forcedeth.c 135 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  111. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  112. *
  113. * Known bugs:
  114. * We suspect that on some hardware no TX done interrupts are generated.
  115. * This means recovery from netif_stop_queue only happens if the hw timer
  116. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  117. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  118. * If your hardware reliably generates tx done interrupts, then you can remove
  119. * DEV_NEED_TIMERIRQ from the driver_data flags.
  120. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  121. * superfluous timer interrupts from the nic.
  122. */
  123. #define FORCEDETH_VERSION "0.56"
  124. #define DRV_NAME "forcedeth"
  125. #include <linux/module.h>
  126. #include <linux/types.h>
  127. #include <linux/pci.h>
  128. #include <linux/interrupt.h>
  129. #include <linux/netdevice.h>
  130. #include <linux/etherdevice.h>
  131. #include <linux/delay.h>
  132. #include <linux/spinlock.h>
  133. #include <linux/ethtool.h>
  134. #include <linux/timer.h>
  135. #include <linux/skbuff.h>
  136. #include <linux/mii.h>
  137. #include <linux/random.h>
  138. #include <linux/init.h>
  139. #include <linux/if_vlan.h>
  140. #include <linux/dma-mapping.h>
  141. #include <asm/irq.h>
  142. #include <asm/io.h>
  143. #include <asm/uaccess.h>
  144. #include <asm/system.h>
  145. #if 0
  146. #define dprintk printk
  147. #else
  148. #define dprintk(x...) do { } while (0)
  149. #endif
  150. /*
  151. * Hardware access:
  152. */
  153. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  154. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  155. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  156. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  157. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  158. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  159. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  160. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  161. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  162. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  163. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  164. #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
  165. enum {
  166. NvRegIrqStatus = 0x000,
  167. #define NVREG_IRQSTAT_MIIEVENT 0x040
  168. #define NVREG_IRQSTAT_MASK 0x1ff
  169. NvRegIrqMask = 0x004,
  170. #define NVREG_IRQ_RX_ERROR 0x0001
  171. #define NVREG_IRQ_RX 0x0002
  172. #define NVREG_IRQ_RX_NOBUF 0x0004
  173. #define NVREG_IRQ_TX_ERR 0x0008
  174. #define NVREG_IRQ_TX_OK 0x0010
  175. #define NVREG_IRQ_TIMER 0x0020
  176. #define NVREG_IRQ_LINK 0x0040
  177. #define NVREG_IRQ_RX_FORCED 0x0080
  178. #define NVREG_IRQ_TX_FORCED 0x0100
  179. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  180. #define NVREG_IRQMASK_CPU 0x0040
  181. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  182. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  183. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  184. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  185. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  186. NVREG_IRQ_TX_FORCED))
  187. NvRegUnknownSetupReg6 = 0x008,
  188. #define NVREG_UNKSETUP6_VAL 3
  189. /*
  190. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  191. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  192. */
  193. NvRegPollingInterval = 0x00c,
  194. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  195. #define NVREG_POLL_DEFAULT_CPU 13
  196. NvRegMSIMap0 = 0x020,
  197. NvRegMSIMap1 = 0x024,
  198. NvRegMSIIrqMask = 0x030,
  199. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  200. NvRegMisc1 = 0x080,
  201. #define NVREG_MISC1_PAUSE_TX 0x01
  202. #define NVREG_MISC1_HD 0x02
  203. #define NVREG_MISC1_FORCE 0x3b0f3c
  204. NvRegMacReset = 0x3c,
  205. #define NVREG_MAC_RESET_ASSERT 0x0F3
  206. NvRegTransmitterControl = 0x084,
  207. #define NVREG_XMITCTL_START 0x01
  208. NvRegTransmitterStatus = 0x088,
  209. #define NVREG_XMITSTAT_BUSY 0x01
  210. NvRegPacketFilterFlags = 0x8c,
  211. #define NVREG_PFF_PAUSE_RX 0x08
  212. #define NVREG_PFF_ALWAYS 0x7F0000
  213. #define NVREG_PFF_PROMISC 0x80
  214. #define NVREG_PFF_MYADDR 0x20
  215. #define NVREG_PFF_LOOPBACK 0x10
  216. NvRegOffloadConfig = 0x90,
  217. #define NVREG_OFFLOAD_HOMEPHY 0x601
  218. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  219. NvRegReceiverControl = 0x094,
  220. #define NVREG_RCVCTL_START 0x01
  221. NvRegReceiverStatus = 0x98,
  222. #define NVREG_RCVSTAT_BUSY 0x01
  223. NvRegRandomSeed = 0x9c,
  224. #define NVREG_RNDSEED_MASK 0x00ff
  225. #define NVREG_RNDSEED_FORCE 0x7f00
  226. #define NVREG_RNDSEED_FORCE2 0x2d00
  227. #define NVREG_RNDSEED_FORCE3 0x7400
  228. NvRegTxDeferral = 0xA0,
  229. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  230. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  231. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  232. NvRegRxDeferral = 0xA4,
  233. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  234. NvRegMacAddrA = 0xA8,
  235. NvRegMacAddrB = 0xAC,
  236. NvRegMulticastAddrA = 0xB0,
  237. #define NVREG_MCASTADDRA_FORCE 0x01
  238. NvRegMulticastAddrB = 0xB4,
  239. NvRegMulticastMaskA = 0xB8,
  240. NvRegMulticastMaskB = 0xBC,
  241. NvRegPhyInterface = 0xC0,
  242. #define PHY_RGMII 0x10000000
  243. NvRegTxRingPhysAddr = 0x100,
  244. NvRegRxRingPhysAddr = 0x104,
  245. NvRegRingSizes = 0x108,
  246. #define NVREG_RINGSZ_TXSHIFT 0
  247. #define NVREG_RINGSZ_RXSHIFT 16
  248. NvRegUnknownTransmitterReg = 0x10c,
  249. NvRegLinkSpeed = 0x110,
  250. #define NVREG_LINKSPEED_FORCE 0x10000
  251. #define NVREG_LINKSPEED_10 1000
  252. #define NVREG_LINKSPEED_100 100
  253. #define NVREG_LINKSPEED_1000 50
  254. #define NVREG_LINKSPEED_MASK (0xFFF)
  255. NvRegUnknownSetupReg5 = 0x130,
  256. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  257. NvRegTxWatermark = 0x13c,
  258. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  259. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  260. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  261. NvRegTxRxControl = 0x144,
  262. #define NVREG_TXRXCTL_KICK 0x0001
  263. #define NVREG_TXRXCTL_BIT1 0x0002
  264. #define NVREG_TXRXCTL_BIT2 0x0004
  265. #define NVREG_TXRXCTL_IDLE 0x0008
  266. #define NVREG_TXRXCTL_RESET 0x0010
  267. #define NVREG_TXRXCTL_RXCHECK 0x0400
  268. #define NVREG_TXRXCTL_DESC_1 0
  269. #define NVREG_TXRXCTL_DESC_2 0x02100
  270. #define NVREG_TXRXCTL_DESC_3 0x02200
  271. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  272. #define NVREG_TXRXCTL_VLANINS 0x00080
  273. NvRegTxRingPhysAddrHigh = 0x148,
  274. NvRegRxRingPhysAddrHigh = 0x14C,
  275. NvRegTxPauseFrame = 0x170,
  276. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  277. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  278. NvRegMIIStatus = 0x180,
  279. #define NVREG_MIISTAT_ERROR 0x0001
  280. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  281. #define NVREG_MIISTAT_MASK 0x000f
  282. #define NVREG_MIISTAT_MASK2 0x000f
  283. NvRegUnknownSetupReg4 = 0x184,
  284. #define NVREG_UNKSETUP4_VAL 8
  285. NvRegAdapterControl = 0x188,
  286. #define NVREG_ADAPTCTL_START 0x02
  287. #define NVREG_ADAPTCTL_LINKUP 0x04
  288. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  289. #define NVREG_ADAPTCTL_RUNNING 0x100000
  290. #define NVREG_ADAPTCTL_PHYSHIFT 24
  291. NvRegMIISpeed = 0x18c,
  292. #define NVREG_MIISPEED_BIT8 (1<<8)
  293. #define NVREG_MIIDELAY 5
  294. NvRegMIIControl = 0x190,
  295. #define NVREG_MIICTL_INUSE 0x08000
  296. #define NVREG_MIICTL_WRITE 0x00400
  297. #define NVREG_MIICTL_ADDRSHIFT 5
  298. NvRegMIIData = 0x194,
  299. NvRegWakeUpFlags = 0x200,
  300. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  301. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  302. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  303. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  304. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  305. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  306. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  307. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  308. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  309. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  310. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  311. NvRegPatternCRC = 0x204,
  312. NvRegPatternMask = 0x208,
  313. NvRegPowerCap = 0x268,
  314. #define NVREG_POWERCAP_D3SUPP (1<<30)
  315. #define NVREG_POWERCAP_D2SUPP (1<<26)
  316. #define NVREG_POWERCAP_D1SUPP (1<<25)
  317. NvRegPowerState = 0x26c,
  318. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  319. #define NVREG_POWERSTATE_VALID 0x0100
  320. #define NVREG_POWERSTATE_MASK 0x0003
  321. #define NVREG_POWERSTATE_D0 0x0000
  322. #define NVREG_POWERSTATE_D1 0x0001
  323. #define NVREG_POWERSTATE_D2 0x0002
  324. #define NVREG_POWERSTATE_D3 0x0003
  325. NvRegTxCnt = 0x280,
  326. NvRegTxZeroReXmt = 0x284,
  327. NvRegTxOneReXmt = 0x288,
  328. NvRegTxManyReXmt = 0x28c,
  329. NvRegTxLateCol = 0x290,
  330. NvRegTxUnderflow = 0x294,
  331. NvRegTxLossCarrier = 0x298,
  332. NvRegTxExcessDef = 0x29c,
  333. NvRegTxRetryErr = 0x2a0,
  334. NvRegRxFrameErr = 0x2a4,
  335. NvRegRxExtraByte = 0x2a8,
  336. NvRegRxLateCol = 0x2ac,
  337. NvRegRxRunt = 0x2b0,
  338. NvRegRxFrameTooLong = 0x2b4,
  339. NvRegRxOverflow = 0x2b8,
  340. NvRegRxFCSErr = 0x2bc,
  341. NvRegRxFrameAlignErr = 0x2c0,
  342. NvRegRxLenErr = 0x2c4,
  343. NvRegRxUnicast = 0x2c8,
  344. NvRegRxMulticast = 0x2cc,
  345. NvRegRxBroadcast = 0x2d0,
  346. NvRegTxDef = 0x2d4,
  347. NvRegTxFrame = 0x2d8,
  348. NvRegRxCnt = 0x2dc,
  349. NvRegTxPause = 0x2e0,
  350. NvRegRxPause = 0x2e4,
  351. NvRegRxDropFrame = 0x2e8,
  352. NvRegVlanControl = 0x300,
  353. #define NVREG_VLANCONTROL_ENABLE 0x2000
  354. NvRegMSIXMap0 = 0x3e0,
  355. NvRegMSIXMap1 = 0x3e4,
  356. NvRegMSIXIrqStatus = 0x3f0,
  357. NvRegPowerState2 = 0x600,
  358. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  359. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  360. };
  361. /* Big endian: should work, but is untested */
  362. struct ring_desc {
  363. u32 PacketBuffer;
  364. u32 FlagLen;
  365. };
  366. struct ring_desc_ex {
  367. u32 PacketBufferHigh;
  368. u32 PacketBufferLow;
  369. u32 TxVlan;
  370. u32 FlagLen;
  371. };
  372. typedef union _ring_type {
  373. struct ring_desc* orig;
  374. struct ring_desc_ex* ex;
  375. } ring_type;
  376. #define FLAG_MASK_V1 0xffff0000
  377. #define FLAG_MASK_V2 0xffffc000
  378. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  379. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  380. #define NV_TX_LASTPACKET (1<<16)
  381. #define NV_TX_RETRYERROR (1<<19)
  382. #define NV_TX_FORCED_INTERRUPT (1<<24)
  383. #define NV_TX_DEFERRED (1<<26)
  384. #define NV_TX_CARRIERLOST (1<<27)
  385. #define NV_TX_LATECOLLISION (1<<28)
  386. #define NV_TX_UNDERFLOW (1<<29)
  387. #define NV_TX_ERROR (1<<30)
  388. #define NV_TX_VALID (1<<31)
  389. #define NV_TX2_LASTPACKET (1<<29)
  390. #define NV_TX2_RETRYERROR (1<<18)
  391. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  392. #define NV_TX2_DEFERRED (1<<25)
  393. #define NV_TX2_CARRIERLOST (1<<26)
  394. #define NV_TX2_LATECOLLISION (1<<27)
  395. #define NV_TX2_UNDERFLOW (1<<28)
  396. /* error and valid are the same for both */
  397. #define NV_TX2_ERROR (1<<30)
  398. #define NV_TX2_VALID (1<<31)
  399. #define NV_TX2_TSO (1<<28)
  400. #define NV_TX2_TSO_SHIFT 14
  401. #define NV_TX2_TSO_MAX_SHIFT 14
  402. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  403. #define NV_TX2_CHECKSUM_L3 (1<<27)
  404. #define NV_TX2_CHECKSUM_L4 (1<<26)
  405. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  406. #define NV_RX_DESCRIPTORVALID (1<<16)
  407. #define NV_RX_MISSEDFRAME (1<<17)
  408. #define NV_RX_SUBSTRACT1 (1<<18)
  409. #define NV_RX_ERROR1 (1<<23)
  410. #define NV_RX_ERROR2 (1<<24)
  411. #define NV_RX_ERROR3 (1<<25)
  412. #define NV_RX_ERROR4 (1<<26)
  413. #define NV_RX_CRCERR (1<<27)
  414. #define NV_RX_OVERFLOW (1<<28)
  415. #define NV_RX_FRAMINGERR (1<<29)
  416. #define NV_RX_ERROR (1<<30)
  417. #define NV_RX_AVAIL (1<<31)
  418. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  419. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  420. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  421. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  422. #define NV_RX2_DESCRIPTORVALID (1<<29)
  423. #define NV_RX2_SUBSTRACT1 (1<<25)
  424. #define NV_RX2_ERROR1 (1<<18)
  425. #define NV_RX2_ERROR2 (1<<19)
  426. #define NV_RX2_ERROR3 (1<<20)
  427. #define NV_RX2_ERROR4 (1<<21)
  428. #define NV_RX2_CRCERR (1<<22)
  429. #define NV_RX2_OVERFLOW (1<<23)
  430. #define NV_RX2_FRAMINGERR (1<<24)
  431. /* error and avail are the same for both */
  432. #define NV_RX2_ERROR (1<<30)
  433. #define NV_RX2_AVAIL (1<<31)
  434. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  435. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  436. /* Miscelaneous hardware related defines: */
  437. #define NV_PCI_REGSZ_VER1 0x270
  438. #define NV_PCI_REGSZ_VER2 0x604
  439. /* various timeout delays: all in usec */
  440. #define NV_TXRX_RESET_DELAY 4
  441. #define NV_TXSTOP_DELAY1 10
  442. #define NV_TXSTOP_DELAY1MAX 500000
  443. #define NV_TXSTOP_DELAY2 100
  444. #define NV_RXSTOP_DELAY1 10
  445. #define NV_RXSTOP_DELAY1MAX 500000
  446. #define NV_RXSTOP_DELAY2 100
  447. #define NV_SETUP5_DELAY 5
  448. #define NV_SETUP5_DELAYMAX 50000
  449. #define NV_POWERUP_DELAY 5
  450. #define NV_POWERUP_DELAYMAX 5000
  451. #define NV_MIIBUSY_DELAY 50
  452. #define NV_MIIPHY_DELAY 10
  453. #define NV_MIIPHY_DELAYMAX 10000
  454. #define NV_MAC_RESET_DELAY 64
  455. #define NV_WAKEUPPATTERNS 5
  456. #define NV_WAKEUPMASKENTRIES 4
  457. /* General driver defaults */
  458. #define NV_WATCHDOG_TIMEO (5*HZ)
  459. #define RX_RING_DEFAULT 128
  460. #define TX_RING_DEFAULT 256
  461. #define RX_RING_MIN 128
  462. #define TX_RING_MIN 64
  463. #define RING_MAX_DESC_VER_1 1024
  464. #define RING_MAX_DESC_VER_2_3 16384
  465. /*
  466. * Difference between the get and put pointers for the tx ring.
