ste_dma40.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <linux/amba/bus.h>
  16. #include <plat/ste_dma40.h>
  17. #include "ste_dma40_ll.h"
  18. #define D40_NAME "dma40"
  19. #define D40_PHY_CHAN -1
  20. /* For masking out/in 2 bit channel positions */
  21. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  22. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  23. /* Maximum iterations taken before giving up suspending a channel */
  24. #define D40_SUSPEND_MAX_IT 500
  25. /* Hardware requirement on LCLA alignment */
  26. #define LCLA_ALIGNMENT 0x40000
  27. /* Max number of links per event group */
  28. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  29. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  30. /* Attempts before giving up to trying to get pages that are aligned */
  31. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  32. /* Bit markings for allocation map */
  33. #define D40_ALLOC_FREE (1 << 31)
  34. #define D40_ALLOC_PHY (1 << 30)
  35. #define D40_ALLOC_LOG_FREE 0
  36. /**
  37. * enum 40_command - The different commands and/or statuses.
  38. *
  39. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  40. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  41. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  42. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  43. */
  44. enum d40_command {
  45. D40_DMA_STOP = 0,
  46. D40_DMA_RUN = 1,
  47. D40_DMA_SUSPEND_REQ = 2,
  48. D40_DMA_SUSPENDED = 3
  49. };
  50. /**
  51. * struct d40_lli_pool - Structure for keeping LLIs in memory
  52. *
  53. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  54. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  55. * pre_alloc_lli is used.
  56. * @dma_addr: DMA address, if mapped
  57. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  58. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  59. * one buffer to one buffer.
  60. */
  61. struct d40_lli_pool {
  62. void *base;
  63. int size;
  64. dma_addr_t dma_addr;
  65. /* Space for dst and src, plus an extra for padding */
  66. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  67. };
  68. /**
  69. * struct d40_desc - A descriptor is one DMA job.
  70. *
  71. * @lli_phy: LLI settings for physical channel. Both src and dst=
  72. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  73. * lli_len equals one.
  74. * @lli_log: Same as above but for logical channels.
  75. * @lli_pool: The pool with two entries pre-allocated.
  76. * @lli_len: Number of llis of current descriptor.
  77. * @lli_current: Number of transferred llis.
  78. * @lcla_alloc: Number of LCLA entries allocated.
  79. * @txd: DMA engine struct. Used for among other things for communication
  80. * during a transfer.
  81. * @node: List entry.
  82. * @is_in_client_list: true if the client owns this descriptor.
  83. * the previous one.
  84. *
  85. * This descriptor is used for both logical and physical transfers.
  86. */
  87. struct d40_desc {
  88. /* LLI physical */
  89. struct d40_phy_lli_bidir lli_phy;
  90. /* LLI logical */
  91. struct d40_log_lli_bidir lli_log;
  92. struct d40_lli_pool lli_pool;
  93. int lli_len;
  94. int lli_current;
  95. int lcla_alloc;
  96. struct dma_async_tx_descriptor txd;
  97. struct list_head node;
  98. bool is_in_client_list;
  99. bool cyclic;
  100. };
  101. /**
  102. * struct d40_lcla_pool - LCLA pool settings and data.
  103. *
  104. * @base: The virtual address of LCLA. 18 bit aligned.
  105. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  106. * This pointer is only there for clean-up on error.
  107. * @pages: The number of pages needed for all physical channels.
  108. * Only used later for clean-up on error
  109. * @lock: Lock to protect the content in this struct.
  110. * @alloc_map: big map over which LCLA entry is own by which job.
  111. */
  112. struct d40_lcla_pool {
  113. void *base;
  114. dma_addr_t dma_addr;
  115. void *base_unaligned;
  116. int pages;
  117. spinlock_t lock;
  118. struct d40_desc **alloc_map;
  119. };
  120. /**
  121. * struct d40_phy_res - struct for handling eventlines mapped to physical
  122. * channels.
  123. *
  124. * @lock: A lock protection this entity.
  125. * @num: The physical channel number of this entity.
  126. * @allocated_src: Bit mapped to show which src event line's are mapped to
  127. * this physical channel. Can also be free or physically allocated.
  128. * @allocated_dst: Same as for src but is dst.
  129. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  130. * event line number.
  131. */
  132. struct d40_phy_res {
  133. spinlock_t lock;
  134. int num;
  135. u32 allocated_src;
  136. u32 allocated_dst;
  137. };
  138. struct d40_base;
  139. /**
  140. * struct d40_chan - Struct that describes a channel.
  141. *
  142. * @lock: A spinlock to protect this struct.
  143. * @log_num: The logical number, if any of this channel.
  144. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  145. * current cookie.
  146. * @pending_tx: The number of pending transfers. Used between interrupt handler
  147. * and tasklet.
  148. * @busy: Set to true when transfer is ongoing on this channel.
  149. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  150. * point is NULL, then the channel is not allocated.
  151. * @chan: DMA engine handle.
  152. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  153. * transfer and call client callback.
  154. * @client: Cliented owned descriptor list.
  155. * @active: Active descriptor.
  156. * @queue: Queued jobs.
  157. * @dma_cfg: The client configuration of this dma channel.
  158. * @configured: whether the dma_cfg configuration is valid
  159. * @base: Pointer to the device instance struct.
  160. * @src_def_cfg: Default cfg register setting for src.
  161. * @dst_def_cfg: Default cfg register setting for dst.
  162. * @log_def: Default logical channel settings.
  163. * @lcla: Space for one dst src pair for logical channel transfers.
  164. * @lcpa: Pointer to dst and src lcpa settings.
  165. * @runtime_addr: runtime configured address.
  166. * @runtime_direction: runtime configured direction.
  167. *
  168. * This struct can either "be" a logical or a physical channel.
  169. */
  170. struct d40_chan {
  171. spinlock_t lock;
  172. int log_num;
  173. /* ID of the most recent completed transfer */
  174. int completed;
  175. int pending_tx;
  176. bool busy;
  177. struct d40_phy_res *phy_chan;
  178. struct dma_chan chan;
  179. struct tasklet_struct tasklet;
  180. struct list_head client;
  181. struct list_head pending_queue;
  182. struct list_head active;
  183. struct list_head queue;
  184. struct stedma40_chan_cfg dma_cfg;
  185. bool configured;
  186. struct d40_base *base;
  187. /* Default register configurations */
  188. u32 src_def_cfg;
  189. u32 dst_def_cfg;
  190. struct d40_def_lcsp log_def;
  191. struct d40_log_lli_full *lcpa;
  192. /* Runtime reconfiguration */
  193. dma_addr_t runtime_addr;
  194. enum dma_data_direction runtime_direction;
  195. };
  196. /**
  197. * struct d40_base - The big global struct, one for each probe'd instance.
  198. *
  199. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  200. * @execmd_lock: Lock for execute command usage since several channels share
  201. * the same physical register.
  202. * @dev: The device structure.
  203. * @virtbase: The virtual base address of the DMA's register.
  204. * @rev: silicon revision detected.
  205. * @clk: Pointer to the DMA clock structure.
  206. * @phy_start: Physical memory start of the DMA registers.
  207. * @phy_size: Size of the DMA register map.
  208. * @irq: The IRQ number.
  209. * @num_phy_chans: The number of physical channels. Read from HW. This
  210. * is the number of available channels for this driver, not counting "Secure
  211. * mode" allocated physical channels.
  212. * @num_log_chans: The number of logical channels. Calculated from
  213. * num_phy_chans.
  214. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  215. * @dma_slave: dma_device channels that can do only do slave transfers.
  216. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  217. * @log_chans: Room for all possible logical channels in system.
  218. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  219. * to log_chans entries.
  220. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  221. * to phy_chans entries.
  222. * @plat_data: Pointer to provided platform_data which is the driver
  223. * configuration.
  224. * @phy_res: Vector containing all physical channels.
  225. * @lcla_pool: lcla pool settings and data.
  226. * @lcpa_base: The virtual mapped address of LCPA.
  227. * @phy_lcpa: The physical address of the LCPA.
  228. * @lcpa_size: The size of the LCPA area.
  229. * @desc_slab: cache for descriptors.
  230. */
  231. struct d40_base {
  232. spinlock_t interrupt_lock;
  233. spinlock_t execmd_lock;
  234. struct device *dev;
  235. void __iomem *virtbase;
  236. u8 rev:4;
  237. struct clk *clk;
  238. phys_addr_t phy_start;
  239. resource_size_t phy_size;
  240. int irq;
  241. int num_phy_chans;
  242. int num_log_chans;
  243. struct dma_device dma_both;
  244. struct dma_device dma_slave;
  245. struct dma_device dma_memcpy;
  246. struct d40_chan *phy_chans;
  247. struct d40_chan *log_chans;
  248. struct d40_chan **lookup_log_chans;
  249. struct d40_chan **lookup_phy_chans;
  250. struct stedma40_platform_data *plat_data;
  251. /* Physical half channels */
  252. struct d40_phy_res *phy_res;
  253. struct d40_lcla_pool lcla_pool;
  254. void *lcpa_base;
  255. dma_addr_t phy_lcpa;
  256. resource_size_t lcpa_size;
  257. struct kmem_cache *desc_slab;
  258. };
  259. /**
  260. * struct d40_interrupt_lookup - lookup table for interrupt handler
  261. *
  262. * @src: Interrupt mask register.
  263. * @clr: Interrupt clear register.
  264. * @is_error: true if this is an error interrupt.
  265. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  266. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  267. */
  268. struct d40_interrupt_lookup {
  269. u32 src;
  270. u32 clr;
  271. bool is_error;
  272. int offset;
  273. };
  274. /**
  275. * struct d40_reg_val - simple lookup struct
  276. *
  277. * @reg: The register.
  278. * @val: The value that belongs to the register in reg.
