exit.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/mnt_namespace.h>
  15. #include <linux/iocontext.h>
  16. #include <linux/key.h>
  17. #include <linux/security.h>
  18. #include <linux/cpu.h>
  19. #include <linux/acct.h>
  20. #include <linux/tsacct_kern.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/freezer.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/signal.h>
  38. #include <linux/posix-timers.h>
  39. #include <linux/cn_proc.h>
  40. #include <linux/mutex.h>
  41. #include <linux/futex.h>
  42. #include <linux/pipe_fs_i.h>
  43. #include <linux/audit.h> /* for audit_free() */
  44. #include <linux/resource.h>
  45. #include <linux/blkdev.h>
  46. #include <linux/task_io_accounting_ops.h>
  47. #include <linux/tracehook.h>
  48. #include <linux/init_task.h>
  49. #include <trace/sched.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/unistd.h>
  52. #include <asm/pgtable.h>
  53. #include <asm/mmu_context.h>
  54. #include "cred-internals.h"
  55. DEFINE_TRACE(sched_process_free);
  56. DEFINE_TRACE(sched_process_exit);
  57. DEFINE_TRACE(sched_process_wait);
  58. static void exit_mm(struct task_struct * tsk);
  59. static void __unhash_process(struct task_struct *p)
  60. {
  61. nr_threads--;
  62. detach_pid(p, PIDTYPE_PID);
  63. if (thread_group_leader(p)) {
  64. detach_pid(p, PIDTYPE_PGID);
  65. detach_pid(p, PIDTYPE_SID);
  66. list_del_rcu(&p->tasks);
  67. __get_cpu_var(process_counts)--;
  68. }
  69. list_del_rcu(&p->thread_group);
  70. list_del_init(&p->sibling);
  71. }
  72. /*
  73. * This function expects the tasklist_lock write-locked.
  74. */
  75. static void __exit_signal(struct task_struct *tsk)
  76. {
  77. struct signal_struct *sig = tsk->signal;
  78. struct sighand_struct *sighand;
  79. BUG_ON(!sig);
  80. BUG_ON(!atomic_read(&sig->count));
  81. sighand = rcu_dereference(tsk->sighand);
  82. spin_lock(&sighand->siglock);
  83. posix_cpu_timers_exit(tsk);
  84. if (atomic_dec_and_test(&sig->count))
  85. posix_cpu_timers_exit_group(tsk);
  86. else {
  87. /*
  88. * If there is any task waiting for the group exit
  89. * then notify it:
  90. */
  91. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  92. wake_up_process(sig->group_exit_task);
  93. if (tsk == sig->curr_target)
  94. sig->curr_target = next_thread(tsk);
  95. /*
  96. * Accumulate here the counters for all threads but the
  97. * group leader as they die, so they can be added into
  98. * the process-wide totals when those are taken.
  99. * The group leader stays around as a zombie as long
  100. * as there are other threads. When it gets reaped,
  101. * the exit.c code will add its counts into these totals.
  102. * We won't ever get here for the group leader, since it
  103. * will have been the last reference on the signal_struct.
  104. */
  105. sig->utime = cputime_add(sig->utime, task_utime(tsk));
  106. sig->stime = cputime_add(sig->stime, task_stime(tsk));
  107. sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
  108. sig->min_flt += tsk->min_flt;
  109. sig->maj_flt += tsk->maj_flt;
  110. sig->nvcsw += tsk->nvcsw;
  111. sig->nivcsw += tsk->nivcsw;
  112. sig->inblock += task_io_get_inblock(tsk);
  113. sig->oublock += task_io_get_oublock(tsk);
  114. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  115. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  116. sig = NULL; /* Marker for below. */
  117. }
  118. __unhash_process(tsk);
  119. /*
  120. * Do this under ->siglock, we can race with another thread
  121. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  122. */
  123. flush_sigqueue(&tsk->pending);
  124. tsk->signal = NULL;
  125. tsk->sighand = NULL;
  126. spin_unlock(&sighand->siglock);
  127. __cleanup_sighand(sighand);
  128. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  129. if (sig) {
  130. flush_sigqueue(&sig->shared_pending);
  131. taskstats_tgid_free(sig);
  132. /*
  133. * Make sure ->signal can't go away under rq->lock,
  134. * see account_group_exec_runtime().
  135. */
  136. task_rq_unlock_wait(tsk);
  137. __cleanup_signal(sig);
  138. }
  139. }
  140. static void delayed_put_task_struct(struct rcu_head *rhp)
  141. {
  142. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  143. trace_sched_process_free(tsk);
  144. put_task_struct(tsk);
  145. }
  146. void release_task(struct task_struct * p)
  147. {
  148. struct task_struct *leader;
  149. int zap_leader;
  150. repeat:
  151. tracehook_prepare_release_task(p);
  152. /* don't need to get the RCU readlock here - the process is dead and
  153. * can't be modifying its own credentials */
  154. atomic_dec(&__task_cred(p)->user->processes);
  155. proc_flush_task(p);
  156. write_lock_irq(&tasklist_lock);
  157. tracehook_finish_release_task(p);
  158. __exit_signal(p);
  159. /*
  160. * If we are the last non-leader member of the thread
  161. * group, and the leader is zombie, then notify the
  162. * group leader's parent process. (if it wants notification.)
  163. */
  164. zap_leader = 0;
  165. leader = p->group_leader;
  166. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  167. BUG_ON(task_detached(leader));
  168. do_notify_parent(leader, leader->exit_signal);
  169. /*
  170. * If we were the last child thread and the leader has
  171. * exited already, and the leader's parent ignores SIGCHLD,
  172. * then we are the one who should release the leader.
  173. *
  174. * do_notify_parent() will have marked it self-reaping in
  175. * that case.
  176. */
  177. zap_leader = task_detached(leader);
  178. /*
  179. * This maintains the invariant that release_task()
  180. * only runs on a task in EXIT_DEAD, just for sanity.
  181. */
  182. if (zap_leader)
  183. leader->exit_state = EXIT_DEAD;
  184. }
  185. write_unlock_irq(&tasklist_lock);
  186. release_thread(p);
  187. call_rcu(&p->rcu, delayed_put_task_struct);
  188. p = leader;
  189. if (unlikely(zap_leader))
  190. goto repeat;
  191. }
  192. /*
  193. * This checks not only the pgrp, but falls back on the pid if no
  194. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  195. * without this...
  196. *
  197. * The caller must hold rcu lock or the tasklist lock.
  198. */
  199. struct pid *session_of_pgrp(struct pid *pgrp)
  200. {
  201. struct task_struct *p;
  202. struct pid *sid = NULL;
  203. p = pid_task(pgrp, PIDTYPE_PGID);
  204. if (p == NULL)
  205. p = pid_task(pgrp, PIDTYPE_PID);
  206. if (p != NULL)
  207. sid = task_session(p);
  208. return sid;
  209. }
  210. /*
  211. * Determine if a process group is "orphaned", according to the POSIX
  212. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  213. * by terminal-generated stop signals. Newly orphaned process groups are
  214. * to receive a SIGHUP and a SIGCONT.