  467. * This is used to throttle the amount of data outstanding in the
  468. * tx ring.
  469. */
  470. #define TX_LIMIT_DIFFERENCE 1
  471. /* rx/tx mac addr + type + vlan + align + slack*/
  472. #define NV_RX_HEADERS (64)
  473. /* even more slack. */
  474. #define NV_RX_ALLOC_PAD (64)
  475. /* maximum mtu size */
  476. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  477. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  478. #define OOM_REFILL (1+HZ/20)
  479. #define POLL_WAIT (1+HZ/100)
  480. #define LINK_TIMEOUT (3*HZ)
  481. #define STATS_INTERVAL (10*HZ)
  482. /*
  483. * desc_ver values:
  484. * The nic supports three different descriptor types:
  485. * - DESC_VER_1: Original
  486. * - DESC_VER_2: support for jumbo frames.
  487. * - DESC_VER_3: 64-bit format.
  488. */
  489. #define DESC_VER_1 1
  490. #define DESC_VER_2 2
  491. #define DESC_VER_3 3
  492. /* PHY defines */
  493. #define PHY_OUI_MARVELL 0x5043
  494. #define PHY_OUI_CICADA 0x03f1
  495. #define PHYID1_OUI_MASK 0x03ff
  496. #define PHYID1_OUI_SHFT 6
  497. #define PHYID2_OUI_MASK 0xfc00
  498. #define PHYID2_OUI_SHFT 10
  499. #define PHY_INIT1 0x0f000
  500. #define PHY_INIT2 0x0e00
  501. #define PHY_INIT3 0x01000
  502. #define PHY_INIT4 0x0200
  503. #define PHY_INIT5 0x0004
  504. #define PHY_INIT6 0x02000
  505. #define PHY_GIGABIT 0x0100
  506. #define PHY_TIMEOUT 0x1
  507. #define PHY_ERROR 0x2
  508. #define PHY_100 0x1
  509. #define PHY_1000 0x2
  510. #define PHY_HALF 0x100
  511. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  512. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  513. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  514. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  515. #define NV_PAUSEFRAME_RX_REQ 0x0010
  516. #define NV_PAUSEFRAME_TX_REQ 0x0020
  517. #define NV_PAUSEFRAME_AUTONEG 0x0040
  518. /* MSI/MSI-X defines */
  519. #define NV_MSI_X_MAX_VECTORS 8
  520. #define NV_MSI_X_VECTORS_MASK 0x000f
  521. #define NV_MSI_CAPABLE 0x0010
  522. #define NV_MSI_X_CAPABLE 0x0020
  523. #define NV_MSI_ENABLED 0x0040
  524. #define NV_MSI_X_ENABLED 0x0080
  525. #define NV_MSI_X_VECTOR_ALL 0x0
  526. #define NV_MSI_X_VECTOR_RX 0x0
  527. #define NV_MSI_X_VECTOR_TX 0x1
  528. #define NV_MSI_X_VECTOR_OTHER 0x2
  529. /* statistics */
  530. struct nv_ethtool_str {
  531. char name[ETH_GSTRING_LEN];
  532. };
  533. static const struct nv_ethtool_str nv_estats_str[] = {
  534. { "tx_bytes" },
  535. { "tx_zero_rexmt" },
  536. { "tx_one_rexmt" },
  537. { "tx_many_rexmt" },
  538. { "tx_late_collision" },
  539. { "tx_fifo_errors" },
  540. { "tx_carrier_errors" },
  541. { "tx_excess_deferral" },
  542. { "tx_retry_error" },
  543. { "tx_deferral" },
  544. { "tx_packets" },
  545. { "tx_pause" },
  546. { "rx_frame_error" },
  547. { "rx_extra_byte" },
  548. { "rx_late_collision" },
  549. { "rx_runt" },
  550. { "rx_frame_too_long" },
  551. { "rx_over_errors" },
  552. { "rx_crc_errors" },
  553. { "rx_frame_align_error" },
  554. { "rx_length_error" },
  555. { "rx_unicast" },
  556. { "rx_multicast" },
  557. { "rx_broadcast" },
  558. { "rx_bytes" },
  559. { "rx_pause" },
  560. { "rx_drop_frame" },
  561. { "rx_packets" },
  562. { "rx_errors_total" }
  563. };
  564. struct nv_ethtool_stats {
  565. u64 tx_bytes;
  566. u64 tx_zero_rexmt;
  567. u64 tx_one_rexmt;
  568. u64 tx_many_rexmt;
  569. u64 tx_late_collision;
  570. u64 tx_fifo_errors;
  571. u64 tx_carrier_errors;
  572. u64 tx_excess_deferral;
  573. u64 tx_retry_error;
  574. u64 tx_deferral;
  575. u64 tx_packets;
  576. u64 tx_pause;
  577. u64 rx_frame_error;
  578. u64 rx_extra_byte;
  579. u64 rx_late_collision;
  580. u64 rx_runt;
  581. u64 rx_frame_too_long;
  582. u64 rx_over_errors;
  583. u64 rx_crc_errors;
  584. u64 rx_frame_align_error;
  585. u64 rx_length_error;
  586. u64 rx_unicast;
  587. u64 rx_multicast;
  588. u64 rx_broadcast;
  589. u64 rx_bytes;
  590. u64 rx_pause;
  591. u64 rx_drop_frame;
  592. u64 rx_packets;
  593. u64 rx_errors_total;
  594. };
  595. /* diagnostics */
  596. #define NV_TEST_COUNT_BASE 3
  597. #define NV_TEST_COUNT_EXTENDED 4
  598. static const struct nv_ethtool_str nv_etests_str[] = {
  599. { "link (online/offline)" },
  600. { "register (offline) " },
  601. { "interrupt (offline) " },
  602. { "loopback (offline) " }
  603. };
  604. struct register_test {
  605. u32 reg;
  606. u32 mask;
  607. };
  608. static const struct register_test nv_registers_test[] = {
  609. { NvRegUnknownSetupReg6, 0x01 },
  610. { NvRegMisc1, 0x03c },
  611. { NvRegOffloadConfig, 0x03ff },
  612. { NvRegMulticastAddrA, 0xffffffff },
  613. { NvRegTxWatermark, 0x0ff },
  614. { NvRegWakeUpFlags, 0x07777 },
  615. { 0,0 }
  616. };
  617. /*
  618. * SMP locking:
  619. * All hardware access under dev->priv->lock, except the performance
  620. * critical parts:
  621. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  622. * by the arch code for interrupts.
  623. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  624. * needs dev->priv->lock :-(
  625. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  626. */
  627. /* in dev: base, irq */
  628. struct fe_priv {
  629. spinlock_t lock;
  630. /* General data:
  631. * Locking: spin_lock(&np->lock); */
  632. struct net_device_stats stats;
  633. struct nv_ethtool_stats estats;
  634. int in_shutdown;
  635. u32 linkspeed;
  636. int duplex;
  637. int autoneg;
  638. int fixed_mode;
  639. int phyaddr;
  640. int wolenabled;
  641. unsigned int phy_oui;
  642. u16 gigabit;
  643. int intr_test;
  644. /* General data: RO fields */
  645. dma_addr_t ring_addr;
  646. struct pci_dev *pci_dev;
  647. u32 orig_mac[2];
  648. u32 irqmask;
  649. u32 desc_ver;
  650. u32 txrxctl_bits;
  651. u32 vlanctl_bits;
  652. u32 driver_data;
  653. u32 register_size;
  654. void __iomem *base;
  655. /* rx specific fields.
  656. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  657. */
  658. ring_type rx_ring;
  659. unsigned int cur_rx, refill_rx;
  660. struct sk_buff **rx_skbuff;
  661. dma_addr_t *rx_dma;
  662. unsigned int rx_buf_sz;
  663. unsigned int pkt_limit;
  664. struct timer_list oom_kick;
  665. struct timer_list nic_poll;
  666. struct timer_list stats_poll;
  667. u32 nic_poll_irq;
  668. int rx_ring_size;
  669. /* media detection workaround.
  670. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  671. */
  672. int need_linktimer;
  673. unsigned long link_timeout;
  674. /*
  675. * tx specific fields.
  676. */
  677. ring_type tx_ring;
  678. unsigned int next_tx, nic_tx;
  679. struct sk_buff **tx_skbuff;
  680. dma_addr_t *tx_dma;
  681. unsigned int *tx_dma_len;
  682. u32 tx_flags;
  683. int tx_ring_size;
  684. int tx_limit_start;
  685. int tx_limit_stop;
  686. /* vlan fields */
  687. struct vlan_group *vlangrp;
  688. /* msi/msi-x fields */
  689. u32 msi_flags;
  690. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  691. /* flow control */
  692. u32 pause_flags;
  693. };
  694. /*
  695. * Maximum number of loops until we assume that a bit in the irq mask
  696. * is stuck. Overridable with module param.
  697. */
  698. static int max_interrupt_work = 5;
  699. /*
  700. * Optimization can be either throuput mode or cpu mode
  701. *
  702. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  703. * CPU Mode: Interrupts are controlled by a timer.
  704. */
  705. enum {
  706. NV_OPTIMIZATION_MODE_THROUGHPUT,
  707. NV_OPTIMIZATION_MODE_CPU
  708. };
  709. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  710. /*
  711. * Poll interval for timer irq
  712. *
  713. * This interval determines how frequent an interrupt is generated.
  714. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  715. * Min = 0, and Max = 65535
  716. */
  717. static int poll_interval = -1;
  718. /*
  719. * MSI interrupts
  720. */
  721. enum {
  722. NV_MSI_INT_DISABLED,
  723. NV_MSI_INT_ENABLED
  724. };
  725. static int msi = NV_MSI_INT_ENABLED;
  726. /*
  727. * MSIX interrupts
  728. */
  729. enum {
  730. NV_MSIX_INT_DISABLED,
  731. NV_MSIX_INT_ENABLED
  732. };
  733. static int msix = NV_MSIX_INT_ENABLED;
  734. /*
  735. * DMA 64bit
  736. */
  737. enum {
  738. NV_DMA_64BIT_DISABLED,
  739. NV_DMA_64BIT_ENABLED
  740. };
  741. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  742. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  743. {
  744. return netdev_priv(dev);
  745. }
  746. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  747. {
  748. return ((struct fe_priv *)netdev_priv(dev))->base;
  749. }
  750. static inline void pci_push(u8 __iomem *base)
  751. {
  752. /* force out pending posted writes */
  753. readl(base);
  754. }
  755. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  756. {
  757. return le32_to_cpu(prd->FlagLen)
  758. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  759. }
  760. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  761. {
  762. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  763. }
  764. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  765. int delay, int delaymax, const char *msg)
  766. {
  767. u8 __iomem *base = get_hwbase(dev);
  768. pci_push(base);
  769. do {
  770. udelay(delay);
  771. delaymax -= delay;
  772. if (delaymax < 0) {
  773. if (msg)
  774. printk(msg);
  775. return 1;
  776. }
  777. } while ((readl(base + offset) & mask) != target);
  778. return 0;
  779. }
  780. #define NV_SETUP_RX_RING 0x01
  781. #define NV_SETUP_TX_RING 0x02
  782. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  783. {
  784. struct fe_priv *np = get_nvpriv(dev);
  785. u8 __iomem *base = get_hwbase(dev);
  786. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  787. if (rxtx_flags & NV_SETUP_RX_RING) {
  788. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  789. }
  790. if (rxtx_flags & NV_SETUP_TX_RING) {
  791. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  792. }
  793. } else {
  794. if (rxtx_flags & NV_SETUP_RX_RING) {
  795. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  796. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  797. }
  798. if (rxtx_flags & NV_SETUP_TX_RING) {
  799. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  800. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  801. }
  802. }
  803. }
  804. static void free_rings(struct net_device *dev)
  805. {
  806. struct fe_priv *np = get_nvpriv(dev);
  807. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  808. if(np->rx_ring.orig)
  809. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  810. np->rx_ring.orig, np->ring_addr);
  811. } else {
  812. if (np->rx_ring.ex)
  813. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  814. np->rx_ring.ex, np->ring_addr);
  815. }
  816. if (np->rx_skbuff)
  817. kfree(np->rx_skbuff);
  818. if (np->rx_dma)
  819. kfree(np->rx_dma);
  820. if (np->tx_skbuff)
  821. kfree(np->tx_skbuff);
  822. if (np->tx_dma)
  823. kfree(np->tx_dma);
  824. if (np->tx_dma_len)
  825. kfree(np->tx_dma_len);
  826. }
  827. static int using_multi_irqs(struct net_device *dev)
  828. {
  829. struct fe_priv *np = get_nvpriv(dev);
  830. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  831. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  832. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  833. return 0;
  834. else
  835. return 1;
  836. }
  837. static void nv_enable_irq(struct net_device *dev)
  838. {
  839. struct fe_priv *np = get_nvpriv(dev);
  840. if (!using_multi_irqs(dev)) {
  841. if (np->msi_flags & NV_MSI_X_ENABLED)
  842. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  843. else
  844. enable_irq(dev->irq);
  845. } else {
  846. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  847. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  848. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  849. }
  850. }
  851. static void nv_disable_irq(struct net_device *dev)
  852. {
  853. struct fe_priv *np = get_nvpriv(dev);
  854. if (!using_multi_irqs(dev)) {
  855. if (np->msi_flags & NV_MSI_X_ENABLED)
  856. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  857. else
  858. disable_irq(dev->irq);
  859. } else {
  860. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  861. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  862. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  863. }
  864. }
  865. /* In MSIX mode, a write to irqmask behaves as XOR */
  866. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  867. {
  868. u8 __iomem *base = get_hwbase(dev);
  869. writel(mask, base + NvRegIrqMask);
  870. }
  871. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  872. {
  873. struct fe_priv *np = get_nvpriv(dev);
  874. u8 __iomem *base = get_hwbase(dev);
  875. if (np->msi_flags & NV_MSI_X_ENABLED) {
  876. writel(mask, base + NvRegIrqMask);
  877. } else {
  878. if (np->msi_flags & NV_MSI_ENABLED)
  879. writel(0, base + NvRegMSIIrqMask);
  880. writel(0, base + NvRegIrqMask);
  881. }
  882. }
  883. #define MII_READ (-1)
  884. /* mii_rw: read/write a register on the PHY.
