cfq-iosched.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. unsigned int new_weight;
  161. bool needs_update;
  162. /* number of cfqq currently on this group */
  163. int nr_cfqq;
  164. /*
  165. * Per group busy queues average. Useful for workload slice calc. We
  166. * create the array for each prio class but at run time it is used
  167. * only for RT and BE class and slot for IDLE class remains unused.
  168. * This is primarily done to avoid confusion and a gcc warning.
  169. */
  170. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  171. /*
  172. * rr lists of queues with requests. We maintain service trees for
  173. * RT and BE classes. These trees are subdivided in subclasses
  174. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  175. * class there is no subclassification and all the cfq queues go on
  176. * a single tree service_tree_idle.
  177. * Counts are embedded in the cfq_rb_root
  178. */
  179. struct cfq_rb_root service_trees[2][3];
  180. struct cfq_rb_root service_tree_idle;
  181. unsigned long saved_workload_slice;
  182. enum wl_type_t saved_workload;
  183. enum wl_prio_t saved_serving_prio;
  184. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  185. struct hlist_node cfqd_node;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. struct cfq_ttime ttime;
  190. };
  191. struct cfq_io_cq {
  192. struct io_cq icq; /* must be the first member */
  193. struct cfq_queue *cfqq[2];
  194. struct cfq_ttime ttime;
  195. };
  196. /*
  197. * Per block device queue structure
  198. */
  199. struct cfq_data {
  200. struct request_queue *queue;
  201. /* Root service tree for cfq_groups */
  202. struct cfq_rb_root grp_service_tree;
  203. struct cfq_group *root_group;
  204. /*
  205. * The priority currently being served
  206. */
  207. enum wl_prio_t serving_prio;
  208. enum wl_type_t serving_type;
  209. unsigned long workload_expires;
  210. struct cfq_group *serving_group;
  211. /*
  212. * Each priority tree is sorted by next_request position. These
  213. * trees are used when determining if two or more queues are
  214. * interleaving requests (see cfq_close_cooperator).
  215. */
  216. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  217. unsigned int busy_queues;
  218. unsigned int busy_sync_queues;
  219. int rq_in_driver;
  220. int rq_in_flight[2];
  221. /*
  222. * queue-depth detection
  223. */
  224. int rq_queued;
  225. int hw_tag;
  226. /*
  227. * hw_tag can be
  228. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  229. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  230. * 0 => no NCQ
  231. */
  232. int hw_tag_est_depth;
  233. unsigned int hw_tag_samples;
  234. /*
  235. * idle window management
  236. */
  237. struct timer_list idle_slice_timer;
  238. struct work_struct unplug_work;
  239. struct cfq_queue *active_queue;
  240. struct cfq_io_cq *active_cic;
  241. /*
  242. * async queue for each priority case
  243. */
  244. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  245. struct cfq_queue *async_idle_cfqq;
  246. sector_t last_position;
  247. /*
  248. * tunables, see top of file
  249. */
  250. unsigned int cfq_quantum;
  251. unsigned int cfq_fifo_expire[2];
  252. unsigned int cfq_back_penalty;
  253. unsigned int cfq_back_max;
  254. unsigned int cfq_slice[2];
  255. unsigned int cfq_slice_async_rq;
  256. unsigned int cfq_slice_idle;
  257. unsigned int cfq_group_idle;
  258. unsigned int cfq_latency;
  259. /*
  260. * Fallback dummy cfqq for extreme OOM conditions
  261. */
  262. struct cfq_queue oom_cfqq;
  263. unsigned long last_delayed_sync;
  264. /* List of cfq groups being managed on this device*/
  265. struct hlist_head cfqg_list;
  266. /* Number of groups which are on blkcg->blkg_list */
  267. unsigned int nr_blkcg_linked_grps;
  268. };
  269. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  270. {
  271. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  272. }
  273. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  274. {
  275. return pdata_to_blkg(cfqg, &blkio_policy_cfq);
  276. }
  277. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  278. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  279. enum wl_prio_t prio,
  280. enum wl_type_t type)
  281. {
  282. if (!cfqg)
  283. return NULL;
  284. if (prio == IDLE_WORKLOAD)
  285. return &cfqg->service_tree_idle;
  286. return &cfqg->service_trees[prio][type];
  287. }
  288. enum cfqq_state_flags {
  289. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  290. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  291. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  292. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  293. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  294. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  295. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  296. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  297. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  298. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  299. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  300. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  301. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  302. };
  303. #define CFQ_CFQQ_FNS(name) \
  304. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  305. { \
  306. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  307. } \
  308. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  309. { \
  310. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  311. } \
