intelfbhw.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m, min_m1, max_m1;
  40. int min_m2, max_m2, min_n, max_n;
  41. int min_p, max_p, min_p1, max_p1;
  42. int min_vco, max_vco, p_transition_clk, ref_clk;
  43. int p_inc_lo, p_inc_hi;
  44. };
  45. #define PLLS_I8xx 0
  46. #define PLLS_I9xx 1
  47. #define PLLS_MAX 2
  48. static struct pll_min_max plls[PLLS_MAX] = {
  49. { 108, 140, 18, 26,
  50. 6, 16, 3, 16,
  51. 4, 128, 0, 31,
  52. 930000, 1400000, 165000, 48000,
  53. 4, 2 }, //I8xx
  54. { 75, 120, 10, 20,
  55. 5, 9, 4, 7,
  56. 5, 80, 1, 8,
  57. 1400000, 2800000, 200000, 96000,
  58. 10, 5 } //I9xx
  59. };
  60. int
  61. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  62. {
  63. u32 tmp;
  64. if (!pdev || !dinfo)
  65. return 1;
  66. switch (pdev->device) {
  67. case PCI_DEVICE_ID_INTEL_830M:
  68. dinfo->name = "Intel(R) 830M";
  69. dinfo->chipset = INTEL_830M;
  70. dinfo->mobile = 1;
  71. dinfo->pll_index = PLLS_I8xx;
  72. return 0;
  73. case PCI_DEVICE_ID_INTEL_845G:
  74. dinfo->name = "Intel(R) 845G";
  75. dinfo->chipset = INTEL_845G;
  76. dinfo->mobile = 0;
  77. dinfo->pll_index = PLLS_I8xx;
  78. return 0;
  79. case PCI_DEVICE_ID_INTEL_85XGM:
  80. tmp = 0;
  81. dinfo->mobile = 1;
  82. dinfo->pll_index = PLLS_I8xx;
  83. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  84. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  85. INTEL_85X_VARIANT_MASK) {
  86. case INTEL_VAR_855GME:
  87. dinfo->name = "Intel(R) 855GME";
  88. dinfo->chipset = INTEL_855GME;
  89. return 0;
  90. case INTEL_VAR_855GM:
  91. dinfo->name = "Intel(R) 855GM";
  92. dinfo->chipset = INTEL_855GM;
  93. return 0;
  94. case INTEL_VAR_852GME:
  95. dinfo->name = "Intel(R) 852GME";
  96. dinfo->chipset = INTEL_852GME;
  97. return 0;
  98. case INTEL_VAR_852GM:
  99. dinfo->name = "Intel(R) 852GM";
  100. dinfo->chipset = INTEL_852GM;
  101. return 0;
  102. default:
  103. dinfo->name = "Intel(R) 852GM/855GM";
  104. dinfo->chipset = INTEL_85XGM;
  105. return 0;
  106. }
  107. break;
  108. case PCI_DEVICE_ID_INTEL_865G:
  109. dinfo->name = "Intel(R) 865G";
  110. dinfo->chipset = INTEL_865G;
  111. dinfo->mobile = 0;
  112. dinfo->pll_index = PLLS_I8xx;
  113. return 0;
  114. case PCI_DEVICE_ID_INTEL_915G:
  115. dinfo->name = "Intel(R) 915G";
  116. dinfo->chipset = INTEL_915G;
  117. dinfo->mobile = 0;
  118. dinfo->pll_index = PLLS_I9xx;
  119. return 0;
  120. case PCI_DEVICE_ID_INTEL_915GM:
  121. dinfo->name = "Intel(R) 915GM";
  122. dinfo->chipset = INTEL_915GM;
  123. dinfo->mobile = 1;
  124. dinfo->pll_index = PLLS_I9xx;
  125. return 0;
  126. case PCI_DEVICE_ID_INTEL_945G:
  127. dinfo->name = "Intel(R) 945G";
  128. dinfo->chipset = INTEL_945G;
  129. dinfo->mobile = 0;
  130. dinfo->pll_index = PLLS_I9xx;
  131. return 0;
  132. case PCI_DEVICE_ID_INTEL_945GM:
  133. dinfo->name = "Intel(R) 945GM";
  134. dinfo->chipset = INTEL_945GM;
  135. dinfo->mobile = 1;
  136. dinfo->pll_index = PLLS_I9xx;
  137. return 0;
  138. default:
  139. return 1;
  140. }
  141. }
  142. int
  143. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  144. int *stolen_size)
  145. {
  146. struct pci_dev *bridge_dev;
  147. u16 tmp;
  148. int stolen_overhead;
  149. if (!pdev || !aperture_size || !stolen_size)
  150. return 1;
  151. /* Find the bridge device. It is always 0:0.0 */
  152. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  153. ERR_MSG("cannot find bridge device\n");
  154. return 1;
  155. }
  156. /* Get the fb aperture size and "stolen" memory amount. */
  157. tmp = 0;
  158. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  159. switch (pdev->device) {
  160. case PCI_DEVICE_ID_INTEL_915G:
  161. case PCI_DEVICE_ID_INTEL_915GM:
  162. case PCI_DEVICE_ID_INTEL_945G:
  163. case PCI_DEVICE_ID_INTEL_945GM:
  164. /* 915 and 945 chipsets support a 256MB aperture.
  165. Aperture size is determined by inspected the
  166. base address of the aperture. */
  167. if (pci_resource_start(pdev, 2) & 0x08000000)
  168. *aperture_size = MB(128);
  169. else
  170. *aperture_size = MB(256);
  171. break;
  172. default:
  173. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  174. *aperture_size = MB(64);
  175. else
  176. *aperture_size = MB(128);
  177. break;
  178. }
  179. /* Stolen memory size is reduced by the GTT and the popup.