  279. */
  280. struct d40_reg_val {
  281. unsigned int reg;
  282. unsigned int val;
  283. };
  284. static struct device *chan2dev(struct d40_chan *d40c)
  285. {
  286. return &d40c->chan.dev->device;
  287. }
  288. static bool chan_is_physical(struct d40_chan *chan)
  289. {
  290. return chan->log_num == D40_PHY_CHAN;
  291. }
  292. static bool chan_is_logical(struct d40_chan *chan)
  293. {
  294. return !chan_is_physical(chan);
  295. }
  296. static void __iomem *chan_base(struct d40_chan *chan)
  297. {
  298. return chan->base->virtbase + D40_DREG_PCBASE +
  299. chan->phy_chan->num * D40_DREG_PCDELTA;
  300. }
  301. #define d40_err(dev, format, arg...) \
  302. dev_err(dev, "[%s] " format, __func__, ## arg)
  303. #define chan_err(d40c, format, arg...) \
  304. d40_err(chan2dev(d40c), format, ## arg)
  305. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  306. int lli_len)
  307. {
  308. bool is_log = chan_is_logical(d40c);
  309. u32 align;
  310. void *base;
  311. if (is_log)
  312. align = sizeof(struct d40_log_lli);
  313. else
  314. align = sizeof(struct d40_phy_lli);
  315. if (lli_len == 1) {
  316. base = d40d->lli_pool.pre_alloc_lli;
  317. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  318. d40d->lli_pool.base = NULL;
  319. } else {
  320. d40d->lli_pool.size = lli_len * 2 * align;
  321. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  322. d40d->lli_pool.base = base;
  323. if (d40d->lli_pool.base == NULL)
  324. return -ENOMEM;
  325. }
  326. if (is_log) {
  327. d40d->lli_log.src = PTR_ALIGN(base, align);
  328. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  329. d40d->lli_pool.dma_addr = 0;
  330. } else {
  331. d40d->lli_phy.src = PTR_ALIGN(base, align);
  332. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  333. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  334. d40d->lli_phy.src,
  335. d40d->lli_pool.size,
  336. DMA_TO_DEVICE);
  337. if (dma_mapping_error(d40c->base->dev,
  338. d40d->lli_pool.dma_addr)) {
  339. kfree(d40d->lli_pool.base);
  340. d40d->lli_pool.base = NULL;
  341. d40d->lli_pool.dma_addr = 0;
  342. return -ENOMEM;
  343. }
  344. }
  345. return 0;
  346. }
  347. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  348. {
  349. if (d40d->lli_pool.dma_addr)
  350. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  351. d40d->lli_pool.size, DMA_TO_DEVICE);
  352. kfree(d40d->lli_pool.base);
  353. d40d->lli_pool.base = NULL;
  354. d40d->lli_pool.size = 0;
  355. d40d->lli_log.src = NULL;
  356. d40d->lli_log.dst = NULL;
  357. d40d->lli_phy.src = NULL;
  358. d40d->lli_phy.dst = NULL;
  359. }
  360. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  361. struct d40_desc *d40d)
  362. {
  363. unsigned long flags;
  364. int i;
  365. int ret = -EINVAL;
  366. int p;
  367. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  368. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  369. /*
  370. * Allocate both src and dst at the same time, therefore the half
  371. * start on 1 since 0 can't be used since zero is used as end marker.
  372. */
  373. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  374. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  375. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  376. d40d->lcla_alloc++;
  377. ret = i;
  378. break;
  379. }
  380. }
  381. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  382. return ret;
  383. }
  384. static int d40_lcla_free_all(struct d40_chan *d40c,
  385. struct d40_desc *d40d)
  386. {
  387. unsigned long flags;
  388. int i;
  389. int ret = -EINVAL;
  390. if (chan_is_physical(d40c))
  391. return 0;
  392. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  393. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  394. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  395. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  396. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  397. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  398. d40d->lcla_alloc--;
  399. if (d40d->lcla_alloc == 0) {
  400. ret = 0;
  401. break;
  402. }
  403. }
  404. }
  405. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  406. return ret;
  407. }
  408. static void d40_desc_remove(struct d40_desc *d40d)
  409. {
  410. list_del(&d40d->node);
  411. }
  412. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  413. {
  414. struct d40_desc *desc = NULL;
  415. if (!list_empty(&d40c->client)) {
  416. struct d40_desc *d;
  417. struct d40_desc *_d;
  418. list_for_each_entry_safe(d, _d, &d40c->client, node)
  419. if (async_tx_test_ack(&d->txd)) {
  420. d40_pool_lli_free(d40c, d);
  421. d40_desc_remove(d);
  422. desc = d;
  423. memset(desc, 0, sizeof(*desc));
  424. break;
  425. }
  426. }
  427. if (!desc)
  428. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  429. if (desc)
  430. INIT_LIST_HEAD(&desc->node);
  431. return desc;
  432. }
  433. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  434. {
  435. d40_pool_lli_free(d40c, d40d);
  436. d40_lcla_free_all(d40c, d40d);
  437. kmem_cache_free(d40c->base->desc_slab, d40d);
  438. }
  439. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  440. {
  441. list_add_tail(&desc->node, &d40c->active);
  442. }
  443. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  444. {
  445. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  446. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  447. void __iomem *base = chan_base(chan);
  448. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  449. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  450. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  451. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  452. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  453. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  454. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  455. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  456. }
  457. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  458. {
  459. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  460. struct d40_log_lli_bidir *lli = &desc->lli_log;
  461. int lli_current = desc->lli_current;
  462. int lli_len = desc->lli_len;
  463. bool cyclic = desc->cyclic;
  464. int curr_lcla = -EINVAL;
  465. int first_lcla = 0;
  466. bool linkback;
  467. /*
  468. * We may have partially running cyclic transfers, in case we did't get
  469. * enough LCLA entries.
  470. */
  471. linkback = cyclic && lli_current == 0;
  472. /*
  473. * For linkback, we need one LCLA even with only one link, because we
  474. * can't link back to the one in LCPA space
  475. */
  476. if (linkback || (lli_len - lli_current > 1)) {
  477. curr_lcla = d40_lcla_alloc_one(chan, desc);
  478. first_lcla = curr_lcla;
  479. }
  480. /*
  481. * For linkback, we normally load the LCPA in the loop since we need to
  482. * link it to the second LCLA and not the first. However, if we
  483. * couldn't even get a first LCLA, then we have to run in LCPA and
  484. * reload manually.
  485. */
  486. if (!linkback || curr_lcla == -EINVAL) {
  487. unsigned int flags = 0;
  488. if (curr_lcla == -EINVAL)
  489. flags |= LLI_TERM_INT;
  490. d40_log_lli_lcpa_write(chan->lcpa,
  491. &lli->dst[lli_current],
  492. &lli->src[lli_current],
  493. curr_lcla,
  494. flags);
  495. lli_current++;
  496. }
  497. if (curr_lcla < 0)
  498. goto out;
  499. for (; lli_current < lli_len; lli_current++) {
  500. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  501. 8 * curr_lcla * 2;
  502. struct d40_log_lli *lcla = pool->base + lcla_offset;
  503. unsigned int flags = 0;
  504. int next_lcla;
  505. if (lli_current + 1 < lli_len)
  506. next_lcla = d40_lcla_alloc_one(chan, desc);
  507. else
  508. next_lcla = linkback ? first_lcla : -EINVAL;
  509. if (cyclic || next_lcla == -EINVAL)
  510. flags |= LLI_TERM_INT;
  511. if (linkback && curr_lcla == first_lcla) {
  512. /* First link goes in both LCPA and LCLA */
  513. d40_log_lli_lcpa_write(chan->lcpa,
  514. &lli->dst[lli_current],
  515. &lli->src[lli_current],
  516. next_lcla, flags);
  517. }
  518. /*
  519. * One unused LCLA in the cyclic case if the very first
  520. * next_lcla fails...
  521. */
  522. d40_log_lli_lcla_write(lcla,
  523. &lli->dst[lli_current],
  524. &lli->src[lli_current],
  525. next_lcla, flags);
  526. dma_sync_single_range_for_device(chan->base->dev,
  527. pool->dma_addr, lcla_offset,
  528. 2 * sizeof(struct d40_log_lli),
  529. DMA_TO_DEVICE);
  530. curr_lcla = next_lcla;
  531. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  532. lli_current++;
  533. break;
  534. }
  535. }
  536. out:
  537. desc->lli_current = lli_current;
  538. }
  539. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  540. {
  541. if (chan_is_physical(d40c)) {
  542. d40_phy_lli_load(d40c, d40d);
  543. d40d->lli_current = d40d->lli_len;
  544. } else
  545. d40_log_lli_to_lcxa(d40c, d40d);
  546. }
  547. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  548. {
  549. struct d40_desc *d;
  550. if (list_empty(&d40c->active))
  551. return NULL;
  552. d = list_first_entry(&d40c->active,
  553. struct d40_desc,
  554. node);
  555. return d;
  556. }
  557. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  558. {
  559. list_add_tail(&desc->node, &d40c->pending_queue);
  560. }
  561. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  562. {
  563. struct d40_desc *d;
  564. if (list_empty(&d40c->pending_queue))
  565. return NULL;
  566. d = list_first_entry(&d40c->pending_queue,
  567. struct d40_desc,
  568. node);
  569. return d;
  570. }
  571. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  572. {
  573. struct d40_desc *d;
  574. if (list_empty(&d40c->queue))
  575. return NULL;
  576. d = list_first_entry(&d40c->queue,
  577. struct d40_desc,
  578. node);
  579. return d;
  580. }
  581. static int d40_psize_2_burst_size(bool is_log, int psize)
  582. {
  583. if (is_log) {
  584. if (psize == STEDMA40_PSIZE_LOG_1)
  585. return 1;
  586. } else {
  587. if (psize == STEDMA40_PSIZE_PHY_1)
  588. return 1;
  589. }
  590. return 2 << psize;
  591. }
  592. /*
  593. * The dma only supports transmitting packages up to
  594. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  595. * dma elements required to send the entire sg list
  596. */
  597. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  598. {
  599. int dmalen;
  600. u32 max_w = max(data_width1, data_width2);
  601. u32 min_w = min(data_width1, data_width2);
  602. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  603. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  604. seg_max -= (1 << max_w);
  605. if (!IS_ALIGNED(size, 1 << max_w))
  606. return -EINVAL;
  607. if (size <= seg_max)
  608. dmalen = 1;
  609. else {
  610. dmalen = size / seg_max;
  611. if (dmalen * seg_max < size)
  612. dmalen++;
  613. }
  614. return dmalen;
  615. }
  616. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  617. u32 data_width1, u32 data_width2)
  618. {
  619. struct scatterlist *sg;
  620. int i;
  621. int len = 0;
  622. int ret;
  623. for_each_sg(sgl, sg, sg_len, i) {
  624. ret = d40_size_2_dmalen(sg_dma_len(sg),
  625. data_width1, data_width2);
  626. if (ret < 0)
  627. return ret;
  628. len += ret;
  629. }
  630. return len;
  631. }
  632. /* Support functions for logical channels */
  633. static int d40_channel_execute_command(struct d40_chan *d40c,
  634. enum d40_command command)
  635. {
  636. u32 status;
  637. int i;
  638. void __iomem *active_reg;
  639. int ret = 0;
  640. unsigned long flags;
  641. u32 wmask;
  642. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  643. if (d40c->phy_chan->num % 2 == 0)
  644. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  645. else
  646. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  647. if (command == D40_DMA_SUSPEND_REQ) {
  648. status = (readl(active_reg) &
  649. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  650. D40_CHAN_POS(d40c->phy_chan->num);
  651. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  652. goto done;
  653. }
  654. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  655. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  656. active_reg);
  657. if (command == D40_DMA_SUSPEND_REQ) {
  658. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  659. status = (readl(active_reg) &
  660. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  661. D40_CHAN_POS(d40c->phy_chan->num);
  662. cpu_relax();
  663. /*
  664. * Reduce the number of bus accesses while
  665. * waiting for the DMA to suspend.
