consistent.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. /*
  2. * arch/sh/mm/consistent.c
  3. *
  4. * Copyright (C) 2004 - 2007 Paul Mundt
  5. *
  6. * Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
  7. *
  8. * This file is subject to the terms and conditions of the GNU General Public
  9. * License. See the file "COPYING" in the main directory of this archive
  10. * for more details.
  11. */
  12. #include <linux/mm.h>
  13. #include <linux/dma-mapping.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/addrspace.h>
  16. #include <asm/io.h>
  17. struct dma_coherent_mem {
  18. void *virt_base;
  19. u32 device_base;
  20. int size;
  21. int flags;
  22. unsigned long *bitmap;
  23. };
  24. void *dma_alloc_coherent(struct device *dev, size_t size,
  25. dma_addr_t *dma_handle, gfp_t gfp)
  26. {
  27. void *ret;
  28. struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
  29. int order = get_order(size);
  30. if (mem) {
  31. int page = bitmap_find_free_region(mem->bitmap, mem->size,
  32. order);
  33. if (page >= 0) {
  34. *dma_handle = mem->device_base + (page << PAGE_SHIFT);
  35. ret = mem->virt_base + (page << PAGE_SHIFT);
  36. memset(ret, 0, size);
  37. return ret;
  38. }
  39. if (mem->flags & DMA_MEMORY_EXCLUSIVE)
  40. return NULL;
  41. }
  42. ret = (void *)__get_free_pages(gfp, order);
  43. if (ret != NULL) {
  44. memset(ret, 0, size);
  45. /*
  46. * Pages from the page allocator may have data present in
  47. * cache. So flush the cache before using uncached memory.
  48. */
  49. dma_cache_sync(NULL, ret, size, DMA_BIDIRECTIONAL);
  50. *dma_handle = virt_to_phys(ret);
  51. }
  52. return ret;
  53. }
  54. EXPORT_SYMBOL(dma_alloc_coherent);
  55. void dma_free_coherent(struct device *dev, size_t size,
  56. void *vaddr, dma_addr_t dma_handle)
  57. {
  58. struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
  59. int order = get_order(size);
  60. if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
  61. int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
  62. bitmap_release_region(mem->bitmap, page, order);
  63. } else {
  64. WARN_ON(irqs_disabled()); /* for portability */
  65. BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE);
  66. free_pages((unsigned long)vaddr, order);
  67. }
  68. }
  69. EXPORT_SYMBOL(dma_free_coherent);
  70. int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
  71. dma_addr_t device_addr, size_t size, int flags)
  72. {
  73. void __iomem *mem_base = NULL;
  74. int pages = size >> PAGE_SHIFT;
  75. int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
  76. if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
  77. goto out;
  78. if (!size)
  79. goto out;
  80. if (dev->dma_mem)
  81. goto out;
  82. /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
  83. mem_base = ioremap_nocache(bus_addr, size);
  84. if (!mem_base)
  85. goto out;
  86. dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
  87. if (!dev->dma_mem)
  88. goto out;
  89. dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  90. if (!dev->dma_mem->bitmap)
  91. goto free1_out;
  92. dev->dma_mem->virt_base = mem_base;
  93. dev->dma_mem->device_base = device_addr;
  94. dev->dma_mem->size = pages;
  95. dev->dma_mem->flags = flags;
  96. if (flags & DMA_MEMORY_MAP)
  97. return DMA_MEMORY_MAP;
  98. return DMA_MEMORY_IO;
  99. free1_out:
  100. kfree(dev->dma_mem);
  101. out:
  102. if (mem_base)
  103. iounmap(mem_base);
  104. return 0;
  105. }
  106. EXPORT_SYMBOL(dma_declare_coherent_memory);
  107. void dma_release_declared_memory(struct device *dev)
  108. {
  109. struct dma_coherent_mem *mem = dev->dma_mem;
  110. if (!mem)
  111. return;
  112. dev->dma_mem = NULL;
  113. iounmap(mem->virt_base);
  114. kfree(mem->bitmap);
  115. kfree(mem);
  116. }
  117. EXPORT_SYMBOL(dma_release_declared_memory);
  118. void *dma_mark_declared_memory_occupied(struct device *dev,
  119. dma_addr_t device_addr, size_t size)
  120. {
  121. struct dma_coherent_mem *mem = dev->dma_mem;
  122. int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  123. int pos, err;
  124. if (!mem)
  125. return ERR_PTR(-EINVAL);
  126. pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
  127. err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
  128. if (err != 0)
  129. return ERR_PTR(err);
  130. return mem->virt_base + (pos << PAGE_SHIFT);
  131. }
  132. EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
  133. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  134. enum dma_data_direction direction)
  135. {
  136. #ifdef CONFIG_CPU_SH5
  137. void *p1addr = vaddr;
  138. #else
  139. void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
  140. #endif
  141. switch (direction) {
  142. case DMA_FROM_DEVICE: /* invalidate only */
  143. __flush_invalidate_region(p1addr, size);
  144. break;
  145. case DMA_TO_DEVICE: /* writeback only */
  146. __flush_wback_region(p1addr, size);
  147. break;
  148. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  149. __flush_purge_region(p1addr, size);
  150. break;
  151. default:
  152. BUG();
  153. }
  154. }
  155. EXPORT_SYMBOL(dma_cache_sync);