  180. GTT is 1K per MB of aperture size, and popup is 4K. */
  181. stolen_overhead = (*aperture_size / MB(1)) + 4;
  182. switch(pdev->device) {
  183. case PCI_DEVICE_ID_INTEL_830M:
  184. case PCI_DEVICE_ID_INTEL_845G:
  185. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  186. case INTEL_830_GMCH_GMS_STOLEN_512:
  187. *stolen_size = KB(512) - KB(stolen_overhead);
  188. return 0;
  189. case INTEL_830_GMCH_GMS_STOLEN_1024:
  190. *stolen_size = MB(1) - KB(stolen_overhead);
  191. return 0;
  192. case INTEL_830_GMCH_GMS_STOLEN_8192:
  193. *stolen_size = MB(8) - KB(stolen_overhead);
  194. return 0;
  195. case INTEL_830_GMCH_GMS_LOCAL:
  196. ERR_MSG("only local memory found\n");
  197. return 1;
  198. case INTEL_830_GMCH_GMS_DISABLED:
  199. ERR_MSG("video memory is disabled\n");
  200. return 1;
  201. default:
  202. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  203. tmp & INTEL_830_GMCH_GMS_MASK);
  204. return 1;
  205. }
  206. break;
  207. default:
  208. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  209. case INTEL_855_GMCH_GMS_STOLEN_1M:
  210. *stolen_size = MB(1) - KB(stolen_overhead);
  211. return 0;
  212. case INTEL_855_GMCH_GMS_STOLEN_4M:
  213. *stolen_size = MB(4) - KB(stolen_overhead);
  214. return 0;
  215. case INTEL_855_GMCH_GMS_STOLEN_8M:
  216. *stolen_size = MB(8) - KB(stolen_overhead);
  217. return 0;
  218. case INTEL_855_GMCH_GMS_STOLEN_16M:
  219. *stolen_size = MB(16) - KB(stolen_overhead);
  220. return 0;
  221. case INTEL_855_GMCH_GMS_STOLEN_32M:
  222. *stolen_size = MB(32) - KB(stolen_overhead);
  223. return 0;
  224. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  225. *stolen_size = MB(48) - KB(stolen_overhead);
  226. return 0;
  227. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  228. *stolen_size = MB(64) - KB(stolen_overhead);
  229. return 0;
  230. case INTEL_855_GMCH_GMS_DISABLED:
  231. ERR_MSG("video memory is disabled\n");
  232. return 0;
  233. default:
  234. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  235. tmp & INTEL_855_GMCH_GMS_MASK);
  236. return 1;
  237. }
  238. }
  239. }
  240. int
  241. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  242. {
  243. int dvo = 0;
  244. if (INREG(LVDS) & PORT_ENABLE)
  245. dvo |= LVDS_PORT;
  246. if (INREG(DVOA) & PORT_ENABLE)
  247. dvo |= DVOA_PORT;
  248. if (INREG(DVOB) & PORT_ENABLE)
  249. dvo |= DVOB_PORT;
  250. if (INREG(DVOC) & PORT_ENABLE)
  251. dvo |= DVOC_PORT;
  252. return dvo;
  253. }
  254. const char *
  255. intelfbhw_dvo_to_string(int dvo)
  256. {
  257. if (dvo & DVOA_PORT)
  258. return "DVO port A";
  259. else if (dvo & DVOB_PORT)
  260. return "DVO port B";
  261. else if (dvo & DVOC_PORT)
  262. return "DVO port C";
  263. else if (dvo & LVDS_PORT)
  264. return "LVDS port";
  265. else
  266. return NULL;
  267. }
  268. int
  269. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  270. struct fb_var_screeninfo *var)
  271. {
  272. int bytes_per_pixel;
  273. int tmp;
  274. #if VERBOSE > 0
  275. DBG_MSG("intelfbhw_validate_mode\n");
  276. #endif
  277. bytes_per_pixel = var->bits_per_pixel / 8;
  278. if (bytes_per_pixel == 3)
  279. bytes_per_pixel = 4;
  280. /* Check if enough video memory. */
  281. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  282. if (tmp > dinfo->fb.size) {
  283. WRN_MSG("Not enough video ram for mode "
  284. "(%d KByte vs %d KByte).\n",
  285. BtoKB(tmp), BtoKB(dinfo->fb.size));
  286. return 1;
  287. }
  288. /* Check if x/y limits are OK. */
  289. if (var->xres - 1 > HACTIVE_MASK) {
  290. WRN_MSG("X resolution too large (%d vs %d).\n",
  291. var->xres, HACTIVE_MASK + 1);
  292. return 1;
  293. }
  294. if (var->yres - 1 > VACTIVE_MASK) {
  295. WRN_MSG("Y resolution too large (%d vs %d).\n",
  296. var->yres, VACTIVE_MASK + 1);
  297. return 1;
  298. }
  299. /* Check for interlaced/doublescan modes. */
  300. if (var->vmode & FB_VMODE_INTERLACED) {
  301. WRN_MSG("Mode is interlaced.\n");
  302. return 1;
  303. }
  304. if (var->vmode & FB_VMODE_DOUBLE) {
  305. WRN_MSG("Mode is double-scan.\n");
  306. return 1;
  307. }
  308. /* Check if clock is OK. */
  309. tmp = 1000000000 / var->pixclock;
  310. if (tmp < MIN_CLOCK) {
  311. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  312. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  313. return 1;
  314. }
  315. if (tmp > MAX_CLOCK) {
  316. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  317. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  318. return 1;
  319. }
  320. return 0;
  321. }
  322. int
  323. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  324. {
  325. struct intelfb_info *dinfo = GET_DINFO(info);
  326. u32 offset, xoffset, yoffset;
  327. #if VERBOSE > 0
  328. DBG_MSG("intelfbhw_pan_display\n");
  329. #endif
  330. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  331. yoffset = var->yoffset;
  332. if ((xoffset + var->xres > var->xres_virtual) ||
  333. (yoffset + var->yres > var->yres_virtual))
  334. return -EINVAL;
  335. offset = (yoffset * dinfo->pitch) +
  336. (xoffset * var->bits_per_pixel) / 8;
  337. offset += dinfo->fb.offset << 12;
  338. OUTREG(DSPABASE, offset);
  339. return 0;
  340. }
  341. /* Blank the screen. */
  342. void
  343. intelfbhw_do_blank(int blank, struct fb_info *info)
  344. {
  345. struct intelfb_info *dinfo = GET_DINFO(info);
  346. u32 tmp;
  347. #if VERBOSE > 0
  348. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  349. #endif
  350. /* Turn plane A on or off */
  351. tmp = INREG(DSPACNTR);
  352. if (blank)
  353. tmp &= ~DISPPLANE_PLANE_ENABLE;
  354. else
  355. tmp |= DISPPLANE_PLANE_ENABLE;
  356. OUTREG(DSPACNTR, tmp);
  357. /* Flush */
  358. tmp = INREG(DSPABASE);
  359. OUTREG(DSPABASE, tmp);
  360. /* Turn off/on the HW cursor */
  361. #if VERBOSE > 0
  362. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  363. #endif
  364. if (dinfo->cursor_on) {
  365. if (blank) {
  366. intelfbhw_cursor_hide(dinfo);
  367. } else {
  368. intelfbhw_cursor_show(dinfo);
  369. }
  370. dinfo->cursor_on = 1;
  371. }
  372. dinfo->cursor_blanked = blank;
  373. /* Set DPMS level */
  374. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  375. switch (blank) {
  376. case FB_BLANK_UNBLANK:
  377. case FB_BLANK_NORMAL:
  378. tmp |= ADPA_DPMS_D0;
  379. break;
  380. case FB_BLANK_VSYNC_SUSPEND:
  381. tmp |= ADPA_DPMS_D1;
  382. break;
  383. case FB_BLANK_HSYNC_SUSPEND:
  384. tmp |= ADPA_DPMS_D2;
  385. break;
  386. case FB_BLANK_POWERDOWN:
  387. tmp |= ADPA_DPMS_D3;
  388. break;
  389. }
  390. OUTREG(ADPA, tmp);
  391. return;
  392. }
  393. void
  394. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  395. unsigned red, unsigned green, unsigned blue,
  396. unsigned transp)
  397. {
  398. #if VERBOSE > 0
  399. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  400. regno, red, green, blue);
  401. #endif
  402. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  403. PALETTE_A : PALETTE_B;
  404. OUTREG(palette_reg + (regno << 2),
  405. (red << PALETTE_8_RED_SHIFT) |
  406. (green << PALETTE_8_GREEN_SHIFT) |
  407. (blue << PALETTE_8_BLUE_SHIFT));
  408. }
  409. int
  410. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  411. int flag)
  412. {
  413. int i;
  414. #if VERBOSE > 0
  415. DBG_MSG("intelfbhw_read_hw_state\n");
  416. #endif
  417. if (!hw || !dinfo)
  418. return -1;
  419. /* Read in as much of the HW state as possible. */
  420. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  421. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  422. hw->vga_pd = INREG(VGAPD);
  423. hw->dpll_a = INREG(DPLL_A);
  424. hw->dpll_b = INREG(DPLL_B);
  425. hw->fpa0 = INREG(FPA0);
  426. hw->fpa1 = INREG(FPA1);
  427. hw->fpb0 = INREG(FPB0);
  428. hw->fpb1 = INREG(FPB1);
  429. if (flag == 1)
  430. return flag;
  431. #if 0
  432. /* This seems to be a problem with the 852GM/855GM */