  312. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  313. { \
  314. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  315. }
  316. CFQ_CFQQ_FNS(on_rr);
  317. CFQ_CFQQ_FNS(wait_request);
  318. CFQ_CFQQ_FNS(must_dispatch);
  319. CFQ_CFQQ_FNS(must_alloc_slice);
  320. CFQ_CFQQ_FNS(fifo_expire);
  321. CFQ_CFQQ_FNS(idle_window);
  322. CFQ_CFQQ_FNS(prio_changed);
  323. CFQ_CFQQ_FNS(slice_new);
  324. CFQ_CFQQ_FNS(sync);
  325. CFQ_CFQQ_FNS(coop);
  326. CFQ_CFQQ_FNS(split_coop);
  327. CFQ_CFQQ_FNS(deep);
  328. CFQ_CFQQ_FNS(wait_busy);
  329. #undef CFQ_CFQQ_FNS
  330. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  331. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  333. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  334. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  335. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  336. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  337. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  338. #else
  339. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  340. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  341. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  342. #endif
  343. #define cfq_log(cfqd, fmt, args...) \
  344. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  345. /* Traverses through cfq group service trees */
  346. #define for_each_cfqg_st(cfqg, i, j, st) \
  347. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  348. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  349. : &cfqg->service_tree_idle; \
  350. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  351. (i == IDLE_WORKLOAD && j == 0); \
  352. j++, st = i < IDLE_WORKLOAD ? \
  353. &cfqg->service_trees[i][j]: NULL) \
  354. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  355. struct cfq_ttime *ttime, bool group_idle)
  356. {
  357. unsigned long slice;
  358. if (!sample_valid(ttime->ttime_samples))
  359. return false;
  360. if (group_idle)
  361. slice = cfqd->cfq_group_idle;
  362. else
  363. slice = cfqd->cfq_slice_idle;
  364. return ttime->ttime_mean > slice;
  365. }
  366. static inline bool iops_mode(struct cfq_data *cfqd)
  367. {
  368. /*
  369. * If we are not idling on queues and it is a NCQ drive, parallel
  370. * execution of requests is on and measuring time is not possible
  371. * in most of the cases until and unless we drive shallower queue
  372. * depths and that becomes a performance bottleneck. In such cases
  373. * switch to start providing fairness in terms of number of IOs.
  374. */
  375. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  376. return true;
  377. else
  378. return false;
  379. }
  380. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  381. {
  382. if (cfq_class_idle(cfqq))
  383. return IDLE_WORKLOAD;
  384. if (cfq_class_rt(cfqq))
  385. return RT_WORKLOAD;
  386. return BE_WORKLOAD;
  387. }
  388. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  389. {
  390. if (!cfq_cfqq_sync(cfqq))
  391. return ASYNC_WORKLOAD;
  392. if (!cfq_cfqq_idle_window(cfqq))
  393. return SYNC_NOIDLE_WORKLOAD;
  394. return SYNC_WORKLOAD;
  395. }
  396. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  397. struct cfq_data *cfqd,
  398. struct cfq_group *cfqg)
  399. {
  400. if (wl == IDLE_WORKLOAD)
  401. return cfqg->service_tree_idle.count;
  402. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  403. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  404. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  405. }
  406. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  407. struct cfq_group *cfqg)
  408. {
  409. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  410. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  411. }
  412. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  413. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  414. struct io_context *, gfp_t);
  415. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  416. {
  417. /* cic->icq is the first member, %NULL will convert to %NULL */
  418. return container_of(icq, struct cfq_io_cq, icq);
  419. }
  420. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  421. struct io_context *ioc)
  422. {
  423. if (ioc)
  424. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  425. return NULL;
  426. }
  427. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  428. {
  429. return cic->cfqq[is_sync];
  430. }
  431. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  432. bool is_sync)
  433. {
  434. cic->cfqq[is_sync] = cfqq;
  435. }
  436. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  437. {
  438. return cic->icq.q->elevator->elevator_data;
  439. }
  440. /*
  441. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  442. * set (in which case it could also be direct WRITE).
  443. */
  444. static inline bool cfq_bio_sync(struct bio *bio)
  445. {
  446. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  447. }
  448. /*
  449. * scheduler run of queue, if there are requests pending and no one in the
  450. * driver that will restart queueing
  451. */
  452. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  453. {
  454. if (cfqd->busy_queues) {
  455. cfq_log(cfqd, "schedule dispatch");
  456. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  457. }
  458. }
  459. /*
  460. * Scale schedule slice based on io priority. Use the sync time slice only
  461. * if a queue is marked sync and has sync io queued. A sync queue with async
  462. * io only, should not get full sync slice length.