  885. *
  886. * Caller must guarantee serialization
  887. */
  888. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  889. {
  890. u8 __iomem *base = get_hwbase(dev);
  891. u32 reg;
  892. int retval;
  893. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  894. reg = readl(base + NvRegMIIControl);
  895. if (reg & NVREG_MIICTL_INUSE) {
  896. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  897. udelay(NV_MIIBUSY_DELAY);
  898. }
  899. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  900. if (value != MII_READ) {
  901. writel(value, base + NvRegMIIData);
  902. reg |= NVREG_MIICTL_WRITE;
  903. }
  904. writel(reg, base + NvRegMIIControl);
  905. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  906. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  907. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  908. dev->name, miireg, addr);
  909. retval = -1;
  910. } else if (value != MII_READ) {
  911. /* it was a write operation - fewer failures are detectable */
  912. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  913. dev->name, value, miireg, addr);
  914. retval = 0;
  915. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  916. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  917. dev->name, miireg, addr);
  918. retval = -1;
  919. } else {
  920. retval = readl(base + NvRegMIIData);
  921. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  922. dev->name, miireg, addr, retval);
  923. }
  924. return retval;
  925. }
  926. static int phy_reset(struct net_device *dev)
  927. {
  928. struct fe_priv *np = netdev_priv(dev);
  929. u32 miicontrol;
  930. unsigned int tries = 0;
  931. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  932. miicontrol |= BMCR_RESET;
  933. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  934. return -1;
  935. }
  936. /* wait for 500ms */
  937. msleep(500);
  938. /* must wait till reset is deasserted */
  939. while (miicontrol & BMCR_RESET) {
  940. msleep(10);
  941. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  942. /* FIXME: 100 tries seem excessive */
  943. if (tries++ > 100)
  944. return -1;
  945. }
  946. return 0;
  947. }
  948. static int phy_init(struct net_device *dev)
  949. {
  950. struct fe_priv *np = get_nvpriv(dev);
  951. u8 __iomem *base = get_hwbase(dev);
  952. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  953. /* set advertise register */
  954. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  955. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  956. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  957. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  958. return PHY_ERROR;
  959. }
  960. /* get phy interface type */
  961. phyinterface = readl(base + NvRegPhyInterface);
  962. /* see if gigabit phy */
  963. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  964. if (mii_status & PHY_GIGABIT) {
  965. np->gigabit = PHY_GIGABIT;
  966. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  967. mii_control_1000 &= ~ADVERTISE_1000HALF;
  968. if (phyinterface & PHY_RGMII)
  969. mii_control_1000 |= ADVERTISE_1000FULL;
  970. else
  971. mii_control_1000 &= ~ADVERTISE_1000FULL;
  972. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  973. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  974. return PHY_ERROR;
  975. }
  976. }
  977. else
  978. np->gigabit = 0;
  979. /* reset the phy */
  980. if (phy_reset(dev)) {
  981. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  982. return PHY_ERROR;
  983. }
  984. /* phy vendor specific configuration */
  985. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  986. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  987. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  988. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  989. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  990. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  991. return PHY_ERROR;
  992. }
  993. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  994. phy_reserved |= PHY_INIT5;
  995. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  996. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  997. return PHY_ERROR;
  998. }
  999. }
  1000. if (np->phy_oui == PHY_OUI_CICADA) {
  1001. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1002. phy_reserved |= PHY_INIT6;
  1003. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1004. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1005. return PHY_ERROR;
  1006. }
  1007. }
  1008. /* some phys clear out pause advertisment on reset, set it back */
  1009. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1010. /* restart auto negotiation */
  1011. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1012. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1013. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1014. return PHY_ERROR;
  1015. }
  1016. return 0;
  1017. }
  1018. static void nv_start_rx(struct net_device *dev)
  1019. {
  1020. struct fe_priv *np = netdev_priv(dev);
  1021. u8 __iomem *base = get_hwbase(dev);
  1022. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1023. /* Already running? Stop it. */
  1024. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  1025. writel(0, base + NvRegReceiverControl);
  1026. pci_push(base);
  1027. }
  1028. writel(np->linkspeed, base + NvRegLinkSpeed);
  1029. pci_push(base);
  1030. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  1031. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1032. dev->name, np->duplex, np->linkspeed);
  1033. pci_push(base);
  1034. }
  1035. static void nv_stop_rx(struct net_device *dev)
  1036. {
  1037. u8 __iomem *base = get_hwbase(dev);
  1038. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1039. writel(0, base + NvRegReceiverControl);
  1040. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1041. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1042. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1043. udelay(NV_RXSTOP_DELAY2);
  1044. writel(0, base + NvRegLinkSpeed);
  1045. }
  1046. static void nv_start_tx(struct net_device *dev)
  1047. {
  1048. u8 __iomem *base = get_hwbase(dev);
  1049. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1050. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  1051. pci_push(base);
  1052. }
  1053. static void nv_stop_tx(struct net_device *dev)
  1054. {
  1055. u8 __iomem *base = get_hwbase(dev);
  1056. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1057. writel(0, base + NvRegTransmitterControl);
  1058. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1059. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1060. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1061. udelay(NV_TXSTOP_DELAY2);
  1062. writel(0, base + NvRegUnknownTransmitterReg);
  1063. }
  1064. static void nv_txrx_reset(struct net_device *dev)
  1065. {
  1066. struct fe_priv *np = netdev_priv(dev);
  1067. u8 __iomem *base = get_hwbase(dev);
  1068. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1069. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1070. pci_push(base);
  1071. udelay(NV_TXRX_RESET_DELAY);
  1072. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1073. pci_push(base);
  1074. }
  1075. static void nv_mac_reset(struct net_device *dev)
  1076. {
  1077. struct fe_priv *np = netdev_priv(dev);
  1078. u8 __iomem *base = get_hwbase(dev);
  1079. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1080. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1081. pci_push(base);
  1082. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1083. pci_push(base);
  1084. udelay(NV_MAC_RESET_DELAY);
  1085. writel(0, base + NvRegMacReset);
  1086. pci_push(base);
  1087. udelay(NV_MAC_RESET_DELAY);
  1088. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1089. pci_push(base);
  1090. }
  1091. /*
  1092. * nv_get_stats: dev->get_stats function
  1093. * Get latest stats value from the nic.
  1094. * Called with read_lock(&dev_base_lock) held for read -
  1095. * only synchronized against unregister_netdevice.
  1096. */
  1097. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1098. {
  1099. struct fe_priv *np = netdev_priv(dev);
  1100. /* It seems that the nic always generates interrupts and doesn't
  1101. * accumulate errors internally. Thus the current values in np->stats
  1102. * are already up to date.
  1103. */
  1104. return &np->stats;
  1105. }
  1106. /*
  1107. * nv_alloc_rx: fill rx ring entries.
  1108. * Return 1 if the allocations for the skbs failed and the
  1109. * rx engine is without Available descriptors
  1110. */
  1111. static int nv_alloc_rx(struct net_device *dev)
  1112. {
  1113. struct fe_priv *np = netdev_priv(dev);
  1114. unsigned int refill_rx = np->refill_rx;
  1115. int nr;
  1116. while (np->cur_rx != refill_rx) {
  1117. struct sk_buff *skb;
  1118. nr = refill_rx % np->rx_ring_size;
  1119. if (np->rx_skbuff[nr] == NULL) {
  1120. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1121. if (!skb)
  1122. break;
  1123. skb->dev = dev;
  1124. np->rx_skbuff[nr] = skb;
  1125. } else {
  1126. skb = np->rx_skbuff[nr];
  1127. }
  1128. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  1129. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1130. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1131. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  1132. wmb();
  1133. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1134. } else {
  1135. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  1136. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  1137. wmb();
  1138. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1139. }
  1140. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  1141. dev->name, refill_rx);
  1142. refill_rx++;
  1143. }
  1144. np->refill_rx = refill_rx;
  1145. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1146. return 1;
  1147. return 0;
  1148. }
  1149. static void nv_do_rx_refill(unsigned long data)
  1150. {
  1151. struct net_device *dev = (struct net_device *) data;
  1152. struct fe_priv *np = netdev_priv(dev);
  1153. if (!using_multi_irqs(dev)) {
  1154. if (np->msi_flags & NV_MSI_X_ENABLED)
  1155. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1156. else
  1157. disable_irq(dev->irq);
  1158. } else {
  1159. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1160. }
  1161. if (nv_alloc_rx(dev)) {
  1162. spin_lock_irq(&np->lock);
  1163. if (!np->in_shutdown)
  1164. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1165. spin_unlock_irq(&np->lock);
  1166. }
  1167. if (!using_multi_irqs(dev)) {
  1168. if (np->msi_flags & NV_MSI_X_ENABLED)
  1169. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1170. else
  1171. enable_irq(dev->irq);
  1172. } else {
  1173. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1174. }
  1175. }
  1176. static void nv_init_rx(struct net_device *dev)
  1177. {
  1178. struct fe_priv *np = netdev_priv(dev);
  1179. int i;
  1180. np->cur_rx = np->rx_ring_size;
  1181. np->refill_rx = 0;
  1182. for (i = 0; i < np->rx_ring_size; i++)
  1183. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1184. np->rx_ring.orig[i].FlagLen = 0;
  1185. else
  1186. np->rx_ring.ex[i].FlagLen = 0;
  1187. }
  1188. static void nv_init_tx(struct net_device *dev)
  1189. {
  1190. struct fe_priv *np = netdev_priv(dev);
  1191. int i;
  1192. np->next_tx = np->nic_tx = 0;
  1193. for (i = 0; i < np->tx_ring_size; i++) {
  1194. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1195. np->tx_ring.orig[i].FlagLen = 0;
  1196. else
  1197. np->tx_ring.ex[i].FlagLen = 0;
  1198. np->tx_skbuff[i] = NULL;
  1199. np->tx_dma[i] = 0;
  1200. }
  1201. }
  1202. static int nv_init_ring(struct net_device *dev)
  1203. {
  1204. nv_init_tx(dev);
  1205. nv_init_rx(dev);
  1206. return nv_alloc_rx(dev);
  1207. }
  1208. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1209. {
  1210. struct fe_priv *np = netdev_priv(dev);
  1211. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1212. dev->name, skbnr);
  1213. if (np->tx_dma[skbnr]) {
  1214. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1215. np->tx_dma_len[skbnr],
  1216. PCI_DMA_TODEVICE);
  1217. np->tx_dma[skbnr] = 0;
  1218. }
  1219. if (np->tx_skbuff[skbnr]) {
  1220. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1221. np->tx_skbuff[skbnr] = NULL;
  1222. return 1;
  1223. } else {
  1224. return 0;
  1225. }
  1226. }
  1227. static void nv_drain_tx(struct net_device *dev)
  1228. {
  1229. struct fe_priv *np = netdev_priv(dev);
  1230. unsigned int i;
  1231. for (i = 0; i < np->tx_ring_size; i++) {
  1232. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1233. np->tx_ring.orig[i].FlagLen = 0;
  1234. else
  1235. np->tx_ring.ex[i].FlagLen = 0;
  1236. if (nv_release_txskb(dev, i))
  1237. np->stats.tx_dropped++;
  1238. }
  1239. }
  1240. static void nv_drain_rx(struct net_device *dev)
  1241. {
  1242. struct fe_priv *np = netdev_priv(dev);
  1243. int i;
  1244. for (i = 0; i < np->rx_ring_size; i++) {
  1245. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1246. np->rx_ring.orig[i].FlagLen = 0;
  1247. else
  1248. np->rx_ring.ex[i].FlagLen = 0;
  1249. wmb();
  1250. if (np->rx_skbuff[i]) {
  1251. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1252. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1253. PCI_DMA_FROMDEVICE);
  1254. dev_kfree_skb(np->rx_skbuff[i]);
  1255. np->rx_skbuff[i] = NULL;
  1256. }
  1257. }
  1258. }
  1259. static void drain_ring(struct net_device *dev)
  1260. {
  1261. nv_drain_tx(dev);
  1262. nv_drain_rx(dev);
  1263. }
  1264. /*
  1265. * nv_start_xmit: dev->hard_start_xmit function
  1266. * Called with netif_tx_lock held.
  1267. */
  1268. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1269. {
  1270. struct fe_priv *np = netdev_priv(dev);
  1271. u32 tx_flags = 0;
  1272. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1273. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1274. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1275. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1276. unsigned int i;
  1277. u32 offset = 0;
  1278. u32 bcnt;
  1279. u32 size = skb->len-skb->data_len;
  1280. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1281. u32 tx_flags_vlan = 0;
  1282. /* add fragments to entries count */
  1283. for (i = 0; i < fragments; i++) {
  1284. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1285. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1286. }
  1287. spin_lock_irq(&np->lock);
  1288. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1289. spin_unlock_irq(&np->lock);
  1290. netif_stop_queue(dev);
  1291. return NETDEV_TX_BUSY;
  1292. }
  1293. /* setup the header buffer */
  1294. do {
  1295. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1296. nr = (nr + 1) % np->tx_ring_size;
  1297. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1298. PCI_DMA_TODEVICE);
  1299. np->tx_dma_len[nr] = bcnt;
  1300. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1301. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1302. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1303. } else {
  1304. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1305. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1306. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1307. }
  1308. tx_flags = np->tx_flags;
  1309. offset += bcnt;
  1310. size -= bcnt;
  1311. } while(size);
  1312. /* setup the fragments */
  1313. for (i = 0; i < fragments; i++) {
  1314. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1315. u32 size = frag->size;
  1316. offset = 0;
  1317. do {
  1318. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1319. nr = (nr + 1) % np->tx_ring_size;
  1320. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1321. PCI_DMA_TODEVICE);
  1322. np->tx_dma_len[nr] = bcnt;
  1323. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1324. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1325. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1326. } else {
  1327. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1328. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1329. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1330. }
  1331. offset += bcnt;
  1332. size -= bcnt;
  1333. } while (size);
  1334. }
  1335. /* set last fragment flag */
  1336. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1337. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1338. } else {
  1339. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1340. }
  1341. np->tx_skbuff[nr] = skb;
  1342. #ifdef NETIF_F_TSO
  1343. if (skb_is_gso(skb))
  1344. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1345. else
  1346. #endif
  1347. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1348. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1349. /* vlan tag */
  1350. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1351. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1352. }
  1353. /* set tx flags */
  1354. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1355. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1356. } else {
  1357. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1358. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1359. }
  1360. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1361. dev->name, np->next_tx, entries, tx_flags_extra);
  1362. {
  1363. int j;
  1364. for (j=0; j<64; j++) {
  1365. if ((j%16) == 0)
  1366. dprintk("\n%03x:", j);
  1367. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1368. }
  1369. dprintk("\n");
  1370. }
  1371. np->next_tx += entries;
  1372. dev->trans_start = jiffies;
  1373. spin_unlock_irq(&np->lock);
  1374. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1375. pci_push(get_hwbase(dev));
  1376. return NETDEV_TX_OK;
  1377. }
  1378. /*
  1379. * nv_tx_done: check for completed packets, release the skbs.
  1380. *
  1381. * Caller must own np->lock.
  1382. */
  1383. static void nv_tx_done(struct net_device *dev)
  1384. {
  1385. struct fe_priv *np = netdev_priv(dev);
  1386. u32 Flags;
  1387. unsigned int i;
  1388. struct sk_buff *skb;
  1389. while (np->nic_tx != np->next_tx) {
  1390. i = np->nic_tx % np->tx_ring_size;
  1391. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1392. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1393. else
  1394. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1395. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1396. dev->name, np->nic_tx, Flags);
  1397. if (Flags & NV_TX_VALID)
  1398. break;
  1399. if (np->desc_ver == DESC_VER_1) {
  1400. if (Flags & NV_TX_LASTPACKET) {
  1401. skb = np->tx_skbuff[i];
  1402. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1403. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1404. if (Flags & NV_TX_UNDERFLOW)
  1405. np->stats.tx_fifo_errors++;
  1406. if (Flags & NV_TX_CARRIERLOST)
  1407. np->stats.tx_carrier_errors++;
  1408. np->stats.tx_errors++;
  1409. } else {
  1410. np->stats.tx_packets++;
  1411. np->stats.tx_bytes += skb->len;
  1412. }
  1413. }
  1414. } else {
  1415. if (Flags & NV_TX2_LASTPACKET) {
  1416. skb = np->tx_skbuff[i];
  1417. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1418. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1419. if (Flags & NV_TX2_UNDERFLOW)
  1420. np->stats.tx_fifo_errors++;
  1421. if (Flags & NV_TX2_CARRIERLOST)
  1422. np->stats.tx_carrier_errors++;
  1423. np->stats.tx_errors++;
  1424. } else {
  1425. np->stats.tx_packets++;
  1426. np->stats.tx_bytes += skb->len;
  1427. }
  1428. }
  1429. }
  1430. nv_release_txskb(dev, i);
  1431. np->nic_tx++;
  1432. }
  1433. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1434. netif_wake_queue(dev);
  1435. }
  1436. /*
  1437. * nv_tx_timeout: dev->tx_timeout function
  1438. * Called with netif_tx_lock held.