  433. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  434. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  435. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  436. }
  437. #endif
  438. if (flag == 2)
  439. return flag;
  440. hw->htotal_a = INREG(HTOTAL_A);
  441. hw->hblank_a = INREG(HBLANK_A);
  442. hw->hsync_a = INREG(HSYNC_A);
  443. hw->vtotal_a = INREG(VTOTAL_A);
  444. hw->vblank_a = INREG(VBLANK_A);
  445. hw->vsync_a = INREG(VSYNC_A);
  446. hw->src_size_a = INREG(SRC_SIZE_A);
  447. hw->bclrpat_a = INREG(BCLRPAT_A);
  448. hw->htotal_b = INREG(HTOTAL_B);
  449. hw->hblank_b = INREG(HBLANK_B);
  450. hw->hsync_b = INREG(HSYNC_B);
  451. hw->vtotal_b = INREG(VTOTAL_B);
  452. hw->vblank_b = INREG(VBLANK_B);
  453. hw->vsync_b = INREG(VSYNC_B);
  454. hw->src_size_b = INREG(SRC_SIZE_B);
  455. hw->bclrpat_b = INREG(BCLRPAT_B);
  456. if (flag == 3)
  457. return flag;
  458. hw->adpa = INREG(ADPA);
  459. hw->dvoa = INREG(DVOA);
  460. hw->dvob = INREG(DVOB);
  461. hw->dvoc = INREG(DVOC);
  462. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  463. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  464. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  465. hw->lvds = INREG(LVDS);
  466. if (flag == 4)
  467. return flag;
  468. hw->pipe_a_conf = INREG(PIPEACONF);
  469. hw->pipe_b_conf = INREG(PIPEBCONF);
  470. hw->disp_arb = INREG(DISPARB);
  471. if (flag == 5)
  472. return flag;
  473. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  474. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  475. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  476. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  477. if (flag == 6)
  478. return flag;
  479. for (i = 0; i < 4; i++) {
  480. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  481. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  482. }
  483. if (flag == 7)
  484. return flag;
  485. hw->cursor_size = INREG(CURSOR_SIZE);
  486. if (flag == 8)
  487. return flag;
  488. hw->disp_a_ctrl = INREG(DSPACNTR);
  489. hw->disp_b_ctrl = INREG(DSPBCNTR);
  490. hw->disp_a_base = INREG(DSPABASE);
  491. hw->disp_b_base = INREG(DSPBBASE);
  492. hw->disp_a_stride = INREG(DSPASTRIDE);
  493. hw->disp_b_stride = INREG(DSPBSTRIDE);
  494. if (flag == 9)
  495. return flag;
  496. hw->vgacntrl = INREG(VGACNTRL);
  497. if (flag == 10)
  498. return flag;
  499. hw->add_id = INREG(ADD_ID);
  500. if (flag == 11)
  501. return flag;
  502. for (i = 0; i < 7; i++) {
  503. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  504. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  505. if (i < 3)
  506. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  507. }
  508. for (i = 0; i < 8; i++)
  509. hw->fence[i] = INREG(FENCE + (i << 2));
  510. hw->instpm = INREG(INSTPM);
  511. hw->mem_mode = INREG(MEM_MODE);
  512. hw->fw_blc_0 = INREG(FW_BLC_0);
  513. hw->fw_blc_1 = INREG(FW_BLC_1);
  514. return 0;
  515. }
  516. static int calc_vclock3(int index, int m, int n, int p)
  517. {
  518. if (p == 0 || n == 0)
  519. return 0;
  520. return plls[index].ref_clk * m / n / p;
  521. }
  522. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  523. {
  524. int p2_val;
  525. switch(index)
  526. {
  527. case PLLS_I9xx:
  528. if (p1 == 0)
  529. return 0;
  530. if (lvds)
  531. p2_val = p2 ? 7 : 14;
  532. else
  533. p2_val = p2 ? 5 : 10;
  534. return ((plls[index].ref_clk * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  535. ((p1)) * (p2_val)));
  536. case PLLS_I8xx:
  537. default:
  538. return ((plls[index].ref_clk * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  539. ((p1+2) * (1 << (p2 + 1)))));
  540. }
  541. }
  542. void
  543. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  544. {
  545. #if REGDUMP
  546. int i, m1, m2, n, p1, p2;
  547. int index = dinfo->pll_index;
  548. DBG_MSG("intelfbhw_print_hw_state\n");
  549. if (!hw || !dinfo)
  550. return;
  551. /* Read in as much of the HW state as possible. */
  552. printk("hw state dump start\n");
  553. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  554. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  555. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  556. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  557. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  558. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  559. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  560. p1 = 0;
  561. else
  562. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  563. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  564. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  565. m1, m2, n, p1, p2);
  566. printk(" VGA0: clock is %d\n",
  567. calc_vclock(index, m1, m2, n, p1, p2, 0));
  568. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  569. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  570. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  571. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  572. p1 = 0;
  573. else
  574. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  575. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  576. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  577. m1, m2, n, p1, p2);
  578. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  579. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  580. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  581. printk(" FPA0: 0x%08x\n", hw->fpa0);
  582. printk(" FPA1: 0x%08x\n", hw->fpa1);
  583. printk(" FPB0: 0x%08x\n", hw->fpb0);
  584. printk(" FPB1: 0x%08x\n", hw->fpb1);
  585. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  586. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  587. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  588. if (IS_I9XX(dinfo)) {
  589. int tmpp1;
  590. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  591. p1 = 0;
  592. else
  593. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & 0xff;
  594. tmpp1 = p1;
  595. switch (tmpp1)
  596. {
  597. case 0x1: p1 = 1; break;
  598. case 0x2: p1 = 2; break;
  599. case 0x4: p1 = 3; break;
  600. case 0x8: p1 = 4; break;
  601. case 0x10: p1 = 5; break;
  602. case 0x20: p1 = 6; break;
  603. case 0x40: p1 = 7; break;
  604. case 0x80: p1 = 8; break;
  605. default: break;
  606. }
  607. p2 = (hw->dpll_a >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  608. } else {
  609. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  610. p1 = 0;
  611. else
  612. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  613. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  614. }
  615. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  616. m1, m2, n, p1, p2);
  617. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  618. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  619. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  620. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  621. if (IS_I9XX(dinfo)) {
  622. int tmpp1;
  623. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  624. p1 = 0;
  625. else
  626. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & 0xff;
  627. tmpp1 = p1;
  628. switch (tmpp1) {
  629. case 0x1: p1 = 1; break;
  630. case 0x2: p1 = 2; break;
  631. case 0x4: p1 = 3; break;
  632. case 0x8: p1 = 4; break;
  633. case 0x10: p1 = 5; break;
  634. case 0x20: p1 = 6; break;
  635. case 0x40: p1 = 7; break;
  636. case 0x80: p1 = 8; break;
  637. default: break;
  638. }
  639. p2 = (hw->dpll_a >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  640. } else {
  641. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  642. p1 = 0;
  643. else
  644. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  645. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  646. }
  647. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  648. m1, m2, n, p1, p2);
  649. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  650. #if 0