  463. */
  464. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  465. unsigned short prio)
  466. {
  467. const int base_slice = cfqd->cfq_slice[sync];
  468. WARN_ON(prio >= IOPRIO_BE_NR);
  469. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  470. }
  471. static inline int
  472. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  473. {
  474. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  475. }
  476. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  477. {
  478. u64 d = delta << CFQ_SERVICE_SHIFT;
  479. d = d * BLKIO_WEIGHT_DEFAULT;
  480. do_div(d, cfqg->weight);
  481. return d;
  482. }
  483. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  484. {
  485. s64 delta = (s64)(vdisktime - min_vdisktime);
  486. if (delta > 0)
  487. min_vdisktime = vdisktime;
  488. return min_vdisktime;
  489. }
  490. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  491. {
  492. s64 delta = (s64)(vdisktime - min_vdisktime);
  493. if (delta < 0)
  494. min_vdisktime = vdisktime;
  495. return min_vdisktime;
  496. }
  497. static void update_min_vdisktime(struct cfq_rb_root *st)
  498. {
  499. struct cfq_group *cfqg;
  500. if (st->left) {
  501. cfqg = rb_entry_cfqg(st->left);
  502. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  503. cfqg->vdisktime);
  504. }
  505. }
  506. /*
  507. * get averaged number of queues of RT/BE priority.
  508. * average is updated, with a formula that gives more weight to higher numbers,
  509. * to quickly follows sudden increases and decrease slowly
  510. */
  511. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  512. struct cfq_group *cfqg, bool rt)
  513. {
  514. unsigned min_q, max_q;
  515. unsigned mult = cfq_hist_divisor - 1;
  516. unsigned round = cfq_hist_divisor / 2;
  517. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  518. min_q = min(cfqg->busy_queues_avg[rt], busy);
  519. max_q = max(cfqg->busy_queues_avg[rt], busy);
  520. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  521. cfq_hist_divisor;
  522. return cfqg->busy_queues_avg[rt];
  523. }
  524. static inline unsigned
  525. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  526. {
  527. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  528. return cfq_target_latency * cfqg->weight / st->total_weight;
  529. }
  530. static inline unsigned
  531. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  532. {
  533. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  534. if (cfqd->cfq_latency) {
  535. /*
  536. * interested queues (we consider only the ones with the same
  537. * priority class in the cfq group)
  538. */
  539. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  540. cfq_class_rt(cfqq));
  541. unsigned sync_slice = cfqd->cfq_slice[1];
  542. unsigned expect_latency = sync_slice * iq;
  543. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  544. if (expect_latency > group_slice) {
  545. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  546. /* scale low_slice according to IO priority
  547. * and sync vs async */
  548. unsigned low_slice =
  549. min(slice, base_low_slice * slice / sync_slice);
  550. /* the adapted slice value is scaled to fit all iqs
  551. * into the target latency */
  552. slice = max(slice * group_slice / expect_latency,
  553. low_slice);
  554. }
  555. }
  556. return slice;
  557. }
  558. static inline void
  559. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  560. {
  561. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  562. cfqq->slice_start = jiffies;
  563. cfqq->slice_end = jiffies + slice;
  564. cfqq->allocated_slice = slice;
  565. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  566. }
  567. /*
  568. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  569. * isn't valid until the first request from the dispatch is activated
  570. * and the slice time set.
  571. */
  572. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  573. {
  574. if (cfq_cfqq_slice_new(cfqq))
  575. return false;
  576. if (time_before(jiffies, cfqq->slice_end))
  577. return false;
  578. return true;
  579. }
  580. /*
  581. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  582. * We choose the request that is closest to the head right now. Distance
  583. * behind the head is penalized and only allowed to a certain extent.
  584. */
  585. static struct request *
  586. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  587. {
  588. sector_t s1, s2, d1 = 0, d2 = 0;
  589. unsigned long back_max;
  590. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  591. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  592. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  593. if (rq1 == NULL || rq1 == rq2)
  594. return rq2;
  595. if (rq2 == NULL)
  596. return rq1;
  597. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  598. return rq_is_sync(rq1) ? rq1 : rq2;
  599. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  600. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  601. s1 = blk_rq_pos(rq1);
  602. s2 = blk_rq_pos(rq2);
  603. /*
  604. * by definition, 1KiB is 2 sectors
  605. */
  606. back_max = cfqd->cfq_back_max * 2;
  607. /*
  608. * Strict one way elevator _except_ in the case where we allow
  609. * short backward seeks which are biased as twice the cost of a
  610. * similar forward seek.
