time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. time_t i = get_seconds();
  55. if (tloc) {
  56. if (put_user(i,tloc))
  57. i = -EFAULT;
  58. }
  59. return i;
  60. }
  61. /*
  62. * sys_stime() can be implemented in user-level using
  63. * sys_settimeofday(). Is this for backwards compatibility? If so,
  64. * why not move it into the appropriate arch directory (for those
  65. * architectures that need it).
  66. */
  67. asmlinkage long sys_stime(time_t __user *tptr)
  68. {
  69. struct timespec tv;
  70. int err;
  71. if (get_user(tv.tv_sec, tptr))
  72. return -EFAULT;
  73. tv.tv_nsec = 0;
  74. err = security_settime(&tv, NULL);
  75. if (err)
  76. return err;
  77. do_settimeofday(&tv);
  78. return 0;
  79. }
  80. #endif /* __ARCH_WANT_SYS_TIME */
  81. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  82. {
  83. if (likely(tv != NULL)) {
  84. struct timeval ktv;
  85. do_gettimeofday(&ktv);
  86. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  87. return -EFAULT;
  88. }
  89. if (unlikely(tz != NULL)) {
  90. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  91. return -EFAULT;
  92. }
  93. return 0;
  94. }
  95. /*
  96. * Adjust the time obtained from the CMOS to be UTC time instead of
  97. * local time.
  98. *
  99. * This is ugly, but preferable to the alternatives. Otherwise we
  100. * would either need to write a program to do it in /etc/rc (and risk
  101. * confusion if the program gets run more than once; it would also be
  102. * hard to make the program warp the clock precisely n hours) or
  103. * compile in the timezone information into the kernel. Bad, bad....
  104. *
  105. * - TYT, 1992-01-01
  106. *
  107. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  108. * as real UNIX machines always do it. This avoids all headaches about
  109. * daylight saving times and warping kernel clocks.
  110. */
  111. static inline void warp_clock(void)
  112. {
  113. write_seqlock_irq(&xtime_lock);
  114. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  115. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  116. update_xtime_cache(0);
  117. write_sequnlock_irq(&xtime_lock);
  118. clock_was_set();
  119. }
  120. /*
  121. * In case for some reason the CMOS clock has not already been running
  122. * in UTC, but in some local time: The first time we set the timezone,
  123. * we will warp the clock so that it is ticking UTC time instead of
  124. * local time. Presumably, if someone is setting the timezone then we
  125. * are running in an environment where the programs understand about
  126. * timezones. This should be done at boot time in the /etc/rc script,
  127. * as soon as possible, so that the clock can be set right. Otherwise,
  128. * various programs will get confused when the clock gets warped.
  129. */
  130. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  131. {
  132. static int firsttime = 1;
  133. int error = 0;
  134. if (tv && !timespec_valid(tv))
  135. return -EINVAL;
  136. error = security_settime(tv, tz);
  137. if (error)
  138. return error;
  139. if (tz) {
  140. /* SMP safe, global irq locking makes it work. */
  141. sys_tz = *tz;
  142. update_vsyscall_tz();
  143. if (firsttime) {
  144. firsttime = 0;
  145. if (!tv)
  146. warp_clock();
  147. }
  148. }
  149. if (tv)
  150. {
  151. /* SMP safe, again the code in arch/foo/time.c should
  152. * globally block out interrupts when it runs.
  153. */
  154. return do_settimeofday(tv);
  155. }
  156. return 0;
  157. }
  158. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  159. struct timezone __user *tz)
  160. {
  161. struct timeval user_tv;
  162. struct timespec new_ts;
  163. struct timezone new_tz;
  164. if (tv) {
  165. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  166. return -EFAULT;
  167. new_ts.tv_sec = user_tv.tv_sec;
  168. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  169. }
  170. if (tz) {
  171. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  172. return -EFAULT;
  173. }
  174. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  175. }
  176. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  177. {
  178. struct timex txc; /* Local copy of parameter */
  179. int ret;
  180. /* Copy the user data space into the kernel copy
  181. * structure. But bear in mind that the structures
  182. * may change
  183. */
  184. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  185. return -EFAULT;
  186. ret = do_adjtimex(&txc);
  187. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  188. }
  189. /**
  190. * current_fs_time - Return FS time
  191. * @sb: Superblock.
  192. *
  193. * Return the current time truncated to the time granularity supported by
  194. * the fs.