  651. printk(" PALETTE_A:\n");
  652. for (i = 0; i < PALETTE_8_ENTRIES)
  653. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  654. printk(" PALETTE_B:\n");
  655. for (i = 0; i < PALETTE_8_ENTRIES)
  656. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  657. #endif
  658. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  659. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  660. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  661. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  662. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  663. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  664. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  665. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  666. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  667. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  668. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  669. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  670. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  671. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  672. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  673. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  674. printk(" ADPA: 0x%08x\n", hw->adpa);
  675. printk(" DVOA: 0x%08x\n", hw->dvoa);
  676. printk(" DVOB: 0x%08x\n", hw->dvob);
  677. printk(" DVOC: 0x%08x\n", hw->dvoc);
  678. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  679. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  680. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  681. printk(" LVDS: 0x%08x\n", hw->lvds);
  682. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  683. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  684. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  685. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  686. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  687. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  688. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  689. printk(" CURSOR_A_PALETTE: ");
  690. for (i = 0; i < 4; i++) {
  691. printk("0x%08x", hw->cursor_a_palette[i]);
  692. if (i < 3)
  693. printk(", ");
  694. }
  695. printk("\n");
  696. printk(" CURSOR_B_PALETTE: ");
  697. for (i = 0; i < 4; i++) {
  698. printk("0x%08x", hw->cursor_b_palette[i]);
  699. if (i < 3)
  700. printk(", ");
  701. }
  702. printk("\n");
  703. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  704. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  705. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  706. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  707. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  708. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  709. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  710. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  711. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  712. for (i = 0; i < 7; i++) {
  713. printk(" SWF0%d 0x%08x\n", i,
  714. hw->swf0x[i]);
  715. }
  716. for (i = 0; i < 7; i++) {
  717. printk(" SWF1%d 0x%08x\n", i,
  718. hw->swf1x[i]);
  719. }
  720. for (i = 0; i < 3; i++) {
  721. printk(" SWF3%d 0x%08x\n", i,
  722. hw->swf3x[i]);
  723. }
  724. for (i = 0; i < 8; i++)
  725. printk(" FENCE%d 0x%08x\n", i,
  726. hw->fence[i]);
  727. printk(" INSTPM 0x%08x\n", hw->instpm);
  728. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  729. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  730. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  731. printk("hw state dump end\n");
  732. #endif
  733. }
  734. /* Split the M parameter into M1 and M2. */
  735. static int
  736. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  737. {
  738. int m1, m2;
  739. int testm;
  740. /* no point optimising too much - brute force m */
  741. for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++) {
  742. for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++) {
  743. testm = (5 * (m1 + 2)) + (m2 + 2);
  744. if (testm == m) {
  745. *retm1 = (unsigned int)m1;
  746. *retm2 = (unsigned int)m2;
  747. return 0;
  748. }
  749. }
  750. }
  751. return 1;
  752. }
  753. /* Split the P parameter into P1 and P2. */
  754. static int
  755. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  756. {
  757. int p1, p2;
  758. if (index == PLLS_I9xx) {
  759. p2 = (p % 10) ? 1 : 0;
  760. p1 = p / (p2 ? 5 : 10);
  761. *retp1 = (unsigned int)p1;
  762. *retp2 = (unsigned int)p2;
  763. return 0;
  764. }
  765. if (index == PLLS_I8xx) {
  766. if (p % 4 == 0)
  767. p2 = 1;
  768. else
  769. p2 = 0;
  770. p1 = (p / (1 << (p2 + 1))) - 2;
  771. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  772. p2 = 0;
  773. p1 = (p / (1 << (p2 + 1))) - 2;
  774. }
  775. if (p1 < plls[index].min_p1 ||
  776. p1 > plls[index].max_p1 ||
  777. (p1 + 2) * (1 << (p2 + 1)) != p) {
  778. return 1;
  779. } else {
  780. *retp1 = (unsigned int)p1;
  781. *retp2 = (unsigned int)p2;
  782. return 0;
  783. }
  784. }
  785. return 1;
  786. }
  787. static int
  788. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  789. u32 *retp2, u32 *retclock)
  790. {
  791. u32 m1, m2, n, p1, p2, n1, testm;
  792. u32 f_vco, p, p_best = 0, m, f_out = 0;
  793. u32 err_max, err_target, err_best = 10000000;
  794. u32 n_best = 0, m_best = 0, f_best, f_err;
  795. u32 p_min, p_max, p_inc, div_max;
  796. struct pll_min_max *pll = &plls[index];
  797. /* Accept 0.5% difference, but aim for 0.1% */
  798. err_max = 5 * clock / 1000;
  799. err_target = clock / 1000;
  800. DBG_MSG("Clock is %d\n", clock);
  801. div_max = pll->max_vco / clock;
  802. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  803. p_min = p_inc;
  804. p_max = ROUND_DOWN_TO(div_max, p_inc);
  805. if (p_min < pll->min_p)
  806. p_min = pll->min_p;
  807. if (p_max > pll->max_p)
  808. p_max = pll->max_p;
  809. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  810. p = p_min;
  811. do {
  812. if (splitp(index, p, &p1, &p2)) {
  813. WRN_MSG("cannot split p = %d\n", p);
  814. p += p_inc;
  815. continue;
  816. }
  817. n = pll->min_n;
  818. f_vco = clock * p;
  819. do {
  820. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  821. if (m < pll->min_m)
  822. m = pll->min_m + 1;
  823. if (m > pll->max_m)
  824. m = pll->max_m - 1;
  825. for (testm = m - 1; testm <= m; testm++) {
  826. f_out = calc_vclock3(index, m, n, p);
  827. if (splitm(index, m, &m1, &m2)) {
  828. WRN_MSG("cannot split m = %d\n", m);
  829. n++;
  830. continue;
  831. }
  832. if (clock > f_out)
  833. f_err = clock - f_out;
  834. else/* slightly bias the error for bigger clocks */
  835. f_err = f_out - clock + 1;
  836. if (f_err < err_best) {
  837. m_best = m;
  838. n_best = n;
  839. p_best = p;
  840. f_best = f_out;
  841. err_best = f_err;
  842. }
  843. }
  844. n++;
  845. } while ((n <= pll->max_n) && (f_out >= clock));
  846. p += p_inc;
  847. } while ((p <= p_max));
  848. if (!m_best) {
  849. WRN_MSG("cannot find parameters for clock %d\n", clock);
  850. return 1;
  851. }
  852. m = m_best;
  853. n = n_best;
  854. p = p_best;
  855. splitm(index, m, &m1, &m2);
  856. splitp(index, p, &p1, &p2);
  857. n1 = n - 2;
  858. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  859. "f: %d (%d), VCO: %d\n",
  860. m, m1, m2, n, n1, p, p1, p2,
  861. calc_vclock3(index, m, n, p),
  862. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  863. calc_vclock3(index, m, n, p) * p);
  864. *retm1 = m1;
  865. *retm2 = m2;
  866. *retn = n1;
  867. *retp1 = p1;
  868. *retp2 = p2;
  869. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  870. return 0;
  871. }
  872. static __inline__ int
  873. check_overflow(u32 value, u32 limit, const char *description)
  874. {
  875. if (value > limit) {
  876. WRN_MSG("%s value %d exceeds limit %d\n",
  877. description, value, limit);
  878. return 1;
  879. }
  880. return 0;
  881. }