  611. */
  612. if (s1 >= last)
  613. d1 = s1 - last;
  614. else if (s1 + back_max >= last)
  615. d1 = (last - s1) * cfqd->cfq_back_penalty;
  616. else
  617. wrap |= CFQ_RQ1_WRAP;
  618. if (s2 >= last)
  619. d2 = s2 - last;
  620. else if (s2 + back_max >= last)
  621. d2 = (last - s2) * cfqd->cfq_back_penalty;
  622. else
  623. wrap |= CFQ_RQ2_WRAP;
  624. /* Found required data */
  625. /*
  626. * By doing switch() on the bit mask "wrap" we avoid having to
  627. * check two variables for all permutations: --> faster!
  628. */
  629. switch (wrap) {
  630. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  631. if (d1 < d2)
  632. return rq1;
  633. else if (d2 < d1)
  634. return rq2;
  635. else {
  636. if (s1 >= s2)
  637. return rq1;
  638. else
  639. return rq2;
  640. }
  641. case CFQ_RQ2_WRAP:
  642. return rq1;
  643. case CFQ_RQ1_WRAP:
  644. return rq2;
  645. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  646. default:
  647. /*
  648. * Since both rqs are wrapped,
  649. * start with the one that's further behind head
  650. * (--> only *one* back seek required),
  651. * since back seek takes more time than forward.
  652. */
  653. if (s1 <= s2)
  654. return rq1;
  655. else
  656. return rq2;
  657. }
  658. }
  659. /*
  660. * The below is leftmost cache rbtree addon
  661. */
  662. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  663. {
  664. /* Service tree is empty */
  665. if (!root->count)
  666. return NULL;
  667. if (!root->left)
  668. root->left = rb_first(&root->rb);
  669. if (root->left)
  670. return rb_entry(root->left, struct cfq_queue, rb_node);
  671. return NULL;
  672. }
  673. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  674. {
  675. if (!root->left)
  676. root->left = rb_first(&root->rb);
  677. if (root->left)
  678. return rb_entry_cfqg(root->left);
  679. return NULL;
  680. }
  681. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  682. {
  683. rb_erase(n, root);
  684. RB_CLEAR_NODE(n);
  685. }
  686. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  687. {
  688. if (root->left == n)
  689. root->left = NULL;
  690. rb_erase_init(n, &root->rb);
  691. --root->count;
  692. }
  693. /*
  694. * would be nice to take fifo expire time into account as well
  695. */
  696. static struct request *
  697. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  698. struct request *last)
  699. {
  700. struct rb_node *rbnext = rb_next(&last->rb_node);
  701. struct rb_node *rbprev = rb_prev(&last->rb_node);
  702. struct request *next = NULL, *prev = NULL;
  703. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  704. if (rbprev)
  705. prev = rb_entry_rq(rbprev);
  706. if (rbnext)
  707. next = rb_entry_rq(rbnext);
  708. else {
  709. rbnext = rb_first(&cfqq->sort_list);
  710. if (rbnext && rbnext != &last->rb_node)
  711. next = rb_entry_rq(rbnext);
  712. }
  713. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  714. }
  715. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  716. struct cfq_queue *cfqq)
  717. {
  718. /*
  719. * just an approximation, should be ok.
  720. */
  721. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  722. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  723. }
  724. static inline s64
  725. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  726. {
  727. return cfqg->vdisktime - st->min_vdisktime;
  728. }
  729. static void
  730. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  731. {
  732. struct rb_node **node = &st->rb.rb_node;
  733. struct rb_node *parent = NULL;
  734. struct cfq_group *__cfqg;
  735. s64 key = cfqg_key(st, cfqg);
  736. int left = 1;
  737. while (*node != NULL) {
  738. parent = *node;
  739. __cfqg = rb_entry_cfqg(parent);
  740. if (key < cfqg_key(st, __cfqg))
  741. node = &parent->rb_left;
  742. else {
  743. node = &parent->rb_right;
  744. left = 0;
  745. }
  746. }
  747. if (left)
  748. st->left = &cfqg->rb_node;
  749. rb_link_node(&cfqg->rb_node, parent, node);
  750. rb_insert_color(&cfqg->rb_node, &st->rb);
  751. }
  752. static void
  753. cfq_update_group_weight(struct cfq_group *cfqg)
  754. {
  755. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  756. if (cfqg->needs_update) {
  757. cfqg->weight = cfqg->new_weight;
  758. cfqg->needs_update = false;
  759. }
  760. }
  761. static void
  762. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  763. {
  764. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  765. cfq_update_group_weight(cfqg);
  766. __cfq_group_service_tree_add(st, cfqg);
  767. st->total_weight += cfqg->weight;
  768. }
  769. static void
  770. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  771. {
  772. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  773. struct cfq_group *__cfqg;
  774. struct rb_node *n;
  775. cfqg->nr_cfqq++;
  776. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  777. return;
  778. /*
  779. * Currently put the group at the end. Later implement something
  780. * so that groups get lesser vtime based on their weights, so that
  781. * if group does not loose all if it was not continuously backlogged.