  215. *
  216. * "I ask you, have you ever known what it is to be an orphan?"
  217. */
  218. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  219. {
  220. struct task_struct *p;
  221. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  222. if ((p == ignored_task) ||
  223. (p->exit_state && thread_group_empty(p)) ||
  224. is_global_init(p->real_parent))
  225. continue;
  226. if (task_pgrp(p->real_parent) != pgrp &&
  227. task_session(p->real_parent) == task_session(p))
  228. return 0;
  229. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  230. return 1;
  231. }
  232. int is_current_pgrp_orphaned(void)
  233. {
  234. int retval;
  235. read_lock(&tasklist_lock);
  236. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  237. read_unlock(&tasklist_lock);
  238. return retval;
  239. }
  240. static int has_stopped_jobs(struct pid *pgrp)
  241. {
  242. int retval = 0;
  243. struct task_struct *p;
  244. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  245. if (!task_is_stopped(p))
  246. continue;
  247. retval = 1;
  248. break;
  249. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  250. return retval;
  251. }
  252. /*
  253. * Check to see if any process groups have become orphaned as
  254. * a result of our exiting, and if they have any stopped jobs,
  255. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  256. */
  257. static void
  258. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  259. {
  260. struct pid *pgrp = task_pgrp(tsk);
  261. struct task_struct *ignored_task = tsk;
  262. if (!parent)
  263. /* exit: our father is in a different pgrp than
  264. * we are and we were the only connection outside.
  265. */
  266. parent = tsk->real_parent;
  267. else
  268. /* reparent: our child is in a different pgrp than
  269. * we are, and it was the only connection outside.
  270. */
  271. ignored_task = NULL;
  272. if (task_pgrp(parent) != pgrp &&
  273. task_session(parent) == task_session(tsk) &&
  274. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  275. has_stopped_jobs(pgrp)) {
  276. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  277. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  278. }
  279. }
  280. /**
  281. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  282. *
  283. * If a kernel thread is launched as a result of a system call, or if
  284. * it ever exits, it should generally reparent itself to kthreadd so it
  285. * isn't in the way of other processes and is correctly cleaned up on exit.
  286. *
  287. * The various task state such as scheduling policy and priority may have
  288. * been inherited from a user process, so we reset them to sane values here.
  289. *
  290. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  291. */
  292. static void reparent_to_kthreadd(void)
  293. {
  294. write_lock_irq(&tasklist_lock);
  295. ptrace_unlink(current);
  296. /* Reparent to init */
  297. current->real_parent = current->parent = kthreadd_task;
  298. list_move_tail(&current->sibling, &current->real_parent->children);
  299. /* Set the exit signal to SIGCHLD so we signal init on exit */
  300. current->exit_signal = SIGCHLD;
  301. if (task_nice(current) < 0)
  302. set_user_nice(current, 0);
  303. /* cpus_allowed? */
  304. /* rt_priority? */
  305. /* signals? */
  306. memcpy(current->signal->rlim, init_task.signal->rlim,
  307. sizeof(current->signal->rlim));
  308. atomic_inc(&init_cred.usage);
  309. commit_creds(&init_cred);
  310. write_unlock_irq(&tasklist_lock);
  311. }
  312. void __set_special_pids(struct pid *pid)
  313. {
  314. struct task_struct *curr = current->group_leader;
  315. if (task_session(curr) != pid)
  316. change_pid(curr, PIDTYPE_SID, pid);
  317. if (task_pgrp(curr) != pid)
  318. change_pid(curr, PIDTYPE_PGID, pid);
  319. }
  320. static void set_special_pids(struct pid *pid)
  321. {
  322. write_lock_irq(&tasklist_lock);
  323. __set_special_pids(pid);
  324. write_unlock_irq(&tasklist_lock);
  325. }
  326. /*
  327. * Let kernel threads use this to say that they
  328. * allow a certain signal (since daemonize() will
  329. * have disabled all of them by default).
  330. */
  331. int allow_signal(int sig)
  332. {
  333. if (!valid_signal(sig) || sig < 1)
  334. return -EINVAL;
  335. spin_lock_irq(&current->sighand->siglock);
  336. sigdelset(&current->blocked, sig);
  337. if (!current->mm) {
  338. /* Kernel threads handle their own signals.
  339. Let the signal code know it'll be handled, so
  340. that they don't get converted to SIGKILL or
  341. just silently dropped */
  342. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  343. }
  344. recalc_sigpending();
  345. spin_unlock_irq(&current->sighand->siglock);
  346. return 0;
  347. }
  348. EXPORT_SYMBOL(allow_signal);
  349. int disallow_signal(int sig)
  350. {
  351. if (!valid_signal(sig) || sig < 1)
  352. return -EINVAL;
  353. spin_lock_irq(&current->sighand->siglock);
  354. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  355. recalc_sigpending();
  356. spin_unlock_irq(&current->sighand->siglock);
  357. return 0;
  358. }
  359. EXPORT_SYMBOL(disallow_signal);
  360. /*
  361. * Put all the gunge required to become a kernel thread without
  362. * attached user resources in one place where it belongs.
  363. */
  364. void daemonize(const char *name, ...)
  365. {
  366. va_list args;
  367. struct fs_struct *fs;
  368. sigset_t blocked;
  369. va_start(args, name);
  370. vsnprintf(current->comm, sizeof(current->comm), name, args);
  371. va_end(args);
  372. /*
  373. * If we were started as result of loading a module, close all of the
  374. * user space pages. We don't need them, and if we didn't close them
  375. * they would be locked into memory.
  376. */
  377. exit_mm(current);
  378. /*
  379. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  380. * or suspend transition begins right now.
  381. */
  382. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  383. if (current->nsproxy != &init_nsproxy) {
  384. get_nsproxy(&init_nsproxy);
  385. switch_task_namespaces(current, &init_nsproxy);
  386. }
  387. set_special_pids(&init_struct_pid);
  388. proc_clear_tty(current);
  389. /* Block and flush all signals */
  390. sigfillset(&blocked);
  391. sigprocmask(SIG_BLOCK, &blocked, NULL);
  392. flush_signals(current);
  393. /* Become as one with the init task */
  394. exit_fs(current); /* current->fs->count--; */
  395. fs = init_task.fs;
  396. current->fs = fs;
  397. atomic_inc(&fs->count);
  398. exit_files(current);
  399. current->files = init_task.files;
  400. atomic_inc(&current->files->count);
  401. reparent_to_kthreadd();
  402. }
  403. EXPORT_SYMBOL(daemonize);
  404. static void close_files(struct files_struct * files)
  405. {
  406. int i, j;
  407. struct fdtable *fdt;
  408. j = 0;
  409. /*
  410. * It is safe to dereference the fd table without RCU or
  411. * ->file_lock because this is the last reference to the
  412. * files structure.
