intel_dp.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  59. {
  60. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  61. }
  62. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  63. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  64. static void intel_dp_link_down(struct intel_dp *intel_dp);
  65. void
  66. intel_edp_link_config (struct intel_encoder *intel_encoder,
  67. int *lane_num, int *link_bw)
  68. {
  69. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  70. *lane_num = intel_dp->lane_count;
  71. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  72. *link_bw = 162000;
  73. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  74. *link_bw = 270000;
  75. }
  76. static int
  77. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  78. {
  79. int max_lane_count = 4;
  80. if (intel_dp->dpcd[0] >= 0x11) {
  81. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  82. switch (max_lane_count) {
  83. case 1: case 2: case 4:
  84. break;
  85. default:
  86. max_lane_count = 4;
  87. }
  88. }
  89. return max_lane_count;
  90. }
  91. static int
  92. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  93. {
  94. int max_link_bw = intel_dp->dpcd[1];
  95. switch (max_link_bw) {
  96. case DP_LINK_BW_1_62:
  97. case DP_LINK_BW_2_7:
  98. break;
  99. default:
  100. max_link_bw = DP_LINK_BW_1_62;
  101. break;
  102. }
  103. return max_link_bw;
  104. }
  105. static int
  106. intel_dp_link_clock(uint8_t link_bw)
  107. {
  108. if (link_bw == DP_LINK_BW_2_7)
  109. return 270000;
  110. else
  111. return 162000;
  112. }
  113. /* I think this is a fiction */
  114. static int
  115. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  116. {
  117. struct drm_i915_private *dev_priv = dev->dev_private;
  118. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  119. return (pixel_clock * dev_priv->edp_bpp) / 8;
  120. else
  121. return pixel_clock * 3;
  122. }
  123. static int
  124. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  125. {
  126. return (max_link_clock * max_lanes * 8) / 10;
  127. }
  128. static int
  129. intel_dp_mode_valid(struct drm_connector *connector,
  130. struct drm_display_mode *mode)
  131. {
  132. struct drm_encoder *encoder = intel_attached_encoder(connector);
  133. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  134. struct drm_device *dev = connector->dev;
  135. struct drm_i915_private *dev_priv = dev->dev_private;
  136. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  137. int max_lanes = intel_dp_max_lane_count(intel_dp);
  138. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  139. dev_priv->panel_fixed_mode) {
  140. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  141. return MODE_PANEL;
  142. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  143. return MODE_PANEL;
  144. }
  145. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  146. which are outside spec tolerances but somehow work by magic */
  147. if (!IS_eDP(intel_dp) &&
  148. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  149. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  150. return MODE_CLOCK_HIGH;
  151. if (mode->clock < 10000)
  152. return MODE_CLOCK_LOW;
  153. return MODE_OK;
  154. }
  155. static uint32_t
  156. pack_aux(uint8_t *src, int src_bytes)
  157. {
  158. int i;
  159. uint32_t v = 0;
  160. if (src_bytes > 4)
  161. src_bytes = 4;
  162. for (i = 0; i < src_bytes; i++)
  163. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  164. return v;
  165. }
  166. static void
  167. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  168. {
  169. int i;
  170. if (dst_bytes > 4)
  171. dst_bytes = 4;
  172. for (i = 0; i < dst_bytes; i++)
  173. dst[i] = src >> ((3-i) * 8);
  174. }
  175. /* hrawclock is 1/4 the FSB frequency */
  176. static int
  177. intel_hrawclk(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. uint32_t clkcfg;
  181. clkcfg = I915_READ(CLKCFG);
  182. switch (clkcfg & CLKCFG_FSB_MASK) {
  183. case CLKCFG_FSB_400:
  184. return 100;
  185. case CLKCFG_FSB_533:
  186. return 133;
  187. case CLKCFG_FSB_667:
  188. return 166;
  189. case CLKCFG_FSB_800:
  190. return 200;
  191. case CLKCFG_FSB_1067:
  192. return 266;
  193. case CLKCFG_FSB_1333:
  194. return 333;
  195. /* these two are just a guess; one of them might be right */
  196. case CLKCFG_FSB_1600:
  197. case CLKCFG_FSB_1600_ALT:
  198. return 400;
  199. default:
  200. return 133;
  201. }
  202. }
  203. static int
  204. intel_dp_aux_ch(struct intel_dp *intel_dp,
  205. uint8_t *send, int send_bytes,
  206. uint8_t *recv, int recv_size)
  207. {
  208. uint32_t output_reg = intel_dp->output_reg;
  209. struct drm_device *dev = intel_dp->base.enc.dev;
  210. struct drm_i915_private *dev_priv = dev->dev_private;
  211. uint32_t ch_ctl = output_reg + 0x10;
  212. uint32_t ch_data = ch_ctl + 4;
  213. int i;
  214. int recv_bytes;
  215. uint32_t status;
  216. uint32_t aux_clock_divider;
  217. int try, precharge;
  218. /* The clock divider is based off the hrawclk,
  219. * and would like to run at 2MHz. So, take the
  220. * hrawclk value and divide by 2 and use that
  221. *
  222. * Note that PCH attached eDP panels should use a 125MHz input
  223. * clock divider.