  782. */
  783. n = rb_last(&st->rb);
  784. if (n) {
  785. __cfqg = rb_entry_cfqg(n);
  786. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  787. } else
  788. cfqg->vdisktime = st->min_vdisktime;
  789. cfq_group_service_tree_add(st, cfqg);
  790. }
  791. static void
  792. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  793. {
  794. st->total_weight -= cfqg->weight;
  795. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  796. cfq_rb_erase(&cfqg->rb_node, st);
  797. }
  798. static void
  799. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  800. {
  801. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  802. BUG_ON(cfqg->nr_cfqq < 1);
  803. cfqg->nr_cfqq--;
  804. /* If there are other cfq queues under this group, don't delete it */
  805. if (cfqg->nr_cfqq)
  806. return;
  807. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  808. cfq_group_service_tree_del(st, cfqg);
  809. cfqg->saved_workload_slice = 0;
  810. cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg), 1);
  811. }
  812. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  813. unsigned int *unaccounted_time)
  814. {
  815. unsigned int slice_used;
  816. /*
  817. * Queue got expired before even a single request completed or
  818. * got expired immediately after first request completion.
  819. */
  820. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  821. /*
  822. * Also charge the seek time incurred to the group, otherwise
  823. * if there are mutiple queues in the group, each can dispatch
  824. * a single request on seeky media and cause lots of seek time
  825. * and group will never know it.
  826. */
  827. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  828. 1);
  829. } else {
  830. slice_used = jiffies - cfqq->slice_start;
  831. if (slice_used > cfqq->allocated_slice) {
  832. *unaccounted_time = slice_used - cfqq->allocated_slice;
  833. slice_used = cfqq->allocated_slice;
  834. }
  835. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  836. *unaccounted_time += cfqq->slice_start -
  837. cfqq->dispatch_start;
  838. }
  839. return slice_used;
  840. }
  841. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  842. struct cfq_queue *cfqq)
  843. {
  844. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  845. unsigned int used_sl, charge, unaccounted_sl = 0;
  846. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  847. - cfqg->service_tree_idle.count;
  848. BUG_ON(nr_sync < 0);
  849. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  850. if (iops_mode(cfqd))
  851. charge = cfqq->slice_dispatch;
  852. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  853. charge = cfqq->allocated_slice;
  854. /* Can't update vdisktime while group is on service tree */
  855. cfq_group_service_tree_del(st, cfqg);
  856. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  857. /* If a new weight was requested, update now, off tree */
  858. cfq_group_service_tree_add(st, cfqg);
  859. /* This group is being expired. Save the context */
  860. if (time_after(cfqd->workload_expires, jiffies)) {
  861. cfqg->saved_workload_slice = cfqd->workload_expires
  862. - jiffies;
  863. cfqg->saved_workload = cfqd->serving_type;
  864. cfqg->saved_serving_prio = cfqd->serving_prio;
  865. } else
  866. cfqg->saved_workload_slice = 0;
  867. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  868. st->min_vdisktime);
  869. cfq_log_cfqq(cfqq->cfqd, cfqq,
  870. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  871. used_sl, cfqq->slice_dispatch, charge,
  872. iops_mode(cfqd), cfqq->nr_sectors);
  873. cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), used_sl,
  874. unaccounted_sl);
  875. cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg));
  876. }
  877. /**
  878. * cfq_init_cfqg_base - initialize base part of a cfq_group
  879. * @cfqg: cfq_group to initialize
  880. *
  881. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  882. * is enabled or not.