  666. */
  667. udelay(3);
  668. if (status == D40_DMA_STOP ||
  669. status == D40_DMA_SUSPENDED)
  670. break;
  671. }
  672. if (i == D40_SUSPEND_MAX_IT) {
  673. chan_err(d40c,
  674. "unable to suspend the chl %d (log: %d) status %x\n",
  675. d40c->phy_chan->num, d40c->log_num,
  676. status);
  677. dump_stack();
  678. ret = -EBUSY;
  679. }
  680. }
  681. done:
  682. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  683. return ret;
  684. }
  685. static void d40_term_all(struct d40_chan *d40c)
  686. {
  687. struct d40_desc *d40d;
  688. /* Release active descriptors */
  689. while ((d40d = d40_first_active_get(d40c))) {
  690. d40_desc_remove(d40d);
  691. d40_desc_free(d40c, d40d);
  692. }
  693. /* Release queued descriptors waiting for transfer */
  694. while ((d40d = d40_first_queued(d40c))) {
  695. d40_desc_remove(d40d);
  696. d40_desc_free(d40c, d40d);
  697. }
  698. /* Release pending descriptors */
  699. while ((d40d = d40_first_pending(d40c))) {
  700. d40_desc_remove(d40d);
  701. d40_desc_free(d40c, d40d);
  702. }
  703. d40c->pending_tx = 0;
  704. d40c->busy = false;
  705. }
  706. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  707. u32 event, int reg)
  708. {
  709. void __iomem *addr = chan_base(d40c) + reg;
  710. int tries;
  711. if (!enable) {
  712. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  713. | ~D40_EVENTLINE_MASK(event), addr);
  714. return;
  715. }
  716. /*
  717. * The hardware sometimes doesn't register the enable when src and dst
  718. * event lines are active on the same logical channel. Retry to ensure
  719. * it does. Usually only one retry is sufficient.
  720. */
  721. tries = 100;
  722. while (--tries) {
  723. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  724. | ~D40_EVENTLINE_MASK(event), addr);
  725. if (readl(addr) & D40_EVENTLINE_MASK(event))
  726. break;
  727. }
  728. if (tries != 99)
  729. dev_dbg(chan2dev(d40c),
  730. "[%s] workaround enable S%cLNK (%d tries)\n",
  731. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  732. 100 - tries);
  733. WARN_ON(!tries);
  734. }
  735. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  736. {
  737. unsigned long flags;
  738. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  739. /* Enable event line connected to device (or memcpy) */
  740. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  741. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  742. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  743. __d40_config_set_event(d40c, do_enable, event,
  744. D40_CHAN_REG_SSLNK);
  745. }
  746. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  747. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  748. __d40_config_set_event(d40c, do_enable, event,
  749. D40_CHAN_REG_SDLNK);
  750. }
  751. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  752. }
  753. static u32 d40_chan_has_events(struct d40_chan *d40c)
  754. {
  755. void __iomem *chanbase = chan_base(d40c);
  756. u32 val;
  757. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  758. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  759. return val;
  760. }
  761. static u32 d40_get_prmo(struct d40_chan *d40c)
  762. {
  763. static const unsigned int phy_map[] = {
  764. [STEDMA40_PCHAN_BASIC_MODE]
  765. = D40_DREG_PRMO_PCHAN_BASIC,
  766. [STEDMA40_PCHAN_MODULO_MODE]
  767. = D40_DREG_PRMO_PCHAN_MODULO,
  768. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  769. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  770. };
  771. static const unsigned int log_map[] = {
  772. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  773. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  774. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  775. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  776. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  777. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  778. };
  779. if (chan_is_physical(d40c))
  780. return phy_map[d40c->dma_cfg.mode_opt];
  781. else
  782. return log_map[d40c->dma_cfg.mode_opt];
  783. }
  784. static void d40_config_write(struct d40_chan *d40c)
  785. {
  786. u32 addr_base;
  787. u32 var;
  788. /* Odd addresses are even addresses + 4 */
  789. addr_base = (d40c->phy_chan->num % 2) * 4;
  790. /* Setup channel mode to logical or physical */
  791. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  792. D40_CHAN_POS(d40c->phy_chan->num);
  793. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  794. /* Setup operational mode option register */
  795. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  796. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  797. if (chan_is_logical(d40c)) {
  798. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  799. & D40_SREG_ELEM_LOG_LIDX_MASK;
  800. void __iomem *chanbase = chan_base(d40c);
  801. /* Set default config for CFG reg */
  802. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  803. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  804. /* Set LIDX for lcla */
  805. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  806. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  807. }
  808. }
  809. static u32 d40_residue(struct d40_chan *d40c)
  810. {
  811. u32 num_elt;
  812. if (chan_is_logical(d40c))
  813. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  814. >> D40_MEM_LCSP2_ECNT_POS;
  815. else {
  816. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  817. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  818. >> D40_SREG_ELEM_PHY_ECNT_POS;
  819. }
  820. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  821. }
  822. static bool d40_tx_is_linked(struct d40_chan *d40c)
  823. {
  824. bool is_link;
  825. if (chan_is_logical(d40c))
  826. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  827. else
  828. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  829. & D40_SREG_LNK_PHYS_LNK_MASK;
  830. return is_link;
  831. }
  832. static int d40_pause(struct d40_chan *d40c)
  833. {
  834. int res = 0;
  835. unsigned long flags;
  836. if (!d40c->busy)
  837. return 0;
  838. spin_lock_irqsave(&d40c->lock, flags);
  839. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  840. if (res == 0) {
  841. if (chan_is_logical(d40c)) {
  842. d40_config_set_event(d40c, false);
  843. /* Resume the other logical channels if any */
  844. if (d40_chan_has_events(d40c))
  845. res = d40_channel_execute_command(d40c,
  846. D40_DMA_RUN);
  847. }
  848. }
  849. spin_unlock_irqrestore(&d40c->lock, flags);
  850. return res;
  851. }
  852. static int d40_resume(struct d40_chan *d40c)
  853. {
  854. int res = 0;
  855. unsigned long flags;
  856. if (!d40c->busy)
  857. return 0;
  858. spin_lock_irqsave(&d40c->lock, flags);
  859. if (d40c->base->rev == 0)
  860. if (chan_is_logical(d40c)) {
  861. res = d40_channel_execute_command(d40c,
  862. D40_DMA_SUSPEND_REQ);
  863. goto no_suspend;
  864. }
  865. /* If bytes left to transfer or linked tx resume job */
  866. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  867. if (chan_is_logical(d40c))
  868. d40_config_set_event(d40c, true);
  869. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  870. }
  871. no_suspend:
  872. spin_unlock_irqrestore(&d40c->lock, flags);
  873. return res;
  874. }
  875. static int d40_terminate_all(struct d40_chan *chan)
  876. {
  877. unsigned long flags;
  878. int ret = 0;
  879. ret = d40_pause(chan);
  880. if (!ret && chan_is_physical(chan))
  881. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  882. spin_lock_irqsave(&chan->lock, flags);
  883. d40_term_all(chan);
  884. spin_unlock_irqrestore(&chan->lock, flags);
  885. return ret;
  886. }
  887. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  888. {
  889. struct d40_chan *d40c = container_of(tx->chan,
  890. struct d40_chan,
  891. chan);
  892. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  893. unsigned long flags;
  894. spin_lock_irqsave(&d40c->lock, flags);
  895. d40c->chan.cookie++;
  896. if (d40c->chan.cookie < 0)
  897. d40c->chan.cookie = 1;
  898. d40d->txd.cookie = d40c->chan.cookie;
  899. d40_desc_queue(d40c, d40d);
  900. spin_unlock_irqrestore(&d40c->lock, flags);
  901. return tx->cookie;
  902. }
  903. static int d40_start(struct d40_chan *d40c)
  904. {
  905. if (d40c->base->rev == 0) {
  906. int err;
  907. if (chan_is_logical(d40c)) {
  908. err = d40_channel_execute_command(d40c,
  909. D40_DMA_SUSPEND_REQ);
  910. if (err)
  911. return err;
  912. }
  913. }
  914. if (chan_is_logical(d40c))
  915. d40_config_set_event(d40c, true);
  916. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  917. }
  918. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  919. {
  920. struct d40_desc *d40d;
  921. int err;
  922. /* Start queued jobs, if any */
  923. d40d = d40_first_queued(d40c);
  924. if (d40d != NULL) {
  925. d40c->busy = true;
  926. /* Remove from queue */
  927. d40_desc_remove(d40d);
  928. /* Add to active queue */
  929. d40_desc_submit(d40c, d40d);
  930. /* Initiate DMA job */
  931. d40_desc_load(d40c, d40d);
  932. /* Start dma job */
  933. err = d40_start(d40c);
  934. if (err)
  935. return NULL;
  936. }
  937. return d40d;
  938. }
  939. /* called from interrupt context */
  940. static void dma_tc_handle(struct d40_chan *d40c)
  941. {
  942. struct d40_desc *d40d;
  943. /* Get first active entry from list */
  944. d40d = d40_first_active_get(d40c);
  945. if (d40d == NULL)
  946. return;
  947. if (d40d->cyclic) {
  948. /*
  949. * If this was a paritially loaded list, we need to reloaded
  950. * it, and only when the list is completed. We need to check
  951. * for done because the interrupt will hit for every link, and
  952. * not just the last one.