  1439. */
  1440. static void nv_tx_timeout(struct net_device *dev)
  1441. {
  1442. struct fe_priv *np = netdev_priv(dev);
  1443. u8 __iomem *base = get_hwbase(dev);
  1444. u32 status;
  1445. if (np->msi_flags & NV_MSI_X_ENABLED)
  1446. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1447. else
  1448. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1449. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1450. {
  1451. int i;
  1452. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1453. dev->name, (unsigned long)np->ring_addr,
  1454. np->next_tx, np->nic_tx);
  1455. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1456. for (i=0;i<=np->register_size;i+= 32) {
  1457. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1458. i,
  1459. readl(base + i + 0), readl(base + i + 4),
  1460. readl(base + i + 8), readl(base + i + 12),
  1461. readl(base + i + 16), readl(base + i + 20),
  1462. readl(base + i + 24), readl(base + i + 28));
  1463. }
  1464. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1465. for (i=0;i<np->tx_ring_size;i+= 4) {
  1466. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1467. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1468. i,
  1469. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1470. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1471. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1472. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1473. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1474. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1475. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1476. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1477. } else {
  1478. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1479. i,
  1480. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1481. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1482. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1483. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1484. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1485. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1486. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1487. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1488. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1489. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1490. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1491. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1492. }
  1493. }
  1494. }
  1495. spin_lock_irq(&np->lock);
  1496. /* 1) stop tx engine */
  1497. nv_stop_tx(dev);
  1498. /* 2) check that the packets were not sent already: */
  1499. nv_tx_done(dev);
  1500. /* 3) if there are dead entries: clear everything */
  1501. if (np->next_tx != np->nic_tx) {
  1502. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1503. nv_drain_tx(dev);
  1504. np->next_tx = np->nic_tx = 0;
  1505. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1506. netif_wake_queue(dev);
  1507. }
  1508. /* 4) restart tx engine */
  1509. nv_start_tx(dev);
  1510. spin_unlock_irq(&np->lock);
  1511. }
  1512. /*
  1513. * Called when the nic notices a mismatch between the actual data len on the
  1514. * wire and the len indicated in the 802 header
  1515. */
  1516. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1517. {
  1518. int hdrlen; /* length of the 802 header */
  1519. int protolen; /* length as stored in the proto field */
  1520. /* 1) calculate len according to header */
  1521. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1522. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1523. hdrlen = VLAN_HLEN;
  1524. } else {
  1525. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1526. hdrlen = ETH_HLEN;
  1527. }
  1528. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1529. dev->name, datalen, protolen, hdrlen);
  1530. if (protolen > ETH_DATA_LEN)
  1531. return datalen; /* Value in proto field not a len, no checks possible */
  1532. protolen += hdrlen;
  1533. /* consistency checks: */
  1534. if (datalen > ETH_ZLEN) {
  1535. if (datalen >= protolen) {
  1536. /* more data on wire than in 802 header, trim of
  1537. * additional data.
  1538. */
  1539. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1540. dev->name, protolen);
  1541. return protolen;
  1542. } else {
  1543. /* less data on wire than mentioned in header.
  1544. * Discard the packet.
  1545. */
  1546. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1547. dev->name);
  1548. return -1;
  1549. }
  1550. } else {
  1551. /* short packet. Accept only if 802 values are also short */
  1552. if (protolen > ETH_ZLEN) {
  1553. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1554. dev->name);
  1555. return -1;
  1556. }
  1557. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1558. dev->name, datalen);
  1559. return datalen;
  1560. }
  1561. }
  1562. static void nv_rx_process(struct net_device *dev)
  1563. {
  1564. struct fe_priv *np = netdev_priv(dev);
  1565. u32 Flags;
  1566. u32 vlanflags = 0;
  1567. for (;;) {
  1568. struct sk_buff *skb;
  1569. int len;
  1570. int i;
  1571. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1572. break; /* we scanned the whole ring - do not continue */
  1573. i = np->cur_rx % np->rx_ring_size;
  1574. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1575. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1576. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1577. } else {
  1578. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1579. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1580. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1581. }
  1582. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1583. dev->name, np->cur_rx, Flags);
  1584. if (Flags & NV_RX_AVAIL)
  1585. break; /* still owned by hardware, */
  1586. /*
  1587. * the packet is for us - immediately tear down the pci mapping.
  1588. * TODO: check if a prefetch of the first cacheline improves
  1589. * the performance.
  1590. */
  1591. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1592. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1593. PCI_DMA_FROMDEVICE);
  1594. {
  1595. int j;
  1596. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1597. for (j=0; j<64; j++) {
  1598. if ((j%16) == 0)
  1599. dprintk("\n%03x:", j);
  1600. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1601. }
  1602. dprintk("\n");
  1603. }
  1604. /* look at what we actually got: */
  1605. if (np->desc_ver == DESC_VER_1) {
  1606. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1607. goto next_pkt;
  1608. if (Flags & NV_RX_ERROR) {
  1609. if (Flags & NV_RX_MISSEDFRAME) {
  1610. np->stats.rx_missed_errors++;
  1611. np->stats.rx_errors++;
  1612. goto next_pkt;
  1613. }
  1614. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1615. np->stats.rx_errors++;
  1616. goto next_pkt;
  1617. }
  1618. if (Flags & NV_RX_CRCERR) {
  1619. np->stats.rx_crc_errors++;
  1620. np->stats.rx_errors++;
  1621. goto next_pkt;
  1622. }
  1623. if (Flags & NV_RX_OVERFLOW) {
  1624. np->stats.rx_over_errors++;
  1625. np->stats.rx_errors++;
  1626. goto next_pkt;
  1627. }
  1628. if (Flags & NV_RX_ERROR4) {
  1629. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1630. if (len < 0) {
  1631. np->stats.rx_errors++;
  1632. goto next_pkt;
  1633. }
  1634. }
  1635. /* framing errors are soft errors. */
  1636. if (Flags & NV_RX_FRAMINGERR) {
  1637. if (Flags & NV_RX_SUBSTRACT1) {
  1638. len--;
  1639. }
  1640. }
  1641. }
  1642. } else {
  1643. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1644. goto next_pkt;
  1645. if (Flags & NV_RX2_ERROR) {
  1646. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1647. np->stats.rx_errors++;
  1648. goto next_pkt;
  1649. }
  1650. if (Flags & NV_RX2_CRCERR) {
  1651. np->stats.rx_crc_errors++;
  1652. np->stats.rx_errors++;
  1653. goto next_pkt;
  1654. }
  1655. if (Flags & NV_RX2_OVERFLOW) {
  1656. np->stats.rx_over_errors++;
  1657. np->stats.rx_errors++;
  1658. goto next_pkt;
  1659. }
  1660. if (Flags & NV_RX2_ERROR4) {
  1661. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1662. if (len < 0) {
  1663. np->stats.rx_errors++;
  1664. goto next_pkt;
  1665. }
  1666. }
  1667. /* framing errors are soft errors */
  1668. if (Flags & NV_RX2_FRAMINGERR) {
  1669. if (Flags & NV_RX2_SUBSTRACT1) {
  1670. len--;
  1671. }
  1672. }
  1673. }
  1674. if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
  1675. Flags &= NV_RX2_CHECKSUMMASK;
  1676. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1677. Flags == NV_RX2_CHECKSUMOK2 ||
  1678. Flags == NV_RX2_CHECKSUMOK3) {
  1679. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1680. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1681. } else {
  1682. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1683. }
  1684. }
  1685. }
  1686. /* got a valid packet - forward it to the network core */
  1687. skb = np->rx_skbuff[i];
  1688. np->rx_skbuff[i] = NULL;
  1689. skb_put(skb, len);
  1690. skb->protocol = eth_type_trans(skb, dev);
  1691. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1692. dev->name, np->cur_rx, len, skb->protocol);
  1693. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1694. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1695. } else {
  1696. netif_rx(skb);
  1697. }
  1698. dev->last_rx = jiffies;
  1699. np->stats.rx_packets++;
  1700. np->stats.rx_bytes += len;
  1701. next_pkt:
  1702. np->cur_rx++;
  1703. }
  1704. }
  1705. static void set_bufsize(struct net_device *dev)
  1706. {
  1707. struct fe_priv *np = netdev_priv(dev);
  1708. if (dev->mtu <= ETH_DATA_LEN)
  1709. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1710. else
  1711. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1712. }
  1713. /*
  1714. * nv_change_mtu: dev->change_mtu function
  1715. * Called with dev_base_lock held for read.
  1716. */
  1717. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1718. {
  1719. struct fe_priv *np = netdev_priv(dev);
  1720. int old_mtu;
  1721. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1722. return -EINVAL;
  1723. old_mtu = dev->mtu;
  1724. dev->mtu = new_mtu;
  1725. /* return early if the buffer sizes will not change */
  1726. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1727. return 0;
  1728. if (old_mtu == new_mtu)
  1729. return 0;
  1730. /* synchronized against open : rtnl_lock() held by caller */
  1731. if (netif_running(dev)) {
  1732. u8 __iomem *base = get_hwbase(dev);
  1733. /*
  1734. * It seems that the nic preloads valid ring entries into an
  1735. * internal buffer. The procedure for flushing everything is
  1736. * guessed, there is probably a simpler approach.
  1737. * Changing the MTU is a rare event, it shouldn't matter.
  1738. */
  1739. nv_disable_irq(dev);
  1740. netif_tx_lock_bh(dev);
  1741. spin_lock(&np->lock);
  1742. /* stop engines */
  1743. nv_stop_rx(dev);
  1744. nv_stop_tx(dev);
  1745. nv_txrx_reset(dev);
  1746. /* drain rx queue */
  1747. nv_drain_rx(dev);
  1748. nv_drain_tx(dev);
  1749. /* reinit driver view of the rx queue */
  1750. set_bufsize(dev);
  1751. if (nv_init_ring(dev)) {
  1752. if (!np->in_shutdown)
  1753. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1754. }
  1755. /* reinit nic view of the rx queue */
  1756. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1757. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1758. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1759. base + NvRegRingSizes);
  1760. pci_push(base);
  1761. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1762. pci_push(base);
  1763. /* restart rx engine */
  1764. nv_start_rx(dev);
  1765. nv_start_tx(dev);
  1766. spin_unlock(&np->lock);
  1767. netif_tx_unlock_bh(dev);
  1768. nv_enable_irq(dev);
  1769. }
  1770. return 0;
  1771. }
  1772. static void nv_copy_mac_to_hw(struct net_device *dev)
  1773. {
  1774. u8 __iomem *base = get_hwbase(dev);
  1775. u32 mac[2];
  1776. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1777. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1778. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1779. writel(mac[0], base + NvRegMacAddrA);
  1780. writel(mac[1], base + NvRegMacAddrB);
  1781. }
  1782. /*
  1783. * nv_set_mac_address: dev->set_mac_address function
  1784. * Called with rtnl_lock() held.
  1785. */
  1786. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1787. {
  1788. struct fe_priv *np = netdev_priv(dev);
  1789. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1790. if(!is_valid_ether_addr(macaddr->sa_data))
  1791. return -EADDRNOTAVAIL;
  1792. /* synchronized against open : rtnl_lock() held by caller */
  1793. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1794. if (netif_running(dev)) {
  1795. netif_tx_lock_bh(dev);
  1796. spin_lock_irq(&np->lock);
  1797. /* stop rx engine */
  1798. nv_stop_rx(dev);
  1799. /* set mac address */
  1800. nv_copy_mac_to_hw(dev);
  1801. /* restart rx engine */
  1802. nv_start_rx(dev);
  1803. spin_unlock_irq(&np->lock);
  1804. netif_tx_unlock_bh(dev);
  1805. } else {
  1806. nv_copy_mac_to_hw(dev);
  1807. }
  1808. return 0;
  1809. }
  1810. /*
  1811. * nv_set_multicast: dev->set_multicast function
  1812. * Called with netif_tx_lock held.
  1813. */
  1814. static void nv_set_multicast(struct net_device *dev)
  1815. {
  1816. struct fe_priv *np = netdev_priv(dev);
  1817. u8 __iomem *base = get_hwbase(dev);
  1818. u32 addr[2];
  1819. u32 mask[2];
  1820. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1821. memset(addr, 0, sizeof(addr));
  1822. memset(mask, 0, sizeof(mask));
  1823. if (dev->flags & IFF_PROMISC) {
  1824. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1825. pff |= NVREG_PFF_PROMISC;
  1826. } else {
  1827. pff |= NVREG_PFF_MYADDR;
  1828. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1829. u32 alwaysOff[2];
  1830. u32 alwaysOn[2];
  1831. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1832. if (dev->flags & IFF_ALLMULTI) {
  1833. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1834. } else {
  1835. struct dev_mc_list *walk;
  1836. walk = dev->mc_list;
  1837. while (walk != NULL) {
  1838. u32 a, b;
  1839. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1840. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1841. alwaysOn[0] &= a;
  1842. alwaysOff[0] &= ~a;
  1843. alwaysOn[1] &= b;
  1844. alwaysOff[1] &= ~b;
  1845. walk = walk->next;
  1846. }
  1847. }
  1848. addr[0] = alwaysOn[0];
  1849. addr[1] = alwaysOn[1];
  1850. mask[0] = alwaysOn[0] | alwaysOff[0];
  1851. mask[1] = alwaysOn[1] | alwaysOff[1];
  1852. }
  1853. }
  1854. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1855. pff |= NVREG_PFF_ALWAYS;
  1856. spin_lock_irq(&np->lock);
  1857. nv_stop_rx(dev);
  1858. writel(addr[0], base + NvRegMulticastAddrA);
  1859. writel(addr[1], base + NvRegMulticastAddrB);
  1860. writel(mask[0], base + NvRegMulticastMaskA);
  1861. writel(mask[1], base + NvRegMulticastMaskB);
  1862. writel(pff, base + NvRegPacketFilterFlags);
  1863. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1864. dev->name);
  1865. nv_start_rx(dev);
  1866. spin_unlock_irq(&np->lock);
  1867. }
  1868. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1869. {
  1870. struct fe_priv *np = netdev_priv(dev);
  1871. u8 __iomem *base = get_hwbase(dev);
  1872. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1873. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1874. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1875. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1876. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1877. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1878. } else {
  1879. writel(pff, base + NvRegPacketFilterFlags);
  1880. }
  1881. }
  1882. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1883. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1884. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1885. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1886. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1887. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1888. } else {
  1889. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1890. writel(regmisc, base + NvRegMisc1);
  1891. }
  1892. }
  1893. }
  1894. /**
  1895. * nv_update_linkspeed: Setup the MAC according to the link partner
  1896. * @dev: Network device to be configured
  1897. *
  1898. * The function queries the PHY and checks if there is a link partner.
  1899. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1900. * set to 10 MBit HD.
  1901. *
  1902. * The function returns 0 if there is no link partner and 1 if there is
  1903. * a good link partner.
  1904. */
  1905. static int nv_update_linkspeed(struct net_device *dev)
  1906. {
  1907. struct fe_priv *np = netdev_priv(dev);
  1908. u8 __iomem *base = get_hwbase(dev);
  1909. int adv = 0;
  1910. int lpa = 0;
  1911. int adv_lpa, adv_pause, lpa_pause;
  1912. int newls = np->linkspeed;
  1913. int newdup = np->duplex;
  1914. int mii_status;
  1915. int retval = 0;
  1916. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  1917. /* BMSR_LSTATUS is latched, read it twice:
  1918. * we want the current value.