  883. */
  884. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  885. {
  886. struct cfq_rb_root *st;
  887. int i, j;
  888. for_each_cfqg_st(cfqg, i, j, st)
  889. *st = CFQ_RB_ROOT;
  890. RB_CLEAR_NODE(&cfqg->rb_node);
  891. cfqg->ttime.last_end_request = jiffies;
  892. }
  893. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  894. static void cfq_update_blkio_group_weight(struct request_queue *q,
  895. struct blkio_group *blkg,
  896. unsigned int weight)
  897. {
  898. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  899. cfqg->new_weight = weight;
  900. cfqg->needs_update = true;
  901. }
  902. static void cfq_link_blkio_group(struct request_queue *q,
  903. struct blkio_group *blkg)
  904. {
  905. struct cfq_data *cfqd = q->elevator->elevator_data;
  906. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  907. cfqd->nr_blkcg_linked_grps++;
  908. /* Add group on cfqd list */
  909. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  910. }
  911. static void cfq_init_blkio_group(struct blkio_group *blkg)
  912. {
  913. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  914. cfq_init_cfqg_base(cfqg);
  915. cfqg->weight = blkg->blkcg->weight;
  916. }
  917. /*
  918. * Search for the cfq group current task belongs to. request_queue lock must
  919. * be held.
  920. */
  921. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  922. struct blkio_cgroup *blkcg)
  923. {
  924. struct request_queue *q = cfqd->queue;
  925. struct cfq_group *cfqg = NULL;
  926. /* avoid lookup for the common case where there's no blkio cgroup */
  927. if (blkcg == &blkio_root_cgroup) {
  928. cfqg = cfqd->root_group;
  929. } else {
  930. struct blkio_group *blkg;
  931. blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
  932. if (!IS_ERR(blkg))
  933. cfqg = blkg_to_cfqg(blkg);
  934. }
  935. return cfqg;
  936. }
  937. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  938. {
  939. /* Currently, all async queues are mapped to root group */
  940. if (!cfq_cfqq_sync(cfqq))
  941. cfqg = cfqq->cfqd->root_group;
  942. cfqq->cfqg = cfqg;
  943. /* cfqq reference on cfqg */
  944. blkg_get(cfqg_to_blkg(cfqg));
  945. }
  946. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  947. {
  948. /* Something wrong if we are trying to remove same group twice */
  949. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  950. hlist_del_init(&cfqg->cfqd_node);
  951. BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
  952. cfqd->nr_blkcg_linked_grps--;
  953. /*
  954. * Put the reference taken at the time of creation so that when all
  955. * queues are gone, group can be destroyed.
  956. */
  957. blkg_put(cfqg_to_blkg(cfqg));
  958. }
  959. static bool cfq_release_cfq_groups(struct cfq_data *cfqd)
  960. {
  961. struct hlist_node *pos, *n;
  962. struct cfq_group *cfqg;
  963. bool empty = true;
  964. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  965. /*
  966. * If cgroup removal path got to blk_group first and removed
  967. * it from cgroup list, then it will take care of destroying
  968. * cfqg also.
  969. */
  970. if (!cfq_blkiocg_del_blkio_group(cfqg_to_blkg(cfqg)))
  971. cfq_destroy_cfqg(cfqd, cfqg);
  972. else
  973. empty = false;
  974. }
  975. return empty;
  976. }
  977. /*
  978. * Blk cgroup controller notification saying that blkio_group object is being
  979. * delinked as associated cgroup object is going away. That also means that
  980. * no new IO will come in this group. So get rid of this group as soon as
  981. * any pending IO in the group is finished.
  982. *
  983. * This function is called under rcu_read_lock(). key is the rcu protected
  984. * pointer. That means @q is a valid request_queue pointer as long as we
  985. * are rcu read lock.
  986. *
  987. * @q was fetched from blkio_group under blkio_cgroup->lock. That means
  988. * it should not be NULL as even if elevator was exiting, cgroup deltion
  989. * path got to it first.
  990. */
  991. static void cfq_unlink_blkio_group(struct request_queue *q,
  992. struct blkio_group *blkg)
  993. {
  994. struct cfq_data *cfqd = q->elevator->elevator_data;
  995. unsigned long flags;
  996. spin_lock_irqsave(q->queue_lock, flags);
  997. cfq_destroy_cfqg(cfqd, blkg_to_cfqg(blkg));
  998. spin_unlock_irqrestore(q->queue_lock, flags);
  999. }
  1000. static struct elevator_type iosched_cfq;
  1001. static bool cfq_clear_queue(struct request_queue *q)
  1002. {
  1003. lockdep_assert_held(q->queue_lock);
  1004. /* shoot down blkgs iff the current elevator is cfq */
  1005. if (!q->elevator || q->elevator->type != &iosched_cfq)
  1006. return true;
  1007. return cfq_release_cfq_groups(q->elevator->elevator_data);
  1008. }
  1009. #else /* GROUP_IOSCHED */
  1010. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  1011. struct blkio_cgroup *blkcg)
  1012. {
  1013. return cfqd->root_group;
  1014. }
  1015. static inline void
  1016. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1017. cfqq->cfqg = cfqg;
  1018. }
  1019. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1020. #endif /* GROUP_IOSCHED */
  1021. /*
  1022. * The cfqd->service_trees holds all pending cfq_queue's that have
  1023. * requests waiting to be processed. It is sorted in the order that
  1024. * we will service the queues.