  953. */
  954. if (d40d->lli_current < d40d->lli_len
  955. && !d40_tx_is_linked(d40c)
  956. && !d40_residue(d40c)) {
  957. d40_lcla_free_all(d40c, d40d);
  958. d40_desc_load(d40c, d40d);
  959. (void) d40_start(d40c);
  960. if (d40d->lli_current == d40d->lli_len)
  961. d40d->lli_current = 0;
  962. }
  963. } else {
  964. d40_lcla_free_all(d40c, d40d);
  965. if (d40d->lli_current < d40d->lli_len) {
  966. d40_desc_load(d40c, d40d);
  967. /* Start dma job */
  968. (void) d40_start(d40c);
  969. return;
  970. }
  971. if (d40_queue_start(d40c) == NULL)
  972. d40c->busy = false;
  973. }
  974. d40c->pending_tx++;
  975. tasklet_schedule(&d40c->tasklet);
  976. }
  977. static void dma_tasklet(unsigned long data)
  978. {
  979. struct d40_chan *d40c = (struct d40_chan *) data;
  980. struct d40_desc *d40d;
  981. unsigned long flags;
  982. dma_async_tx_callback callback;
  983. void *callback_param;
  984. spin_lock_irqsave(&d40c->lock, flags);
  985. /* Get first active entry from list */
  986. d40d = d40_first_active_get(d40c);
  987. if (d40d == NULL)
  988. goto err;
  989. if (!d40d->cyclic)
  990. d40c->completed = d40d->txd.cookie;
  991. /*
  992. * If terminating a channel pending_tx is set to zero.
  993. * This prevents any finished active jobs to return to the client.
  994. */
  995. if (d40c->pending_tx == 0) {
  996. spin_unlock_irqrestore(&d40c->lock, flags);
  997. return;
  998. }
  999. /* Callback to client */
  1000. callback = d40d->txd.callback;
  1001. callback_param = d40d->txd.callback_param;
  1002. if (!d40d->cyclic) {
  1003. if (async_tx_test_ack(&d40d->txd)) {
  1004. d40_pool_lli_free(d40c, d40d);
  1005. d40_desc_remove(d40d);
  1006. d40_desc_free(d40c, d40d);
  1007. } else {
  1008. if (!d40d->is_in_client_list) {
  1009. d40_desc_remove(d40d);
  1010. d40_lcla_free_all(d40c, d40d);
  1011. list_add_tail(&d40d->node, &d40c->client);
  1012. d40d->is_in_client_list = true;
  1013. }
  1014. }
  1015. }
  1016. d40c->pending_tx--;
  1017. if (d40c->pending_tx)
  1018. tasklet_schedule(&d40c->tasklet);
  1019. spin_unlock_irqrestore(&d40c->lock, flags);
  1020. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1021. callback(callback_param);
  1022. return;
  1023. err:
  1024. /* Rescue manoeuvre if receiving double interrupts */
  1025. if (d40c->pending_tx > 0)
  1026. d40c->pending_tx--;
  1027. spin_unlock_irqrestore(&d40c->lock, flags);
  1028. }
  1029. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1030. {
  1031. static const struct d40_interrupt_lookup il[] = {
  1032. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1033. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1034. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1035. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1036. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1037. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1038. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1039. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1040. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1041. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1042. };
  1043. int i;
  1044. u32 regs[ARRAY_SIZE(il)];
  1045. u32 idx;
  1046. u32 row;
  1047. long chan = -1;
  1048. struct d40_chan *d40c;
  1049. unsigned long flags;
  1050. struct d40_base *base = data;
  1051. spin_lock_irqsave(&base->interrupt_lock, flags);
  1052. /* Read interrupt status of both logical and physical channels */
  1053. for (i = 0; i < ARRAY_SIZE(il); i++)
  1054. regs[i] = readl(base->virtbase + il[i].src);
  1055. for (;;) {
  1056. chan = find_next_bit((unsigned long *)regs,
  1057. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1058. /* No more set bits found? */
  1059. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1060. break;
  1061. row = chan / BITS_PER_LONG;
  1062. idx = chan & (BITS_PER_LONG - 1);
  1063. /* ACK interrupt */
  1064. writel(1 << idx, base->virtbase + il[row].clr);
  1065. if (il[row].offset == D40_PHY_CHAN)
  1066. d40c = base->lookup_phy_chans[idx];
  1067. else
  1068. d40c = base->lookup_log_chans[il[row].offset + idx];
  1069. spin_lock(&d40c->lock);
  1070. if (!il[row].is_error)
  1071. dma_tc_handle(d40c);
  1072. else
  1073. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1074. chan, il[row].offset, idx);
  1075. spin_unlock(&d40c->lock);
  1076. }
  1077. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1078. return IRQ_HANDLED;
  1079. }
  1080. static int d40_validate_conf(struct d40_chan *d40c,
  1081. struct stedma40_chan_cfg *conf)
  1082. {
  1083. int res = 0;
  1084. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1085. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1086. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1087. if (!conf->dir) {
  1088. chan_err(d40c, "Invalid direction.\n");
  1089. res = -EINVAL;
  1090. }
  1091. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1092. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1093. d40c->runtime_addr == 0) {
  1094. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1095. conf->dst_dev_type);
  1096. res = -EINVAL;
  1097. }
  1098. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1099. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1100. d40c->runtime_addr == 0) {
  1101. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1102. conf->src_dev_type);
  1103. res = -EINVAL;
  1104. }
  1105. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1106. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1107. chan_err(d40c, "Invalid dst\n");
  1108. res = -EINVAL;
  1109. }
  1110. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1111. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1112. chan_err(d40c, "Invalid src\n");
  1113. res = -EINVAL;
  1114. }
  1115. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1116. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1117. chan_err(d40c, "No event line\n");
  1118. res = -EINVAL;
  1119. }
  1120. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1121. (src_event_group != dst_event_group)) {
  1122. chan_err(d40c, "Invalid event group\n");
  1123. res = -EINVAL;
  1124. }
  1125. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1126. /*
  1127. * DMAC HW supports it. Will be added to this driver,
  1128. * in case any dma client requires it.
  1129. */
  1130. chan_err(d40c, "periph to periph not supported\n");
  1131. res = -EINVAL;
  1132. }
  1133. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1134. (1 << conf->src_info.data_width) !=
  1135. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1136. (1 << conf->dst_info.data_width)) {
  1137. /*
  1138. * The DMAC hardware only supports
  1139. * src (burst x width) == dst (burst x width)
  1140. */
  1141. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1142. res = -EINVAL;
  1143. }
  1144. return res;
  1145. }
  1146. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1147. int log_event_line, bool is_log)
  1148. {
  1149. unsigned long flags;
  1150. spin_lock_irqsave(&phy->lock, flags);
  1151. if (!is_log) {
  1152. /* Physical interrupts are masked per physical full channel */
  1153. if (phy->allocated_src == D40_ALLOC_FREE &&
  1154. phy->allocated_dst == D40_ALLOC_FREE) {
  1155. phy->allocated_dst = D40_ALLOC_PHY;
  1156. phy->allocated_src = D40_ALLOC_PHY;
  1157. goto found;
  1158. } else
  1159. goto not_found;
  1160. }
  1161. /* Logical channel */
  1162. if (is_src) {
  1163. if (phy->allocated_src == D40_ALLOC_PHY)
  1164. goto not_found;
  1165. if (phy->allocated_src == D40_ALLOC_FREE)
  1166. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1167. if (!(phy->allocated_src & (1 << log_event_line))) {
  1168. phy->allocated_src |= 1 << log_event_line;
  1169. goto found;
  1170. } else
  1171. goto not_found;
  1172. } else {
  1173. if (phy->allocated_dst == D40_ALLOC_PHY)
  1174. goto not_found;
  1175. if (phy->allocated_dst == D40_ALLOC_FREE)
  1176. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1177. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1178. phy->allocated_dst |= 1 << log_event_line;
  1179. goto found;
  1180. } else
  1181. goto not_found;
  1182. }
  1183. not_found:
  1184. spin_unlock_irqrestore(&phy->lock, flags);
  1185. return false;
  1186. found:
  1187. spin_unlock_irqrestore(&phy->lock, flags);
  1188. return true;
  1189. }
  1190. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1191. int log_event_line)
  1192. {
  1193. unsigned long flags;
  1194. bool is_free = false;
  1195. spin_lock_irqsave(&phy->lock, flags);
  1196. if (!log_event_line) {
  1197. phy->allocated_dst = D40_ALLOC_FREE;
  1198. phy->allocated_src = D40_ALLOC_FREE;
  1199. is_free = true;
  1200. goto out;
  1201. }
  1202. /* Logical channel */
  1203. if (is_src) {
  1204. phy->allocated_src &= ~(1 << log_event_line);
  1205. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1206. phy->allocated_src = D40_ALLOC_FREE;
  1207. } else {
  1208. phy->allocated_dst &= ~(1 << log_event_line);
  1209. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1210. phy->allocated_dst = D40_ALLOC_FREE;
  1211. }
  1212. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1213. D40_ALLOC_FREE);
  1214. out:
  1215. spin_unlock_irqrestore(&phy->lock, flags);
  1216. return is_free;
  1217. }
  1218. static int d40_allocate_channel(struct d40_chan *d40c)
  1219. {
  1220. int dev_type;
  1221. int event_group;
  1222. int event_line;
  1223. struct d40_phy_res *phys;
  1224. int i;
  1225. int j;
  1226. int log_num;
  1227. bool is_src;
  1228. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1229. phys = d40c->base->phy_res;
  1230. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1231. dev_type = d40c->dma_cfg.src_dev_type;
  1232. log_num = 2 * dev_type;
  1233. is_src = true;
  1234. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1235. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1236. /* dst event lines are used for logical memcpy */
  1237. dev_type = d40c->dma_cfg.dst_dev_type;
  1238. log_num = 2 * dev_type + 1;
  1239. is_src = false;
  1240. } else
  1241. return -EINVAL;
  1242. event_group = D40_TYPE_TO_GROUP(dev_type);
  1243. event_line = D40_TYPE_TO_EVENT(dev_type);
  1244. if (!is_log) {
  1245. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1246. /* Find physical half channel */
  1247. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1248. if (d40_alloc_mask_set(&phys[i], is_src,
  1249. 0, is_log))
  1250. goto found_phy;
  1251. }
  1252. } else
  1253. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1254. int phy_num = j + event_group * 2;
  1255. for (i = phy_num; i < phy_num + 2; i++) {
  1256. if (d40_alloc_mask_set(&phys[i],
  1257. is_src,
  1258. 0,
  1259. is_log))
  1260. goto found_phy;
  1261. }
  1262. }
  1263. return -EINVAL;
  1264. found_phy:
  1265. d40c->phy_chan = &phys[i];
  1266. d40c->log_num = D40_PHY_CHAN;
  1267. goto out;
  1268. }
  1269. if (dev_type == -1)
  1270. return -EINVAL;
  1271. /* Find logical channel */
  1272. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1273. int phy_num = j + event_group * 2;
  1274. /*
  1275. * Spread logical channels across all available physical rather
  1276. * than pack every logical channel at the first available phy
  1277. * channels.