  882. /* It is assumed that hw is filled in with the initial state information. */
  883. int
  884. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  885. struct fb_var_screeninfo *var)
  886. {
  887. int pipe = PIPE_A;
  888. u32 *dpll, *fp0, *fp1;
  889. u32 m1, m2, n, p1, p2, clock_target, clock;
  890. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  891. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  892. u32 vsync_pol, hsync_pol;
  893. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  894. u32 stride_alignment;
  895. DBG_MSG("intelfbhw_mode_to_hw\n");
  896. /* Disable VGA */
  897. hw->vgacntrl |= VGA_DISABLE;
  898. /* Check whether pipe A or pipe B is enabled. */
  899. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  900. pipe = PIPE_A;
  901. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  902. pipe = PIPE_B;
  903. /* Set which pipe's registers will be set. */
  904. if (pipe == PIPE_B) {
  905. dpll = &hw->dpll_b;
  906. fp0 = &hw->fpb0;
  907. fp1 = &hw->fpb1;
  908. hs = &hw->hsync_b;
  909. hb = &hw->hblank_b;
  910. ht = &hw->htotal_b;
  911. vs = &hw->vsync_b;
  912. vb = &hw->vblank_b;
  913. vt = &hw->vtotal_b;
  914. ss = &hw->src_size_b;
  915. pipe_conf = &hw->pipe_b_conf;
  916. } else {
  917. dpll = &hw->dpll_a;
  918. fp0 = &hw->fpa0;
  919. fp1 = &hw->fpa1;
  920. hs = &hw->hsync_a;
  921. hb = &hw->hblank_a;
  922. ht = &hw->htotal_a;
  923. vs = &hw->vsync_a;
  924. vb = &hw->vblank_a;
  925. vt = &hw->vtotal_a;
  926. ss = &hw->src_size_a;
  927. pipe_conf = &hw->pipe_a_conf;
  928. }
  929. /* Use ADPA register for sync control. */
  930. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  931. /* sync polarity */
  932. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  933. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  934. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  935. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  936. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  937. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  938. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  939. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  940. /* Connect correct pipe to the analog port DAC */
  941. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  942. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  943. /* Set DPMS state to D0 (on) */
  944. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  945. hw->adpa |= ADPA_DPMS_D0;
  946. hw->adpa |= ADPA_DAC_ENABLE;
  947. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  948. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  949. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  950. /* Desired clock in kHz */
  951. clock_target = 1000000000 / var->pixclock;
  952. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  953. &n, &p1, &p2, &clock)) {
  954. WRN_MSG("calc_pll_params failed\n");
  955. return 1;
  956. }
  957. /* Check for overflow. */
  958. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  959. return 1;
  960. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  961. return 1;
  962. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  963. return 1;
  964. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  965. return 1;
  966. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  967. return 1;
  968. *dpll &= ~DPLL_P1_FORCE_DIV2;
  969. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  970. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  971. if (IS_I9XX(dinfo)) {
  972. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  973. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  974. } else {
  975. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  976. }
  977. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  978. (m1 << FP_M1_DIVISOR_SHIFT) |
  979. (m2 << FP_M2_DIVISOR_SHIFT);
  980. *fp1 = *fp0;
  981. hw->dvob &= ~PORT_ENABLE;
  982. hw->dvoc &= ~PORT_ENABLE;
  983. /* Use display plane A. */
  984. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  985. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  986. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  987. switch (intelfb_var_to_depth(var)) {
  988. case 8:
  989. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  990. break;
  991. case 15:
  992. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  993. break;
  994. case 16:
  995. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  996. break;
  997. case 24:
  998. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  999. break;
  1000. }
  1001. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  1002. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  1003. /* Set CRTC registers. */
  1004. hactive = var->xres;
  1005. hsync_start = hactive + var->right_margin;
  1006. hsync_end = hsync_start + var->hsync_len;
  1007. htotal = hsync_end + var->left_margin;
  1008. hblank_start = hactive;
  1009. hblank_end = htotal;
  1010. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1011. hactive, hsync_start, hsync_end, htotal, hblank_start,
  1012. hblank_end);
  1013. vactive = var->yres;
  1014. vsync_start = vactive + var->lower_margin;
  1015. vsync_end = vsync_start + var->vsync_len;
  1016. vtotal = vsync_end + var->upper_margin;
  1017. vblank_start = vactive;
  1018. vblank_end = vtotal;
  1019. vblank_end = vsync_end + 1;
  1020. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1021. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1022. vblank_end);
  1023. /* Adjust for register values, and check for overflow. */
  1024. hactive--;
  1025. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1026. return 1;
  1027. hsync_start--;
  1028. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1029. return 1;
  1030. hsync_end--;
  1031. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1032. return 1;
  1033. htotal--;
  1034. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1035. return 1;
  1036. hblank_start--;
  1037. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1038. return 1;
  1039. hblank_end--;
  1040. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1041. return 1;
  1042. vactive--;
  1043. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1044. return 1;
  1045. vsync_start--;
  1046. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1047. return 1;
  1048. vsync_end--;
  1049. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1050. return 1;
  1051. vtotal--;
  1052. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1053. return 1;
  1054. vblank_start--;
  1055. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1056. return 1;
  1057. vblank_end--;
  1058. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1059. return 1;
  1060. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1061. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1062. (hblank_end << HSYNCEND_SHIFT);
  1063. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1064. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1065. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1066. (vblank_end << VSYNCEND_SHIFT);
  1067. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1068. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1069. (vactive << SRC_SIZE_VERT_SHIFT);
  1070. hw->disp_a_stride = dinfo->pitch;
  1071. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1072. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1073. var->xoffset * var->bits_per_pixel / 8;
  1074. hw->disp_a_base += dinfo->fb.offset << 12;
  1075. /* Check stride alignment. */
  1076. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1077. STRIDE_ALIGNMENT;
  1078. if (hw->disp_a_stride % stride_alignment != 0) {
  1079. WRN_MSG("display stride %d has bad alignment %d\n",
  1080. hw->disp_a_stride, stride_alignment);
  1081. return 1;
  1082. }
  1083. /* Set the palette to 8-bit mode. */
  1084. *pipe_conf &= ~PIPECONF_GAMMA;
  1085. return 0;