  224. */
  225. if (IS_eDP(intel_dp) && !IS_PCH_eDP(intel_dp)) {
  226. if (IS_GEN6(dev))
  227. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  228. else
  229. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  230. } else if (HAS_PCH_SPLIT(dev))
  231. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  232. else
  233. aux_clock_divider = intel_hrawclk(dev) / 2;
  234. if (IS_GEN6(dev))
  235. precharge = 3;
  236. else
  237. precharge = 5;
  238. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  239. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  240. I915_READ(ch_ctl));
  241. return -EBUSY;
  242. }
  243. /* Must try at least 3 times according to DP spec */
  244. for (try = 0; try < 5; try++) {
  245. /* Load the send data into the aux channel data registers */
  246. for (i = 0; i < send_bytes; i += 4)
  247. I915_WRITE(ch_data + i,
  248. pack_aux(send + i, send_bytes - i));
  249. /* Send the command and wait for it to complete */
  250. I915_WRITE(ch_ctl,
  251. DP_AUX_CH_CTL_SEND_BUSY |
  252. DP_AUX_CH_CTL_TIME_OUT_400us |
  253. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  254. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  255. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  256. DP_AUX_CH_CTL_DONE |
  257. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  258. DP_AUX_CH_CTL_RECEIVE_ERROR);
  259. for (;;) {
  260. status = I915_READ(ch_ctl);
  261. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  262. break;
  263. udelay(100);
  264. }
  265. /* Clear done status and any errors */
  266. I915_WRITE(ch_ctl,
  267. status |
  268. DP_AUX_CH_CTL_DONE |
  269. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  270. DP_AUX_CH_CTL_RECEIVE_ERROR);
  271. if (status & DP_AUX_CH_CTL_DONE)
  272. break;
  273. }
  274. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  275. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  276. return -EBUSY;
  277. }
  278. /* Check for timeout or receive error.
  279. * Timeouts occur when the sink is not connected
  280. */
  281. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  282. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  283. return -EIO;
  284. }
  285. /* Timeouts occur when the device isn't connected, so they're
  286. * "normal" -- don't fill the kernel log with these */
  287. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  288. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  289. return -ETIMEDOUT;
  290. }
  291. /* Unload any bytes sent back from the other side */
  292. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  293. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  294. if (recv_bytes > recv_size)
  295. recv_bytes = recv_size;
  296. for (i = 0; i < recv_bytes; i += 4)
  297. unpack_aux(I915_READ(ch_data + i),
  298. recv + i, recv_bytes - i);
  299. return recv_bytes;
  300. }
  301. /* Write data to the aux channel in native mode */
  302. static int
  303. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  304. uint16_t address, uint8_t *send, int send_bytes)
  305. {
  306. int ret;
  307. uint8_t msg[20];
  308. int msg_bytes;
  309. uint8_t ack;
  310. if (send_bytes > 16)
  311. return -1;
  312. msg[0] = AUX_NATIVE_WRITE << 4;
  313. msg[1] = address >> 8;
  314. msg[2] = address & 0xff;
  315. msg[3] = send_bytes - 1;
  316. memcpy(&msg[4], send, send_bytes);
  317. msg_bytes = send_bytes + 4;
  318. for (;;) {
  319. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  320. if (ret < 0)
  321. return ret;
  322. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  323. break;
  324. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  325. udelay(100);
  326. else
  327. return -EIO;
  328. }
  329. return send_bytes;
  330. }
  331. /* Write a single byte to the aux channel in native mode */
  332. static int
  333. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  334. uint16_t address, uint8_t byte)
  335. {
  336. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  337. }
  338. /* read bytes from a native aux channel */
  339. static int
  340. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  341. uint16_t address, uint8_t *recv, int recv_bytes)
  342. {
  343. uint8_t msg[4];
  344. int msg_bytes;
  345. uint8_t reply[20];
  346. int reply_bytes;
  347. uint8_t ack;
  348. int ret;
  349. msg[0] = AUX_NATIVE_READ << 4;
  350. msg[1] = address >> 8;
  351. msg[2] = address & 0xff;
  352. msg[3] = recv_bytes - 1;
  353. msg_bytes = 4;
  354. reply_bytes = recv_bytes + 1;
  355. for (;;) {
  356. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  357. reply, reply_bytes);
  358. if (ret == 0)
  359. return -EPROTO;
  360. if (ret < 0)
  361. return ret;
  362. ack = reply[0];
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  364. memcpy(recv, reply + 1, ret - 1);
  365. return ret - 1;
  366. }
  367. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  368. udelay(100);
  369. else
  370. return -EIO;
  371. }
  372. }
  373. static int
  374. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  375. uint8_t write_byte, uint8_t *read_byte)
  376. {
  377. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  378. struct intel_dp *intel_dp = container_of(adapter,
  379. struct intel_dp,
  380. adapter);
  381. uint16_t address = algo_data->address;
  382. uint8_t msg[5];
  383. uint8_t reply[2];
  384. int msg_bytes;
  385. int reply_bytes;
  386. int ret;
  387. /* Set up the command byte */
  388. if (mode & MODE_I2C_READ)
  389. msg[0] = AUX_I2C_READ << 4;
  390. else
  391. msg[0] = AUX_I2C_WRITE << 4;
  392. if (!(mode & MODE_I2C_STOP))
  393. msg[0] |= AUX_I2C_MOT << 4;
  394. msg[1] = address >> 8;
  395. msg[2] = address;
  396. switch (mode) {
  397. case MODE_I2C_WRITE:
  398. msg[3] = 0;
  399. msg[4] = write_byte;
  400. msg_bytes = 5;
  401. reply_bytes = 1;
  402. break;
  403. case MODE_I2C_READ:
  404. msg[3] = 0;
  405. msg_bytes = 4;
  406. reply_bytes = 2;
  407. break;
  408. default:
  409. msg_bytes = 3;
  410. reply_bytes = 1;
  411. break;
  412. }
  413. for (;;) {
  414. ret = intel_dp_aux_ch(intel_dp,
  415. msg, msg_bytes,
  416. reply, reply_bytes);
  417. if (ret < 0) {
  418. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  419. return ret;
  420. }
  421. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  422. case AUX_I2C_REPLY_ACK:
  423. if (mode == MODE_I2C_READ) {
  424. *read_byte = reply[1];
  425. }
  426. return reply_bytes - 1;
  427. case AUX_I2C_REPLY_NACK:
  428. DRM_DEBUG_KMS("aux_ch nack\n");
  429. return -EREMOTEIO;
  430. case AUX_I2C_REPLY_DEFER:
  431. DRM_DEBUG_KMS("aux_ch defer\n");
  432. udelay(100);
  433. break;
  434. default:
  435. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  436. return -EREMOTEIO;
  437. }
  438. }
  439. }
  440. static int
  441. intel_dp_i2c_init(struct intel_dp *intel_dp,
  442. struct intel_connector *intel_connector, const char *name)
  443. {
  444. DRM_DEBUG_KMS("i2c_init %s\n", name);
  445. intel_dp->algo.running = false;
  446. intel_dp->algo.address = 0;
  447. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  448. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  449. intel_dp->adapter.owner = THIS_MODULE;
  450. intel_dp->adapter.class = I2C_CLASS_DDC;
  451. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  452. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  453. intel_dp->adapter.algo_data = &intel_dp->algo;
  454. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  455. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  456. }
  457. static bool
  458. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  459. struct drm_display_mode *adjusted_mode)
  460. {
  461. struct drm_device *dev = encoder->dev;
  462. struct drm_i915_private *dev_priv = dev->dev_private;
  463. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  464. int lane_count, clock;
  465. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  466. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  467. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  468. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  469. dev_priv->panel_fixed_mode) {
  470. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  471. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  472. mode, adjusted_mode);
  473. /*
  474. * the mode->clock is used to calculate the Data&Link M/N
  475. * of the pipe. For the eDP the fixed clock should be used.