  1278. */
  1279. if (is_src) {
  1280. for (i = phy_num; i < phy_num + 2; i++) {
  1281. if (d40_alloc_mask_set(&phys[i], is_src,
  1282. event_line, is_log))
  1283. goto found_log;
  1284. }
  1285. } else {
  1286. for (i = phy_num + 1; i >= phy_num; i--) {
  1287. if (d40_alloc_mask_set(&phys[i], is_src,
  1288. event_line, is_log))
  1289. goto found_log;
  1290. }
  1291. }
  1292. }
  1293. return -EINVAL;
  1294. found_log:
  1295. d40c->phy_chan = &phys[i];
  1296. d40c->log_num = log_num;
  1297. out:
  1298. if (is_log)
  1299. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1300. else
  1301. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1302. return 0;
  1303. }
  1304. static int d40_config_memcpy(struct d40_chan *d40c)
  1305. {
  1306. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1307. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1308. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1309. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1310. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1311. memcpy[d40c->chan.chan_id];
  1312. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1313. dma_has_cap(DMA_SLAVE, cap)) {
  1314. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1315. } else {
  1316. chan_err(d40c, "No memcpy\n");
  1317. return -EINVAL;
  1318. }
  1319. return 0;
  1320. }
  1321. static int d40_free_dma(struct d40_chan *d40c)
  1322. {
  1323. int res = 0;
  1324. u32 event;
  1325. struct d40_phy_res *phy = d40c->phy_chan;
  1326. bool is_src;
  1327. struct d40_desc *d;
  1328. struct d40_desc *_d;
  1329. /* Terminate all queued and active transfers */
  1330. d40_term_all(d40c);
  1331. /* Release client owned descriptors */
  1332. if (!list_empty(&d40c->client))
  1333. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1334. d40_pool_lli_free(d40c, d);
  1335. d40_desc_remove(d);
  1336. d40_desc_free(d40c, d);
  1337. }
  1338. if (phy == NULL) {
  1339. chan_err(d40c, "phy == null\n");
  1340. return -EINVAL;
  1341. }
  1342. if (phy->allocated_src == D40_ALLOC_FREE &&
  1343. phy->allocated_dst == D40_ALLOC_FREE) {
  1344. chan_err(d40c, "channel already free\n");
  1345. return -EINVAL;
  1346. }
  1347. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1348. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1349. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1350. is_src = false;
  1351. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1352. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1353. is_src = true;
  1354. } else {
  1355. chan_err(d40c, "Unknown direction\n");
  1356. return -EINVAL;
  1357. }
  1358. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1359. if (res) {
  1360. chan_err(d40c, "suspend failed\n");
  1361. return res;
  1362. }
  1363. if (chan_is_logical(d40c)) {
  1364. /* Release logical channel, deactivate the event line */
  1365. d40_config_set_event(d40c, false);
  1366. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1367. /*
  1368. * Check if there are more logical allocation
  1369. * on this phy channel.
  1370. */
  1371. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1372. /* Resume the other logical channels if any */
  1373. if (d40_chan_has_events(d40c)) {
  1374. res = d40_channel_execute_command(d40c,
  1375. D40_DMA_RUN);
  1376. if (res) {
  1377. chan_err(d40c,
  1378. "Executing RUN command\n");
  1379. return res;
  1380. }
  1381. }
  1382. return 0;
  1383. }
  1384. } else {
  1385. (void) d40_alloc_mask_free(phy, is_src, 0);
  1386. }
  1387. /* Release physical channel */
  1388. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1389. if (res) {
  1390. chan_err(d40c, "Failed to stop channel\n");
  1391. return res;
  1392. }
  1393. d40c->phy_chan = NULL;
  1394. d40c->configured = false;
  1395. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1396. return 0;
  1397. }
  1398. static bool d40_is_paused(struct d40_chan *d40c)
  1399. {
  1400. void __iomem *chanbase = chan_base(d40c);
  1401. bool is_paused = false;
  1402. unsigned long flags;
  1403. void __iomem *active_reg;
  1404. u32 status;
  1405. u32 event;
  1406. spin_lock_irqsave(&d40c->lock, flags);
  1407. if (chan_is_physical(d40c)) {
  1408. if (d40c->phy_chan->num % 2 == 0)
  1409. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1410. else
  1411. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1412. status = (readl(active_reg) &
  1413. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1414. D40_CHAN_POS(d40c->phy_chan->num);
  1415. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1416. is_paused = true;
  1417. goto _exit;
  1418. }
  1419. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1420. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1421. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1422. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1423. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1424. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1425. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1426. } else {
  1427. chan_err(d40c, "Unknown direction\n");
  1428. goto _exit;
  1429. }
  1430. status = (status & D40_EVENTLINE_MASK(event)) >>
  1431. D40_EVENTLINE_POS(event);
  1432. if (status != D40_DMA_RUN)
  1433. is_paused = true;
  1434. _exit:
  1435. spin_unlock_irqrestore(&d40c->lock, flags);
  1436. return is_paused;
  1437. }
  1438. static u32 stedma40_residue(struct dma_chan *chan)
  1439. {
  1440. struct d40_chan *d40c =
  1441. container_of(chan, struct d40_chan, chan);
  1442. u32 bytes_left;
  1443. unsigned long flags;
  1444. spin_lock_irqsave(&d40c->lock, flags);
  1445. bytes_left = d40_residue(d40c);
  1446. spin_unlock_irqrestore(&d40c->lock, flags);
  1447. return bytes_left;
  1448. }
  1449. static int
  1450. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1451. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1452. unsigned int sg_len, dma_addr_t src_dev_addr,
  1453. dma_addr_t dst_dev_addr)
  1454. {
  1455. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1456. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1457. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1458. int ret;
  1459. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1460. src_dev_addr,
  1461. desc->lli_log.src,
  1462. chan->log_def.lcsp1,
  1463. src_info->data_width,
  1464. dst_info->data_width);
  1465. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1466. dst_dev_addr,
  1467. desc->lli_log.dst,
  1468. chan->log_def.lcsp3,
  1469. dst_info->data_width,
  1470. src_info->data_width);
  1471. return ret < 0 ? ret : 0;
  1472. }
  1473. static int
  1474. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1475. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1476. unsigned int sg_len, dma_addr_t src_dev_addr,
  1477. dma_addr_t dst_dev_addr)
  1478. {
  1479. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1480. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1481. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1482. unsigned long flags = 0;
  1483. int ret;
  1484. if (desc->cyclic)
  1485. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1486. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1487. desc->lli_phy.src,
  1488. virt_to_phys(desc->lli_phy.src),
  1489. chan->src_def_cfg,
  1490. src_info, dst_info, flags);
  1491. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1492. desc->lli_phy.dst,
  1493. virt_to_phys(desc->lli_phy.dst),
  1494. chan->dst_def_cfg,
  1495. dst_info, src_info, flags);
  1496. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1497. desc->lli_pool.size, DMA_TO_DEVICE);
  1498. return ret < 0 ? ret : 0;
  1499. }
  1500. static struct d40_desc *
  1501. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1502. unsigned int sg_len, unsigned long dma_flags)
  1503. {
  1504. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1505. struct d40_desc *desc;
  1506. int ret;
  1507. desc = d40_desc_get(chan);
  1508. if (!desc)
  1509. return NULL;
  1510. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1511. cfg->dst_info.data_width);
  1512. if (desc->lli_len < 0) {
  1513. chan_err(chan, "Unaligned size\n");
  1514. goto err;
  1515. }
  1516. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1517. if (ret < 0) {
  1518. chan_err(chan, "Could not allocate lli\n");
  1519. goto err;
  1520. }
  1521. desc->lli_current = 0;
  1522. desc->txd.flags = dma_flags;
  1523. desc->txd.tx_submit = d40_tx_submit;
  1524. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1525. return desc;
  1526. err:
  1527. d40_desc_free(chan, desc);
  1528. return NULL;
  1529. }
  1530. static dma_addr_t
  1531. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1532. {
  1533. struct stedma40_platform_data *plat = chan->base->plat_data;
  1534. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1535. dma_addr_t addr = 0;
  1536. if (chan->runtime_addr)
  1537. return chan->runtime_addr;
  1538. if (direction == DMA_FROM_DEVICE)
  1539. addr = plat->dev_rx[cfg->src_dev_type];
  1540. else if (direction == DMA_TO_DEVICE)
  1541. addr = plat->dev_tx[cfg->dst_dev_type];
  1542. return addr;
  1543. }
  1544. static struct dma_async_tx_descriptor *
  1545. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1546. struct scatterlist *sg_dst, unsigned int sg_len,
  1547. enum dma_data_direction direction, unsigned long dma_flags)
  1548. {
  1549. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1550. dma_addr_t src_dev_addr = 0;
  1551. dma_addr_t dst_dev_addr = 0;
  1552. struct d40_desc *desc;
  1553. unsigned long flags;
  1554. int ret;
  1555. if (!chan->phy_chan) {
  1556. chan_err(chan, "Cannot prepare unallocated channel\n");
  1557. return NULL;
  1558. }
  1559. spin_lock_irqsave(&chan->lock, flags);
  1560. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1561. if (desc == NULL)
  1562. goto err;
  1563. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1564. desc->cyclic = true;
  1565. if (direction != DMA_NONE) {
  1566. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1567. if (direction == DMA_FROM_DEVICE)
  1568. src_dev_addr = dev_addr;
  1569. else if (direction == DMA_TO_DEVICE)
  1570. dst_dev_addr = dev_addr;
  1571. }
  1572. if (chan_is_logical(chan))
  1573. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1574. sg_len, src_dev_addr, dst_dev_addr);
  1575. else
  1576. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1577. sg_len, src_dev_addr, dst_dev_addr);
  1578. if (ret) {
  1579. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1580. chan_is_logical(chan) ? "log" : "phy", ret);
  1581. goto err;
  1582. }
  1583. spin_unlock_irqrestore(&chan->lock, flags);
  1584. return &desc->txd;
