmem_cache *s,
  3219. const char *buf, size_t length)
  3220. {
  3221. int ret = -EINVAL;
  3222. if (buf[0] == '1') {
  3223. ret = validate_slab_cache(s);
  3224. if (ret >= 0)
  3225. ret = length;
  3226. }
  3227. return ret;
  3228. }
  3229. SLAB_ATTR(validate);
  3230. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3231. {
  3232. return 0;
  3233. }
  3234. static ssize_t shrink_store(struct kmem_cache *s,
  3235. const char *buf, size_t length)
  3236. {
  3237. if (buf[0] == '1') {
  3238. int rc = kmem_cache_shrink(s);
  3239. if (rc)
  3240. return rc;
  3241. } else
  3242. return -EINVAL;
  3243. return length;
  3244. }
  3245. SLAB_ATTR(shrink);
  3246. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3247. {
  3248. if (!(s->flags & SLAB_STORE_USER))
  3249. return -ENOSYS;
  3250. return list_locations(s, buf, TRACK_ALLOC);
  3251. }
  3252. SLAB_ATTR_RO(alloc_calls);
  3253. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3254. {
  3255. if (!(s->flags & SLAB_STORE_USER))
  3256. return -ENOSYS;
  3257. return list_locations(s, buf, TRACK_FREE);
  3258. }
  3259. SLAB_ATTR_RO(free_calls);
  3260. #ifdef CONFIG_NUMA
  3261. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3262. {
  3263. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3264. }
  3265. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3266. const char *buf, size_t length)
  3267. {
  3268. int n = simple_strtoul(buf, NULL, 10);
  3269. if (n < 100)
  3270. s->remote_node_defrag_ratio = n * 10;
  3271. return length;
  3272. }
  3273. SLAB_ATTR(remote_node_defrag_ratio);
  3274. #endif
  3275. static struct attribute *slab_attrs[] = {
  3276. &slab_size_attr.attr,
  3277. &object_size_attr.attr,
  3278. &objs_per_slab_attr.attr,
  3279. &order_attr.attr,
  3280. &objects_attr.attr,
  3281. &slabs_attr.attr,
  3282. &partial_attr.attr,
  3283. &cpu_slabs_attr.attr,
  3284. &ctor_attr.attr,
  3285. &aliases_attr.attr,
  3286. &align_attr.attr,
  3287. &sanity_checks_attr.attr,
  3288. &trace_attr.attr,
  3289. &hwcache_align_attr.attr,
  3290. &reclaim_account_attr.attr,
  3291. &destroy_by_rcu_attr.attr,
  3292. &red_zone_attr.attr,
  3293. &poison_attr.attr,
  3294. &store_user_attr.attr,
  3295. &validate_attr.attr,
  3296. &shrink_attr.attr,
  3297. &alloc_calls_attr.attr,
  3298. &free_calls_attr.attr,
  3299. #ifdef CONFIG_ZONE_DMA
  3300. &cache_dma_attr.attr,
  3301. #endif
  3302. #ifdef CONFIG_NUMA
  3303. &remote_node_defrag_ratio_attr.attr,
  3304. #endif
  3305. NULL
  3306. };
  3307. static struct attribute_group slab_attr_group = {
  3308. .attrs = slab_attrs,
  3309. };
  3310. static ssize_t slab_attr_show(struct kobject *kobj,
  3311. struct attribute *attr,
  3312. char *buf)
  3313. {
  3314. struct slab_attribute *attribute;
  3315. struct kmem_cache *s;
  3316. int err;
  3317. attribute = to_slab_attr(attr);
  3318. s = to_slab(kobj);
  3319. if (!attribute->show)
  3320. return -EIO;
  3321. err = attribute->show(s, buf);
  3322. return err;
  3323. }
  3324. static ssize_t slab_attr_store(struct kobject *kobj,
  3325. struct attribute *attr,
  3326. const char *buf, size_t len)
  3327. {
  3328. struct slab_attribute *attribute;
  3329. struct kmem_cache *s;
  3330. int err;
  3331. attribute = to_slab_attr(attr);
  3332. s = to_slab(kobj);
  3333. if (!attribute->store)
  3334. return -EIO;