  195. */
  196. struct timespec current_fs_time(struct super_block *sb)
  197. {
  198. struct timespec now = current_kernel_time();
  199. return timespec_trunc(now, sb->s_time_gran);
  200. }
  201. EXPORT_SYMBOL(current_fs_time);
  202. /*
  203. * Convert jiffies to milliseconds and back.
  204. *
  205. * Avoid unnecessary multiplications/divisions in the
  206. * two most common HZ cases:
  207. */
  208. unsigned int inline jiffies_to_msecs(const unsigned long j)
  209. {
  210. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  211. return (MSEC_PER_SEC / HZ) * j;
  212. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  213. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  214. #else
  215. return (j * MSEC_PER_SEC) / HZ;
  216. #endif
  217. }
  218. EXPORT_SYMBOL(jiffies_to_msecs);
  219. unsigned int inline jiffies_to_usecs(const unsigned long j)
  220. {
  221. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  222. return (USEC_PER_SEC / HZ) * j;
  223. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  224. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  225. #else
  226. return (j * USEC_PER_SEC) / HZ;
  227. #endif
  228. }
  229. EXPORT_SYMBOL(jiffies_to_usecs);
  230. /**
  231. * timespec_trunc - Truncate timespec to a granularity
  232. * @t: Timespec
  233. * @gran: Granularity in ns.
  234. *
  235. * Truncate a timespec to a granularity. gran must be smaller than a second.
  236. * Always rounds down.
  237. *
  238. * This function should be only used for timestamps returned by
  239. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  240. * it doesn't handle the better resolution of the later.
  241. */
  242. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  243. {
  244. /*
  245. * Division is pretty slow so avoid it for common cases.
  246. * Currently current_kernel_time() never returns better than
  247. * jiffies resolution. Exploit that.
  248. */
  249. if (gran <= jiffies_to_usecs(1) * 1000) {
  250. /* nothing */
  251. } else if (gran == 1000000000) {
  252. t.tv_nsec = 0;
  253. } else {
  254. t.tv_nsec -= t.tv_nsec % gran;
  255. }
  256. return t;
  257. }
  258. EXPORT_SYMBOL(timespec_trunc);
  259. #ifndef CONFIG_GENERIC_TIME
  260. /*
  261. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  262. * and therefore only yields usec accuracy
  263. */
  264. void getnstimeofday(struct timespec *tv)
  265. {
  266. struct timeval x;
  267. do_gettimeofday(&x);
  268. tv->tv_sec = x.tv_sec;
  269. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  270. }
  271. EXPORT_SYMBOL_GPL(getnstimeofday);
  272. #endif
  273. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  274. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  275. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  276. *
  277. * [For the Julian calendar (which was used in Russia before 1917,
  278. * Britain & colonies before 1752, anywhere else before 1582,
  279. * and is still in use by some communities) leave out the
  280. * -year/100+year/400 terms, and add 10.]
  281. *
  282. * This algorithm was first published by Gauss (I think).
  283. *
  284. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  285. * machines were long is 32-bit! (However, as time_t is signed, we
  286. * will already get problems at other places on 2038-01-19 03:14:08)
  287. */
  288. unsigned long
  289. mktime(const unsigned int year0, const unsigned int mon0,
  290. const unsigned int day, const unsigned int hour,
  291. const unsigned int min, const unsigned int sec)
  292. {
  293. unsigned int mon = mon0, year = year0;
  294. /* 1..12 -> 11,12,1..10 */
  295. if (0 >= (int) (mon -= 2)) {
  296. mon += 12; /* Puts Feb last since it has leap day */
  297. year -= 1;
  298. }
  299. return ((((unsigned long)
  300. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  301. year*365 - 719499
  302. )*24 + hour /* now have hours */
  303. )*60 + min /* now have minutes */
  304. )*60 + sec; /* finally seconds */
  305. }
  306. EXPORT_SYMBOL(mktime);
  307. /**
  308. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  309. *
  310. * @ts: pointer to timespec variable to be set
  311. * @sec: seconds to set
  312. * @nsec: nanoseconds to set
  313. *
  314. * Set seconds and nanoseconds field of a timespec variable and
  315. * normalize to the timespec storage format
  316. *
  317. * Note: The tv_nsec part is always in the range of
  318. * 0 <= tv_nsec < NSEC_PER_SEC
  319. * For negative values only the tv_sec field is negative !