  413. */
  414. fdt = files_fdtable(files);
  415. for (;;) {
  416. unsigned long set;
  417. i = j * __NFDBITS;
  418. if (i >= fdt->max_fds)
  419. break;
  420. set = fdt->open_fds->fds_bits[j++];
  421. while (set) {
  422. if (set & 1) {
  423. struct file * file = xchg(&fdt->fd[i], NULL);
  424. if (file) {
  425. filp_close(file, files);
  426. cond_resched();
  427. }
  428. }
  429. i++;
  430. set >>= 1;
  431. }
  432. }
  433. }
  434. struct files_struct *get_files_struct(struct task_struct *task)
  435. {
  436. struct files_struct *files;
  437. task_lock(task);
  438. files = task->files;
  439. if (files)
  440. atomic_inc(&files->count);
  441. task_unlock(task);
  442. return files;
  443. }
  444. void put_files_struct(struct files_struct *files)
  445. {
  446. struct fdtable *fdt;
  447. if (atomic_dec_and_test(&files->count)) {
  448. close_files(files);
  449. /*
  450. * Free the fd and fdset arrays if we expanded them.
  451. * If the fdtable was embedded, pass files for freeing
  452. * at the end of the RCU grace period. Otherwise,
  453. * you can free files immediately.
  454. */
  455. fdt = files_fdtable(files);
  456. if (fdt != &files->fdtab)
  457. kmem_cache_free(files_cachep, files);
  458. free_fdtable(fdt);
  459. }
  460. }
  461. void reset_files_struct(struct files_struct *files)
  462. {
  463. struct task_struct *tsk = current;
  464. struct files_struct *old;
  465. old = tsk->files;
  466. task_lock(tsk);
  467. tsk->files = files;
  468. task_unlock(tsk);
  469. put_files_struct(old);
  470. }
  471. void exit_files(struct task_struct *tsk)
  472. {
  473. struct files_struct * files = tsk->files;
  474. if (files) {
  475. task_lock(tsk);
  476. tsk->files = NULL;
  477. task_unlock(tsk);
  478. put_files_struct(files);
  479. }
  480. }
  481. void put_fs_struct(struct fs_struct *fs)
  482. {
  483. /* No need to hold fs->lock if we are killing it */
  484. if (atomic_dec_and_test(&fs->count)) {
  485. path_put(&fs->root);
  486. path_put(&fs->pwd);
  487. kmem_cache_free(fs_cachep, fs);
  488. }
  489. }
  490. void exit_fs(struct task_struct *tsk)
  491. {
  492. struct fs_struct * fs = tsk->fs;
  493. if (fs) {
  494. task_lock(tsk);
  495. tsk->fs = NULL;
  496. task_unlock(tsk);
  497. put_fs_struct(fs);
  498. }
  499. }
  500. EXPORT_SYMBOL_GPL(exit_fs);
  501. #ifdef CONFIG_MM_OWNER
  502. /*
  503. * Task p is exiting and it owned mm, lets find a new owner for it
  504. */
  505. static inline int
  506. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  507. {
  508. /*
  509. * If there are other users of the mm and the owner (us) is exiting
  510. * we need to find a new owner to take on the responsibility.
  511. */
  512. if (atomic_read(&mm->mm_users) <= 1)
  513. return 0;
  514. if (mm->owner != p)
  515. return 0;
  516. return 1;
  517. }
  518. void mm_update_next_owner(struct mm_struct *mm)
  519. {
  520. struct task_struct *c, *g, *p = current;
  521. retry:
  522. if (!mm_need_new_owner(mm, p))
  523. return;
  524. read_lock(&tasklist_lock);
  525. /*
  526. * Search in the children
  527. */
  528. list_for_each_entry(c, &p->children, sibling) {
  529. if (c->mm == mm)
  530. goto assign_new_owner;
  531. }
  532. /*
  533. * Search in the siblings
  534. */
  535. list_for_each_entry(c, &p->parent->children, sibling) {
  536. if (c->mm == mm)
  537. goto assign_new_owner;
  538. }
  539. /*
  540. * Search through everything else. We should not get
  541. * here often
  542. */
  543. do_each_thread(g, c) {
  544. if (c->mm == mm)
  545. goto assign_new_owner;
  546. } while_each_thread(g, c);
  547. read_unlock(&tasklist_lock);
  548. /*
  549. * We found no owner yet mm_users > 1: this implies that we are
  550. * most likely racing with swapoff (try_to_unuse()) or /proc or
  551. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  552. */
  553. mm->owner = NULL;
  554. return;
  555. assign_new_owner:
  556. BUG_ON(c == p);
  557. get_task_struct(c);
  558. /*
  559. * The task_lock protects c->mm from changing.
  560. * We always want mm->owner->mm == mm
  561. */
  562. task_lock(c);
  563. /*
  564. * Delay read_unlock() till we have the task_lock()
  565. * to ensure that c does not slip away underneath us
  566. */
  567. read_unlock(&tasklist_lock);
  568. if (c->mm != mm) {
  569. task_unlock(c);
  570. put_task_struct(c);
  571. goto retry;
  572. }
  573. mm->owner = c;
  574. task_unlock(c);
  575. put_task_struct(c);
  576. }
  577. #endif /* CONFIG_MM_OWNER */
  578. /*
  579. * Turn us into a lazy TLB process if we
  580. * aren't already..
  581. */
  582. static void exit_mm(struct task_struct * tsk)
  583. {
  584. struct mm_struct *mm = tsk->mm;
  585. struct core_state *core_state;
  586. mm_release(tsk, mm);
  587. if (!mm)
  588. return;
  589. /*
  590. * Serialize with any possible pending coredump.
  591. * We must hold mmap_sem around checking core_state
  592. * and clearing tsk->mm. The core-inducing thread
  593. * will increment ->nr_threads for each thread in the
  594. * group with ->mm != NULL.
  595. */
  596. down_read(&mm->mmap_sem);
  597. core_state = mm->core_state;
  598. if (core_state) {
  599. struct core_thread self;
  600. up_read(&mm->mmap_sem);
  601. self.task = tsk;
  602. self.next = xchg(&core_state->dumper.next, &self);
  603. /*
  604. * Implies mb(), the result of xchg() must be visible
  605. * to core_state->dumper.