  3335. err = attribute->store(s, buf, len);
  3336. return err;
  3337. }
  3338. static void kmem_cache_release(struct kobject *kobj)
  3339. {
  3340. struct kmem_cache *s = to_slab(kobj);
  3341. kfree(s);
  3342. }
  3343. static struct sysfs_ops slab_sysfs_ops = {
  3344. .show = slab_attr_show,
  3345. .store = slab_attr_store,
  3346. };
  3347. static struct kobj_type slab_ktype = {
  3348. .sysfs_ops = &slab_sysfs_ops,
  3349. .release = kmem_cache_release
  3350. };
  3351. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3352. {
  3353. struct kobj_type *ktype = get_ktype(kobj);
  3354. if (ktype == &slab_ktype)
  3355. return 1;
  3356. return 0;
  3357. }
  3358. static struct kset_uevent_ops slab_uevent_ops = {
  3359. .filter = uevent_filter,
  3360. };
  3361. static struct kset *slab_kset;
  3362. #define ID_STR_LENGTH 64
  3363. /* Create a unique string id for a slab cache:
  3364. * format
  3365. * :[flags-]size:[memory address of kmemcache]
  3366. */
  3367. static char *create_unique_id(struct kmem_cache *s)
  3368. {
  3369. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3370. char *p = name;
  3371. BUG_ON(!name);
  3372. *p++ = ':';
  3373. /*
  3374. * First flags affecting slabcache operations. We will only
  3375. * get here for aliasable slabs so we do not need to support
  3376. * too many flags. The flags here must cover all flags that
  3377. * are matched during merging to guarantee that the id is
  3378. * unique.
  3379. */
  3380. if (s->flags & SLAB_CACHE_DMA)
  3381. *p++ = 'd';
  3382. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3383. *p++ = 'a';
  3384. if (s->flags & SLAB_DEBUG_FREE)
  3385. *p++ = 'F';
  3386. if (p != name + 1)
  3387. *p++ = '-';
  3388. p += sprintf(p, "%07d", s->size);
  3389. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3390. return name;
  3391. }
  3392. static int sysfs_slab_add(struct kmem_cache *s)
  3393. {
  3394. int err;
  3395. const char *name;
  3396. int unmergeable;
  3397. if (slab_state < SYSFS)
  3398. /* Defer until later */
  3399. return 0;
  3400. unmergeable = slab_unmergeable(s);
  3401. if (unmergeable) {
  3402. /*
  3403. * Slabcache can never be merged so we can use the name proper.
  3404. * This is typically the case for debug situations. In that
  3405. * case we can catch duplicate names easily.
  3406. */
  3407. sysfs_remove_link(&slab_kset->kobj, s->name);
  3408. name = s->name;
  3409. } else {
  3410. /*
  3411. * Create a unique name for the slab as a target
  3412. * for the symlinks.
  3413. */
  3414. name = create_unique_id(s);
  3415. }
  3416. s->kobj.kset = slab_kset;
  3417. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3418. if (err) {
  3419. kobject_put(&s->kobj);
  3420. return err;
  3421. }
  3422. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3423. if (err)
  3424. return err;
  3425. kobject_uevent(&s->kobj, KOBJ_ADD);
  3426. if (!unmergeable) {
  3427. /* Setup first alias */
  3428. sysfs_slab_alias(s, s->name);
  3429. kfree(name);
  3430. }
  3431. return 0;
  3432. }
  3433. static void sysfs_slab_remove(struct kmem_cache *s)
  3434. {
  3435. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3436. kobject_del(&s->kobj);
  3437. kobject_put(&s->kobj);
  3438. }
  3439. /*
  3440. * Need to buffer aliases during bootup until sysfs becomes
  3441. * available lest we loose that information.