  1919. */
  1920. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1921. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1922. if (!(mii_status & BMSR_LSTATUS)) {
  1923. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1924. dev->name);
  1925. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1926. newdup = 0;
  1927. retval = 0;
  1928. goto set_speed;
  1929. }
  1930. if (np->autoneg == 0) {
  1931. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1932. dev->name, np->fixed_mode);
  1933. if (np->fixed_mode & LPA_100FULL) {
  1934. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1935. newdup = 1;
  1936. } else if (np->fixed_mode & LPA_100HALF) {
  1937. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1938. newdup = 0;
  1939. } else if (np->fixed_mode & LPA_10FULL) {
  1940. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1941. newdup = 1;
  1942. } else {
  1943. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1944. newdup = 0;
  1945. }
  1946. retval = 1;
  1947. goto set_speed;
  1948. }
  1949. /* check auto negotiation is complete */
  1950. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1951. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1952. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1953. newdup = 0;
  1954. retval = 0;
  1955. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1956. goto set_speed;
  1957. }
  1958. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1959. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1960. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1961. dev->name, adv, lpa);
  1962. retval = 1;
  1963. if (np->gigabit == PHY_GIGABIT) {
  1964. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1965. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  1966. if ((control_1000 & ADVERTISE_1000FULL) &&
  1967. (status_1000 & LPA_1000FULL)) {
  1968. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1969. dev->name);
  1970. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1971. newdup = 1;
  1972. goto set_speed;
  1973. }
  1974. }
  1975. /* FIXME: handle parallel detection properly */
  1976. adv_lpa = lpa & adv;
  1977. if (adv_lpa & LPA_100FULL) {
  1978. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1979. newdup = 1;
  1980. } else if (adv_lpa & LPA_100HALF) {
  1981. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1982. newdup = 0;
  1983. } else if (adv_lpa & LPA_10FULL) {
  1984. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1985. newdup = 1;
  1986. } else if (adv_lpa & LPA_10HALF) {
  1987. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1988. newdup = 0;
  1989. } else {
  1990. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  1991. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1992. newdup = 0;
  1993. }
  1994. set_speed:
  1995. if (np->duplex == newdup && np->linkspeed == newls)
  1996. return retval;
  1997. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1998. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1999. np->duplex = newdup;
  2000. np->linkspeed = newls;
  2001. if (np->gigabit == PHY_GIGABIT) {
  2002. phyreg = readl(base + NvRegRandomSeed);
  2003. phyreg &= ~(0x3FF00);
  2004. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2005. phyreg |= NVREG_RNDSEED_FORCE3;
  2006. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2007. phyreg |= NVREG_RNDSEED_FORCE2;
  2008. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2009. phyreg |= NVREG_RNDSEED_FORCE;
  2010. writel(phyreg, base + NvRegRandomSeed);
  2011. }
  2012. phyreg = readl(base + NvRegPhyInterface);
  2013. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2014. if (np->duplex == 0)
  2015. phyreg |= PHY_HALF;
  2016. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2017. phyreg |= PHY_100;
  2018. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2019. phyreg |= PHY_1000;
  2020. writel(phyreg, base + NvRegPhyInterface);
  2021. if (phyreg & PHY_RGMII) {
  2022. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2023. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2024. else
  2025. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2026. } else {
  2027. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2028. }
  2029. writel(txreg, base + NvRegTxDeferral);
  2030. if (np->desc_ver == DESC_VER_1) {
  2031. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2032. } else {
  2033. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2034. txreg = NVREG_TX_WM_DESC2_3_1000;
  2035. else
  2036. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2037. }
  2038. writel(txreg, base + NvRegTxWatermark);
  2039. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2040. base + NvRegMisc1);
  2041. pci_push(base);
  2042. writel(np->linkspeed, base + NvRegLinkSpeed);
  2043. pci_push(base);
  2044. pause_flags = 0;
  2045. /* setup pause frame */
  2046. if (np->duplex != 0) {
  2047. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2048. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2049. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2050. switch (adv_pause) {
  2051. case (ADVERTISE_PAUSE_CAP):
  2052. if (lpa_pause & LPA_PAUSE_CAP) {
  2053. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2054. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2055. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2056. }
  2057. break;
  2058. case (ADVERTISE_PAUSE_ASYM):
  2059. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2060. {
  2061. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2062. }
  2063. break;
  2064. case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
  2065. if (lpa_pause & LPA_PAUSE_CAP)
  2066. {
  2067. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2068. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2069. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2070. }
  2071. if (lpa_pause == LPA_PAUSE_ASYM)
  2072. {
  2073. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2074. }
  2075. break;
  2076. }
  2077. } else {
  2078. pause_flags = np->pause_flags;
  2079. }
  2080. }
  2081. nv_update_pause(dev, pause_flags);
  2082. return retval;
  2083. }
  2084. static void nv_linkchange(struct net_device *dev)
  2085. {
  2086. if (nv_update_linkspeed(dev)) {
  2087. if (!netif_carrier_ok(dev)) {
  2088. netif_carrier_on(dev);
  2089. printk(KERN_INFO "%s: link up.\n", dev->name);
  2090. nv_start_rx(dev);
  2091. }
  2092. } else {
  2093. if (netif_carrier_ok(dev)) {
  2094. netif_carrier_off(dev);
  2095. printk(KERN_INFO "%s: link down.\n", dev->name);
  2096. nv_stop_rx(dev);
  2097. }
  2098. }
  2099. }
  2100. static void nv_link_irq(struct net_device *dev)
  2101. {
  2102. u8 __iomem *base = get_hwbase(dev);
  2103. u32 miistat;
  2104. miistat = readl(base + NvRegMIIStatus);
  2105. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2106. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2107. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2108. nv_linkchange(dev);
  2109. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2110. }
  2111. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  2112. {
  2113. struct net_device *dev = (struct net_device *) data;
  2114. struct fe_priv *np = netdev_priv(dev);
  2115. u8 __iomem *base = get_hwbase(dev);
  2116. u32 events;
  2117. int i;
  2118. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2119. for (i=0; ; i++) {
  2120. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2121. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2122. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2123. } else {
  2124. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2125. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2126. }
  2127. pci_push(base);
  2128. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2129. if (!(events & np->irqmask))
  2130. break;
  2131. spin_lock(&np->lock);
  2132. nv_tx_done(dev);
  2133. spin_unlock(&np->lock);
  2134. nv_rx_process(dev);
  2135. if (nv_alloc_rx(dev)) {
  2136. spin_lock(&np->lock);
  2137. if (!np->in_shutdown)
  2138. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2139. spin_unlock(&np->lock);
  2140. }
  2141. if (events & NVREG_IRQ_LINK) {
  2142. spin_lock(&np->lock);
  2143. nv_link_irq(dev);
  2144. spin_unlock(&np->lock);
  2145. }
  2146. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2147. spin_lock(&np->lock);
  2148. nv_linkchange(dev);
  2149. spin_unlock(&np->lock);
  2150. np->link_timeout = jiffies + LINK_TIMEOUT;
  2151. }
  2152. if (events & (NVREG_IRQ_TX_ERR)) {
  2153. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2154. dev->name, events);
  2155. }
  2156. if (events & (NVREG_IRQ_UNKNOWN)) {
  2157. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2158. dev->name, events);
  2159. }
  2160. if (i > max_interrupt_work) {
  2161. spin_lock(&np->lock);
  2162. /* disable interrupts on the nic */
  2163. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2164. writel(0, base + NvRegIrqMask);
  2165. else
  2166. writel(np->irqmask, base + NvRegIrqMask);
  2167. pci_push(base);
  2168. if (!np->in_shutdown) {
  2169. np->nic_poll_irq = np->irqmask;
  2170. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2171. }
  2172. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2173. spin_unlock(&np->lock);
  2174. break;
  2175. }
  2176. }
  2177. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2178. return IRQ_RETVAL(i);
  2179. }
  2180. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  2181. {
  2182. struct net_device *dev = (struct net_device *) data;
  2183. struct fe_priv *np = netdev_priv(dev);
  2184. u8 __iomem *base = get_hwbase(dev);
  2185. u32 events;
  2186. int i;
  2187. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2188. for (i=0; ; i++) {
  2189. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2190. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2191. pci_push(base);
  2192. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2193. if (!(events & np->irqmask))
  2194. break;
  2195. spin_lock_irq(&np->lock);
  2196. nv_tx_done(dev);
  2197. spin_unlock_irq(&np->lock);
  2198. if (events & (NVREG_IRQ_TX_ERR)) {
  2199. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2200. dev->name, events);
  2201. }
  2202. if (i > max_interrupt_work) {
  2203. spin_lock_irq(&np->lock);
  2204. /* disable interrupts on the nic */
  2205. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2206. pci_push(base);
  2207. if (!np->in_shutdown) {
  2208. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2209. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2210. }
  2211. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2212. spin_unlock_irq(&np->lock);
  2213. break;
  2214. }
  2215. }
  2216. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2217. return IRQ_RETVAL(i);
  2218. }
  2219. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  2220. {
  2221. struct net_device *dev = (struct net_device *) data;
  2222. struct fe_priv *np = netdev_priv(dev);
  2223. u8 __iomem *base = get_hwbase(dev);
  2224. u32 events;
  2225. int i;
  2226. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2227. for (i=0; ; i++) {
  2228. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2229. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2230. pci_push(base);
  2231. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2232. if (!(events & np->irqmask))
  2233. break;
  2234. nv_rx_process(dev);
  2235. if (nv_alloc_rx(dev)) {
  2236. spin_lock_irq(&np->lock);
  2237. if (!np->in_shutdown)
  2238. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2239. spin_unlock_irq(&np->lock);
  2240. }
  2241. if (i > max_interrupt_work) {
  2242. spin_lock_irq(&np->lock);
  2243. /* disable interrupts on the nic */
  2244. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2245. pci_push(base);
  2246. if (!np->in_shutdown) {
  2247. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2248. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2249. }
  2250. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2251. spin_unlock_irq(&np->lock);
  2252. break;
  2253. }
  2254. }
  2255. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2256. return IRQ_RETVAL(i);
  2257. }
  2258. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  2259. {
  2260. struct net_device *dev = (struct net_device *) data;
  2261. struct fe_priv *np = netdev_priv(dev);
  2262. u8 __iomem *base = get_hwbase(dev);
  2263. u32 events;
  2264. int i;
  2265. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2266. for (i=0; ; i++) {
  2267. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2268. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2269. pci_push(base);
  2270. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2271. if (!(events & np->irqmask))
  2272. break;
  2273. if (events & NVREG_IRQ_LINK) {
  2274. spin_lock_irq(&np->lock);
  2275. nv_link_irq(dev);
  2276. spin_unlock_irq(&np->lock);
  2277. }
  2278. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2279. spin_lock_irq(&np->lock);
  2280. nv_linkchange(dev);
  2281. spin_unlock_irq(&np->lock);
  2282. np->link_timeout = jiffies + LINK_TIMEOUT;
  2283. }
  2284. if (events & (NVREG_IRQ_UNKNOWN)) {
  2285. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2286. dev->name, events);
  2287. }
  2288. if (i > max_interrupt_work) {
  2289. spin_lock_irq(&np->lock);
  2290. /* disable interrupts on the nic */
  2291. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2292. pci_push(base);
  2293. if (!np->in_shutdown) {
  2294. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2295. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2296. }
  2297. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2298. spin_unlock_irq(&np->lock);
  2299. break;
  2300. }
  2301. }
  2302. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2303. return IRQ_RETVAL(i);
  2304. }
  2305. static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
  2306. {
  2307. struct net_device *dev = (struct net_device *) data;
  2308. struct fe_priv *np = netdev_priv(dev);
  2309. u8 __iomem *base = get_hwbase(dev);
  2310. u32 events;
  2311. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  2312. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2313. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2314. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  2315. } else {
  2316. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2317. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  2318. }
  2319. pci_push(base);
  2320. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2321. if (!(events & NVREG_IRQ_TIMER))
  2322. return IRQ_RETVAL(0);
  2323. spin_lock(&np->lock);
  2324. np->intr_test = 1;
  2325. spin_unlock(&np->lock);
  2326. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  2327. return IRQ_RETVAL(1);
  2328. }
  2329. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2330. {
  2331. u8 __iomem *base = get_hwbase(dev);
  2332. int i;
  2333. u32 msixmap = 0;
  2334. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2335. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2336. * the remaining 8 interrupts.
  2337. */
  2338. for (i = 0; i < 8; i++) {
  2339. if ((irqmask >> i) & 0x1) {
  2340. msixmap |= vector << (i << 2);
  2341. }
  2342. }
  2343. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2344. msixmap = 0;
  2345. for (i = 0; i < 8; i++) {
  2346. if ((irqmask >> (i + 8)) & 0x1) {
  2347. msixmap |= vector << (i << 2);
  2348. }
  2349. }
  2350. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2351. }
  2352. static int nv_request_irq(struct net_device *dev, int intr_test)
  2353. {
  2354. struct fe_priv *np = get_nvpriv(dev);
  2355. u8 __iomem *base = get_hwbase(dev);
  2356. int ret = 1;
  2357. int i;
  2358. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2359. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2360. np->msi_x_entry[i].entry = i;
  2361. }
  2362. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2363. np->msi_flags |= NV_MSI_X_ENABLED;
  2364. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  2365. /* Request irq for rx handling */
  2366. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  2367. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2368. pci_disable_msix(np->pci_dev);
  2369. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2370. goto out_err;
  2371. }
  2372. /* Request irq for tx handling */
  2373. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  2374. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2375. pci_disable_msix(np->pci_dev);
  2376. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2377. goto out_free_rx;
  2378. }
  2379. /* Request irq for link and timer handling */
  2380. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  2381. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2382. pci_disable_msix(np->pci_dev);
  2383. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2384. goto out_free_tx;
  2385. }
  2386. /* map interrupts to their respective vector */
  2387. writel(0, base + NvRegMSIXMap0);
  2388. writel(0, base + NvRegMSIXMap1);
  2389. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2390. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2391. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2392. } else {
  2393. /* Request irq for all interrupts */
  2394. if ((!intr_test &&
  2395. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2396. (intr_test &&
  2397. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2398. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2399. pci_disable_msix(np->pci_dev);
  2400. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2401. goto out_err;
  2402. }
  2403. /* map interrupts to vector 0 */
  2404. writel(0, base + NvRegMSIXMap0);
  2405. writel(0, base + NvRegMSIXMap1);
  2406. }
  2407. }
  2408. }
  2409. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2410. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2411. np->msi_flags |= NV_MSI_ENABLED;
  2412. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2413. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2414. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2415. pci_disable_msi(np->pci_dev);
  2416. np->msi_flags &= ~NV_MSI_ENABLED;
  2417. goto out_err;
  2418. }
  2419. /* map interrupts to vector 0 */
  2420. writel(0, base + NvRegMSIMap0);
  2421. writel(0, base + NvRegMSIMap1);
  2422. /* enable msi vector 0 */
  2423. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2424. }
  2425. }
  2426. if (ret != 0) {
  2427. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2428. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
  2429. goto out_err;
  2430. }
  2431. return 0;
  2432. out_free_tx:
  2433. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2434. out_free_rx:
  2435. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2436. out_err:
  2437. return 1;
  2438. }
  2439. static void nv_free_irq(struct net_device *dev)
  2440. {
  2441. struct fe_priv *np = get_nvpriv(dev);
  2442. int i;
  2443. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2444. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2445. free_irq(np->msi_x_entry[i].vector, dev);
  2446. }
  2447. pci_disable_msix(np->pci_dev);
  2448. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2449. } else {
  2450. free_irq(np->pci_dev->irq, dev);
  2451. if (np->msi_flags & NV_MSI_ENABLED) {
  2452. pci_disable_msi(np->pci_dev);
  2453. np->msi_flags &= ~NV_MSI_ENABLED;
  2454. }
  2455. }
  2456. }
  2457. static void nv_do_nic_poll(unsigned long data)
  2458. {
  2459. struct net_device *dev = (struct net_device *) data;
  2460. struct fe_priv *np = netdev_priv(dev);
  2461. u8 __iomem *base = get_hwbase(dev);
  2462. u32 mask = 0;
  2463. /*
  2464. * First disable irq(s) and then
  2465. * reenable interrupts on the nic, we have to do this before calling
  2466. * nv_nic_irq because that may decide to do otherwise
  2467. */
  2468. if (!using_multi_irqs(dev)) {
  2469. if (np->msi_flags & NV_MSI_X_ENABLED)
  2470. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2471. else