  606. */
  607. if (atomic_dec_and_test(&core_state->nr_threads))
  608. complete(&core_state->startup);
  609. for (;;) {
  610. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  611. if (!self.task) /* see coredump_finish() */
  612. break;
  613. schedule();
  614. }
  615. __set_task_state(tsk, TASK_RUNNING);
  616. down_read(&mm->mmap_sem);
  617. }
  618. atomic_inc(&mm->mm_count);
  619. BUG_ON(mm != tsk->active_mm);
  620. /* more a memory barrier than a real lock */
  621. task_lock(tsk);
  622. tsk->mm = NULL;
  623. up_read(&mm->mmap_sem);
  624. enter_lazy_tlb(mm, current);
  625. /* We don't want this task to be frozen prematurely */
  626. clear_freeze_flag(tsk);
  627. task_unlock(tsk);
  628. mm_update_next_owner(mm);
  629. mmput(mm);
  630. }
  631. /*
  632. * When we die, we re-parent all our children.
  633. * Try to give them to another thread in our thread
  634. * group, and if no such member exists, give it to
  635. * the child reaper process (ie "init") in our pid
  636. * space.
  637. */
  638. static struct task_struct *find_new_reaper(struct task_struct *father)
  639. {
  640. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  641. struct task_struct *thread;
  642. thread = father;
  643. while_each_thread(father, thread) {
  644. if (thread->flags & PF_EXITING)
  645. continue;
  646. if (unlikely(pid_ns->child_reaper == father))
  647. pid_ns->child_reaper = thread;
  648. return thread;
  649. }
  650. if (unlikely(pid_ns->child_reaper == father)) {
  651. write_unlock_irq(&tasklist_lock);
  652. if (unlikely(pid_ns == &init_pid_ns))
  653. panic("Attempted to kill init!");
  654. zap_pid_ns_processes(pid_ns);
  655. write_lock_irq(&tasklist_lock);
  656. /*
  657. * We can not clear ->child_reaper or leave it alone.
  658. * There may by stealth EXIT_DEAD tasks on ->children,
  659. * forget_original_parent() must move them somewhere.
  660. */
  661. pid_ns->child_reaper = init_pid_ns.child_reaper;
  662. }
  663. return pid_ns->child_reaper;
  664. }
  665. /*
  666. * Any that need to be release_task'd are put on the @dead list.
  667. */
  668. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  669. struct list_head *dead)
  670. {
  671. if (p->pdeath_signal)
  672. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  673. list_move_tail(&p->sibling, &p->real_parent->children);
  674. if (task_detached(p))
  675. return;
  676. /*
  677. * If this is a threaded reparent there is no need to
  678. * notify anyone anything has happened.
  679. */
  680. if (same_thread_group(p->real_parent, father))
  681. return;
  682. /* We don't want people slaying init. */
  683. p->exit_signal = SIGCHLD;
  684. /* If it has exited notify the new parent about this child's death. */
  685. if (!p->ptrace &&
  686. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  687. do_notify_parent(p, p->exit_signal);
  688. if (task_detached(p)) {
  689. p->exit_state = EXIT_DEAD;
  690. list_move_tail(&p->sibling, dead);
  691. }
  692. }
  693. kill_orphaned_pgrp(p, father);
  694. }
  695. static void forget_original_parent(struct task_struct *father)
  696. {
  697. struct task_struct *p, *n, *reaper;
  698. LIST_HEAD(dead_children);
  699. exit_ptrace(father);
  700. write_lock_irq(&tasklist_lock);
  701. reaper = find_new_reaper(father);
  702. list_for_each_entry_safe(p, n, &father->children, sibling) {
  703. p->real_parent = reaper;
  704. if (p->parent == father) {
  705. BUG_ON(p->ptrace);
  706. p->parent = p->real_parent;
  707. }
  708. reparent_thread(father, p, &dead_children);
  709. }
  710. write_unlock_irq(&tasklist_lock);
  711. BUG_ON(!list_empty(&father->children));
  712. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  713. list_del_init(&p->sibling);
  714. release_task(p);
  715. }
  716. }
  717. /*
  718. * Send signals to all our closest relatives so that they know
  719. * to properly mourn us..
  720. */
  721. static void exit_notify(struct task_struct *tsk, int group_dead)
  722. {
  723. int signal;
  724. void *cookie;
  725. /*
  726. * This does two things:
  727. *
  728. * A. Make init inherit all the child processes
  729. * B. Check to see if any process groups have become orphaned
  730. * as a result of our exiting, and if they have any stopped
  731. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  732. */
  733. forget_original_parent(tsk);
  734. exit_task_namespaces(tsk);
  735. write_lock_irq(&tasklist_lock);
  736. if (group_dead)
  737. kill_orphaned_pgrp(tsk->group_leader, NULL);
  738. /* Let father know we died
  739. *
  740. * Thread signals are configurable, but you aren't going to use
  741. * that to send signals to arbitary processes.
  742. * That stops right now.
  743. *
  744. * If the parent exec id doesn't match the exec id we saved
  745. * when we started then we know the parent has changed security
  746. * domain.
  747. *
  748. * If our self_exec id doesn't match our parent_exec_id then
  749. * we have changed execution domain as these two values started
  750. * the same after a fork.
  751. */
  752. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  753. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  754. tsk->self_exec_id != tsk->parent_exec_id) &&
  755. !capable(CAP_KILL))
  756. tsk->exit_signal = SIGCHLD;
  757. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  758. if (signal >= 0)
  759. signal = do_notify_parent(tsk, signal);
  760. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  761. /* mt-exec, de_thread() is waiting for us */
  762. if (thread_group_leader(tsk) &&
  763. tsk->signal->group_exit_task &&
  764. tsk->signal->notify_count < 0)
  765. wake_up_process(tsk->signal->group_exit_task);
  766. write_unlock_irq(&tasklist_lock);
  767. tracehook_report_death(tsk, signal, cookie, group_dead);
  768. /* If the process is dead, release it - nobody will wait for it */
  769. if (signal == DEATH_REAP)
  770. release_task(tsk);
  771. }
  772. #ifdef CONFIG_DEBUG_STACK_USAGE
  773. static void check_stack_usage(void)
  774. {
  775. static DEFINE_SPINLOCK(low_water_lock);
  776. static int lowest_to_date = THREAD_SIZE;
  777. unsigned long free;
  778. free = stack_not_used(current);
  779. if (free >= lowest_to_date)
  780. return;
  781. spin_lock(&low_water_lock);
  782. if (free < lowest_to_date) {
  783. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  784. "left\n",
  785. current->comm, free);
  786. lowest_to_date = free;
  787. }
  788. spin_unlock(&low_water_lock);
  789. }
  790. #else
  791. static inline void check_stack_usage(void) {}
  792. #endif
  793. NORET_TYPE void do_exit(long code)
  794. {
  795. struct task_struct *tsk = current;
  796. int group_dead;
  797. profile_task_exit(tsk);
  798. WARN_ON(atomic_read(&tsk->fs_excl));
  799. if (unlikely(in_interrupt()))
  800. panic("Aiee, killing interrupt handler!");
  801. if (unlikely(!tsk->pid))
  802. panic("Attempted to kill the idle task!");
  803. tracehook_report_exit(&code);
  804. /*
  805. * We're taking recursive faults here in do_exit. Safest is to just
  806. * leave this task alone and wait for reboot.