  320. */
  321. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  322. {
  323. while (nsec >= NSEC_PER_SEC) {
  324. nsec -= NSEC_PER_SEC;
  325. ++sec;
  326. }
  327. while (nsec < 0) {
  328. nsec += NSEC_PER_SEC;
  329. --sec;
  330. }
  331. ts->tv_sec = sec;
  332. ts->tv_nsec = nsec;
  333. }
  334. /**
  335. * ns_to_timespec - Convert nanoseconds to timespec
  336. * @nsec: the nanoseconds value to be converted
  337. *
  338. * Returns the timespec representation of the nsec parameter.
  339. */
  340. struct timespec ns_to_timespec(const s64 nsec)
  341. {
  342. struct timespec ts;
  343. if (!nsec)
  344. return (struct timespec) {0, 0};
  345. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  346. if (unlikely(nsec < 0))
  347. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  348. return ts;
  349. }
  350. EXPORT_SYMBOL(ns_to_timespec);
  351. /**
  352. * ns_to_timeval - Convert nanoseconds to timeval
  353. * @nsec: the nanoseconds value to be converted
  354. *
  355. * Returns the timeval representation of the nsec parameter.
  356. */
  357. struct timeval ns_to_timeval(const s64 nsec)
  358. {
  359. struct timespec ts = ns_to_timespec(nsec);
  360. struct timeval tv;
  361. tv.tv_sec = ts.tv_sec;
  362. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  363. return tv;
  364. }
  365. EXPORT_SYMBOL(ns_to_timeval);
  366. /*
  367. * When we convert to jiffies then we interpret incoming values
  368. * the following way:
  369. *
  370. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  371. *
  372. * - 'too large' values [that would result in larger than
  373. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  374. *
  375. * - all other values are converted to jiffies by either multiplying
  376. * the input value by a factor or dividing it with a factor
  377. *
  378. * We must also be careful about 32-bit overflows.
  379. */
  380. unsigned long msecs_to_jiffies(const unsigned int m)
  381. {
  382. /*
  383. * Negative value, means infinite timeout:
  384. */
  385. if ((int)m < 0)
  386. return MAX_JIFFY_OFFSET;
  387. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  388. /*
  389. * HZ is equal to or smaller than 1000, and 1000 is a nice
  390. * round multiple of HZ, divide with the factor between them,
  391. * but round upwards:
  392. */
  393. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  394. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  395. /*
  396. * HZ is larger than 1000, and HZ is a nice round multiple of
  397. * 1000 - simply multiply with the factor between them.
  398. *
  399. * But first make sure the multiplication result cannot
  400. * overflow:
  401. */
  402. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  403. return MAX_JIFFY_OFFSET;
  404. return m * (HZ / MSEC_PER_SEC);
  405. #else
  406. /*
  407. * Generic case - multiply, round and divide. But first
  408. * check that if we are doing a net multiplication, that
  409. * we wouldnt overflow:
  410. */
  411. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  412. return MAX_JIFFY_OFFSET;
  413. return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
  414. #endif
  415. }
  416. EXPORT_SYMBOL(msecs_to_jiffies);
  417. unsigned long usecs_to_jiffies(const unsigned int u)
  418. {
  419. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  420. return MAX_JIFFY_OFFSET;
  421. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  422. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  423. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  424. return u * (HZ / USEC_PER_SEC);
  425. #else
  426. return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
  427. #endif
  428. }
  429. EXPORT_SYMBOL(usecs_to_jiffies);
  430. /*
  431. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  432. * that a remainder subtract here would not do the right thing as the
  433. * resolution values don't fall on second boundries. I.e. the line:
  434. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  435. *
  436. * Rather, we just shift the bits off the right.
  437. *
  438. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  439. * value to a scaled second value.
  440. */
  441. unsigned long
  442. timespec_to_jiffies(const struct timespec *value)
  443. {
  444. unsigned long sec = value->tv_sec;
  445. long nsec = value->tv_nsec + TICK_NSEC - 1;
  446. if (sec >= MAX_SEC_IN_JIFFIES){
  447. sec = MAX_SEC_IN_JIFFIES;
  448. nsec = 0;
  449. }
  450. return (((u64)sec * SEC_CONVERSION) +
  451. (((u64)nsec * NSEC_CONVERSION) >>
  452. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  453. }
  454. EXPORT_SYMBOL(timespec_to_jiffies);
  455. void
  456. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  457. {
  458. /*
  459. * Convert jiffies to nanoseconds and separate with
  460. * one divide.