  1086. }
  1087. /* Program a (non-VGA) video mode. */
  1088. int
  1089. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1090. const struct intelfb_hwstate *hw, int blank)
  1091. {
  1092. int pipe = PIPE_A;
  1093. u32 tmp;
  1094. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1095. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1096. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1097. u32 hsync_reg, htotal_reg, hblank_reg;
  1098. u32 vsync_reg, vtotal_reg, vblank_reg;
  1099. u32 src_size_reg;
  1100. u32 count, tmp_val[3];
  1101. /* Assume single pipe, display plane A, analog CRT. */
  1102. #if VERBOSE > 0
  1103. DBG_MSG("intelfbhw_program_mode\n");
  1104. #endif
  1105. /* Disable VGA */
  1106. tmp = INREG(VGACNTRL);
  1107. tmp |= VGA_DISABLE;
  1108. OUTREG(VGACNTRL, tmp);
  1109. /* Check whether pipe A or pipe B is enabled. */
  1110. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1111. pipe = PIPE_A;
  1112. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1113. pipe = PIPE_B;
  1114. dinfo->pipe = pipe;
  1115. if (pipe == PIPE_B) {
  1116. dpll = &hw->dpll_b;
  1117. fp0 = &hw->fpb0;
  1118. fp1 = &hw->fpb1;
  1119. pipe_conf = &hw->pipe_b_conf;
  1120. hs = &hw->hsync_b;
  1121. hb = &hw->hblank_b;
  1122. ht = &hw->htotal_b;
  1123. vs = &hw->vsync_b;
  1124. vb = &hw->vblank_b;
  1125. vt = &hw->vtotal_b;
  1126. ss = &hw->src_size_b;
  1127. dpll_reg = DPLL_B;
  1128. fp0_reg = FPB0;
  1129. fp1_reg = FPB1;
  1130. pipe_conf_reg = PIPEBCONF;
  1131. hsync_reg = HSYNC_B;
  1132. htotal_reg = HTOTAL_B;
  1133. hblank_reg = HBLANK_B;
  1134. vsync_reg = VSYNC_B;
  1135. vtotal_reg = VTOTAL_B;
  1136. vblank_reg = VBLANK_B;
  1137. src_size_reg = SRC_SIZE_B;
  1138. } else {
  1139. dpll = &hw->dpll_a;
  1140. fp0 = &hw->fpa0;
  1141. fp1 = &hw->fpa1;
  1142. pipe_conf = &hw->pipe_a_conf;
  1143. hs = &hw->hsync_a;
  1144. hb = &hw->hblank_a;
  1145. ht = &hw->htotal_a;
  1146. vs = &hw->vsync_a;
  1147. vb = &hw->vblank_a;
  1148. vt = &hw->vtotal_a;
  1149. ss = &hw->src_size_a;
  1150. dpll_reg = DPLL_A;
  1151. fp0_reg = FPA0;
  1152. fp1_reg = FPA1;
  1153. pipe_conf_reg = PIPEACONF;
  1154. hsync_reg = HSYNC_A;
  1155. htotal_reg = HTOTAL_A;
  1156. hblank_reg = HBLANK_A;
  1157. vsync_reg = VSYNC_A;
  1158. vtotal_reg = VTOTAL_A;
  1159. vblank_reg = VBLANK_A;
  1160. src_size_reg = SRC_SIZE_A;
  1161. }
  1162. /* turn off pipe */
  1163. tmp = INREG(pipe_conf_reg);
  1164. tmp &= ~PIPECONF_ENABLE;
  1165. OUTREG(pipe_conf_reg, tmp);
  1166. count = 0;
  1167. do {
  1168. tmp_val[count%3] = INREG(0x70000);
  1169. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1170. break;
  1171. count++;
  1172. udelay(1);
  1173. if (count % 200 == 0) {
  1174. tmp = INREG(pipe_conf_reg);
  1175. tmp &= ~PIPECONF_ENABLE;
  1176. OUTREG(pipe_conf_reg, tmp);
  1177. }
  1178. } while(count < 2000);
  1179. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1180. /* Disable planes A and B. */
  1181. tmp = INREG(DSPACNTR);
  1182. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1183. OUTREG(DSPACNTR, tmp);
  1184. tmp = INREG(DSPBCNTR);
  1185. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1186. OUTREG(DSPBCNTR, tmp);
  1187. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1188. mdelay(20);
  1189. /* Disable Sync */
  1190. tmp = INREG(ADPA);
  1191. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1192. tmp |= ADPA_DPMS_D3;
  1193. OUTREG(ADPA, tmp);
  1194. /* do some funky magic - xyzzy */
  1195. OUTREG(0x61204, 0xabcd0000);
  1196. /* turn off PLL */
  1197. tmp = INREG(dpll_reg);
  1198. dpll_reg &= ~DPLL_VCO_ENABLE;
  1199. OUTREG(dpll_reg, tmp);
  1200. /* Set PLL parameters */
  1201. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1202. OUTREG(fp0_reg, *fp0);
  1203. OUTREG(fp1_reg, *fp1);
  1204. /* Enable PLL */
  1205. tmp = INREG(dpll_reg);
  1206. tmp |= DPLL_VCO_ENABLE;
  1207. OUTREG(dpll_reg, tmp);
  1208. /* Set DVOs B/C */
  1209. OUTREG(DVOB, hw->dvob);
  1210. OUTREG(DVOC, hw->dvoc);
  1211. /* undo funky magic */
  1212. OUTREG(0x61204, 0x00000000);
  1213. /* Set ADPA */
  1214. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1215. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1216. /* Set pipe parameters */
  1217. OUTREG(hsync_reg, *hs);
  1218. OUTREG(hblank_reg, *hb);
  1219. OUTREG(htotal_reg, *ht);
  1220. OUTREG(vsync_reg, *vs);
  1221. OUTREG(vblank_reg, *vb);
  1222. OUTREG(vtotal_reg, *vt);
  1223. OUTREG(src_size_reg, *ss);
  1224. /* Enable pipe */
  1225. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1226. /* Enable sync */
  1227. tmp = INREG(ADPA);
  1228. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1229. tmp |= ADPA_DPMS_D0;
  1230. OUTREG(ADPA, tmp);
  1231. /* setup display plane */
  1232. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1233. /*
  1234. * i830M errata: the display plane must be enabled
  1235. * to allow writes to the other bits in the plane
  1236. * control register.
  1237. */
  1238. tmp = INREG(DSPACNTR);
  1239. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1240. tmp |= DISPPLANE_PLANE_ENABLE;
  1241. OUTREG(DSPACNTR, tmp);
  1242. OUTREG(DSPACNTR,
  1243. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1244. mdelay(1);
  1245. }
  1246. }
  1247. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1248. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1249. OUTREG(DSPABASE, hw->disp_a_base);
  1250. /* Enable plane */
  1251. if (!blank) {
  1252. tmp = INREG(DSPACNTR);
  1253. tmp |= DISPPLANE_PLANE_ENABLE;
  1254. OUTREG(DSPACNTR, tmp);
  1255. OUTREG(DSPABASE, hw->disp_a_base);
  1256. }
  1257. return 0;
  1258. }
  1259. /* forward declarations */
  1260. static void refresh_ring(struct intelfb_info *dinfo);
  1261. static void reset_state(struct intelfb_info *dinfo);
  1262. static void do_flush(struct intelfb_info *dinfo);
  1263. static int
  1264. wait_ring(struct intelfb_info *dinfo, int n)
  1265. {
  1266. int i = 0;
  1267. unsigned long end;
  1268. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1269. #if VERBOSE > 0
  1270. DBG_MSG("wait_ring: %d\n", n);
  1271. #endif
  1272. end = jiffies + (HZ * 3);
  1273. while (dinfo->ring_space < n) {
  1274. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1275. RING_HEAD_MASK);
  1276. if (dinfo->ring_tail + RING_MIN_FREE <
  1277. (u32 __iomem) dinfo->ring_head)
  1278. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1279. - (dinfo->ring_tail + RING_MIN_FREE);
  1280. else
  1281. dinfo->ring_space = (dinfo->ring.size +
  1282. (u32 __iomem) dinfo->ring_head)
  1283. - (dinfo->ring_tail + RING_MIN_FREE);
  1284. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1285. end = jiffies + (HZ * 3);
  1286. last_head = (u32 __iomem) dinfo->ring_head;
  1287. }
  1288. i++;
  1289. if (time_before(end, jiffies)) {
  1290. if (!i) {
  1291. /* Try again */
  1292. reset_state(dinfo);
  1293. refresh_ring(dinfo);
  1294. do_flush(dinfo);
  1295. end = jiffies + (HZ * 3);
  1296. i = 1;
  1297. } else {
  1298. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1299. dinfo->ring_space, n);
  1300. WRN_MSG("lockup - turning off hardware "
  1301. "acceleration\n");
  1302. dinfo->ring_lockup = 1;
  1303. break;
  1304. }
  1305. }
  1306. udelay(1);
  1307. }
  1308. return i;
  1309. }
  1310. static void
  1311. do_flush(struct intelfb_info *dinfo) {
  1312. START_RING(2);
  1313. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1314. OUT_RING(MI_NOOP);
  1315. ADVANCE_RING();
  1316. }
  1317. void
  1318. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1319. {
  1320. #if VERBOSE > 0
  1321. DBG_MSG("intelfbhw_do_sync\n");
  1322. #endif
  1323. if (!dinfo->accel)
  1324. return;
  1325. /*
  1326. * Send a flush, then wait until the ring is empty. This is what
  1327. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1328. * than the recommended method (both have problems).