  807. */
  808. if (unlikely(tsk->flags & PF_EXITING)) {
  809. printk(KERN_ALERT
  810. "Fixing recursive fault but reboot is needed!\n");
  811. /*
  812. * We can do this unlocked here. The futex code uses
  813. * this flag just to verify whether the pi state
  814. * cleanup has been done or not. In the worst case it
  815. * loops once more. We pretend that the cleanup was
  816. * done as there is no way to return. Either the
  817. * OWNER_DIED bit is set by now or we push the blocked
  818. * task into the wait for ever nirwana as well.
  819. */
  820. tsk->flags |= PF_EXITPIDONE;
  821. set_current_state(TASK_UNINTERRUPTIBLE);
  822. schedule();
  823. }
  824. exit_signals(tsk); /* sets PF_EXITING */
  825. /*
  826. * tsk->flags are checked in the futex code to protect against
  827. * an exiting task cleaning up the robust pi futexes.
  828. */
  829. smp_mb();
  830. spin_unlock_wait(&tsk->pi_lock);
  831. if (unlikely(in_atomic()))
  832. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  833. current->comm, task_pid_nr(current),
  834. preempt_count());
  835. acct_update_integrals(tsk);
  836. group_dead = atomic_dec_and_test(&tsk->signal->live);
  837. if (group_dead) {
  838. hrtimer_cancel(&tsk->signal->real_timer);
  839. exit_itimers(tsk->signal);
  840. }
  841. acct_collect(code, group_dead);
  842. if (group_dead)
  843. tty_audit_exit();
  844. if (unlikely(tsk->audit_context))
  845. audit_free(tsk);
  846. tsk->exit_code = code;
  847. taskstats_exit(tsk, group_dead);
  848. exit_mm(tsk);
  849. if (group_dead)
  850. acct_process();
  851. trace_sched_process_exit(tsk);
  852. exit_sem(tsk);
  853. exit_files(tsk);
  854. exit_fs(tsk);
  855. check_stack_usage();
  856. exit_thread();
  857. cgroup_exit(tsk, 1);
  858. if (group_dead && tsk->signal->leader)
  859. disassociate_ctty(1);
  860. module_put(task_thread_info(tsk)->exec_domain->module);
  861. if (tsk->binfmt)
  862. module_put(tsk->binfmt->module);
  863. proc_exit_connector(tsk);
  864. exit_notify(tsk, group_dead);
  865. #ifdef CONFIG_NUMA
  866. mpol_put(tsk->mempolicy);
  867. tsk->mempolicy = NULL;
  868. #endif
  869. #ifdef CONFIG_FUTEX
  870. /*
  871. * This must happen late, after the PID is not
  872. * hashed anymore:
  873. */
  874. if (unlikely(!list_empty(&tsk->pi_state_list)))
  875. exit_pi_state_list(tsk);
  876. if (unlikely(current->pi_state_cache))
  877. kfree(current->pi_state_cache);
  878. #endif
  879. /*
  880. * Make sure we are holding no locks:
  881. */
  882. debug_check_no_locks_held(tsk);
  883. /*
  884. * We can do this unlocked here. The futex code uses this flag
  885. * just to verify whether the pi state cleanup has been done
  886. * or not. In the worst case it loops once more.
  887. */
  888. tsk->flags |= PF_EXITPIDONE;
  889. if (tsk->io_context)
  890. exit_io_context();
  891. if (tsk->splice_pipe)
  892. __free_pipe_info(tsk->splice_pipe);
  893. preempt_disable();
  894. /* causes final put_task_struct in finish_task_switch(). */
  895. tsk->state = TASK_DEAD;
  896. schedule();
  897. BUG();
  898. /* Avoid "noreturn function does return". */
  899. for (;;)
  900. cpu_relax(); /* For when BUG is null */
  901. }
  902. EXPORT_SYMBOL_GPL(do_exit);
  903. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  904. {
  905. if (comp)
  906. complete(comp);
  907. do_exit(code);
  908. }
  909. EXPORT_SYMBOL(complete_and_exit);
  910. SYSCALL_DEFINE1(exit, int, error_code)
  911. {
  912. do_exit((error_code&0xff)<<8);
  913. }
  914. /*
  915. * Take down every thread in the group. This is called by fatal signals
  916. * as well as by sys_exit_group (below).
  917. */
  918. NORET_TYPE void
  919. do_group_exit(int exit_code)
  920. {
  921. struct signal_struct *sig = current->signal;
  922. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  923. if (signal_group_exit(sig))
  924. exit_code = sig->group_exit_code;
  925. else if (!thread_group_empty(current)) {
  926. struct sighand_struct *const sighand = current->sighand;
  927. spin_lock_irq(&sighand->siglock);
  928. if (signal_group_exit(sig))
  929. /* Another thread got here before we took the lock. */
  930. exit_code = sig->group_exit_code;
  931. else {
  932. sig->group_exit_code = exit_code;
  933. sig->flags = SIGNAL_GROUP_EXIT;
  934. zap_other_threads(current);
  935. }
  936. spin_unlock_irq(&sighand->siglock);
  937. }
  938. do_exit(exit_code);
  939. /* NOTREACHED */
  940. }
  941. /*
  942. * this kills every thread in the thread group. Note that any externally
  943. * wait4()-ing process will get the correct exit code - even if this
  944. * thread is not the thread group leader.
  945. */
  946. SYSCALL_DEFINE1(exit_group, int, error_code)
  947. {
  948. do_group_exit((error_code & 0xff) << 8);
  949. /* NOTREACHED */
  950. return 0;
  951. }
  952. static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  953. {
  954. struct pid *pid = NULL;
  955. if (type == PIDTYPE_PID)
  956. pid = task->pids[type].pid;
  957. else if (type < PIDTYPE_MAX)
  958. pid = task->group_leader->pids[type].pid;
  959. return pid;
  960. }
  961. static int eligible_child(enum pid_type type, struct pid *pid, int options,
  962. struct task_struct *p)
  963. {
  964. int err;
  965. if (type < PIDTYPE_MAX) {
  966. if (task_pid_type(p, type) != pid)
  967. return 0;
  968. }
  969. /* Wait for all children (clone and not) if __WALL is set;
  970. * otherwise, wait for clone children *only* if __WCLONE is
  971. * set; otherwise, wait for non-clone children *only*. (Note:
  972. * A "clone" child here is one that reports to its parent
  973. * using a signal other than SIGCHLD.) */
  974. if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
  975. && !(options & __WALL))
  976. return 0;
  977. err = security_task_wait(p);
  978. if (err)
  979. return err;
  980. return 1;
  981. }
  982. static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
  983. int why, int status,
  984. struct siginfo __user *infop,
  985. struct rusage __user *rusagep)
  986. {
  987. int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
  988. put_task_struct(p);
  989. if (!retval)
  990. retval = put_user(SIGCHLD, &infop->si_signo);
  991. if (!retval)
  992. retval = put_user(0, &infop->si_errno);
  993. if (!retval)
  994. retval = put_user((short)why, &infop->si_code);
  995. if (!retval)
  996. retval = put_user(pid, &infop->si_pid);
  997. if (!retval)
  998. retval = put_user(uid, &infop->si_uid);
  999. if (!retval)
  1000. retval = put_user(status, &infop->si_status);
  1001. if (!retval)
  1002. retval = pid;
  1003. return retval;
  1004. }
  1005. /*
  1006. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  1007. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1008. * the lock and this task is uninteresting. If we return nonzero, we have
  1009. * released the lock and the system call should return.