  2472. disable_irq_lockdep(dev->irq);
  2473. mask = np->irqmask;
  2474. } else {
  2475. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2476. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2477. mask |= NVREG_IRQ_RX_ALL;
  2478. }
  2479. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2480. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2481. mask |= NVREG_IRQ_TX_ALL;
  2482. }
  2483. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2484. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2485. mask |= NVREG_IRQ_OTHER;
  2486. }
  2487. }
  2488. np->nic_poll_irq = 0;
  2489. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2490. writel(mask, base + NvRegIrqMask);
  2491. pci_push(base);
  2492. if (!using_multi_irqs(dev)) {
  2493. nv_nic_irq(0, dev, NULL);
  2494. if (np->msi_flags & NV_MSI_X_ENABLED)
  2495. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2496. else
  2497. enable_irq_lockdep(dev->irq);
  2498. } else {
  2499. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2500. nv_nic_irq_rx(0, dev, NULL);
  2501. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2502. }
  2503. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2504. nv_nic_irq_tx(0, dev, NULL);
  2505. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2506. }
  2507. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2508. nv_nic_irq_other(0, dev, NULL);
  2509. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2510. }
  2511. }
  2512. }
  2513. #ifdef CONFIG_NET_POLL_CONTROLLER
  2514. static void nv_poll_controller(struct net_device *dev)
  2515. {
  2516. nv_do_nic_poll((unsigned long) dev);
  2517. }
  2518. #endif
  2519. static void nv_do_stats_poll(unsigned long data)
  2520. {
  2521. struct net_device *dev = (struct net_device *) data;
  2522. struct fe_priv *np = netdev_priv(dev);
  2523. u8 __iomem *base = get_hwbase(dev);
  2524. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2525. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2526. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2527. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2528. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2529. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2530. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2531. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2532. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2533. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2534. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2535. np->estats.tx_pause += readl(base + NvRegTxPause);
  2536. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2537. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2538. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2539. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2540. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2541. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2542. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2543. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2544. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2545. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2546. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2547. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2548. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2549. np->estats.rx_pause += readl(base + NvRegRxPause);
  2550. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2551. np->estats.rx_packets =
  2552. np->estats.rx_unicast +
  2553. np->estats.rx_multicast +
  2554. np->estats.rx_broadcast;
  2555. np->estats.rx_errors_total =
  2556. np->estats.rx_crc_errors +
  2557. np->estats.rx_over_errors +
  2558. np->estats.rx_frame_error +
  2559. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2560. np->estats.rx_late_collision +
  2561. np->estats.rx_runt +
  2562. np->estats.rx_frame_too_long;
  2563. if (!np->in_shutdown)
  2564. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2565. }
  2566. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2567. {
  2568. struct fe_priv *np = netdev_priv(dev);
  2569. strcpy(info->driver, "forcedeth");
  2570. strcpy(info->version, FORCEDETH_VERSION);
  2571. strcpy(info->bus_info, pci_name(np->pci_dev));
  2572. }
  2573. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2574. {
  2575. struct fe_priv *np = netdev_priv(dev);
  2576. wolinfo->supported = WAKE_MAGIC;
  2577. spin_lock_irq(&np->lock);
  2578. if (np->wolenabled)
  2579. wolinfo->wolopts = WAKE_MAGIC;
  2580. spin_unlock_irq(&np->lock);
  2581. }
  2582. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2583. {
  2584. struct fe_priv *np = netdev_priv(dev);
  2585. u8 __iomem *base = get_hwbase(dev);
  2586. u32 flags = 0;
  2587. if (wolinfo->wolopts == 0) {
  2588. np->wolenabled = 0;
  2589. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2590. np->wolenabled = 1;
  2591. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2592. }
  2593. if (netif_running(dev)) {
  2594. spin_lock_irq(&np->lock);
  2595. writel(flags, base + NvRegWakeUpFlags);
  2596. spin_unlock_irq(&np->lock);
  2597. }
  2598. return 0;
  2599. }
  2600. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2601. {
  2602. struct fe_priv *np = netdev_priv(dev);
  2603. int adv;
  2604. spin_lock_irq(&np->lock);
  2605. ecmd->port = PORT_MII;
  2606. if (!netif_running(dev)) {
  2607. /* We do not track link speed / duplex setting if the
  2608. * interface is disabled. Force a link check */
  2609. if (nv_update_linkspeed(dev)) {
  2610. if (!netif_carrier_ok(dev))
  2611. netif_carrier_on(dev);
  2612. } else {
  2613. if (netif_carrier_ok(dev))
  2614. netif_carrier_off(dev);
  2615. }
  2616. }
  2617. if (netif_carrier_ok(dev)) {
  2618. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2619. case NVREG_LINKSPEED_10:
  2620. ecmd->speed = SPEED_10;
  2621. break;
  2622. case NVREG_LINKSPEED_100:
  2623. ecmd->speed = SPEED_100;
  2624. break;
  2625. case NVREG_LINKSPEED_1000:
  2626. ecmd->speed = SPEED_1000;
  2627. break;
  2628. }
  2629. ecmd->duplex = DUPLEX_HALF;
  2630. if (np->duplex)
  2631. ecmd->duplex = DUPLEX_FULL;
  2632. } else {
  2633. ecmd->speed = -1;
  2634. ecmd->duplex = -1;
  2635. }
  2636. ecmd->autoneg = np->autoneg;
  2637. ecmd->advertising = ADVERTISED_MII;
  2638. if (np->autoneg) {
  2639. ecmd->advertising |= ADVERTISED_Autoneg;
  2640. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2641. if (adv & ADVERTISE_10HALF)
  2642. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2643. if (adv & ADVERTISE_10FULL)
  2644. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2645. if (adv & ADVERTISE_100HALF)
  2646. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2647. if (adv & ADVERTISE_100FULL)
  2648. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2649. if (np->gigabit == PHY_GIGABIT) {
  2650. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2651. if (adv & ADVERTISE_1000FULL)
  2652. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2653. }
  2654. }
  2655. ecmd->supported = (SUPPORTED_Autoneg |
  2656. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2657. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2658. SUPPORTED_MII);
  2659. if (np->gigabit == PHY_GIGABIT)
  2660. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2661. ecmd->phy_address = np->phyaddr;
  2662. ecmd->transceiver = XCVR_EXTERNAL;
  2663. /* ignore maxtxpkt, maxrxpkt for now */
  2664. spin_unlock_irq(&np->lock);
  2665. return 0;
  2666. }
  2667. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2668. {
  2669. struct fe_priv *np = netdev_priv(dev);
  2670. if (ecmd->port != PORT_MII)
  2671. return -EINVAL;
  2672. if (ecmd->transceiver != XCVR_EXTERNAL)
  2673. return -EINVAL;
  2674. if (ecmd->phy_address != np->phyaddr) {
  2675. /* TODO: support switching between multiple phys. Should be
  2676. * trivial, but not enabled due to lack of test hardware. */
  2677. return -EINVAL;
  2678. }
  2679. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2680. u32 mask;
  2681. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2682. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2683. if (np->gigabit == PHY_GIGABIT)
  2684. mask |= ADVERTISED_1000baseT_Full;
  2685. if ((ecmd->advertising & mask) == 0)
  2686. return -EINVAL;
  2687. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2688. /* Note: autonegotiation disable, speed 1000 intentionally
  2689. * forbidden - noone should need that. */
  2690. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2691. return -EINVAL;
  2692. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2693. return -EINVAL;
  2694. } else {
  2695. return -EINVAL;
  2696. }
  2697. netif_carrier_off(dev);
  2698. if (netif_running(dev)) {
  2699. nv_disable_irq(dev);
  2700. netif_tx_lock_bh(dev);
  2701. spin_lock(&np->lock);
  2702. /* stop engines */
  2703. nv_stop_rx(dev);
  2704. nv_stop_tx(dev);
  2705. spin_unlock(&np->lock);
  2706. netif_tx_unlock_bh(dev);
  2707. }
  2708. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2709. int adv, bmcr;
  2710. np->autoneg = 1;
  2711. /* advertise only what has been requested */
  2712. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2713. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2714. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2715. adv |= ADVERTISE_10HALF;
  2716. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2717. adv |= ADVERTISE_10FULL;
  2718. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2719. adv |= ADVERTISE_100HALF;
  2720. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2721. adv |= ADVERTISE_100FULL;
  2722. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2723. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2724. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2725. adv |= ADVERTISE_PAUSE_ASYM;
  2726. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2727. if (np->gigabit == PHY_GIGABIT) {
  2728. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2729. adv &= ~ADVERTISE_1000FULL;
  2730. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2731. adv |= ADVERTISE_1000FULL;
  2732. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2733. }
  2734. if (netif_running(dev))
  2735. printk(KERN_INFO "%s: link down.\n", dev->name);
  2736. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2737. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2738. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2739. } else {
  2740. int adv, bmcr;
  2741. np->autoneg = 0;
  2742. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2743. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2744. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2745. adv |= ADVERTISE_10HALF;
  2746. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2747. adv |= ADVERTISE_10FULL;
  2748. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2749. adv |= ADVERTISE_100HALF;
  2750. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2751. adv |= ADVERTISE_100FULL;
  2752. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2753. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2754. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2755. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2756. }
  2757. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2758. adv |= ADVERTISE_PAUSE_ASYM;
  2759. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2760. }
  2761. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2762. np->fixed_mode = adv;
  2763. if (np->gigabit == PHY_GIGABIT) {
  2764. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2765. adv &= ~ADVERTISE_1000FULL;
  2766. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2767. }
  2768. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2769. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2770. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2771. bmcr |= BMCR_FULLDPLX;
  2772. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2773. bmcr |= BMCR_SPEED100;
  2774. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2775. if (np->phy_oui == PHY_OUI_MARVELL) {
  2776. /* reset the phy */
  2777. if (phy_reset(dev)) {
  2778. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2779. return -EINVAL;
  2780. }
  2781. } else if (netif_running(dev)) {
  2782. /* Wait a bit and then reconfigure the nic. */
  2783. udelay(10);
  2784. nv_linkchange(dev);
  2785. }
  2786. }
  2787. if (netif_running(dev)) {
  2788. nv_start_rx(dev);
  2789. nv_start_tx(dev);
  2790. nv_enable_irq(dev);
  2791. }
  2792. return 0;
  2793. }
  2794. #define FORCEDETH_REGS_VER 1
  2795. static int nv_get_regs_len(struct net_device *dev)
  2796. {
  2797. struct fe_priv *np = netdev_priv(dev);
  2798. return np->register_size;
  2799. }
  2800. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2801. {
  2802. struct fe_priv *np = netdev_priv(dev);
  2803. u8 __iomem *base = get_hwbase(dev);
  2804. u32 *rbuf = buf;
  2805. int i;
  2806. regs->version = FORCEDETH_REGS_VER;
  2807. spin_lock_irq(&np->lock);
  2808. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2809. rbuf[i] = readl(base + i*sizeof(u32));
  2810. spin_unlock_irq(&np->lock);
  2811. }
  2812. static int nv_nway_reset(struct net_device *dev)
  2813. {
  2814. struct fe_priv *np = netdev_priv(dev);
  2815. int ret;
  2816. if (np->autoneg) {
  2817. int bmcr;
  2818. netif_carrier_off(dev);
  2819. if (netif_running(dev)) {
  2820. nv_disable_irq(dev);
  2821. netif_tx_lock_bh(dev);
  2822. spin_lock(&np->lock);
  2823. /* stop engines */
  2824. nv_stop_rx(dev);
  2825. nv_stop_tx(dev);
  2826. spin_unlock(&np->lock);
  2827. netif_tx_unlock_bh(dev);
  2828. printk(KERN_INFO "%s: link down.\n", dev->name);
  2829. }
  2830. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2831. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2832. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2833. if (netif_running(dev)) {
  2834. nv_start_rx(dev);
  2835. nv_start_tx(dev);
  2836. nv_enable_irq(dev);
  2837. }
  2838. ret = 0;
  2839. } else {
  2840. ret = -EINVAL;
  2841. }
  2842. return ret;
  2843. }
  2844. static int nv_set_tso(struct net_device *dev, u32 value)
  2845. {
  2846. struct fe_priv *np = netdev_priv(dev);
  2847. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2848. return ethtool_op_set_tso(dev, value);
  2849. else
  2850. return -EOPNOTSUPP;
  2851. }
  2852. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2853. {
  2854. struct fe_priv *np = netdev_priv(dev);
  2855. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2856. ring->rx_mini_max_pending = 0;
  2857. ring->rx_jumbo_max_pending = 0;
  2858. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2859. ring->rx_pending = np->rx_ring_size;
  2860. ring->rx_mini_pending = 0;
  2861. ring->rx_jumbo_pending = 0;
  2862. ring->tx_pending = np->tx_ring_size;
  2863. }
  2864. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2865. {
  2866. struct fe_priv *np = netdev_priv(dev);
  2867. u8 __iomem *base = get_hwbase(dev);
  2868. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  2869. dma_addr_t ring_addr;
  2870. if (ring->rx_pending < RX_RING_MIN ||
  2871. ring->tx_pending < TX_RING_MIN ||
  2872. ring->rx_mini_pending != 0 ||
  2873. ring->rx_jumbo_pending != 0 ||
  2874. (np->desc_ver == DESC_VER_1 &&
  2875. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  2876. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  2877. (np->desc_ver != DESC_VER_1 &&
  2878. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  2879. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  2880. return -EINVAL;
  2881. }
  2882. /* allocate new rings */
  2883. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2884. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2885. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2886. &ring_addr);
  2887. } else {
  2888. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2889. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2890. &ring_addr);
  2891. }
  2892. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  2893. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  2894. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  2895. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  2896. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  2897. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  2898. /* fall back to old rings */
  2899. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2900. if(rxtx_ring)
  2901. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2902. rxtx_ring, ring_addr);
  2903. } else {
  2904. if (rxtx_ring)
  2905. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2906. rxtx_ring, ring_addr);
  2907. }
  2908. if (rx_skbuff)
  2909. kfree(rx_skbuff);
  2910. if (rx_dma)
  2911. kfree(rx_dma);
  2912. if (tx_skbuff)
  2913. kfree(tx_skbuff);
  2914. if (tx_dma)
  2915. kfree(tx_dma);
  2916. if (tx_dma_len)
  2917. kfree(tx_dma_len);
  2918. goto exit;
  2919. }
  2920. if (netif_running(dev)) {
  2921. nv_disable_irq(dev);
  2922. netif_tx_lock_bh(dev);
  2923. spin_lock(&np->lock);
  2924. /* stop engines */
  2925. nv_stop_rx(dev);
  2926. nv_stop_tx(dev);
  2927. nv_txrx_reset(dev);
  2928. /* drain queues */
  2929. nv_drain_rx(dev);
  2930. nv_drain_tx(dev);
  2931. /* delete queues */
  2932. free_rings(dev);
  2933. }
  2934. /* set new values */
  2935. np->rx_ring_size = ring->rx_pending;
  2936. np->tx_ring_size = ring->tx_pending;
  2937. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  2938. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  2939. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2940. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  2941. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  2942. } else {
  2943. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  2944. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  2945. }
  2946. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  2947. np->rx_dma = (dma_addr_t*)rx_dma;
  2948. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  2949. np->tx_dma = (dma_addr_t*)tx_dma;
  2950. np->tx_dma_len = (unsigned int*)tx_dma_len;
  2951. np->ring_addr = ring_addr;
  2952. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  2953. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  2954. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  2955. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  2956. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  2957. if (netif_running(dev)) {
  2958. /* reinit driver view of the queues */
  2959. set_bufsize(dev);
  2960. if (nv_init_ring(dev)) {
  2961. if (!np->in_shutdown)
  2962. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2963. }
  2964. /* reinit nic view of the queues */
  2965. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2966. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2967. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2968. base + NvRegRingSizes);
  2969. pci_push(base);
  2970. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2971. pci_push(base);
  2972. /* restart engines */
  2973. nv_start_rx(dev);
  2974. nv_start_tx(dev);
  2975. spin_unlock(&np->lock);
  2976. netif_tx_unlock_bh(dev);
  2977. nv_enable_irq(dev);
  2978. }
  2979. return 0;
  2980. exit:
  2981. return -ENOMEM;
  2982. }
  2983. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  2984. {
  2985. struct fe_priv *np = netdev_priv(dev);
  2986. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  2987. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  2988. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  2989. }
  2990. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  2991. {
  2992. struct fe_priv *np = netdev_priv(dev);
  2993. int adv, bmcr;
  2994. if ((!np->autoneg && np->duplex == 0) ||
  2995. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  2996. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  2997. dev->name);
  2998. return -EINVAL;
  2999. }
  3000. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3001. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3002. return -EINVAL;