  1585. err:
  1586. if (desc)
  1587. d40_desc_free(chan, desc);
  1588. spin_unlock_irqrestore(&chan->lock, flags);
  1589. return NULL;
  1590. }
  1591. bool stedma40_filter(struct dma_chan *chan, void *data)
  1592. {
  1593. struct stedma40_chan_cfg *info = data;
  1594. struct d40_chan *d40c =
  1595. container_of(chan, struct d40_chan, chan);
  1596. int err;
  1597. if (data) {
  1598. err = d40_validate_conf(d40c, info);
  1599. if (!err)
  1600. d40c->dma_cfg = *info;
  1601. } else
  1602. err = d40_config_memcpy(d40c);
  1603. if (!err)
  1604. d40c->configured = true;
  1605. return err == 0;
  1606. }
  1607. EXPORT_SYMBOL(stedma40_filter);
  1608. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1609. {
  1610. bool realtime = d40c->dma_cfg.realtime;
  1611. bool highprio = d40c->dma_cfg.high_priority;
  1612. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1613. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1614. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1615. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1616. u32 bit = 1 << event;
  1617. /* Destination event lines are stored in the upper halfword */
  1618. if (!src)
  1619. bit <<= 16;
  1620. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1621. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1622. }
  1623. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1624. {
  1625. if (d40c->base->rev < 3)
  1626. return;
  1627. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1628. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1629. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1630. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1631. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1632. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1633. }
  1634. /* DMA ENGINE functions */
  1635. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1636. {
  1637. int err;
  1638. unsigned long flags;
  1639. struct d40_chan *d40c =
  1640. container_of(chan, struct d40_chan, chan);
  1641. bool is_free_phy;
  1642. spin_lock_irqsave(&d40c->lock, flags);
  1643. d40c->completed = chan->cookie = 1;
  1644. /* If no dma configuration is set use default configuration (memcpy) */
  1645. if (!d40c->configured) {
  1646. err = d40_config_memcpy(d40c);
  1647. if (err) {
  1648. chan_err(d40c, "Failed to configure memcpy channel\n");
  1649. goto fail;
  1650. }
  1651. }
  1652. is_free_phy = (d40c->phy_chan == NULL);
  1653. err = d40_allocate_channel(d40c);
  1654. if (err) {
  1655. chan_err(d40c, "Failed to allocate channel\n");
  1656. goto fail;
  1657. }
  1658. /* Fill in basic CFG register values */
  1659. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1660. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1661. d40_set_prio_realtime(d40c);
  1662. if (chan_is_logical(d40c)) {
  1663. d40_log_cfg(&d40c->dma_cfg,
  1664. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1665. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1666. d40c->lcpa = d40c->base->lcpa_base +
  1667. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1668. else
  1669. d40c->lcpa = d40c->base->lcpa_base +
  1670. d40c->dma_cfg.dst_dev_type *
  1671. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1672. }
  1673. /*
  1674. * Only write channel configuration to the DMA if the physical
  1675. * resource is free. In case of multiple logical channels
  1676. * on the same physical resource, only the first write is necessary.
  1677. */
  1678. if (is_free_phy)
  1679. d40_config_write(d40c);
  1680. fail:
  1681. spin_unlock_irqrestore(&d40c->lock, flags);
  1682. return err;
  1683. }
  1684. static void d40_free_chan_resources(struct dma_chan *chan)
  1685. {
  1686. struct d40_chan *d40c =
  1687. container_of(chan, struct d40_chan, chan);
  1688. int err;
  1689. unsigned long flags;
  1690. if (d40c->phy_chan == NULL) {
  1691. chan_err(d40c, "Cannot free unallocated channel\n");
  1692. return;
  1693. }
  1694. spin_lock_irqsave(&d40c->lock, flags);
  1695. err = d40_free_dma(d40c);
  1696. if (err)
  1697. chan_err(d40c, "Failed to free channel\n");
  1698. spin_unlock_irqrestore(&d40c->lock, flags);
  1699. }
  1700. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1701. dma_addr_t dst,
  1702. dma_addr_t src,
  1703. size_t size,
  1704. unsigned long dma_flags)
  1705. {
  1706. struct scatterlist dst_sg;
  1707. struct scatterlist src_sg;
  1708. sg_init_table(&dst_sg, 1);
  1709. sg_init_table(&src_sg, 1);
  1710. sg_dma_address(&dst_sg) = dst;
  1711. sg_dma_address(&src_sg) = src;
  1712. sg_dma_len(&dst_sg) = size;
  1713. sg_dma_len(&src_sg) = size;
  1714. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1715. }
  1716. static struct dma_async_tx_descriptor *
  1717. d40_prep_memcpy_sg(struct dma_chan *chan,
  1718. struct scatterlist *dst_sg, unsigned int dst_nents,
  1719. struct scatterlist *src_sg, unsigned int src_nents,
  1720. unsigned long dma_flags)
  1721. {
  1722. if (dst_nents != src_nents)
  1723. return NULL;
  1724. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1725. }
  1726. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1727. struct scatterlist *sgl,
  1728. unsigned int sg_len,
  1729. enum dma_data_direction direction,
  1730. unsigned long dma_flags)
  1731. {
  1732. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1733. return NULL;
  1734. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1735. }
  1736. static struct dma_async_tx_descriptor *
  1737. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1738. size_t buf_len, size_t period_len,
  1739. enum dma_data_direction direction)
  1740. {
  1741. unsigned int periods = buf_len / period_len;
  1742. struct dma_async_tx_descriptor *txd;
  1743. struct scatterlist *sg;
  1744. int i;
  1745. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1746. for (i = 0; i < periods; i++) {
  1747. sg_dma_address(&sg[i]) = dma_addr;
  1748. sg_dma_len(&sg[i]) = period_len;
  1749. dma_addr += period_len;
  1750. }
  1751. sg[periods].offset = 0;
  1752. sg[periods].length = 0;
  1753. sg[periods].page_link =
  1754. ((unsigned long)sg | 0x01) & ~0x02;
  1755. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1756. DMA_PREP_INTERRUPT);
  1757. kfree(sg);
  1758. return txd;
  1759. }
  1760. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1761. dma_cookie_t cookie,
  1762. struct dma_tx_state *txstate)
  1763. {
  1764. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1765. dma_cookie_t last_used;
  1766. dma_cookie_t last_complete;
  1767. int ret;
  1768. if (d40c->phy_chan == NULL) {
  1769. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1770. return -EINVAL;
  1771. }
  1772. last_complete = d40c->completed;
  1773. last_used = chan->cookie;
  1774. if (d40_is_paused(d40c))
  1775. ret = DMA_PAUSED;
  1776. else
  1777. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1778. dma_set_tx_state(txstate, last_complete, last_used,
  1779. stedma40_residue(chan));
  1780. return ret;
  1781. }
  1782. static void d40_issue_pending(struct dma_chan *chan)
  1783. {
  1784. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1785. unsigned long flags;
  1786. if (d40c->phy_chan == NULL) {
  1787. chan_err(d40c, "Channel is not allocated!\n");
  1788. return;
  1789. }
  1790. spin_lock_irqsave(&d40c->lock, flags);
  1791. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1792. /* Busy means that queued jobs are already being processed */
  1793. if (!d40c->busy)
  1794. (void) d40_queue_start(d40c);
  1795. spin_unlock_irqrestore(&d40c->lock, flags);
  1796. }
  1797. static int
  1798. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1799. struct stedma40_half_channel_info *info,
  1800. enum dma_slave_buswidth width,
  1801. u32 maxburst)
  1802. {
  1803. enum stedma40_periph_data_width addr_width;
  1804. int psize;
  1805. switch (width) {
  1806. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1807. addr_width = STEDMA40_BYTE_WIDTH;
  1808. break;
  1809. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1810. addr_width = STEDMA40_HALFWORD_WIDTH;
  1811. break;
  1812. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1813. addr_width = STEDMA40_WORD_WIDTH;
  1814. break;
  1815. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1816. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1817. break;
  1818. default:
  1819. dev_err(d40c->base->dev,
  1820. "illegal peripheral address width "
  1821. "requested (%d)\n",
  1822. width);
  1823. return -EINVAL;
  1824. }
  1825. if (chan_is_logical(d40c)) {
  1826. if (maxburst >= 16)
  1827. psize = STEDMA40_PSIZE_LOG_16;
  1828. else if (maxburst >= 8)
  1829. psize = STEDMA40_PSIZE_LOG_8;
  1830. else if (maxburst >= 4)
  1831. psize = STEDMA40_PSIZE_LOG_4;
  1832. else
  1833. psize = STEDMA40_PSIZE_LOG_1;
  1834. } else {
  1835. if (maxburst >= 16)
  1836. psize = STEDMA40_PSIZE_PHY_16;
  1837. else if (maxburst >= 8)
  1838. psize = STEDMA40_PSIZE_PHY_8;
  1839. else if (maxburst >= 4)
  1840. psize = STEDMA40_PSIZE_PHY_4;
  1841. else
  1842. psize = STEDMA40_PSIZE_PHY_1;
  1843. }
  1844. info->data_width = addr_width;
  1845. info->psize = psize;
  1846. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1847. return 0;
  1848. }
  1849. /* Runtime reconfiguration extension */
  1850. static int d40_set_runtime_config(struct dma_chan *chan,
  1851. struct dma_slave_config *config)
  1852. {
  1853. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1854. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1855. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  1856. dma_addr_t config_addr;
  1857. u32 src_maxburst, dst_maxburst;
  1858. int ret;
  1859. src_addr_width = config->src_addr_width;
  1860. src_maxburst = config->src_maxburst;
  1861. dst_addr_width = config->dst_addr_width;
  1862. dst_maxburst = config->dst_maxburst;
  1863. if (config->direction == DMA_FROM_DEVICE) {
  1864. dma_addr_t dev_addr_rx =
  1865. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1866. config_addr = config->src_addr;
  1867. if (dev_addr_rx)
  1868. dev_dbg(d40c->base->dev,
  1869. "channel has a pre-wired RX address %08x "
  1870. "overriding with %08x\n",
  1871. dev_addr_rx, config_addr);
  1872. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1873. dev_dbg(d40c->base->dev,
  1874. "channel was not configured for peripheral "
  1875. "to memory transfer (%d) overriding\n",
  1876. cfg->dir);
  1877. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1878. /* Configure the memory side */
  1879. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  1880. dst_addr_width = src_addr_width;
  1881. if (dst_maxburst == 0)
  1882. dst_maxburst = src_maxburst;