  1010. */
  1011. static int wait_task_zombie(struct task_struct *p, int options,
  1012. struct siginfo __user *infop,
  1013. int __user *stat_addr, struct rusage __user *ru)
  1014. {
  1015. unsigned long state;
  1016. int retval, status, traced;
  1017. pid_t pid = task_pid_vnr(p);
  1018. uid_t uid = __task_cred(p)->uid;
  1019. if (!likely(options & WEXITED))
  1020. return 0;
  1021. if (unlikely(options & WNOWAIT)) {
  1022. int exit_code = p->exit_code;
  1023. int why, status;
  1024. get_task_struct(p);
  1025. read_unlock(&tasklist_lock);
  1026. if ((exit_code & 0x7f) == 0) {
  1027. why = CLD_EXITED;
  1028. status = exit_code >> 8;
  1029. } else {
  1030. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1031. status = exit_code & 0x7f;
  1032. }
  1033. return wait_noreap_copyout(p, pid, uid, why,
  1034. status, infop, ru);
  1035. }
  1036. /*
  1037. * Try to move the task's state to DEAD
  1038. * only one thread is allowed to do this:
  1039. */
  1040. state = xchg(&p->exit_state, EXIT_DEAD);
  1041. if (state != EXIT_ZOMBIE) {
  1042. BUG_ON(state != EXIT_DEAD);
  1043. return 0;
  1044. }
  1045. traced = ptrace_reparented(p);
  1046. if (likely(!traced)) {
  1047. struct signal_struct *psig;
  1048. struct signal_struct *sig;
  1049. struct task_cputime cputime;
  1050. /*
  1051. * The resource counters for the group leader are in its
  1052. * own task_struct. Those for dead threads in the group
  1053. * are in its signal_struct, as are those for the child
  1054. * processes it has previously reaped. All these
  1055. * accumulate in the parent's signal_struct c* fields.
  1056. *
  1057. * We don't bother to take a lock here to protect these
  1058. * p->signal fields, because they are only touched by
  1059. * __exit_signal, which runs with tasklist_lock
  1060. * write-locked anyway, and so is excluded here. We do
  1061. * need to protect the access to p->parent->signal fields,
  1062. * as other threads in the parent group can be right
  1063. * here reaping other children at the same time.
  1064. *
  1065. * We use thread_group_cputime() to get times for the thread
  1066. * group, which consolidates times for all threads in the
  1067. * group including the group leader.
  1068. */
  1069. thread_group_cputime(p, &cputime);
  1070. spin_lock_irq(&p->parent->sighand->siglock);
  1071. psig = p->parent->signal;
  1072. sig = p->signal;
  1073. psig->cutime =
  1074. cputime_add(psig->cutime,
  1075. cputime_add(cputime.utime,
  1076. sig->cutime));
  1077. psig->cstime =
  1078. cputime_add(psig->cstime,
  1079. cputime_add(cputime.stime,
  1080. sig->cstime));
  1081. psig->cgtime =
  1082. cputime_add(psig->cgtime,
  1083. cputime_add(p->gtime,
  1084. cputime_add(sig->gtime,
  1085. sig->cgtime)));
  1086. psig->cmin_flt +=
  1087. p->min_flt + sig->min_flt + sig->cmin_flt;
  1088. psig->cmaj_flt +=
  1089. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1090. psig->cnvcsw +=
  1091. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1092. psig->cnivcsw +=
  1093. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1094. psig->cinblock +=
  1095. task_io_get_inblock(p) +
  1096. sig->inblock + sig->cinblock;
  1097. psig->coublock +=
  1098. task_io_get_oublock(p) +
  1099. sig->oublock + sig->coublock;
  1100. task_io_accounting_add(&psig->ioac, &p->ioac);
  1101. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1102. spin_unlock_irq(&p->parent->sighand->siglock);
  1103. }
  1104. /*
  1105. * Now we are sure this task is interesting, and no other
  1106. * thread can reap it because we set its state to EXIT_DEAD.
  1107. */
  1108. read_unlock(&tasklist_lock);
  1109. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1110. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1111. ? p->signal->group_exit_code : p->exit_code;
  1112. if (!retval && stat_addr)
  1113. retval = put_user(status, stat_addr);
  1114. if (!retval && infop)
  1115. retval = put_user(SIGCHLD, &infop->si_signo);
  1116. if (!retval && infop)
  1117. retval = put_user(0, &infop->si_errno);
  1118. if (!retval && infop) {
  1119. int why;
  1120. if ((status & 0x7f) == 0) {
  1121. why = CLD_EXITED;
  1122. status >>= 8;
  1123. } else {
  1124. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1125. status &= 0x7f;
  1126. }
  1127. retval = put_user((short)why, &infop->si_code);
  1128. if (!retval)
  1129. retval = put_user(status, &infop->si_status);
  1130. }
  1131. if (!retval && infop)
  1132. retval = put_user(pid, &infop->si_pid);
  1133. if (!retval && infop)
  1134. retval = put_user(uid, &infop->si_uid);
  1135. if (!retval)
  1136. retval = pid;
  1137. if (traced) {
  1138. write_lock_irq(&tasklist_lock);
  1139. /* We dropped tasklist, ptracer could die and untrace */
  1140. ptrace_unlink(p);
  1141. /*
  1142. * If this is not a detached task, notify the parent.
  1143. * If it's still not detached after that, don't release
  1144. * it now.
  1145. */
  1146. if (!task_detached(p)) {
  1147. do_notify_parent(p, p->exit_signal);
  1148. if (!task_detached(p)) {
  1149. p->exit_state = EXIT_ZOMBIE;
  1150. p = NULL;
  1151. }
  1152. }
  1153. write_unlock_irq(&tasklist_lock);
  1154. }
  1155. if (p != NULL)
  1156. release_task(p);
  1157. return retval;
  1158. }
  1159. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1160. {
  1161. if (ptrace) {
  1162. if (task_is_stopped_or_traced(p))
  1163. return &p->exit_code;
  1164. } else {
  1165. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1166. return &p->signal->group_exit_code;
  1167. }
  1168. return NULL;
  1169. }
  1170. /*
  1171. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1172. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1173. * the lock and this task is uninteresting. If we return nonzero, we have
  1174. * released the lock and the system call should return.