  1329. */
  1330. do_flush(dinfo);
  1331. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1332. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1333. }
  1334. static void
  1335. refresh_ring(struct intelfb_info *dinfo)
  1336. {
  1337. #if VERBOSE > 0
  1338. DBG_MSG("refresh_ring\n");
  1339. #endif
  1340. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1341. RING_HEAD_MASK);
  1342. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1343. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1344. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1345. - (dinfo->ring_tail + RING_MIN_FREE);
  1346. else
  1347. dinfo->ring_space = (dinfo->ring.size +
  1348. (u32 __iomem) dinfo->ring_head)
  1349. - (dinfo->ring_tail + RING_MIN_FREE);
  1350. }
  1351. static void
  1352. reset_state(struct intelfb_info *dinfo)
  1353. {
  1354. int i;
  1355. u32 tmp;
  1356. #if VERBOSE > 0
  1357. DBG_MSG("reset_state\n");
  1358. #endif
  1359. for (i = 0; i < FENCE_NUM; i++)
  1360. OUTREG(FENCE + (i << 2), 0);
  1361. /* Flush the ring buffer if it's enabled. */
  1362. tmp = INREG(PRI_RING_LENGTH);
  1363. if (tmp & RING_ENABLE) {
  1364. #if VERBOSE > 0
  1365. DBG_MSG("reset_state: ring was enabled\n");
  1366. #endif
  1367. refresh_ring(dinfo);
  1368. intelfbhw_do_sync(dinfo);
  1369. DO_RING_IDLE();
  1370. }
  1371. OUTREG(PRI_RING_LENGTH, 0);
  1372. OUTREG(PRI_RING_HEAD, 0);
  1373. OUTREG(PRI_RING_TAIL, 0);
  1374. OUTREG(PRI_RING_START, 0);
  1375. }
  1376. /* Stop the 2D engine, and turn off the ring buffer. */
  1377. void
  1378. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1379. {
  1380. #if VERBOSE > 0
  1381. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1382. dinfo->ring_active);
  1383. #endif
  1384. if (!dinfo->accel)
  1385. return;
  1386. dinfo->ring_active = 0;
  1387. reset_state(dinfo);
  1388. }
  1389. /*
  1390. * Enable the ring buffer, and initialise the 2D engine.
  1391. * It is assumed that the graphics engine has been stopped by previously
  1392. * calling intelfb_2d_stop().
  1393. */
  1394. void
  1395. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1396. {
  1397. #if VERBOSE > 0
  1398. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1399. dinfo->accel, dinfo->ring_active);
  1400. #endif
  1401. if (!dinfo->accel)
  1402. return;
  1403. /* Initialise the primary ring buffer. */
  1404. OUTREG(PRI_RING_LENGTH, 0);
  1405. OUTREG(PRI_RING_TAIL, 0);
  1406. OUTREG(PRI_RING_HEAD, 0);
  1407. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1408. OUTREG(PRI_RING_LENGTH,
  1409. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1410. RING_NO_REPORT | RING_ENABLE);
  1411. refresh_ring(dinfo);
  1412. dinfo->ring_active = 1;
  1413. }
  1414. /* 2D fillrect (solid fill or invert) */
  1415. void
  1416. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1417. u32 color, u32 pitch, u32 bpp, u32 rop)
  1418. {
  1419. u32 br00, br09, br13, br14, br16;
  1420. #if VERBOSE > 0
  1421. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1422. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1423. #endif
  1424. br00 = COLOR_BLT_CMD;
  1425. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1426. br13 = (rop << ROP_SHIFT) | pitch;
  1427. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1428. br16 = color;
  1429. switch (bpp) {
  1430. case 8:
  1431. br13 |= COLOR_DEPTH_8;
  1432. break;
  1433. case 16:
  1434. br13 |= COLOR_DEPTH_16;
  1435. break;
  1436. case 32:
  1437. br13 |= COLOR_DEPTH_32;
  1438. br00 |= WRITE_ALPHA | WRITE_RGB;
  1439. break;
  1440. }
  1441. START_RING(6);
  1442. OUT_RING(br00);
  1443. OUT_RING(br13);
  1444. OUT_RING(br14);
  1445. OUT_RING(br09);
  1446. OUT_RING(br16);
  1447. OUT_RING(MI_NOOP);
  1448. ADVANCE_RING();
  1449. #if VERBOSE > 0
  1450. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1451. dinfo->ring_tail, dinfo->ring_space);
  1452. #endif
  1453. }
  1454. void
  1455. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1456. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1457. {
  1458. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1459. #if VERBOSE > 0
  1460. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1461. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1462. #endif
  1463. br00 = XY_SRC_COPY_BLT_CMD;
  1464. br09 = dinfo->fb_start;
  1465. br11 = (pitch << PITCH_SHIFT);
  1466. br12 = dinfo->fb_start;
  1467. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1468. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1469. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1470. ((dsty + h) << HEIGHT_SHIFT);
  1471. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1472. switch (bpp) {
  1473. case 8:
  1474. br13 |= COLOR_DEPTH_8;
  1475. break;
  1476. case 16:
  1477. br13 |= COLOR_DEPTH_16;
  1478. break;
  1479. case 32:
  1480. br13 |= COLOR_DEPTH_32;
  1481. br00 |= WRITE_ALPHA | WRITE_RGB;
  1482. break;
  1483. }
  1484. START_RING(8);
  1485. OUT_RING(br00);
  1486. OUT_RING(br13);
  1487. OUT_RING(br22);
  1488. OUT_RING(br23);
  1489. OUT_RING(br09);
  1490. OUT_RING(br26);
  1491. OUT_RING(br11);
  1492. OUT_RING(br12);
  1493. ADVANCE_RING();
  1494. }
  1495. int
  1496. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1497. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1498. {
  1499. int nbytes, ndwords, pad, tmp;
  1500. u32 br00, br09, br13, br18, br19, br22, br23;
  1501. int dat, ix, iy, iw;
  1502. int i, j;
  1503. #if VERBOSE > 0
  1504. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1505. #endif
  1506. /* size in bytes of a padded scanline */
  1507. nbytes = ROUND_UP_TO(w, 16) / 8;
  1508. /* Total bytes of padded scanline data to write out. */
  1509. nbytes = nbytes * h;
  1510. /*
  1511. * Check if the glyph data exceeds the immediate mode limit.