  3003. }
  3004. netif_carrier_off(dev);
  3005. if (netif_running(dev)) {
  3006. nv_disable_irq(dev);
  3007. netif_tx_lock_bh(dev);
  3008. spin_lock(&np->lock);
  3009. /* stop engines */
  3010. nv_stop_rx(dev);
  3011. nv_stop_tx(dev);
  3012. spin_unlock(&np->lock);
  3013. netif_tx_unlock_bh(dev);
  3014. }
  3015. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3016. if (pause->rx_pause)
  3017. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3018. if (pause->tx_pause)
  3019. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3020. if (np->autoneg && pause->autoneg) {
  3021. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3022. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3023. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3024. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3025. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3026. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3027. adv |= ADVERTISE_PAUSE_ASYM;
  3028. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3029. if (netif_running(dev))
  3030. printk(KERN_INFO "%s: link down.\n", dev->name);
  3031. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3032. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3033. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3034. } else {
  3035. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3036. if (pause->rx_pause)
  3037. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3038. if (pause->tx_pause)
  3039. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3040. if (!netif_running(dev))
  3041. nv_update_linkspeed(dev);
  3042. else
  3043. nv_update_pause(dev, np->pause_flags);
  3044. }
  3045. if (netif_running(dev)) {
  3046. nv_start_rx(dev);
  3047. nv_start_tx(dev);
  3048. nv_enable_irq(dev);
  3049. }
  3050. return 0;
  3051. }
  3052. static u32 nv_get_rx_csum(struct net_device *dev)
  3053. {
  3054. struct fe_priv *np = netdev_priv(dev);
  3055. return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
  3056. }
  3057. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3058. {
  3059. struct fe_priv *np = netdev_priv(dev);
  3060. u8 __iomem *base = get_hwbase(dev);
  3061. int retcode = 0;
  3062. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3063. if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
  3064. (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
  3065. /* already set or unset */
  3066. return 0;
  3067. }
  3068. if (data) {
  3069. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3070. } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
  3071. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3072. } else {
  3073. printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
  3074. return -EINVAL;
  3075. }
  3076. if (netif_running(dev)) {
  3077. spin_lock_irq(&np->lock);
  3078. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3079. spin_unlock_irq(&np->lock);
  3080. }
  3081. } else {
  3082. return -EINVAL;
  3083. }
  3084. return retcode;
  3085. }
  3086. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3087. {
  3088. struct fe_priv *np = netdev_priv(dev);
  3089. if (np->driver_data & DEV_HAS_CHECKSUM)
  3090. return ethtool_op_set_tx_hw_csum(dev, data);
  3091. else
  3092. return -EOPNOTSUPP;
  3093. }
  3094. static int nv_set_sg(struct net_device *dev, u32 data)
  3095. {
  3096. struct fe_priv *np = netdev_priv(dev);
  3097. if (np->driver_data & DEV_HAS_CHECKSUM)
  3098. return ethtool_op_set_sg(dev, data);
  3099. else
  3100. return -EOPNOTSUPP;
  3101. }
  3102. static int nv_get_stats_count(struct net_device *dev)
  3103. {
  3104. struct fe_priv *np = netdev_priv(dev);
  3105. if (np->driver_data & DEV_HAS_STATISTICS)
  3106. return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
  3107. else
  3108. return 0;
  3109. }
  3110. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3111. {
  3112. struct fe_priv *np = netdev_priv(dev);
  3113. /* update stats */
  3114. nv_do_stats_poll((unsigned long)dev);
  3115. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3116. }
  3117. static int nv_self_test_count(struct net_device *dev)
  3118. {
  3119. struct fe_priv *np = netdev_priv(dev);
  3120. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3121. return NV_TEST_COUNT_EXTENDED;
  3122. else
  3123. return NV_TEST_COUNT_BASE;
  3124. }
  3125. static int nv_link_test(struct net_device *dev)
  3126. {
  3127. struct fe_priv *np = netdev_priv(dev);
  3128. int mii_status;
  3129. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3130. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3131. /* check phy link status */
  3132. if (!(mii_status & BMSR_LSTATUS))
  3133. return 0;
  3134. else
  3135. return 1;
  3136. }
  3137. static int nv_register_test(struct net_device *dev)
  3138. {
  3139. u8 __iomem *base = get_hwbase(dev);
  3140. int i = 0;
  3141. u32 orig_read, new_read;
  3142. do {
  3143. orig_read = readl(base + nv_registers_test[i].reg);
  3144. /* xor with mask to toggle bits */
  3145. orig_read ^= nv_registers_test[i].mask;
  3146. writel(orig_read, base + nv_registers_test[i].reg);
  3147. new_read = readl(base + nv_registers_test[i].reg);
  3148. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3149. return 0;
  3150. /* restore original value */
  3151. orig_read ^= nv_registers_test[i].mask;
  3152. writel(orig_read, base + nv_registers_test[i].reg);
  3153. } while (nv_registers_test[++i].reg != 0);
  3154. return 1;
  3155. }
  3156. static int nv_interrupt_test(struct net_device *dev)
  3157. {
  3158. struct fe_priv *np = netdev_priv(dev);
  3159. u8 __iomem *base = get_hwbase(dev);
  3160. int ret = 1;
  3161. int testcnt;
  3162. u32 save_msi_flags, save_poll_interval = 0;
  3163. if (netif_running(dev)) {
  3164. /* free current irq */
  3165. nv_free_irq(dev);
  3166. save_poll_interval = readl(base+NvRegPollingInterval);
  3167. }
  3168. /* flag to test interrupt handler */
  3169. np->intr_test = 0;
  3170. /* setup test irq */
  3171. save_msi_flags = np->msi_flags;
  3172. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3173. np->msi_flags |= 0x001; /* setup 1 vector */
  3174. if (nv_request_irq(dev, 1))
  3175. return 0;
  3176. /* setup timer interrupt */
  3177. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3178. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3179. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3180. /* wait for at least one interrupt */
  3181. msleep(100);
  3182. spin_lock_irq(&np->lock);
  3183. /* flag should be set within ISR */
  3184. testcnt = np->intr_test;
  3185. if (!testcnt)
  3186. ret = 2;
  3187. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3188. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3189. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3190. else
  3191. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3192. spin_unlock_irq(&np->lock);
  3193. nv_free_irq(dev);
  3194. np->msi_flags = save_msi_flags;
  3195. if (netif_running(dev)) {
  3196. writel(save_poll_interval, base + NvRegPollingInterval);
  3197. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3198. /* restore original irq */
  3199. if (nv_request_irq(dev, 0))
  3200. return 0;
  3201. }
  3202. return ret;
  3203. }
  3204. static int nv_loopback_test(struct net_device *dev)
  3205. {
  3206. struct fe_priv *np = netdev_priv(dev);
  3207. u8 __iomem *base = get_hwbase(dev);
  3208. struct sk_buff *tx_skb, *rx_skb;
  3209. dma_addr_t test_dma_addr;
  3210. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3211. u32 Flags;
  3212. int len, i, pkt_len;
  3213. u8 *pkt_data;
  3214. u32 filter_flags = 0;
  3215. u32 misc1_flags = 0;
  3216. int ret = 1;
  3217. if (netif_running(dev)) {
  3218. nv_disable_irq(dev);
  3219. filter_flags = readl(base + NvRegPacketFilterFlags);
  3220. misc1_flags = readl(base + NvRegMisc1);
  3221. } else {
  3222. nv_txrx_reset(dev);
  3223. }
  3224. /* reinit driver view of the rx queue */
  3225. set_bufsize(dev);
  3226. nv_init_ring(dev);
  3227. /* setup hardware for loopback */
  3228. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3229. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3230. /* reinit nic view of the rx queue */
  3231. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3232. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3233. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3234. base + NvRegRingSizes);
  3235. pci_push(base);
  3236. /* restart rx engine */
  3237. nv_start_rx(dev);
  3238. nv_start_tx(dev);
  3239. /* setup packet for tx */
  3240. pkt_len = ETH_DATA_LEN;
  3241. tx_skb = dev_alloc_skb(pkt_len);
  3242. pkt_data = skb_put(tx_skb, pkt_len);
  3243. for (i = 0; i < pkt_len; i++)
  3244. pkt_data[i] = (u8)(i & 0xff);
  3245. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3246. tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
  3247. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3248. np->tx_ring.orig[0].PacketBuffer = cpu_to_le32(test_dma_addr);
  3249. np->tx_ring.orig[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3250. } else {
  3251. np->tx_ring.ex[0].PacketBufferHigh = cpu_to_le64(test_dma_addr) >> 32;
  3252. np->tx_ring.ex[0].PacketBufferLow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3253. np->tx_ring.ex[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3254. }
  3255. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3256. pci_push(get_hwbase(dev));
  3257. msleep(500);
  3258. /* check for rx of the packet */
  3259. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3260. Flags = le32_to_cpu(np->rx_ring.orig[0].FlagLen);
  3261. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  3262. } else {
  3263. Flags = le32_to_cpu(np->rx_ring.ex[0].FlagLen);
  3264. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  3265. }
  3266. if (Flags & NV_RX_AVAIL) {
  3267. ret = 0;
  3268. } else if (np->desc_ver == DESC_VER_1) {
  3269. if (Flags & NV_RX_ERROR)
  3270. ret = 0;
  3271. } else {
  3272. if (Flags & NV_RX2_ERROR) {
  3273. ret = 0;
  3274. }
  3275. }
  3276. if (ret) {
  3277. if (len != pkt_len) {
  3278. ret = 0;
  3279. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  3280. dev->name, len, pkt_len);
  3281. } else {
  3282. rx_skb = np->rx_skbuff[0];
  3283. for (i = 0; i < pkt_len; i++) {
  3284. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  3285. ret = 0;
  3286. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  3287. dev->name, i);
  3288. break;
  3289. }
  3290. }
  3291. }
  3292. } else {
  3293. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  3294. }
  3295. pci_unmap_page(np->pci_dev, test_dma_addr,
  3296. tx_skb->end-tx_skb->data,
  3297. PCI_DMA_TODEVICE);
  3298. dev_kfree_skb_any(tx_skb);
  3299. /* stop engines */
  3300. nv_stop_rx(dev);
  3301. nv_stop_tx(dev);
  3302. nv_txrx_reset(dev);
  3303. /* drain rx queue */
  3304. nv_drain_rx(dev);
  3305. nv_drain_tx(dev);
  3306. if (netif_running(dev)) {
  3307. writel(misc1_flags, base + NvRegMisc1);
  3308. writel(filter_flags, base + NvRegPacketFilterFlags);
  3309. nv_enable_irq(dev);
  3310. }
  3311. return ret;
  3312. }
  3313. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  3314. {
  3315. struct fe_priv *np = netdev_priv(dev);
  3316. u8 __iomem *base = get_hwbase(dev);
  3317. int result;
  3318. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  3319. if (!nv_link_test(dev)) {
  3320. test->flags |= ETH_TEST_FL_FAILED;
  3321. buffer[0] = 1;
  3322. }
  3323. if (test->flags & ETH_TEST_FL_OFFLINE) {
  3324. if (netif_running(dev)) {
  3325. netif_stop_queue(dev);
  3326. netif_tx_lock_bh(dev);
  3327. spin_lock_irq(&np->lock);
  3328. nv_disable_hw_interrupts(dev, np->irqmask);
  3329. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3330. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3331. } else {
  3332. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3333. }
  3334. /* stop engines */
  3335. nv_stop_rx(dev);
  3336. nv_stop_tx(dev);
  3337. nv_txrx_reset(dev);
  3338. /* drain rx queue */
  3339. nv_drain_rx(dev);
  3340. nv_drain_tx(dev);
  3341. spin_unlock_irq(&np->lock);
  3342. netif_tx_unlock_bh(dev);
  3343. }
  3344. if (!nv_register_test(dev)) {
  3345. test->flags |= ETH_TEST_FL_FAILED;
  3346. buffer[1] = 1;
  3347. }
  3348. result = nv_interrupt_test(dev);
  3349. if (result != 1) {
  3350. test->flags |= ETH_TEST_FL_FAILED;
  3351. buffer[2] = 1;
  3352. }
  3353. if (result == 0) {
  3354. /* bail out */
  3355. return;
  3356. }
  3357. if (!nv_loopback_test(dev)) {
  3358. test->flags |= ETH_TEST_FL_FAILED;
  3359. buffer[3] = 1;
  3360. }
  3361. if (netif_running(dev)) {
  3362. /* reinit driver view of the rx queue */
  3363. set_bufsize(dev);
  3364. if (nv_init_ring(dev)) {
  3365. if (!np->in_shutdown)
  3366. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3367. }
  3368. /* reinit nic view of the rx queue */
  3369. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3370. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3371. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3372. base + NvRegRingSizes);
  3373. pci_push(base);
  3374. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3375. pci_push(base);
  3376. /* restart rx engine */
  3377. nv_start_rx(dev);
  3378. nv_start_tx(dev);
  3379. netif_start_queue(dev);
  3380. nv_enable_hw_interrupts(dev, np->irqmask);
  3381. }
  3382. }
  3383. }
  3384. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  3385. {
  3386. switch (stringset) {
  3387. case ETH_SS_STATS:
  3388. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  3389. break;
  3390. case ETH_SS_TEST:
  3391. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  3392. break;
  3393. }
  3394. }
  3395. static struct ethtool_ops ops = {
  3396. .get_drvinfo = nv_get_drvinfo,
  3397. .get_link = ethtool_op_get_link,
  3398. .get_wol = nv_get_wol,
  3399. .set_wol = nv_set_wol,
  3400. .get_settings = nv_get_settings,
  3401. .set_settings = nv_set_settings,
  3402. .get_regs_len = nv_get_regs_len,
  3403. .get_regs = nv_get_regs,
  3404. .nway_reset = nv_nway_reset,
  3405. .get_perm_addr = ethtool_op_get_perm_addr,
  3406. .get_tso = ethtool_op_get_tso,
  3407. .set_tso = nv_set_tso,
  3408. .get_ringparam = nv_get_ringparam,
  3409. .set_ringparam = nv_set_ringparam,
  3410. .get_pauseparam = nv_get_pauseparam,
  3411. .set_pauseparam = nv_set_pauseparam,
  3412. .get_rx_csum = nv_get_rx_csum,
  3413. .set_rx_csum = nv_set_rx_csum,
  3414. .get_tx_csum = ethtool_op_get_tx_csum,
  3415. .set_tx_csum = nv_set_tx_csum,
  3416. .get_sg = ethtool_op_get_sg,
  3417. .set_sg = nv_set_sg,
  3418. .get_strings = nv_get_strings,
  3419. .get_stats_count = nv_get_stats_count,
  3420. .get_ethtool_stats = nv_get_ethtool_stats,
  3421. .self_test_count = nv_self_test_count,
  3422. .self_test = nv_self_test,
  3423. };
  3424. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  3425. {
  3426. struct fe_priv *np = get_nvpriv(dev);
  3427. spin_lock_irq(&np->lock);
  3428. /* save vlan group */
  3429. np->vlangrp = grp;
  3430. if (grp) {
  3431. /* enable vlan on MAC */
  3432. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  3433. } else {
  3434. /* disable vlan on MAC */
  3435. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  3436. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  3437. }
  3438. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3439. spin_unlock_irq(&np->lock);
  3440. };
  3441. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  3442. {
  3443. /* nothing to do */
  3444. };
  3445. static int nv_open(struct net_device *dev)
  3446. {
  3447. struct fe_priv *np = netdev_priv(dev);
  3448. u8 __iomem *base = get_hwbase(dev);
  3449. int ret = 1;
  3450. int oom, i;
  3451. dprintk(KERN_DEBUG "nv_open: begin\n");
  3452. /* 1) erase previous misconfiguration */
  3453. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3454. nv_mac_reset(dev);
  3455. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  3456. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3457. writel(0, base + NvRegMulticastAddrB);
  3458. writel(0, base + NvRegMulticastMaskA);
  3459. writel(0, base + NvRegMulticastMaskB);
  3460. writel(0, base + NvRegPacketFilterFlags);
  3461. writel(0, base + NvRegTransmitterControl);
  3462. writel(0, base + NvRegReceiverControl);
  3463. writel(0, base + NvRegAdapterControl);
  3464. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3465. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3466. /* 2) initialize descriptor rings */
  3467. set_bufsize(dev);
  3468. oom = nv_init_ring(dev);
  3469. writel(0, base + NvRegLinkSpeed);
  3470. writel(0, base + NvRegUnknownTransmitterReg);
  3471. nv_txrx_reset(dev);
  3472. writel(0, base + NvRegUnknownSetupReg6);
  3473. np->in_shutdown = 0;
  3474. /* 3) set mac address */
  3475. nv_copy_mac_to_hw(dev);
  3476. /* 4) give hw rings */
  3477. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3478. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3479. base + NvRegRingSizes);
  3480. /* 5) continue setup */
  3481. writel(np->linkspeed, base + NvRegLinkSpeed);
  3482. if (np->desc_ver == DESC_VER_1)
  3483. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  3484. else
  3485. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  3486. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3487. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3488. pci_push(base);
  3489. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3490. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3491. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3492. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3493. writel(0, base + NvRegUnknownSetupReg4);
  3494. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3495. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3496. /* 6) continue setup */
  3497. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3498. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3499. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3500. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3501. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3502. get_random_bytes(&i, sizeof(i));
  3503. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3504. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  3505. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  3506. if (poll_interval == -1) {
  3507. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3508. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3509. else
  3510. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3511. }
  3512. else
  3513. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3514. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3515. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3516. base + NvRegAdapterControl);
  3517. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3518. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  3519. if (np->wolenabled)
  3520. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3521. i = readl(base + NvRegPowerState);
  3522. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3523. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3524. pci_push(base);
  3525. udelay(10);
  3526. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3527. nv_disable_hw_interrupts(dev, np->irqmask);
  3528. pci_push(base);
  3529. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3530. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3531. pci_push(base);
  3532. if (nv_request_irq(dev, 0)) {
  3533. goto out_drain;
  3534. }
  3535. /* ask for interrupts */
  3536. nv_enable_hw_interrupts(dev, np->irqmask);
  3537. spin_lock_irq(&np->lock);
  3538. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3539. writel(0, base + NvRegMulticastAddrB);
  3540. writel(0, base + NvRegMulticastMaskA);
  3541. writel(0, base + NvRegMulticastMaskB);
  3542. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3543. /* One manual link speed update: Interrupts are enabled, future link
  3544. * speed changes cause interrupts and are handled by nv_link_irq().