  1175. */
  1176. static int wait_task_stopped(int ptrace, struct task_struct *p,
  1177. int options, struct siginfo __user *infop,
  1178. int __user *stat_addr, struct rusage __user *ru)
  1179. {
  1180. int retval, exit_code, *p_code, why;
  1181. uid_t uid = 0; /* unneeded, required by compiler */
  1182. pid_t pid;
  1183. if (!(options & WUNTRACED))
  1184. return 0;
  1185. exit_code = 0;
  1186. spin_lock_irq(&p->sighand->siglock);
  1187. p_code = task_stopped_code(p, ptrace);
  1188. if (unlikely(!p_code))
  1189. goto unlock_sig;
  1190. exit_code = *p_code;
  1191. if (!exit_code)
  1192. goto unlock_sig;
  1193. if (!unlikely(options & WNOWAIT))
  1194. *p_code = 0;
  1195. /* don't need the RCU readlock here as we're holding a spinlock */
  1196. uid = __task_cred(p)->uid;
  1197. unlock_sig:
  1198. spin_unlock_irq(&p->sighand->siglock);
  1199. if (!exit_code)
  1200. return 0;
  1201. /*
  1202. * Now we are pretty sure this task is interesting.
  1203. * Make sure it doesn't get reaped out from under us while we
  1204. * give up the lock and then examine it below. We don't want to
  1205. * keep holding onto the tasklist_lock while we call getrusage and
  1206. * possibly take page faults for user memory.
  1207. */
  1208. get_task_struct(p);
  1209. pid = task_pid_vnr(p);
  1210. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1211. read_unlock(&tasklist_lock);
  1212. if (unlikely(options & WNOWAIT))
  1213. return wait_noreap_copyout(p, pid, uid,
  1214. why, exit_code,
  1215. infop, ru);
  1216. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1217. if (!retval && stat_addr)
  1218. retval = put_user((exit_code << 8) | 0x7f, stat_addr);
  1219. if (!retval && infop)
  1220. retval = put_user(SIGCHLD, &infop->si_signo);
  1221. if (!retval && infop)
  1222. retval = put_user(0, &infop->si_errno);
  1223. if (!retval && infop)
  1224. retval = put_user((short)why, &infop->si_code);
  1225. if (!retval && infop)
  1226. retval = put_user(exit_code, &infop->si_status);
  1227. if (!retval && infop)
  1228. retval = put_user(pid, &infop->si_pid);
  1229. if (!retval && infop)
  1230. retval = put_user(uid, &infop->si_uid);
  1231. if (!retval)
  1232. retval = pid;
  1233. put_task_struct(p);
  1234. BUG_ON(!retval);
  1235. return retval;
  1236. }
  1237. /*
  1238. * Handle do_wait work for one task in a live, non-stopped state.
  1239. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1240. * the lock and this task is uninteresting. If we return nonzero, we have
  1241. * released the lock and the system call should return.
  1242. */
  1243. static int wait_task_continued(struct task_struct *p, int options,
  1244. struct siginfo __user *infop,
  1245. int __user *stat_addr, struct rusage __user *ru)
  1246. {
  1247. int retval;
  1248. pid_t pid;
  1249. uid_t uid;
  1250. if (!unlikely(options & WCONTINUED))
  1251. return 0;
  1252. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1253. return 0;
  1254. spin_lock_irq(&p->sighand->siglock);
  1255. /* Re-check with the lock held. */
  1256. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1257. spin_unlock_irq(&p->sighand->siglock);
  1258. return 0;
  1259. }
  1260. if (!unlikely(options & WNOWAIT))
  1261. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1262. uid = __task_cred(p)->uid;
  1263. spin_unlock_irq(&p->sighand->siglock);
  1264. pid = task_pid_vnr(p);
  1265. get_task_struct(p);
  1266. read_unlock(&tasklist_lock);
  1267. if (!infop) {
  1268. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1269. put_task_struct(p);
  1270. if (!retval && stat_addr)
  1271. retval = put_user(0xffff, stat_addr);
  1272. if (!retval)
  1273. retval = pid;
  1274. } else {
  1275. retval = wait_noreap_copyout(p, pid, uid,
  1276. CLD_CONTINUED, SIGCONT,
  1277. infop, ru);
  1278. BUG_ON(retval == 0);
  1279. }
  1280. return retval;
  1281. }
  1282. /*
  1283. * Consider @p for a wait by @parent.
  1284. *
  1285. * -ECHILD should be in *@notask_error before the first call.
  1286. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1287. * Returns zero if the search for a child should continue;
  1288. * then *@notask_error is 0 if @p is an eligible child,
  1289. * or another error from security_task_wait(), or still -ECHILD.
  1290. */
  1291. static int wait_consider_task(struct task_struct *parent, int ptrace,
  1292. struct task_struct *p, int *notask_error,
  1293. enum pid_type type, struct pid *pid, int options,
  1294. struct siginfo __user *infop,
  1295. int __user *stat_addr, struct rusage __user *ru)
  1296. {
  1297. int ret = eligible_child(type, pid, options, p);
  1298. if (!ret)
  1299. return ret;
  1300. if (unlikely(ret < 0)) {
  1301. /*
  1302. * If we have not yet seen any eligible child,
  1303. * then let this error code replace -ECHILD.
  1304. * A permission error will give the user a clue
  1305. * to look for security policy problems, rather
  1306. * than for mysterious wait bugs.
  1307. */
  1308. if (*notask_error)
  1309. *notask_error = ret;
  1310. }
  1311. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1312. /*
  1313. * This child is hidden by ptrace.
  1314. * We aren't allowed to see it now, but eventually we will.
  1315. */
  1316. *notask_error = 0;
  1317. return 0;
  1318. }
  1319. if (p->exit_state == EXIT_DEAD)
  1320. return 0;
  1321. /*
  1322. * We don't reap group leaders with subthreads.
  1323. */
  1324. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1325. return wait_task_zombie(p, options, infop, stat_addr, ru);
  1326. /*
  1327. * It's stopped or running now, so it might
  1328. * later continue, exit, or stop again.
  1329. */
  1330. *notask_error = 0;
  1331. if (task_stopped_code(p, ptrace))
  1332. return wait_task_stopped(ptrace, p, options,
  1333. infop, stat_addr, ru);
  1334. return wait_task_continued(p, options, infop, stat_addr, ru);
  1335. }
  1336. /*
  1337. * Do the work of do_wait() for one thread in the group, @tsk.
  1338. *
  1339. * -ECHILD should be in *@notask_error before the first call.