  476. */
  477. mode->clock = dev_priv->panel_fixed_mode->clock;
  478. }
  479. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  480. for (clock = 0; clock <= max_clock; clock++) {
  481. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  482. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  483. <= link_avail) {
  484. intel_dp->link_bw = bws[clock];
  485. intel_dp->lane_count = lane_count;
  486. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  487. DRM_DEBUG_KMS("Display port link bw %02x lane "
  488. "count %d clock %d\n",
  489. intel_dp->link_bw, intel_dp->lane_count,
  490. adjusted_mode->clock);
  491. return true;
  492. }
  493. }
  494. }
  495. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  496. /* okay we failed just pick the highest */
  497. intel_dp->lane_count = max_lane_count;
  498. intel_dp->link_bw = bws[max_clock];
  499. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  500. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  501. "count %d clock %d\n",
  502. intel_dp->link_bw, intel_dp->lane_count,
  503. adjusted_mode->clock);
  504. return true;
  505. }
  506. return false;
  507. }
  508. struct intel_dp_m_n {
  509. uint32_t tu;
  510. uint32_t gmch_m;
  511. uint32_t gmch_n;
  512. uint32_t link_m;
  513. uint32_t link_n;
  514. };
  515. static void
  516. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  517. {
  518. while (*num > 0xffffff || *den > 0xffffff) {
  519. *num >>= 1;
  520. *den >>= 1;
  521. }
  522. }
  523. static void
  524. intel_dp_compute_m_n(int bpp,
  525. int nlanes,
  526. int pixel_clock,
  527. int link_clock,
  528. struct intel_dp_m_n *m_n)
  529. {
  530. m_n->tu = 64;
  531. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  532. m_n->gmch_n = link_clock * nlanes;
  533. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  534. m_n->link_m = pixel_clock;
  535. m_n->link_n = link_clock;
  536. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  537. }
  538. bool intel_pch_has_edp(struct drm_crtc *crtc)
  539. {
  540. struct drm_device *dev = crtc->dev;
  541. struct drm_mode_config *mode_config = &dev->mode_config;
  542. struct drm_encoder *encoder;
  543. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  544. struct intel_dp *intel_dp;
  545. if (encoder->crtc != crtc)
  546. continue;
  547. intel_dp = enc_to_intel_dp(encoder);
  548. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  549. return intel_dp->is_pch_edp;
  550. }
  551. return false;
  552. }
  553. void
  554. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  555. struct drm_display_mode *adjusted_mode)
  556. {
  557. struct drm_device *dev = crtc->dev;
  558. struct drm_mode_config *mode_config = &dev->mode_config;
  559. struct drm_encoder *encoder;
  560. struct drm_i915_private *dev_priv = dev->dev_private;
  561. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  562. int lane_count = 4, bpp = 24;
  563. struct intel_dp_m_n m_n;
  564. /*
  565. * Find the lane count in the intel_encoder private
  566. */
  567. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  568. struct intel_dp *intel_dp;
  569. if (encoder->crtc != crtc)
  570. continue;
  571. intel_dp = enc_to_intel_dp(encoder);
  572. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  573. lane_count = intel_dp->lane_count;
  574. if (IS_PCH_eDP(intel_dp))
  575. bpp = dev_priv->edp_bpp;
  576. break;
  577. }
  578. }
  579. /*
  580. * Compute the GMCH and Link ratios. The '3' here is
  581. * the number of bytes_per_pixel post-LUT, which we always
  582. * set up for 8-bits of R/G/B, or 3 bytes total.