  1025. */
  1026. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1027. bool add_front)
  1028. {
  1029. struct rb_node **p, *parent;
  1030. struct cfq_queue *__cfqq;
  1031. unsigned long rb_key;
  1032. struct cfq_rb_root *service_tree;
  1033. int left;
  1034. int new_cfqq = 1;
  1035. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1036. cfqq_type(cfqq));
  1037. if (cfq_class_idle(cfqq)) {
  1038. rb_key = CFQ_IDLE_DELAY;
  1039. parent = rb_last(&service_tree->rb);
  1040. if (parent && parent != &cfqq->rb_node) {
  1041. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1042. rb_key += __cfqq->rb_key;
  1043. } else
  1044. rb_key += jiffies;
  1045. } else if (!add_front) {
  1046. /*
  1047. * Get our rb key offset. Subtract any residual slice
  1048. * value carried from last service. A negative resid
  1049. * count indicates slice overrun, and this should position
  1050. * the next service time further away in the tree.
  1051. */
  1052. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1053. rb_key -= cfqq->slice_resid;
  1054. cfqq->slice_resid = 0;
  1055. } else {
  1056. rb_key = -HZ;
  1057. __cfqq = cfq_rb_first(service_tree);
  1058. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1059. }
  1060. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1061. new_cfqq = 0;
  1062. /*
  1063. * same position, nothing more to do
  1064. */
  1065. if (rb_key == cfqq->rb_key &&
  1066. cfqq->service_tree == service_tree)
  1067. return;
  1068. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1069. cfqq->service_tree = NULL;
  1070. }
  1071. left = 1;
  1072. parent = NULL;
  1073. cfqq->service_tree = service_tree;
  1074. p = &service_tree->rb.rb_node;
  1075. while (*p) {
  1076. struct rb_node **n;
  1077. parent = *p;
  1078. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1079. /*
  1080. * sort by key, that represents service time.
  1081. */
  1082. if (time_before(rb_key, __cfqq->rb_key))
  1083. n = &(*p)->rb_left;
  1084. else {
  1085. n = &(*p)->rb_right;
  1086. left = 0;
  1087. }
  1088. p = n;
  1089. }
  1090. if (left)
  1091. service_tree->left = &cfqq->rb_node;
  1092. cfqq->rb_key = rb_key;
  1093. rb_link_node(&cfqq->rb_node, parent, p);
  1094. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1095. service_tree->count++;
  1096. if (add_front || !new_cfqq)
  1097. return;
  1098. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1099. }
  1100. static struct cfq_queue *
  1101. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1102. sector_t sector, struct rb_node **ret_parent,
  1103. struct rb_node ***rb_link)
  1104. {
  1105. struct rb_node **p, *parent;
  1106. struct cfq_queue *cfqq = NULL;
  1107. parent = NULL;
  1108. p = &root->rb_node;
  1109. while (*p) {
  1110. struct rb_node **n;
  1111. parent = *p;
  1112. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1113. /*
  1114. * Sort strictly based on sector. Smallest to the left,
  1115. * largest to the right.
  1116. */
  1117. if (sector > blk_rq_pos(cfqq->next_rq))
  1118. n = &(*p)->rb_right;
  1119. else if (sector < blk_rq_pos(cfqq->next_rq))
  1120. n = &(*p)->rb_left;
  1121. else
  1122. break;
  1123. p = n;
  1124. cfqq = NULL;
  1125. }
  1126. *ret_parent = parent;
  1127. if (rb_link)
  1128. *rb_link = p;
  1129. return cfqq;
  1130. }
  1131. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1132. {
  1133. struct rb_node **p, *parent;
  1134. struct cfq_queue *__cfqq;
  1135. if (cfqq->p_root) {
  1136. rb_erase(&cfqq->p_node, cfqq->p_root);
  1137. cfqq->p_root = NULL;
  1138. }
  1139. if (cfq_class_idle(cfqq))
  1140. return;
  1141. if (!cfqq->next_rq)
  1142. return;
  1143. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1144. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1145. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1146. if (!__cfqq) {
  1147. rb_link_node(&cfqq->p_node, parent, p);
  1148. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1149. } else
  1150. cfqq->p_root = NULL;
  1151. }
  1152. /*
  1153. * Update cfqq's position in the service tree.