  1883. } else if (config->direction == DMA_TO_DEVICE) {
  1884. dma_addr_t dev_addr_tx =
  1885. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1886. config_addr = config->dst_addr;
  1887. if (dev_addr_tx)
  1888. dev_dbg(d40c->base->dev,
  1889. "channel has a pre-wired TX address %08x "
  1890. "overriding with %08x\n",
  1891. dev_addr_tx, config_addr);
  1892. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1893. dev_dbg(d40c->base->dev,
  1894. "channel was not configured for memory "
  1895. "to peripheral transfer (%d) overriding\n",
  1896. cfg->dir);
  1897. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1898. /* Configure the memory side */
  1899. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  1900. src_addr_width = dst_addr_width;
  1901. if (src_maxburst == 0)
  1902. src_maxburst = dst_maxburst;
  1903. } else {
  1904. dev_err(d40c->base->dev,
  1905. "unrecognized channel direction %d\n",
  1906. config->direction);
  1907. return -EINVAL;
  1908. }
  1909. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  1910. dev_err(d40c->base->dev,
  1911. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  1912. src_maxburst,
  1913. src_addr_width,
  1914. dst_maxburst,
  1915. dst_addr_width);
  1916. return -EINVAL;
  1917. }
  1918. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  1919. src_addr_width,
  1920. src_maxburst);
  1921. if (ret)
  1922. return ret;
  1923. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  1924. dst_addr_width,
  1925. dst_maxburst);
  1926. if (ret)
  1927. return ret;
  1928. /* Fill in register values */
  1929. if (chan_is_logical(d40c))
  1930. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1931. else
  1932. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1933. &d40c->dst_def_cfg, false);
  1934. /* These settings will take precedence later */
  1935. d40c->runtime_addr = config_addr;
  1936. d40c->runtime_direction = config->direction;
  1937. dev_dbg(d40c->base->dev,
  1938. "configured channel %s for %s, data width %d/%d, "
  1939. "maxburst %d/%d elements, LE, no flow control\n",
  1940. dma_chan_name(chan),
  1941. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1942. src_addr_width, dst_addr_width,
  1943. src_maxburst, dst_maxburst);
  1944. return 0;
  1945. }
  1946. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1947. unsigned long arg)
  1948. {
  1949. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1950. if (d40c->phy_chan == NULL) {
  1951. chan_err(d40c, "Channel is not allocated!\n");
  1952. return -EINVAL;
  1953. }
  1954. switch (cmd) {
  1955. case DMA_TERMINATE_ALL:
  1956. return d40_terminate_all(d40c);
  1957. case DMA_PAUSE:
  1958. return d40_pause(d40c);
  1959. case DMA_RESUME:
  1960. return d40_resume(d40c);
  1961. case DMA_SLAVE_CONFIG:
  1962. return d40_set_runtime_config(chan,
  1963. (struct dma_slave_config *) arg);
  1964. default:
  1965. break;
  1966. }
  1967. /* Other commands are unimplemented */
  1968. return -ENXIO;
  1969. }
  1970. /* Initialization functions */
  1971. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1972. struct d40_chan *chans, int offset,
  1973. int num_chans)
  1974. {
  1975. int i = 0;
  1976. struct d40_chan *d40c;
  1977. INIT_LIST_HEAD(&dma->channels);
  1978. for (i = offset; i < offset + num_chans; i++) {
  1979. d40c = &chans[i];
  1980. d40c->base = base;
  1981. d40c->chan.device = dma;
  1982. spin_lock_init(&d40c->lock);
  1983. d40c->log_num = D40_PHY_CHAN;
  1984. INIT_LIST_HEAD(&d40c->active);
  1985. INIT_LIST_HEAD(&d40c->queue);
  1986. INIT_LIST_HEAD(&d40c->pending_queue);
  1987. INIT_LIST_HEAD(&d40c->client);
  1988. tasklet_init(&d40c->tasklet, dma_tasklet,
  1989. (unsigned long) d40c);
  1990. list_add_tail(&d40c->chan.device_node,
  1991. &dma->channels);
  1992. }
  1993. }
  1994. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  1995. {
  1996. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  1997. dev->device_prep_slave_sg = d40_prep_slave_sg;
  1998. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  1999. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2000. /*
  2001. * This controller can only access address at even
  2002. * 32bit boundaries, i.e. 2^2
  2003. */
  2004. dev->copy_align = 2;
  2005. }
  2006. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2007. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2008. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2009. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2010. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2011. dev->device_free_chan_resources = d40_free_chan_resources;
  2012. dev->device_issue_pending = d40_issue_pending;
  2013. dev->device_tx_status = d40_tx_status;
  2014. dev->device_control = d40_control;
  2015. dev->dev = base->dev;
  2016. }
  2017. static int __init d40_dmaengine_init(struct d40_base *base,
  2018. int num_reserved_chans)
  2019. {
  2020. int err ;
  2021. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2022. 0, base->num_log_chans);
  2023. dma_cap_zero(base->dma_slave.cap_mask);
  2024. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2025. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2026. d40_ops_init(base, &base->dma_slave);
  2027. err = dma_async_device_register(&base->dma_slave);
  2028. if (err) {
  2029. d40_err(base->dev, "Failed to register slave channels\n");
  2030. goto failure1;
  2031. }
  2032. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2033. base->num_log_chans, base->plat_data->memcpy_len);
  2034. dma_cap_zero(base->dma_memcpy.cap_mask);
  2035. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2036. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2037. d40_ops_init(base, &base->dma_memcpy);
  2038. err = dma_async_device_register(&base->dma_memcpy);
  2039. if (err) {
  2040. d40_err(base->dev,
  2041. "Failed to regsiter memcpy only channels\n");
  2042. goto failure2;
  2043. }
  2044. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2045. 0, num_reserved_chans);
  2046. dma_cap_zero(base->dma_both.cap_mask);
  2047. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2048. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2049. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2050. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2051. d40_ops_init(base, &base->dma_both);
  2052. err = dma_async_device_register(&base->dma_both);
  2053. if (err) {
  2054. d40_err(base->dev,
  2055. "Failed to register logical and physical capable channels\n");
  2056. goto failure3;
  2057. }
  2058. return 0;
  2059. failure3:
  2060. dma_async_device_unregister(&base->dma_memcpy);
  2061. failure2:
  2062. dma_async_device_unregister(&base->dma_slave);
  2063. failure1:
  2064. return err;
  2065. }
  2066. /* Initialization functions. */
  2067. static int __init d40_phy_res_init(struct d40_base *base)
  2068. {
  2069. int i;
  2070. int num_phy_chans_avail = 0;
  2071. u32 val[2];
  2072. int odd_even_bit = -2;
  2073. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2074. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2075. for (i = 0; i < base->num_phy_chans; i++) {
  2076. base->phy_res[i].num = i;
  2077. odd_even_bit += 2 * ((i % 2) == 0);
  2078. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2079. /* Mark security only channels as occupied */
  2080. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2081. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2082. } else {
  2083. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2084. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2085. num_phy_chans_avail++;
  2086. }
  2087. spin_lock_init(&base->phy_res[i].lock);
  2088. }
  2089. /* Mark disabled channels as occupied */
  2090. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2091. int chan = base->plat_data->disabled_channels[i];
  2092. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2093. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2094. num_phy_chans_avail--;
  2095. }
  2096. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2097. num_phy_chans_avail, base->num_phy_chans);
  2098. /* Verify settings extended vs standard */
  2099. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2100. for (i = 0; i < base->num_phy_chans; i++) {
  2101. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2102. (val[0] & 0x3) != 1)
  2103. dev_info(base->dev,
  2104. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2105. __func__, i, val[0] & 0x3);
  2106. val[0] = val[0] >> 2;
  2107. }
  2108. return num_phy_chans_avail;
  2109. }
  2110. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2111. {
  2112. struct stedma40_platform_data *plat_data;
  2113. struct clk *clk = NULL;
  2114. void __iomem *virtbase = NULL;
  2115. struct resource *res = NULL;
  2116. struct d40_base *base = NULL;
  2117. int num_log_chans = 0;
  2118. int num_phy_chans;
  2119. int i;
  2120. u32 pid;
  2121. u32 cid;
  2122. u8 rev;
  2123. clk = clk_get(&pdev->dev, NULL);
  2124. if (IS_ERR(clk)) {
  2125. d40_err(&pdev->dev, "No matching clock found\n");
  2126. goto failure;
  2127. }
  2128. clk_enable(clk);
  2129. /* Get IO for DMAC base address */
  2130. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2131. if (!res)
  2132. goto failure;
  2133. if (request_mem_region(res->start, resource_size(res),
  2134. D40_NAME " I/O base") == NULL)
  2135. goto failure;
  2136. virtbase = ioremap(res->start, resource_size(res));
  2137. if (!virtbase)
  2138. goto failure;
  2139. /* This is just a regular AMBA PrimeCell ID actually */
  2140. for (pid = 0, i = 0; i < 4; i++)
  2141. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2142. & 255) << (i * 8);
  2143. for (cid = 0, i = 0; i < 4; i++)
  2144. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2145. & 255) << (i * 8);
  2146. if (cid != AMBA_CID) {
  2147. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2148. goto failure;
  2149. }
  2150. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2151. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2152. AMBA_MANF_BITS(pid),
  2153. AMBA_VENDOR_ST);
  2154. goto failure;
  2155. }
  2156. /*
  2157. * HW revision:
  2158. * DB8500ed has revision 0
  2159. * ? has revision 1
  2160. * DB8500v1 has revision 2
  2161. * DB8500v2 has revision 3
  2162. */
  2163. rev = AMBA_REV_BITS(pid);
  2164. /* The number of physical channels on this HW */
  2165. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2166. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2167. rev, res->start);
  2168. plat_data = pdev->dev.platform_data;
  2169. /* Count the number of logical channels in use */
  2170. for (i = 0; i < plat_data->dev_len; i++)
  2171. if (plat_data->dev_rx[i] != 0)
  2172. num_log_chans++;