  583. */
  584. intel_dp_compute_m_n(bpp, lane_count,
  585. mode->clock, adjusted_mode->clock, &m_n);
  586. if (HAS_PCH_SPLIT(dev)) {
  587. if (intel_crtc->pipe == 0) {
  588. I915_WRITE(TRANSA_DATA_M1,
  589. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  590. m_n.gmch_m);
  591. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  592. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  593. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  594. } else {
  595. I915_WRITE(TRANSB_DATA_M1,
  596. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  597. m_n.gmch_m);
  598. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  599. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  600. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  601. }
  602. } else {
  603. if (intel_crtc->pipe == 0) {
  604. I915_WRITE(PIPEA_GMCH_DATA_M,
  605. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  606. m_n.gmch_m);
  607. I915_WRITE(PIPEA_GMCH_DATA_N,
  608. m_n.gmch_n);
  609. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  610. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  611. } else {
  612. I915_WRITE(PIPEB_GMCH_DATA_M,
  613. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  614. m_n.gmch_m);
  615. I915_WRITE(PIPEB_GMCH_DATA_N,
  616. m_n.gmch_n);
  617. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  618. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  619. }
  620. }
  621. }
  622. static void
  623. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  624. struct drm_display_mode *adjusted_mode)
  625. {
  626. struct drm_device *dev = encoder->dev;
  627. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  628. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  629. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  630. intel_dp->DP = (DP_VOLTAGE_0_4 |
  631. DP_PRE_EMPHASIS_0);
  632. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  633. intel_dp->DP |= DP_SYNC_HS_HIGH;
  634. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  635. intel_dp->DP |= DP_SYNC_VS_HIGH;
  636. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  637. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  638. else
  639. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  640. switch (intel_dp->lane_count) {
  641. case 1:
  642. intel_dp->DP |= DP_PORT_WIDTH_1;
  643. break;
  644. case 2:
  645. intel_dp->DP |= DP_PORT_WIDTH_2;
  646. break;
  647. case 4:
  648. intel_dp->DP |= DP_PORT_WIDTH_4;
  649. break;
  650. }
  651. if (intel_dp->has_audio)
  652. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  653. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  654. intel_dp->link_configuration[0] = intel_dp->link_bw;
  655. intel_dp->link_configuration[1] = intel_dp->lane_count;
  656. /*
  657. * Check for DPCD version > 1.1 and enhanced framing support
  658. */
  659. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  660. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  661. intel_dp->DP |= DP_ENHANCED_FRAMING;
  662. }
  663. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  664. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  665. intel_dp->DP |= DP_PIPEB_SELECT;
  666. if (IS_eDP(intel_dp)) {
  667. /* don't miss out required setting for eDP */
  668. intel_dp->DP |= DP_PLL_ENABLE;
  669. if (adjusted_mode->clock < 200000)
  670. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  671. else
  672. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  673. }
  674. }
  675. /* Returns true if the panel was already on when called */
  676. static bool ironlake_edp_panel_on (struct drm_device *dev)
  677. {
  678. struct drm_i915_private *dev_priv = dev->dev_private;
  679. u32 pp;
  680. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  681. return true;
  682. pp = I915_READ(PCH_PP_CONTROL);
  683. /* ILK workaround: disable reset around power sequence */
  684. pp &= ~PANEL_POWER_RESET;
  685. I915_WRITE(PCH_PP_CONTROL, pp);
  686. POSTING_READ(PCH_PP_CONTROL);
  687. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  688. I915_WRITE(PCH_PP_CONTROL, pp);
  689. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
  690. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  691. I915_READ(PCH_PP_STATUS));
  692. pp &= ~(PANEL_UNLOCK_REGS);
  693. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  694. I915_WRITE(PCH_PP_CONTROL, pp);
  695. POSTING_READ(PCH_PP_CONTROL);
  696. return false;
  697. }
  698. static void ironlake_edp_panel_off (struct drm_device *dev)
  699. {
  700. struct drm_i915_private *dev_priv = dev->dev_private;
  701. u32 pp;
  702. pp = I915_READ(PCH_PP_CONTROL);
  703. /* ILK workaround: disable reset around power sequence */
  704. pp &= ~PANEL_POWER_RESET;
  705. I915_WRITE(PCH_PP_CONTROL, pp);
  706. POSTING_READ(PCH_PP_CONTROL);
  707. pp &= ~POWER_TARGET_ON;
  708. I915_WRITE(PCH_PP_CONTROL, pp);
  709. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
  710. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  711. I915_READ(PCH_PP_STATUS));
  712. /* Make sure VDD is enabled so DP AUX will work */
  713. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  714. I915_WRITE(PCH_PP_CONTROL, pp);
  715. POSTING_READ(PCH_PP_CONTROL);
  716. }
  717. static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
  718. {
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. u32 pp;
  721. pp = I915_READ(PCH_PP_CONTROL);
  722. pp |= EDP_FORCE_VDD;
  723. I915_WRITE(PCH_PP_CONTROL, pp);
  724. POSTING_READ(PCH_PP_CONTROL);
  725. msleep(300);
  726. }
  727. static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. u32 pp;
  731. pp = I915_READ(PCH_PP_CONTROL);
  732. pp &= ~EDP_FORCE_VDD;
  733. I915_WRITE(PCH_PP_CONTROL, pp);
  734. POSTING_READ(PCH_PP_CONTROL);
  735. msleep(300);
  736. }
  737. static void ironlake_edp_backlight_on (struct drm_device *dev)
  738. {
  739. struct drm_i915_private *dev_priv = dev->dev_private;
  740. u32 pp;
  741. DRM_DEBUG_KMS("\n");
  742. pp = I915_READ(PCH_PP_CONTROL);
  743. pp |= EDP_BLC_ENABLE;
  744. I915_WRITE(PCH_PP_CONTROL, pp);
  745. }
  746. static void ironlake_edp_backlight_off (struct drm_device *dev)
  747. {
  748. struct drm_i915_private *dev_priv = dev->dev_private;
  749. u32 pp;
  750. DRM_DEBUG_KMS("\n");
  751. pp = I915_READ(PCH_PP_CONTROL);
  752. pp &= ~EDP_BLC_ENABLE;
  753. I915_WRITE(PCH_PP_CONTROL, pp);
  754. }
  755. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  756. {
  757. struct drm_device *dev = encoder->dev;
  758. struct drm_i915_private *dev_priv = dev->dev_private;
  759. u32 dpa_ctl;