  3442. */
  3443. struct saved_alias {
  3444. struct kmem_cache *s;
  3445. const char *name;
  3446. struct saved_alias *next;
  3447. };
  3448. static struct saved_alias *alias_list;
  3449. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3450. {
  3451. struct saved_alias *al;
  3452. if (slab_state == SYSFS) {
  3453. /*
  3454. * If we have a leftover link then remove it.
  3455. */
  3456. sysfs_remove_link(&slab_kset->kobj, name);
  3457. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3458. }
  3459. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3460. if (!al)
  3461. return -ENOMEM;
  3462. al->s = s;
  3463. al->name = name;
  3464. al->next = alias_list;
  3465. alias_list = al;
  3466. return 0;
  3467. }
  3468. static int __init slab_sysfs_init(void)
  3469. {
  3470. struct kmem_cache *s;
  3471. int err;
  3472. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3473. if (!slab_kset) {
  3474. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3475. return -ENOSYS;
  3476. }
  3477. slab_state = SYSFS;
  3478. list_for_each_entry(s, &slab_caches, list) {
  3479. err = sysfs_slab_add(s);
  3480. if (err)
  3481. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3482. " to sysfs\n", s->name);
  3483. }
  3484. while (alias_list) {
  3485. struct saved_alias *al = alias_list;
  3486. alias_list = alias_list->next;
  3487. err = sysfs_slab_alias(al->s, al->name);
  3488. if (err)
  3489. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3490. " %s to sysfs\n", s->name);
  3491. kfree(al);
  3492. }
  3493. resiliency_test();
  3494. return 0;
  3495. }
  3496. __initcall(slab_sysfs_init);
  3497. #endif
  3498. /*
  3499. * The /proc/slabinfo ABI
  3500. */
  3501. #ifdef CONFIG_SLABINFO
  3502. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3503. size_t count, loff_t *ppos)
  3504. {
  3505. return -EINVAL;
  3506. }
  3507. static void print_slabinfo_header(struct seq_file *m)
  3508. {
  3509. seq_puts(m, "slabinfo - version: 2.1\n");
  3510. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3511. "<objperslab> <pagesperslab>");
  3512. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3513. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3514. seq_putc(m, '\n');
  3515. }
  3516. static void *s_start(struct seq_file *m, loff_t *pos)
  3517. {
  3518. loff_t n = *pos;
  3519. down_read(&slub_lock);
  3520. if (!n)
  3521. print_slabinfo_header(m);
  3522. return seq_list_start(&slab_caches, *pos);
  3523. }
  3524. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3525. {
  3526. return seq_list_next(p, &slab_caches, pos);
  3527. }
  3528. static void s_stop(struct seq_file *m, void *p)
  3529. {
  3530. up_read(&slub_lock);
  3531. }
  3532. static int s_show(struct seq_file *m, void *p)
  3533. {
  3534. unsigned long nr_partials = 0;
  3535. unsigned long nr_slabs = 0;
  3536. unsigned long nr_inuse = 0;
  3537. unsigned long nr_objs;
  3538. struct kmem_cache *s;
  3539. int node;
  3540. s = list_entry(p, struct kmem_cache, list);
  3541. for_each_online_node(node) {
  3542. struct kmem_cache_node *n = get_node(s, node);
  3543. if (!n)
  3544. continue;
  3545. nr_partials += n->nr_partial;
  3546. nr_slabs += atomic_long_read(&n->nr_slabs);
  3547. nr_inuse += count_partial(n);
  3548. }
  3549. nr_objs = nr_slabs * s->objects;
  3550. nr_inuse += (nr_slabs - nr_partials) * s->objects;
  3551. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3552. nr_objs, s->size, s->objects, (1 << s->order));
  3553. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3554. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3555. 0UL);
  3556. seq_putc(m, '\n');
  3557. return 0;
  3558. }
  3559. const struct seq_operations slabinfo_op = {
  3560. .start = s_start,
  3561. .next = s_next,
  3562. .stop = s_stop,
  3563. .show = s_show,
  3564. };
  3565. #endif /* CONFIG_SLABINFO */