  1340. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1341. * Returns zero if the search for a child should continue; then
  1342. * *@notask_error is 0 if there were any eligible children,
  1343. * or another error from security_task_wait(), or still -ECHILD.
  1344. */
  1345. static int do_wait_thread(struct task_struct *tsk, int *notask_error,
  1346. enum pid_type type, struct pid *pid, int options,
  1347. struct siginfo __user *infop, int __user *stat_addr,
  1348. struct rusage __user *ru)
  1349. {
  1350. struct task_struct *p;
  1351. list_for_each_entry(p, &tsk->children, sibling) {
  1352. /*
  1353. * Do not consider detached threads.
  1354. */
  1355. if (!task_detached(p)) {
  1356. int ret = wait_consider_task(tsk, 0, p, notask_error,
  1357. type, pid, options,
  1358. infop, stat_addr, ru);
  1359. if (ret)
  1360. return ret;
  1361. }
  1362. }
  1363. return 0;
  1364. }
  1365. static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
  1366. enum pid_type type, struct pid *pid, int options,
  1367. struct siginfo __user *infop, int __user *stat_addr,
  1368. struct rusage __user *ru)
  1369. {
  1370. struct task_struct *p;
  1371. /*
  1372. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1373. */
  1374. options |= WUNTRACED;
  1375. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1376. int ret = wait_consider_task(tsk, 1, p, notask_error,
  1377. type, pid, options,
  1378. infop, stat_addr, ru);
  1379. if (ret)
  1380. return ret;
  1381. }
  1382. return 0;
  1383. }
  1384. static long do_wait(enum pid_type type, struct pid *pid, int options,
  1385. struct siginfo __user *infop, int __user *stat_addr,
  1386. struct rusage __user *ru)
  1387. {
  1388. DECLARE_WAITQUEUE(wait, current);
  1389. struct task_struct *tsk;
  1390. int retval;
  1391. trace_sched_process_wait(pid);
  1392. add_wait_queue(&current->signal->wait_chldexit,&wait);
  1393. repeat:
  1394. /*
  1395. * If there is nothing that can match our critiera just get out.
  1396. * We will clear @retval to zero if we see any child that might later
  1397. * match our criteria, even if we are not able to reap it yet.
  1398. */
  1399. retval = -ECHILD;
  1400. if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
  1401. goto end;
  1402. current->state = TASK_INTERRUPTIBLE;
  1403. read_lock(&tasklist_lock);
  1404. tsk = current;
  1405. do {
  1406. int tsk_result = do_wait_thread(tsk, &retval,
  1407. type, pid, options,
  1408. infop, stat_addr, ru);
  1409. if (!tsk_result)
  1410. tsk_result = ptrace_do_wait(tsk, &retval,
  1411. type, pid, options,
  1412. infop, stat_addr, ru);
  1413. if (tsk_result) {
  1414. /*
  1415. * tasklist_lock is unlocked and we have a final result.
  1416. */
  1417. retval = tsk_result;
  1418. goto end;
  1419. }
  1420. if (options & __WNOTHREAD)
  1421. break;
  1422. tsk = next_thread(tsk);
  1423. BUG_ON(tsk->signal != current->signal);
  1424. } while (tsk != current);
  1425. read_unlock(&tasklist_lock);
  1426. if (!retval && !(options & WNOHANG)) {
  1427. retval = -ERESTARTSYS;
  1428. if (!signal_pending(current)) {
  1429. schedule();
  1430. goto repeat;
  1431. }
  1432. }
  1433. end:
  1434. current->state = TASK_RUNNING;
  1435. remove_wait_queue(&current->signal->wait_chldexit,&wait);
  1436. if (infop) {
  1437. if (retval > 0)
  1438. retval = 0;
  1439. else {
  1440. /*
  1441. * For a WNOHANG return, clear out all the fields
  1442. * we would set so the user can easily tell the
  1443. * difference.
  1444. */
  1445. if (!retval)
  1446. retval = put_user(0, &infop->si_signo);
  1447. if (!retval)
  1448. retval = put_user(0, &infop->si_errno);
  1449. if (!retval)
  1450. retval = put_user(0, &infop->si_code);
  1451. if (!retval)
  1452. retval = put_user(0, &infop->si_pid);
  1453. if (!retval)
  1454. retval = put_user(0, &infop->si_uid);
  1455. if (!retval)
  1456. retval = put_user(0, &infop->si_status);
  1457. }
  1458. }
  1459. return retval;
  1460. }
  1461. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1462. infop, int, options, struct rusage __user *, ru)
  1463. {
  1464. struct pid *pid = NULL;
  1465. enum pid_type type;
  1466. long ret;
  1467. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1468. return -EINVAL;
  1469. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1470. return -EINVAL;
  1471. switch (which) {
  1472. case P_ALL:
  1473. type = PIDTYPE_MAX;
  1474. break;
  1475. case P_PID:
  1476. type = PIDTYPE_PID;
  1477. if (upid <= 0)
  1478. return -EINVAL;
  1479. break;
  1480. case P_PGID:
  1481. type = PIDTYPE_PGID;
  1482. if (upid <= 0)
  1483. return -EINVAL;
  1484. break;
  1485. default:
  1486. return -EINVAL;
  1487. }
  1488. if (type < PIDTYPE_MAX)
  1489. pid = find_get_pid(upid);
  1490. ret = do_wait(type, pid, options, infop, NULL, ru);
  1491. put_pid(pid);
  1492. /* avoid REGPARM breakage on x86: */
  1493. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1494. return ret;
  1495. }
  1496. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1497. int, options, struct rusage __user *, ru)
  1498. {
  1499. struct pid *pid = NULL;
  1500. enum pid_type type;
  1501. long ret;
  1502. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1503. __WNOTHREAD|__WCLONE|__WALL))
  1504. return -EINVAL;
  1505. if (upid == -1)
  1506. type = PIDTYPE_MAX;
  1507. else if (upid < 0) {
  1508. type = PIDTYPE_PGID;
  1509. pid = find_get_pid(-upid);
  1510. } else if (upid == 0) {
  1511. type = PIDTYPE_PGID;
  1512. pid = get_task_pid(current, PIDTYPE_PGID);
  1513. } else /* upid > 0 */ {
  1514. type = PIDTYPE_PID;
  1515. pid = find_get_pid(upid);
  1516. }
  1517. ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
  1518. put_pid(pid);
  1519. /* avoid REGPARM breakage on x86: */
  1520. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1521. return ret;
  1522. }
  1523. #ifdef __ARCH_WANT_SYS_WAITPID
  1524. /*
  1525. * sys_waitpid() remains for compatibility. waitpid() should be
  1526. * implemented by calling sys_wait4() from libc.a.
  1527. */
  1528. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1529. {
  1530. return sys_wait4(pid, stat_addr, options, NULL);
  1531. }
  1532. #endif