  760. DRM_DEBUG_KMS("\n");
  761. dpa_ctl = I915_READ(DP_A);
  762. dpa_ctl &= ~DP_PLL_ENABLE;
  763. I915_WRITE(DP_A, dpa_ctl);
  764. }
  765. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  766. {
  767. struct drm_device *dev = encoder->dev;
  768. struct drm_i915_private *dev_priv = dev->dev_private;
  769. u32 dpa_ctl;
  770. dpa_ctl = I915_READ(DP_A);
  771. dpa_ctl |= DP_PLL_ENABLE;
  772. I915_WRITE(DP_A, dpa_ctl);
  773. POSTING_READ(DP_A);
  774. udelay(200);
  775. }
  776. static void intel_dp_prepare(struct drm_encoder *encoder)
  777. {
  778. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  779. struct drm_device *dev = encoder->dev;
  780. struct drm_i915_private *dev_priv = dev->dev_private;
  781. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  782. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  783. ironlake_edp_panel_off(dev);
  784. ironlake_edp_backlight_off(dev);
  785. ironlake_edp_panel_vdd_on(dev);
  786. ironlake_edp_pll_on(encoder);
  787. }
  788. if (dp_reg & DP_PORT_EN)
  789. intel_dp_link_down(intel_dp);
  790. }
  791. static void intel_dp_commit(struct drm_encoder *encoder)
  792. {
  793. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  794. struct drm_device *dev = encoder->dev;
  795. intel_dp_start_link_train(intel_dp);
  796. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  797. ironlake_edp_panel_on(dev);
  798. intel_dp_complete_link_train(intel_dp);
  799. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  800. ironlake_edp_backlight_on(dev);
  801. }
  802. static void
  803. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  804. {
  805. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  806. struct drm_device *dev = encoder->dev;
  807. struct drm_i915_private *dev_priv = dev->dev_private;
  808. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  809. if (mode != DRM_MODE_DPMS_ON) {
  810. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  811. ironlake_edp_backlight_off(dev);
  812. ironlake_edp_panel_off(dev);
  813. }
  814. if (dp_reg & DP_PORT_EN)
  815. intel_dp_link_down(intel_dp);
  816. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  817. ironlake_edp_pll_off(encoder);
  818. } else {
  819. if (!(dp_reg & DP_PORT_EN)) {
  820. intel_dp_start_link_train(intel_dp);
  821. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  822. ironlake_edp_panel_on(dev);
  823. intel_dp_complete_link_train(intel_dp);
  824. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  825. ironlake_edp_backlight_on(dev);
  826. }
  827. }
  828. intel_dp->dpms_mode = mode;
  829. }
  830. /*
  831. * Fetch AUX CH registers 0x202 - 0x207 which contain
  832. * link status information
  833. */
  834. static bool
  835. intel_dp_get_link_status(struct intel_dp *intel_dp)
  836. {
  837. int ret;
  838. ret = intel_dp_aux_native_read(intel_dp,
  839. DP_LANE0_1_STATUS,
  840. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  841. if (ret != DP_LINK_STATUS_SIZE)
  842. return false;
  843. return true;
  844. }
  845. static uint8_t
  846. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  847. int r)
  848. {
  849. return link_status[r - DP_LANE0_1_STATUS];
  850. }
  851. static uint8_t
  852. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  853. int lane)
  854. {
  855. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  856. int s = ((lane & 1) ?
  857. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  858. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  859. uint8_t l = intel_dp_link_status(link_status, i);
  860. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  861. }
  862. static uint8_t
  863. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  864. int lane)
  865. {
  866. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  867. int s = ((lane & 1) ?
  868. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  869. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  870. uint8_t l = intel_dp_link_status(link_status, i);
  871. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  872. }
  873. #if 0
  874. static char *voltage_names[] = {
  875. "0.4V", "0.6V", "0.8V", "1.2V"
  876. };
  877. static char *pre_emph_names[] = {
  878. "0dB", "3.5dB", "6dB", "9.5dB"
  879. };
  880. static char *link_train_names[] = {
  881. "pattern 1", "pattern 2", "idle", "off"
  882. };
  883. #endif
  884. /*
  885. * These are source-specific values; current Intel hardware supports
  886. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  887. */
  888. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  889. static uint8_t
  890. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  891. {
  892. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  893. case DP_TRAIN_VOLTAGE_SWING_400:
  894. return DP_TRAIN_PRE_EMPHASIS_6;
  895. case DP_TRAIN_VOLTAGE_SWING_600:
  896. return DP_TRAIN_PRE_EMPHASIS_6;
  897. case DP_TRAIN_VOLTAGE_SWING_800:
  898. return DP_TRAIN_PRE_EMPHASIS_3_5;
  899. case DP_TRAIN_VOLTAGE_SWING_1200:
  900. default:
  901. return DP_TRAIN_PRE_EMPHASIS_0;
  902. }
  903. }
  904. static void
  905. intel_get_adjust_train(struct intel_dp *intel_dp)
  906. {
  907. uint8_t v = 0;
  908. uint8_t p = 0;
  909. int lane;
  910. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  911. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  912. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  913. if (this_v > v)
  914. v = this_v;
  915. if (this_p > p)
  916. p = this_p;
  917. }
  918. if (v >= I830_DP_VOLTAGE_MAX)
  919. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  920. if (p >= intel_dp_pre_emphasis_max(v))
  921. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  922. for (lane = 0; lane < 4; lane++)
  923. intel_dp->train_set[lane] = v | p;
  924. }
  925. static uint32_t
  926. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  927. {
  928. uint32_t signal_levels = 0;
  929. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  930. case DP_TRAIN_VOLTAGE_SWING_400:
  931. default:
  932. signal_levels |= DP_VOLTAGE_0_4;
  933. break;
  934. case DP_TRAIN_VOLTAGE_SWING_600:
  935. signal_levels |= DP_VOLTAGE_0_6;
  936. break;
  937. case DP_TRAIN_VOLTAGE_SWING_800:
  938. signal_levels |= DP_VOLTAGE_0_8;
  939. break;
  940. case DP_TRAIN_VOLTAGE_SWING_1200:
  941. signal_levels |= DP_VOLTAGE_1_2;
  942. break;
  943. }
  944. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  945. case DP_TRAIN_PRE_EMPHASIS_0:
  946. default:
  947. signal_levels |= DP_PRE_EMPHASIS_0;
  948. break;
  949. case DP_TRAIN_PRE_EMPHASIS_3_5:
  950. signal_levels |= DP_PRE_EMPHASIS_3_5;
  951. break;
  952. case DP_TRAIN_PRE_EMPHASIS_6:
  953. signal_levels |= DP_PRE_EMPHASIS_6;
  954. break;
  955. case DP_TRAIN_PRE_EMPHASIS_9_5:
  956. signal_levels |= DP_PRE_EMPHASIS_9_5;
  957. break;
  958. }
  959. return signal_levels;
  960. }
  961. /* Gen6's DP voltage swing and pre-emphasis control */
  962. static uint32_t
  963. intel_gen6_edp_signal_levels(uint8_t train_set)
  964. {
  965. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  966. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  967. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  968. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  969. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  970. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  971. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  972. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  973. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  974. default:
  975. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  976. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  977. }
  978. }
  979. static uint8_t
  980. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  981. int lane)
  982. {
  983. int i = DP_LANE0_1_STATUS + (lane >> 1);
  984. int s = (lane & 1) * 4;
  985. uint8_t l = intel_dp_link_status(link_status, i);
  986. return (l >> s) & 0xf;
  987. }
  988. /* Check for clock recovery is done on all channels */
  989. static bool
  990. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  991. {
  992. int lane;
  993. uint8_t lane_status;
  994. for (lane = 0; lane < lane_count; lane++) {
  995. lane_status = intel_get_lane_status(link_status, lane);
  996. if ((lane_status & DP_LANE_CR_DONE) == 0)
  997. return false;
  998. }
  999. return true;
  1000. }
  1001. /* Check to see if channel eq is done on all channels */
  1002. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1003. DP_LANE_CHANNEL_EQ_DONE|\
  1004. DP_LANE_SYMBOL_LOCKED)
  1005. static bool
  1006. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1007. {
  1008. uint8_t lane_align;
  1009. uint8_t lane_status;
  1010. int lane;
  1011. lane_align = intel_dp_link_status(intel_dp->link_status,
  1012. DP_LANE_ALIGN_STATUS_UPDATED);
  1013. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1014. return false;
  1015. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1016. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1017. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1018. return false;
  1019. }
  1020. return true;
  1021. }
  1022. static bool
  1023. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1024. uint32_t dp_reg_value,
  1025. uint8_t dp_train_pat,
  1026. bool first)
  1027. {
  1028. struct drm_device *dev = intel_dp->base.enc.dev;
  1029. struct drm_i915_private *dev_priv = dev->dev_private;
  1030. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.enc.crtc);
  1031. int ret;
  1032. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1033. POSTING_READ(intel_dp->output_reg);
  1034. if (first)
  1035. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1036. intel_dp_aux_native_write_1(intel_dp,
  1037. DP_TRAINING_PATTERN_SET,
  1038. dp_train_pat);
  1039. ret = intel_dp_aux_native_write(intel_dp,
  1040. DP_TRAINING_LANE0_SET, intel_dp->train_set, 4);
  1041. if (ret != 4)
  1042. return false;
  1043. return true;
  1044. }
  1045. /* Enable corresponding port and start training pattern 1 */
  1046. static void
  1047. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1048. {
  1049. struct drm_device *dev = intel_dp->base.enc.dev;
  1050. int i;
  1051. uint8_t voltage;
  1052. bool clock_recovery = false;
  1053. bool first = true;
  1054. int tries;
  1055. u32 reg;
  1056. uint32_t DP = intel_dp->DP;
  1057. /* Write the link configuration data */
  1058. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1059. intel_dp->link_configuration,
  1060. DP_LINK_CONFIGURATION_SIZE);
  1061. DP |= DP_PORT_EN;
  1062. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1063. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1064. else
  1065. DP &= ~DP_LINK_TRAIN_MASK;
  1066. memset(intel_dp->train_set, 0, 4);
  1067. voltage = 0xff;
  1068. tries = 0;
  1069. clock_recovery = false;
  1070. for (;;) {
  1071. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1072. uint32_t signal_levels;
  1073. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1074. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1075. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1076. } else {
  1077. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1078. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1079. }
  1080. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1081. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1082. else
  1083. reg = DP | DP_LINK_TRAIN_PAT_1;
  1084. if (!intel_dp_set_link_train(intel_dp, reg,
  1085. DP_TRAINING_PATTERN_1, first))
  1086. break;
  1087. first = false;
  1088. /* Set training pattern 1 */
  1089. udelay(100);
  1090. if (!intel_dp_get_link_status(intel_dp))
  1091. break;
  1092. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1093. clock_recovery = true;
  1094. break;
  1095. }
  1096. /* Check to see if we've tried the max voltage */
  1097. for (i = 0; i < intel_dp->lane_count; i++)
  1098. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1099. break;
  1100. if (i == intel_dp->lane_count)
  1101. break;
  1102. /* Check to see if we've tried the same voltage 5 times */
  1103. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1104. ++tries;
  1105. if (tries == 5)
  1106. break;
  1107. } else
  1108. tries = 0;
  1109. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1110. /* Compute new intel_dp->train_set as requested by target */
  1111. intel_get_adjust_train(intel_dp);
  1112. }
  1113. intel_dp->DP = DP;
  1114. }
  1115. static void
  1116. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1117. {
  1118. struct drm_device *dev = intel_dp->base.enc.dev;
  1119. struct drm_i915_private *dev_priv = dev->dev_private;
  1120. bool channel_eq = false;
  1121. int tries;
  1122. u32 reg;
  1123. uint32_t DP = intel_dp->DP;
  1124. /* channel equalization */
  1125. tries = 0;
  1126. channel_eq = false;
  1127. for (;;) {
  1128. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1129. uint32_t signal_levels;
  1130. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1131. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1132. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1133. } else {