  1512. * It would take a large font (1K pixels) to hit this limit.
  1513. */
  1514. if (nbytes > MAX_MONO_IMM_SIZE)
  1515. return 0;
  1516. /* Src data is packaged a dword (32-bit) at a time. */
  1517. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1518. /*
  1519. * Ring has to be padded to a quad word. But because the command starts
  1520. with 7 bytes, pad only if there is an even number of ndwords
  1521. */
  1522. pad = !(ndwords % 2);
  1523. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1524. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1525. br09 = dinfo->fb_start;
  1526. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1527. br18 = bg;
  1528. br19 = fg;
  1529. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1530. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1531. switch (bpp) {
  1532. case 8:
  1533. br13 |= COLOR_DEPTH_8;
  1534. break;
  1535. case 16:
  1536. br13 |= COLOR_DEPTH_16;
  1537. break;
  1538. case 32:
  1539. br13 |= COLOR_DEPTH_32;
  1540. br00 |= WRITE_ALPHA | WRITE_RGB;
  1541. break;
  1542. }
  1543. START_RING(8 + ndwords);
  1544. OUT_RING(br00);
  1545. OUT_RING(br13);
  1546. OUT_RING(br22);
  1547. OUT_RING(br23);
  1548. OUT_RING(br09);
  1549. OUT_RING(br18);
  1550. OUT_RING(br19);
  1551. ix = iy = 0;
  1552. iw = ROUND_UP_TO(w, 8) / 8;
  1553. while (ndwords--) {
  1554. dat = 0;
  1555. for (j = 0; j < 2; ++j) {
  1556. for (i = 0; i < 2; ++i) {
  1557. if (ix != iw || i == 0)
  1558. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1559. }
  1560. if (ix == iw && iy != (h-1)) {
  1561. ix = 0;
  1562. ++iy;
  1563. }
  1564. }
  1565. OUT_RING(dat);
  1566. }
  1567. if (pad)
  1568. OUT_RING(MI_NOOP);
  1569. ADVANCE_RING();
  1570. return 1;
  1571. }
  1572. /* HW cursor functions. */
  1573. void
  1574. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1575. {
  1576. u32 tmp;
  1577. #if VERBOSE > 0
  1578. DBG_MSG("intelfbhw_cursor_init\n");
  1579. #endif
  1580. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1581. if (!dinfo->cursor.physical)
  1582. return;
  1583. tmp = INREG(CURSOR_A_CONTROL);
  1584. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1585. CURSOR_MEM_TYPE_LOCAL |
  1586. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1587. tmp |= CURSOR_MODE_DISABLE;
  1588. OUTREG(CURSOR_A_CONTROL, tmp);
  1589. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1590. } else {
  1591. tmp = INREG(CURSOR_CONTROL);
  1592. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1593. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1594. tmp = CURSOR_FORMAT_3C;
  1595. OUTREG(CURSOR_CONTROL, tmp);
  1596. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1597. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1598. (64 << CURSOR_SIZE_V_SHIFT);
  1599. OUTREG(CURSOR_SIZE, tmp);
  1600. }
  1601. }
  1602. void
  1603. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1604. {
  1605. u32 tmp;
  1606. #if VERBOSE > 0
  1607. DBG_MSG("intelfbhw_cursor_hide\n");
  1608. #endif
  1609. dinfo->cursor_on = 0;
  1610. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1611. if (!dinfo->cursor.physical)
  1612. return;
  1613. tmp = INREG(CURSOR_A_CONTROL);
  1614. tmp &= ~CURSOR_MODE_MASK;
  1615. tmp |= CURSOR_MODE_DISABLE;
  1616. OUTREG(CURSOR_A_CONTROL, tmp);
  1617. /* Flush changes */
  1618. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1619. } else {
  1620. tmp = INREG(CURSOR_CONTROL);
  1621. tmp &= ~CURSOR_ENABLE;
  1622. OUTREG(CURSOR_CONTROL, tmp);
  1623. }
  1624. }
  1625. void
  1626. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1627. {
  1628. u32 tmp;
  1629. #if VERBOSE > 0
  1630. DBG_MSG("intelfbhw_cursor_show\n");
  1631. #endif
  1632. dinfo->cursor_on = 1;
  1633. if (dinfo->cursor_blanked)
  1634. return;
  1635. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1636. if (!dinfo->cursor.physical)
  1637. return;
  1638. tmp = INREG(CURSOR_A_CONTROL);
  1639. tmp &= ~CURSOR_MODE_MASK;
  1640. tmp |= CURSOR_MODE_64_4C_AX;
  1641. OUTREG(CURSOR_A_CONTROL, tmp);
  1642. /* Flush changes */
  1643. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1644. } else {
  1645. tmp = INREG(CURSOR_CONTROL);
  1646. tmp |= CURSOR_ENABLE;
  1647. OUTREG(CURSOR_CONTROL, tmp);
  1648. }
  1649. }
  1650. void
  1651. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1652. {
  1653. u32 tmp;
  1654. #if VERBOSE > 0
  1655. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1656. #endif
  1657. /*
  1658. * Sets the position. The coordinates are assumed to already
  1659. * have any offset adjusted. Assume that the cursor is never
  1660. * completely off-screen, and that x, y are always >= 0.
  1661. */
  1662. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1663. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1664. OUTREG(CURSOR_A_POSITION, tmp);
  1665. if (IS_I9XX(dinfo)) {
  1666. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1667. }
  1668. }
  1669. void
  1670. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1671. {
  1672. #if VERBOSE > 0
  1673. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1674. #endif
  1675. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1676. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1677. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1678. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1679. }
  1680. void
  1681. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1682. u8 *data)
  1683. {
  1684. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1685. int i, j, w = width / 8;
  1686. int mod = width % 8, t_mask, d_mask;
  1687. #if VERBOSE > 0
  1688. DBG_MSG("intelfbhw_cursor_load\n");
  1689. #endif
  1690. if (!dinfo->cursor.virtual)
  1691. return;
  1692. t_mask = 0xff >> mod;
  1693. d_mask = ~(0xff >> mod);
  1694. for (i = height; i--; ) {
  1695. for (j = 0; j < w; j++) {
  1696. writeb(0x00, addr + j);
  1697. writeb(*(data++), addr + j+8);
  1698. }
  1699. if (mod) {
  1700. writeb(t_mask, addr + j);
  1701. writeb(*(data++) & d_mask, addr + j+8);
  1702. }
  1703. addr += 16;
  1704. }
  1705. }
  1706. void
  1707. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1708. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1709. int i, j;
  1710. #if VERBOSE > 0
  1711. DBG_MSG("intelfbhw_cursor_reset\n");
  1712. #endif
  1713. if (!dinfo->cursor.virtual)
  1714. return;
  1715. for (i = 64; i--; ) {
  1716. for (j = 0; j < 8; j++) {
  1717. writeb(0xff, addr + j+0);
  1718. writeb(0x00, addr + j+8);
  1719. }
  1720. addr += 16;
  1721. }
  1722. }