  2173. for (i = 0; i < plat_data->dev_len; i++)
  2174. if (plat_data->dev_tx[i] != 0)
  2175. num_log_chans++;
  2176. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2177. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2178. sizeof(struct d40_chan), GFP_KERNEL);
  2179. if (base == NULL) {
  2180. d40_err(&pdev->dev, "Out of memory\n");
  2181. goto failure;
  2182. }
  2183. base->rev = rev;
  2184. base->clk = clk;
  2185. base->num_phy_chans = num_phy_chans;
  2186. base->num_log_chans = num_log_chans;
  2187. base->phy_start = res->start;
  2188. base->phy_size = resource_size(res);
  2189. base->virtbase = virtbase;
  2190. base->plat_data = plat_data;
  2191. base->dev = &pdev->dev;
  2192. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2193. base->log_chans = &base->phy_chans[num_phy_chans];
  2194. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2195. GFP_KERNEL);
  2196. if (!base->phy_res)
  2197. goto failure;
  2198. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2199. sizeof(struct d40_chan *),
  2200. GFP_KERNEL);
  2201. if (!base->lookup_phy_chans)
  2202. goto failure;
  2203. if (num_log_chans + plat_data->memcpy_len) {
  2204. /*
  2205. * The max number of logical channels are event lines for all
  2206. * src devices and dst devices
  2207. */
  2208. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2209. sizeof(struct d40_chan *),
  2210. GFP_KERNEL);
  2211. if (!base->lookup_log_chans)
  2212. goto failure;
  2213. }
  2214. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2215. sizeof(struct d40_desc *) *
  2216. D40_LCLA_LINK_PER_EVENT_GRP,
  2217. GFP_KERNEL);
  2218. if (!base->lcla_pool.alloc_map)
  2219. goto failure;
  2220. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2221. 0, SLAB_HWCACHE_ALIGN,
  2222. NULL);
  2223. if (base->desc_slab == NULL)
  2224. goto failure;
  2225. return base;
  2226. failure:
  2227. if (!IS_ERR(clk)) {
  2228. clk_disable(clk);
  2229. clk_put(clk);
  2230. }
  2231. if (virtbase)
  2232. iounmap(virtbase);
  2233. if (res)
  2234. release_mem_region(res->start,
  2235. resource_size(res));
  2236. if (virtbase)
  2237. iounmap(virtbase);
  2238. if (base) {
  2239. kfree(base->lcla_pool.alloc_map);
  2240. kfree(base->lookup_log_chans);
  2241. kfree(base->lookup_phy_chans);
  2242. kfree(base->phy_res);
  2243. kfree(base);
  2244. }
  2245. return NULL;
  2246. }
  2247. static void __init d40_hw_init(struct d40_base *base)
  2248. {
  2249. static const struct d40_reg_val dma_init_reg[] = {
  2250. /* Clock every part of the DMA block from start */
  2251. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2252. /* Interrupts on all logical channels */
  2253. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2254. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2255. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2256. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2257. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2258. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2259. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2260. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2261. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2262. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2263. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2264. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2265. };
  2266. int i;
  2267. u32 prmseo[2] = {0, 0};
  2268. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2269. u32 pcmis = 0;
  2270. u32 pcicr = 0;
  2271. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2272. writel(dma_init_reg[i].val,
  2273. base->virtbase + dma_init_reg[i].reg);
  2274. /* Configure all our dma channels to default settings */
  2275. for (i = 0; i < base->num_phy_chans; i++) {
  2276. activeo[i % 2] = activeo[i % 2] << 2;
  2277. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2278. == D40_ALLOC_PHY) {
  2279. activeo[i % 2] |= 3;
  2280. continue;
  2281. }
  2282. /* Enable interrupt # */
  2283. pcmis = (pcmis << 1) | 1;
  2284. /* Clear interrupt # */
  2285. pcicr = (pcicr << 1) | 1;
  2286. /* Set channel to physical mode */
  2287. prmseo[i % 2] = prmseo[i % 2] << 2;
  2288. prmseo[i % 2] |= 1;
  2289. }
  2290. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2291. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2292. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2293. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2294. /* Write which interrupt to enable */
  2295. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2296. /* Write which interrupt to clear */
  2297. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2298. }
  2299. static int __init d40_lcla_allocate(struct d40_base *base)
  2300. {
  2301. struct d40_lcla_pool *pool = &base->lcla_pool;
  2302. unsigned long *page_list;
  2303. int i, j;
  2304. int ret = 0;
  2305. /*
  2306. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2307. * To full fill this hardware requirement without wasting 256 kb
  2308. * we allocate pages until we get an aligned one.
  2309. */
  2310. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2311. GFP_KERNEL);
  2312. if (!page_list) {
  2313. ret = -ENOMEM;
  2314. goto failure;
  2315. }
  2316. /* Calculating how many pages that are required */
  2317. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2318. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2319. page_list[i] = __get_free_pages(GFP_KERNEL,
  2320. base->lcla_pool.pages);
  2321. if (!page_list[i]) {
  2322. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2323. base->lcla_pool.pages);
  2324. for (j = 0; j < i; j++)
  2325. free_pages(page_list[j], base->lcla_pool.pages);
  2326. goto failure;
  2327. }
  2328. if ((virt_to_phys((void *)page_list[i]) &
  2329. (LCLA_ALIGNMENT - 1)) == 0)
  2330. break;
  2331. }
  2332. for (j = 0; j < i; j++)
  2333. free_pages(page_list[j], base->lcla_pool.pages);
  2334. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2335. base->lcla_pool.base = (void *)page_list[i];
  2336. } else {
  2337. /*
  2338. * After many attempts and no succees with finding the correct
  2339. * alignment, try with allocating a big buffer.
  2340. */
  2341. dev_warn(base->dev,
  2342. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2343. __func__, base->lcla_pool.pages);
  2344. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2345. base->num_phy_chans +
  2346. LCLA_ALIGNMENT,
  2347. GFP_KERNEL);
  2348. if (!base->lcla_pool.base_unaligned) {
  2349. ret = -ENOMEM;
  2350. goto failure;
  2351. }
  2352. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2353. LCLA_ALIGNMENT);
  2354. }
  2355. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2356. SZ_1K * base->num_phy_chans,
  2357. DMA_TO_DEVICE);
  2358. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2359. pool->dma_addr = 0;
  2360. ret = -ENOMEM;
  2361. goto failure;
  2362. }
  2363. writel(virt_to_phys(base->lcla_pool.base),
  2364. base->virtbase + D40_DREG_LCLA);
  2365. failure:
  2366. kfree(page_list);
  2367. return ret;
  2368. }
  2369. static int __init d40_probe(struct platform_device *pdev)
  2370. {
  2371. int err;
  2372. int ret = -ENOENT;
  2373. struct d40_base *base;
  2374. struct resource *res = NULL;
  2375. int num_reserved_chans;
  2376. u32 val;
  2377. base = d40_hw_detect_init(pdev);
  2378. if (!base)
  2379. goto failure;
  2380. num_reserved_chans = d40_phy_res_init(base);
  2381. platform_set_drvdata(pdev, base);
  2382. spin_lock_init(&base->interrupt_lock);
  2383. spin_lock_init(&base->execmd_lock);
  2384. /* Get IO for logical channel parameter address */
  2385. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2386. if (!res) {
  2387. ret = -ENOENT;
  2388. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2389. goto failure;
  2390. }
  2391. base->lcpa_size = resource_size(res);
  2392. base->phy_lcpa = res->start;
  2393. if (request_mem_region(res->start, resource_size(res),
  2394. D40_NAME " I/O lcpa") == NULL) {
  2395. ret = -EBUSY;
  2396. d40_err(&pdev->dev,
  2397. "Failed to request LCPA region 0x%x-0x%x\n",
  2398. res->start, res->end);
  2399. goto failure;
  2400. }
  2401. /* We make use of ESRAM memory for this. */
  2402. val = readl(base->virtbase + D40_DREG_LCPA);
  2403. if (res->start != val && val != 0) {
  2404. dev_warn(&pdev->dev,
  2405. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2406. __func__, val, res->start);
  2407. } else
  2408. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2409. base->lcpa_base = ioremap(res->start, resource_size(res));
  2410. if (!base->lcpa_base) {
  2411. ret = -ENOMEM;
  2412. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2413. goto failure;
  2414. }
  2415. ret = d40_lcla_allocate(base);
  2416. if (ret) {
  2417. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2418. goto failure;
  2419. }
  2420. spin_lock_init(&base->lcla_pool.lock);
  2421. base->irq = platform_get_irq(pdev, 0);
  2422. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2423. if (ret) {
  2424. d40_err(&pdev->dev, "No IRQ defined\n");
  2425. goto failure;
  2426. }
  2427. err = d40_dmaengine_init(base, num_reserved_chans);
  2428. if (err)
  2429. goto failure;
  2430. d40_hw_init(base);
  2431. dev_info(base->dev, "initialized\n");
  2432. return 0;
  2433. failure:
  2434. if (base) {
  2435. if (base->desc_slab)
  2436. kmem_cache_destroy(base->desc_slab);
  2437. if (base->virtbase)
  2438. iounmap(base->virtbase);
  2439. if (base->lcla_pool.dma_addr)
  2440. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2441. SZ_1K * base->num_phy_chans,
  2442. DMA_TO_DEVICE);
  2443. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2444. free_pages((unsigned long)base->lcla_pool.base,
  2445. base->lcla_pool.pages);
  2446. kfree(base->lcla_pool.base_unaligned);
  2447. if (base->phy_lcpa)
  2448. release_mem_region(base->phy_lcpa,
  2449. base->lcpa_size);
  2450. if (base->phy_start)
  2451. release_mem_region(base->phy_start,
  2452. base->phy_size);
  2453. if (base->clk) {
  2454. clk_disable(base->clk);
  2455. clk_put(base->clk);
  2456. }
  2457. kfree(base->lcla_pool.alloc_map);
  2458. kfree(base->lookup_log_chans);
  2459. kfree(base->lookup_phy_chans);
  2460. kfree(base->phy_res);
  2461. kfree(base);
  2462. }
  2463. d40_err(&pdev->dev, "probe failed\n");
  2464. return ret;
  2465. }
  2466. static struct platform_driver d40_driver = {
  2467. .driver = {
  2468. .owner = THIS_MODULE,
  2469. .name = D40_NAME,
  2470. },
  2471. };
  2472. static int __init stedma40_init(void)
  2473. {
  2474. return platform_driver_probe(&d40_driver, d40_probe);
  2475. }
  2476. subsys_initcall(stedma40_init);