  1134. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1135. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1136. }
  1137. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1138. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1139. else
  1140. reg = DP | DP_LINK_TRAIN_PAT_2;
  1141. /* channel eq pattern */
  1142. if (!intel_dp_set_link_train(intel_dp, reg,
  1143. DP_TRAINING_PATTERN_2,
  1144. false))
  1145. break;
  1146. udelay(400);
  1147. if (!intel_dp_get_link_status(intel_dp))
  1148. break;
  1149. if (intel_channel_eq_ok(intel_dp)) {
  1150. channel_eq = true;
  1151. break;
  1152. }
  1153. /* Try 5 times */
  1154. if (tries > 5)
  1155. break;
  1156. /* Compute new intel_dp->train_set as requested by target */
  1157. intel_get_adjust_train(intel_dp);
  1158. ++tries;
  1159. }
  1160. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1161. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1162. else
  1163. reg = DP | DP_LINK_TRAIN_OFF;
  1164. I915_WRITE(intel_dp->output_reg, reg);
  1165. POSTING_READ(intel_dp->output_reg);
  1166. intel_dp_aux_native_write_1(intel_dp,
  1167. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1168. }
  1169. static void
  1170. intel_dp_link_down(struct intel_dp *intel_dp)
  1171. {
  1172. struct drm_device *dev = intel_dp->base.enc.dev;
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. uint32_t DP = intel_dp->DP;
  1175. DRM_DEBUG_KMS("\n");
  1176. if (IS_eDP(intel_dp)) {
  1177. DP &= ~DP_PLL_ENABLE;
  1178. I915_WRITE(intel_dp->output_reg, DP);
  1179. POSTING_READ(intel_dp->output_reg);
  1180. udelay(100);
  1181. }
  1182. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1183. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1184. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1185. POSTING_READ(intel_dp->output_reg);
  1186. } else {
  1187. DP &= ~DP_LINK_TRAIN_MASK;
  1188. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1189. POSTING_READ(intel_dp->output_reg);
  1190. }
  1191. udelay(17000);
  1192. if (IS_eDP(intel_dp))
  1193. DP |= DP_LINK_TRAIN_OFF;
  1194. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1195. POSTING_READ(intel_dp->output_reg);
  1196. }
  1197. /*
  1198. * According to DP spec
  1199. * 5.1.2:
  1200. * 1. Read DPCD
  1201. * 2. Configure link according to Receiver Capabilities
  1202. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1203. * 4. Check link status on receipt of hot-plug interrupt
  1204. */
  1205. static void
  1206. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1207. {
  1208. if (!intel_dp->base.enc.crtc)
  1209. return;
  1210. if (!intel_dp_get_link_status(intel_dp)) {
  1211. intel_dp_link_down(intel_dp);
  1212. return;
  1213. }
  1214. if (!intel_channel_eq_ok(intel_dp)) {
  1215. intel_dp_start_link_train(intel_dp);
  1216. intel_dp_complete_link_train(intel_dp);
  1217. }
  1218. }
  1219. static enum drm_connector_status
  1220. ironlake_dp_detect(struct drm_connector *connector)
  1221. {
  1222. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1223. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1224. enum drm_connector_status status;
  1225. /* Panel needs power for AUX to work */
  1226. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  1227. ironlake_edp_panel_vdd_on(connector->dev);
  1228. status = connector_status_disconnected;
  1229. if (intel_dp_aux_native_read(intel_dp,
  1230. 0x000, intel_dp->dpcd,
  1231. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1232. {
  1233. if (intel_dp->dpcd[0] != 0)
  1234. status = connector_status_connected;
  1235. }
  1236. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1237. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1238. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  1239. ironlake_edp_panel_vdd_off(connector->dev);
  1240. return status;
  1241. }
  1242. /**
  1243. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1244. *
  1245. * \return true if DP port is connected.
  1246. * \return false if DP port is disconnected.
  1247. */
  1248. static enum drm_connector_status
  1249. intel_dp_detect(struct drm_connector *connector)
  1250. {
  1251. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1252. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1253. struct drm_device *dev = intel_dp->base.enc.dev;
  1254. struct drm_i915_private *dev_priv = dev->dev_private;
  1255. uint32_t temp, bit;
  1256. enum drm_connector_status status;
  1257. intel_dp->has_audio = false;
  1258. if (HAS_PCH_SPLIT(dev))
  1259. return ironlake_dp_detect(connector);
  1260. switch (intel_dp->output_reg) {
  1261. case DP_B:
  1262. bit = DPB_HOTPLUG_INT_STATUS;
  1263. break;
  1264. case DP_C:
  1265. bit = DPC_HOTPLUG_INT_STATUS;
  1266. break;
  1267. case DP_D:
  1268. bit = DPD_HOTPLUG_INT_STATUS;
  1269. break;
  1270. default:
  1271. return connector_status_unknown;
  1272. }
  1273. temp = I915_READ(PORT_HOTPLUG_STAT);
  1274. if ((temp & bit) == 0)
  1275. return connector_status_disconnected;
  1276. status = connector_status_disconnected;
  1277. if (intel_dp_aux_native_read(intel_dp,
  1278. 0x000, intel_dp->dpcd,
  1279. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1280. {
  1281. if (intel_dp->dpcd[0] != 0)
  1282. status = connector_status_connected;
  1283. }
  1284. return status;
  1285. }
  1286. static int intel_dp_get_modes(struct drm_connector *connector)
  1287. {
  1288. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1289. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1290. struct drm_device *dev = intel_dp->base.enc.dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. int ret;
  1293. /* We should parse the EDID data and find out if it has an audio sink
  1294. */
  1295. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1296. if (ret) {
  1297. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1298. !dev_priv->panel_fixed_mode) {
  1299. struct drm_display_mode *newmode;
  1300. list_for_each_entry(newmode, &connector->probed_modes,
  1301. head) {
  1302. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1303. dev_priv->panel_fixed_mode =
  1304. drm_mode_duplicate(dev, newmode);
  1305. break;
  1306. }
  1307. }
  1308. }
  1309. return ret;
  1310. }
  1311. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1312. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1313. if (dev_priv->panel_fixed_mode != NULL) {
  1314. struct drm_display_mode *mode;
  1315. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1316. drm_mode_probed_add(connector, mode);
  1317. return 1;
  1318. }