  461. */
  462. u64 nsec = (u64)jiffies * TICK_NSEC;
  463. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  464. }
  465. EXPORT_SYMBOL(jiffies_to_timespec);
  466. /* Same for "timeval"
  467. *
  468. * Well, almost. The problem here is that the real system resolution is
  469. * in nanoseconds and the value being converted is in micro seconds.
  470. * Also for some machines (those that use HZ = 1024, in-particular),
  471. * there is a LARGE error in the tick size in microseconds.
  472. * The solution we use is to do the rounding AFTER we convert the
  473. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  474. * Instruction wise, this should cost only an additional add with carry
  475. * instruction above the way it was done above.
  476. */
  477. unsigned long
  478. timeval_to_jiffies(const struct timeval *value)
  479. {
  480. unsigned long sec = value->tv_sec;
  481. long usec = value->tv_usec;
  482. if (sec >= MAX_SEC_IN_JIFFIES){
  483. sec = MAX_SEC_IN_JIFFIES;
  484. usec = 0;
  485. }
  486. return (((u64)sec * SEC_CONVERSION) +
  487. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  488. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  489. }
  490. EXPORT_SYMBOL(timeval_to_jiffies);
  491. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  492. {
  493. /*
  494. * Convert jiffies to nanoseconds and separate with
  495. * one divide.
  496. */
  497. u64 nsec = (u64)jiffies * TICK_NSEC;
  498. long tv_usec;
  499. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  500. tv_usec /= NSEC_PER_USEC;
  501. value->tv_usec = tv_usec;
  502. }
  503. EXPORT_SYMBOL(jiffies_to_timeval);
  504. /*
  505. * Convert jiffies/jiffies_64 to clock_t and back.
  506. */
  507. clock_t jiffies_to_clock_t(long x)
  508. {
  509. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  510. return x / (HZ / USER_HZ);
  511. #else
  512. u64 tmp = (u64)x * TICK_NSEC;
  513. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  514. return (long)tmp;
  515. #endif
  516. }
  517. EXPORT_SYMBOL(jiffies_to_clock_t);
  518. unsigned long clock_t_to_jiffies(unsigned long x)
  519. {
  520. #if (HZ % USER_HZ)==0
  521. if (x >= ~0UL / (HZ / USER_HZ))
  522. return ~0UL;
  523. return x * (HZ / USER_HZ);
  524. #else
  525. u64 jif;
  526. /* Don't worry about loss of precision here .. */
  527. if (x >= ~0UL / HZ * USER_HZ)
  528. return ~0UL;
  529. /* .. but do try to contain it here */
  530. jif = x * (u64) HZ;
  531. do_div(jif, USER_HZ);
  532. return jif;
  533. #endif
  534. }
  535. EXPORT_SYMBOL(clock_t_to_jiffies);
  536. u64 jiffies_64_to_clock_t(u64 x)
  537. {
  538. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  539. do_div(x, HZ / USER_HZ);
  540. #else
  541. /*
  542. * There are better ways that don't overflow early,
  543. * but even this doesn't overflow in hundreds of years
  544. * in 64 bits, so..
  545. */
  546. x *= TICK_NSEC;
  547. do_div(x, (NSEC_PER_SEC / USER_HZ));
  548. #endif
  549. return x;
  550. }
  551. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  552. u64 nsec_to_clock_t(u64 x)
  553. {
  554. #if (NSEC_PER_SEC % USER_HZ) == 0
  555. do_div(x, (NSEC_PER_SEC / USER_HZ));
  556. #elif (USER_HZ % 512) == 0
  557. x *= USER_HZ/512;
  558. do_div(x, (NSEC_PER_SEC / 512));
  559. #else
  560. /*
  561. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  562. * overflow after 64.99 years.
  563. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  564. */
  565. x *= 9;
  566. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  567. USER_HZ));
  568. #endif
  569. return x;
  570. }
  571. #if (BITS_PER_LONG < 64)
  572. u64 get_jiffies_64(void)
  573. {
  574. unsigned long seq;
  575. u64 ret;
  576. do {
  577. seq = read_seqbegin(&xtime_lock);
  578. ret = jiffies_64;
  579. } while (read_seqretry(&xtime_lock, seq));
  580. return ret;
  581. }
  582. EXPORT_SYMBOL(get_jiffies_64);
  583. #endif
  584. EXPORT_SYMBOL(jiffies);