  3545. */
  3546. {
  3547. u32 miistat;
  3548. miistat = readl(base + NvRegMIIStatus);
  3549. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3550. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3551. }
  3552. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3553. * to init hw */
  3554. np->linkspeed = 0;
  3555. ret = nv_update_linkspeed(dev);
  3556. nv_start_rx(dev);
  3557. nv_start_tx(dev);
  3558. netif_start_queue(dev);
  3559. if (ret) {
  3560. netif_carrier_on(dev);
  3561. } else {
  3562. printk("%s: no link during initialization.\n", dev->name);
  3563. netif_carrier_off(dev);
  3564. }
  3565. if (oom)
  3566. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3567. /* start statistics timer */
  3568. if (np->driver_data & DEV_HAS_STATISTICS)
  3569. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3570. spin_unlock_irq(&np->lock);
  3571. return 0;
  3572. out_drain:
  3573. drain_ring(dev);
  3574. return ret;
  3575. }
  3576. static int nv_close(struct net_device *dev)
  3577. {
  3578. struct fe_priv *np = netdev_priv(dev);
  3579. u8 __iomem *base;
  3580. spin_lock_irq(&np->lock);
  3581. np->in_shutdown = 1;
  3582. spin_unlock_irq(&np->lock);
  3583. synchronize_irq(dev->irq);
  3584. del_timer_sync(&np->oom_kick);
  3585. del_timer_sync(&np->nic_poll);
  3586. del_timer_sync(&np->stats_poll);
  3587. netif_stop_queue(dev);
  3588. spin_lock_irq(&np->lock);
  3589. nv_stop_tx(dev);
  3590. nv_stop_rx(dev);
  3591. nv_txrx_reset(dev);
  3592. /* disable interrupts on the nic or we will lock up */
  3593. base = get_hwbase(dev);
  3594. nv_disable_hw_interrupts(dev, np->irqmask);
  3595. pci_push(base);
  3596. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3597. spin_unlock_irq(&np->lock);
  3598. nv_free_irq(dev);
  3599. drain_ring(dev);
  3600. if (np->wolenabled)
  3601. nv_start_rx(dev);
  3602. /* special op: write back the misordered MAC address - otherwise
  3603. * the next nv_probe would see a wrong address.
  3604. */
  3605. writel(np->orig_mac[0], base + NvRegMacAddrA);
  3606. writel(np->orig_mac[1], base + NvRegMacAddrB);
  3607. /* FIXME: power down nic */
  3608. return 0;
  3609. }
  3610. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3611. {
  3612. struct net_device *dev;
  3613. struct fe_priv *np;
  3614. unsigned long addr;
  3615. u8 __iomem *base;
  3616. int err, i;
  3617. u32 powerstate;
  3618. dev = alloc_etherdev(sizeof(struct fe_priv));
  3619. err = -ENOMEM;
  3620. if (!dev)
  3621. goto out;
  3622. np = netdev_priv(dev);
  3623. np->pci_dev = pci_dev;
  3624. spin_lock_init(&np->lock);
  3625. SET_MODULE_OWNER(dev);
  3626. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3627. init_timer(&np->oom_kick);
  3628. np->oom_kick.data = (unsigned long) dev;
  3629. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3630. init_timer(&np->nic_poll);
  3631. np->nic_poll.data = (unsigned long) dev;
  3632. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3633. init_timer(&np->stats_poll);
  3634. np->stats_poll.data = (unsigned long) dev;
  3635. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3636. err = pci_enable_device(pci_dev);
  3637. if (err) {
  3638. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3639. err, pci_name(pci_dev));
  3640. goto out_free;
  3641. }
  3642. pci_set_master(pci_dev);
  3643. err = pci_request_regions(pci_dev, DRV_NAME);
  3644. if (err < 0)
  3645. goto out_disable;
  3646. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3647. np->register_size = NV_PCI_REGSZ_VER2;
  3648. else
  3649. np->register_size = NV_PCI_REGSZ_VER1;
  3650. err = -EINVAL;
  3651. addr = 0;
  3652. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3653. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3654. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3655. pci_resource_len(pci_dev, i),
  3656. pci_resource_flags(pci_dev, i));
  3657. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3658. pci_resource_len(pci_dev, i) >= np->register_size) {
  3659. addr = pci_resource_start(pci_dev, i);
  3660. break;
  3661. }
  3662. }
  3663. if (i == DEVICE_COUNT_RESOURCE) {
  3664. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3665. pci_name(pci_dev));
  3666. goto out_relreg;
  3667. }
  3668. /* copy of driver data */
  3669. np->driver_data = id->driver_data;
  3670. /* handle different descriptor versions */
  3671. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3672. /* packet format 3: supports 40-bit addressing */
  3673. np->desc_ver = DESC_VER_3;
  3674. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3675. if (dma_64bit) {
  3676. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3677. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3678. pci_name(pci_dev));
  3679. } else {
  3680. dev->features |= NETIF_F_HIGHDMA;
  3681. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3682. }
  3683. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3684. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  3685. pci_name(pci_dev));
  3686. }
  3687. }
  3688. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3689. /* packet format 2: supports jumbo frames */
  3690. np->desc_ver = DESC_VER_2;
  3691. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3692. } else {
  3693. /* original packet format */
  3694. np->desc_ver = DESC_VER_1;
  3695. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3696. }
  3697. np->pkt_limit = NV_PKTLIMIT_1;
  3698. if (id->driver_data & DEV_HAS_LARGEDESC)
  3699. np->pkt_limit = NV_PKTLIMIT_2;
  3700. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3701. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3702. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3703. #ifdef NETIF_F_TSO
  3704. dev->features |= NETIF_F_TSO;
  3705. #endif
  3706. }
  3707. np->vlanctl_bits = 0;
  3708. if (id->driver_data & DEV_HAS_VLAN) {
  3709. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3710. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3711. dev->vlan_rx_register = nv_vlan_rx_register;
  3712. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3713. }
  3714. np->msi_flags = 0;
  3715. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  3716. np->msi_flags |= NV_MSI_CAPABLE;
  3717. }
  3718. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  3719. np->msi_flags |= NV_MSI_X_CAPABLE;
  3720. }
  3721. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3722. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3723. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3724. }
  3725. err = -ENOMEM;
  3726. np->base = ioremap(addr, np->register_size);
  3727. if (!np->base)
  3728. goto out_relreg;
  3729. dev->base_addr = (unsigned long)np->base;
  3730. dev->irq = pci_dev->irq;
  3731. np->rx_ring_size = RX_RING_DEFAULT;
  3732. np->tx_ring_size = TX_RING_DEFAULT;
  3733. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3734. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3735. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3736. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3737. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3738. &np->ring_addr);
  3739. if (!np->rx_ring.orig)
  3740. goto out_unmap;
  3741. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3742. } else {
  3743. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3744. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3745. &np->ring_addr);
  3746. if (!np->rx_ring.ex)
  3747. goto out_unmap;
  3748. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3749. }
  3750. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  3751. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  3752. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  3753. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  3754. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  3755. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  3756. goto out_freering;
  3757. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3758. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3759. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3760. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3761. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3762. dev->open = nv_open;
  3763. dev->stop = nv_close;
  3764. dev->hard_start_xmit = nv_start_xmit;
  3765. dev->get_stats = nv_get_stats;
  3766. dev->change_mtu = nv_change_mtu;
  3767. dev->set_mac_address = nv_set_mac_address;
  3768. dev->set_multicast_list = nv_set_multicast;
  3769. #ifdef CONFIG_NET_POLL_CONTROLLER
  3770. dev->poll_controller = nv_poll_controller;
  3771. #endif
  3772. SET_ETHTOOL_OPS(dev, &ops);
  3773. dev->tx_timeout = nv_tx_timeout;
  3774. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  3775. pci_set_drvdata(pci_dev, dev);
  3776. /* read the mac address */
  3777. base = get_hwbase(dev);
  3778. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  3779. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  3780. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  3781. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  3782. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  3783. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  3784. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  3785. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  3786. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3787. if (!is_valid_ether_addr(dev->perm_addr)) {
  3788. /*
  3789. * Bad mac address. At least one bios sets the mac address
  3790. * to 01:23:45:67:89:ab
  3791. */
  3792. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  3793. pci_name(pci_dev),
  3794. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3795. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3796. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  3797. dev->dev_addr[0] = 0x00;
  3798. dev->dev_addr[1] = 0x00;
  3799. dev->dev_addr[2] = 0x6c;
  3800. get_random_bytes(&dev->dev_addr[3], 3);
  3801. }
  3802. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  3803. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3804. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3805. /* disable WOL */
  3806. writel(0, base + NvRegWakeUpFlags);
  3807. np->wolenabled = 0;
  3808. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  3809. u8 revision_id;
  3810. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  3811. /* take phy and nic out of low power mode */
  3812. powerstate = readl(base + NvRegPowerState2);
  3813. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  3814. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  3815. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  3816. revision_id >= 0xA3)
  3817. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  3818. writel(powerstate, base + NvRegPowerState2);
  3819. }
  3820. if (np->desc_ver == DESC_VER_1) {
  3821. np->tx_flags = NV_TX_VALID;
  3822. } else {
  3823. np->tx_flags = NV_TX2_VALID;
  3824. }
  3825. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  3826. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3827. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3828. np->msi_flags |= 0x0003;
  3829. } else {
  3830. np->irqmask = NVREG_IRQMASK_CPU;
  3831. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3832. np->msi_flags |= 0x0001;
  3833. }
  3834. if (id->driver_data & DEV_NEED_TIMERIRQ)
  3835. np->irqmask |= NVREG_IRQ_TIMER;
  3836. if (id->driver_data & DEV_NEED_LINKTIMER) {
  3837. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  3838. np->need_linktimer = 1;
  3839. np->link_timeout = jiffies + LINK_TIMEOUT;
  3840. } else {
  3841. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  3842. np->need_linktimer = 0;
  3843. }
  3844. /* find a suitable phy */
  3845. for (i = 1; i <= 32; i++) {
  3846. int id1, id2;
  3847. int phyaddr = i & 0x1F;
  3848. spin_lock_irq(&np->lock);
  3849. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  3850. spin_unlock_irq(&np->lock);
  3851. if (id1 < 0 || id1 == 0xffff)
  3852. continue;
  3853. spin_lock_irq(&np->lock);
  3854. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  3855. spin_unlock_irq(&np->lock);
  3856. if (id2 < 0 || id2 == 0xffff)
  3857. continue;
  3858. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  3859. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  3860. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  3861. pci_name(pci_dev), id1, id2, phyaddr);
  3862. np->phyaddr = phyaddr;
  3863. np->phy_oui = id1 | id2;
  3864. break;
  3865. }
  3866. if (i == 33) {
  3867. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  3868. pci_name(pci_dev));
  3869. goto out_error;
  3870. }
  3871. /* reset it */
  3872. phy_init(dev);
  3873. /* set default link speed settings */
  3874. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3875. np->duplex = 0;
  3876. np->autoneg = 1;
  3877. err = register_netdev(dev);
  3878. if (err) {
  3879. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  3880. goto out_error;
  3881. }
  3882. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  3883. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  3884. pci_name(pci_dev));
  3885. return 0;
  3886. out_error:
  3887. pci_set_drvdata(pci_dev, NULL);
  3888. out_freering:
  3889. free_rings(dev);
  3890. out_unmap:
  3891. iounmap(get_hwbase(dev));
  3892. out_relreg:
  3893. pci_release_regions(pci_dev);
  3894. out_disable:
  3895. pci_disable_device(pci_dev);
  3896. out_free:
  3897. free_netdev(dev);
  3898. out:
  3899. return err;
  3900. }
  3901. static void __devexit nv_remove(struct pci_dev *pci_dev)
  3902. {
  3903. struct net_device *dev = pci_get_drvdata(pci_dev);
  3904. unregister_netdev(dev);
  3905. /* free all structures */
  3906. free_rings(dev);
  3907. iounmap(get_hwbase(dev));
  3908. pci_release_regions(pci_dev);
  3909. pci_disable_device(pci_dev);
  3910. free_netdev(dev);
  3911. pci_set_drvdata(pci_dev, NULL);
  3912. }
  3913. static struct pci_device_id pci_tbl[] = {
  3914. { /* nForce Ethernet Controller */
  3915. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  3916. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3917. },
  3918. { /* nForce2 Ethernet Controller */
  3919. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  3920. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3921. },
  3922. { /* nForce3 Ethernet Controller */
  3923. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  3924. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3925. },
  3926. { /* nForce3 Ethernet Controller */
  3927. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  3928. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3929. },
  3930. { /* nForce3 Ethernet Controller */
  3931. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  3932. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3933. },
  3934. { /* nForce3 Ethernet Controller */
  3935. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  3936. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3937. },
  3938. { /* nForce3 Ethernet Controller */
  3939. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  3940. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3941. },
  3942. { /* CK804 Ethernet Controller */
  3943. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  3944. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3945. },
  3946. { /* CK804 Ethernet Controller */
  3947. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  3948. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3949. },
  3950. { /* MCP04 Ethernet Controller */
  3951. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  3952. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3953. },
  3954. { /* MCP04 Ethernet Controller */
  3955. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  3956. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3957. },
  3958. { /* MCP51 Ethernet Controller */
  3959. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  3960. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  3961. },
  3962. { /* MCP51 Ethernet Controller */
  3963. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  3964. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  3965. },
  3966. { /* MCP55 Ethernet Controller */
  3967. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  3968. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3969. },
  3970. { /* MCP55 Ethernet Controller */
  3971. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  3972. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3973. },
  3974. { /* MCP61 Ethernet Controller */
  3975. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  3976. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3977. },
  3978. { /* MCP61 Ethernet Controller */
  3979. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  3980. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3981. },
  3982. { /* MCP61 Ethernet Controller */
  3983. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  3984. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3985. },
  3986. { /* MCP61 Ethernet Controller */
  3987. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  3988. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3989. },
  3990. { /* MCP65 Ethernet Controller */
  3991. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  3992. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3993. },
  3994. { /* MCP65 Ethernet Controller */
  3995. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  3996. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  3997. },
  3998. { /* MCP65 Ethernet Controller */
  3999. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4000. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4001. },
  4002. { /* MCP65 Ethernet Controller */
  4003. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4004. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4005. },
  4006. {0,},
  4007. };
  4008. static struct pci_driver driver = {
  4009. .name = "forcedeth",
  4010. .id_table = pci_tbl,
  4011. .probe = nv_probe,
  4012. .remove = __devexit_p(nv_remove),
  4013. };
  4014. static int __init init_nic(void)
  4015. {
  4016. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4017. return pci_module_init(&driver);
  4018. }
  4019. static void __exit exit_nic(void)
  4020. {
  4021. pci_unregister_driver(&driver);
  4022. }
  4023. module_param(max_interrupt_work, int, 0);
  4024. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4025. module_param(optimization_mode, int, 0);
  4026. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4027. module_param(poll_interval, int, 0);
  4028. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4029. module_param(msi, int, 0);
  4030. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4031. module_param(msix, int, 0);
  4032. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4033. module_param(dma_64bit, int, 0);
  4034. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4035. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4036. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4037. MODULE_LICENSE("GPL");
  4038. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4039. module_init(init_nic);
  4040. module_exit(exit_nic);