  1319. }
  1320. return 0;
  1321. }
  1322. static void
  1323. intel_dp_destroy (struct drm_connector *connector)
  1324. {
  1325. drm_sysfs_connector_remove(connector);
  1326. drm_connector_cleanup(connector);
  1327. kfree(connector);
  1328. }
  1329. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1330. {
  1331. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1332. i2c_del_adapter(&intel_dp->adapter);
  1333. drm_encoder_cleanup(encoder);
  1334. kfree(intel_dp);
  1335. }
  1336. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1337. .dpms = intel_dp_dpms,
  1338. .mode_fixup = intel_dp_mode_fixup,
  1339. .prepare = intel_dp_prepare,
  1340. .mode_set = intel_dp_mode_set,
  1341. .commit = intel_dp_commit,
  1342. };
  1343. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1344. .dpms = drm_helper_connector_dpms,
  1345. .detect = intel_dp_detect,
  1346. .fill_modes = drm_helper_probe_single_connector_modes,
  1347. .destroy = intel_dp_destroy,
  1348. };
  1349. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1350. .get_modes = intel_dp_get_modes,
  1351. .mode_valid = intel_dp_mode_valid,
  1352. .best_encoder = intel_attached_encoder,
  1353. };
  1354. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1355. .destroy = intel_dp_encoder_destroy,
  1356. };
  1357. static void
  1358. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1359. {
  1360. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1361. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1362. intel_dp_check_link_status(intel_dp);
  1363. }
  1364. /* Return which DP Port should be selected for Transcoder DP control */
  1365. int
  1366. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1367. {
  1368. struct drm_device *dev = crtc->dev;
  1369. struct drm_mode_config *mode_config = &dev->mode_config;
  1370. struct drm_encoder *encoder;
  1371. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1372. struct intel_dp *intel_dp;
  1373. if (encoder->crtc != crtc)
  1374. continue;
  1375. intel_dp = enc_to_intel_dp(encoder);
  1376. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1377. return intel_dp->output_reg;
  1378. }
  1379. return -1;
  1380. }
  1381. /* check the VBT to see whether the eDP is on DP-D port */
  1382. bool intel_dpd_is_edp(struct drm_device *dev)
  1383. {
  1384. struct drm_i915_private *dev_priv = dev->dev_private;
  1385. struct child_device_config *p_child;
  1386. int i;
  1387. if (!dev_priv->child_dev_num)
  1388. return false;
  1389. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1390. p_child = dev_priv->child_dev + i;
  1391. if (p_child->dvo_port == PORT_IDPD &&
  1392. p_child->device_type == DEVICE_TYPE_eDP)
  1393. return true;
  1394. }
  1395. return false;
  1396. }
  1397. void
  1398. intel_dp_init(struct drm_device *dev, int output_reg)
  1399. {
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. struct drm_connector *connector;
  1402. struct intel_dp *intel_dp;
  1403. struct intel_encoder *intel_encoder;
  1404. struct intel_connector *intel_connector;
  1405. const char *name = NULL;
  1406. int type;
  1407. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1408. if (!intel_dp)
  1409. return;
  1410. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1411. if (!intel_connector) {
  1412. kfree(intel_dp);
  1413. return;
  1414. }
  1415. intel_encoder = &intel_dp->base;
  1416. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1417. if (intel_dpd_is_edp(dev))
  1418. intel_dp->is_pch_edp = true;
  1419. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1420. type = DRM_MODE_CONNECTOR_eDP;
  1421. intel_encoder->type = INTEL_OUTPUT_EDP;
  1422. } else {
  1423. type = DRM_MODE_CONNECTOR_DisplayPort;
  1424. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1425. }
  1426. connector = &intel_connector->base;
  1427. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1428. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1429. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1430. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1431. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1432. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1433. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1434. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1435. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1436. if (IS_eDP(intel_dp))
  1437. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1438. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1439. connector->interlace_allowed = true;
  1440. connector->doublescan_allowed = 0;
  1441. intel_dp->output_reg = output_reg;
  1442. intel_dp->has_audio = false;
  1443. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1444. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1445. DRM_MODE_ENCODER_TMDS);
  1446. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1447. drm_mode_connector_attach_encoder(&intel_connector->base,
  1448. &intel_encoder->enc);
  1449. drm_sysfs_connector_add(connector);
  1450. /* Set up the DDC bus. */
  1451. switch (output_reg) {
  1452. case DP_A:
  1453. name = "DPDDC-A";
  1454. break;
  1455. case DP_B:
  1456. case PCH_DP_B:
  1457. dev_priv->hotplug_supported_mask |=
  1458. HDMIB_HOTPLUG_INT_STATUS;
  1459. name = "DPDDC-B";
  1460. break;
  1461. case DP_C:
  1462. case PCH_DP_C:
  1463. dev_priv->hotplug_supported_mask |=
  1464. HDMIC_HOTPLUG_INT_STATUS;
  1465. name = "DPDDC-C";
  1466. break;
  1467. case DP_D:
  1468. case PCH_DP_D:
  1469. dev_priv->hotplug_supported_mask |=
  1470. HDMID_HOTPLUG_INT_STATUS;
  1471. name = "DPDDC-D";
  1472. break;
  1473. }
  1474. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1475. intel_encoder->ddc_bus = &intel_dp->adapter;
  1476. intel_encoder->hot_plug = intel_dp_hot_plug;
  1477. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1478. /* initialize panel mode from VBT if available for eDP */
  1479. if (dev_priv->lfp_lvds_vbt_mode) {
  1480. dev_priv->panel_fixed_mode =
  1481. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1482. if (dev_priv->panel_fixed_mode) {
  1483. dev_priv->panel_fixed_mode->type |=
  1484. DRM_MODE_TYPE_PREFERRED;
  1485. }
  1486. }
  1487. }
  1488. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1489. * 0xd. Failure to do so will result in spurious interrupts being
  1490. * generated on the port when a cable is not attached.
  1491. */
  1492. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1493. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1494. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1495. }
  1496. }