  1154. */
  1155. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1156. {
  1157. /*
  1158. * Resorting requires the cfqq to be on the RR list already.
  1159. */
  1160. if (cfq_cfqq_on_rr(cfqq)) {
  1161. cfq_service_tree_add(cfqd, cfqq, 0);
  1162. cfq_prio_tree_add(cfqd, cfqq);
  1163. }
  1164. }
  1165. /*
  1166. * add to busy list of queues for service, trying to be fair in ordering
  1167. * the pending list according to last request service
  1168. */
  1169. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1170. {
  1171. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1172. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1173. cfq_mark_cfqq_on_rr(cfqq);
  1174. cfqd->busy_queues++;
  1175. if (cfq_cfqq_sync(cfqq))
  1176. cfqd->busy_sync_queues++;
  1177. cfq_resort_rr_list(cfqd, cfqq);
  1178. }
  1179. /*
  1180. * Called when the cfqq no longer has requests pending, remove it from
  1181. * the service tree.
  1182. */
  1183. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1184. {
  1185. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1186. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1187. cfq_clear_cfqq_on_rr(cfqq);
  1188. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1189. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1190. cfqq->service_tree = NULL;
  1191. }
  1192. if (cfqq->p_root) {
  1193. rb_erase(&cfqq->p_node, cfqq->p_root);
  1194. cfqq->p_root = NULL;
  1195. }
  1196. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1197. BUG_ON(!cfqd->busy_queues);
  1198. cfqd->busy_queues--;
  1199. if (cfq_cfqq_sync(cfqq))
  1200. cfqd->busy_sync_queues--;
  1201. }
  1202. /*
  1203. * rb tree support functions
  1204. */
  1205. static void cfq_del_rq_rb(struct request *rq)
  1206. {
  1207. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1208. const int sync = rq_is_sync(rq);
  1209. BUG_ON(!cfqq->queued[sync]);
  1210. cfqq->queued[sync]--;
  1211. elv_rb_del(&cfqq->sort_list, rq);
  1212. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1213. /*
  1214. * Queue will be deleted from service tree when we actually
  1215. * expire it later. Right now just remove it from prio tree
  1216. * as it is empty.
  1217. */
  1218. if (cfqq->p_root) {
  1219. rb_erase(&cfqq->p_node, cfqq->p_root);
  1220. cfqq->p_root = NULL;
  1221. }
  1222. }
  1223. }
  1224. static void cfq_add_rq_rb(struct request *rq)
  1225. {
  1226. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1227. struct cfq_data *cfqd = cfqq->cfqd;
  1228. struct request *prev;
  1229. cfqq->queued[rq_is_sync(rq)]++;
  1230. elv_rb_add(&cfqq->sort_list, rq);
  1231. if (!cfq_cfqq_on_rr(cfqq))
  1232. cfq_add_cfqq_rr(cfqd, cfqq);
  1233. /*
  1234. * check if this request is a better next-serve candidate
  1235. */
  1236. prev = cfqq->next_rq;
  1237. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1238. /*
  1239. * adjust priority tree position, if ->next_rq changes
  1240. */
  1241. if (prev != cfqq->next_rq)
  1242. cfq_prio_tree_add(cfqd, cfqq);
  1243. BUG_ON(!cfqq->next_rq);
  1244. }
  1245. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1246. {
  1247. elv_rb_del(&cfqq->sort_list, rq);
  1248. cfqq->queued[rq_is_sync(rq)]--;
  1249. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1250. rq_data_dir(rq), rq_is_sync(rq));
  1251. cfq_add_rq_rb(rq);
  1252. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1253. cfqg_to_blkg(cfqq->cfqd->serving_group),
  1254. rq_data_dir(rq), rq_is_sync(rq));
  1255. }
  1256. static struct request *
  1257. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1258. {
  1259. struct task_struct *tsk = current;
  1260. struct cfq_io_cq *cic;
  1261. struct cfq_queue *cfqq;
  1262. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1263. if (!cic)
  1264. return NULL;
  1265. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1266. if (cfqq) {
  1267. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1268. return elv_rb_find(&cfqq->sort_list, sector);
  1269. }
  1270. return NULL;
  1271. }
  1272. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1273. {
  1274. struct cfq_data *cfqd = q->elevator->elevator_data;
  1275. cfqd->rq_in_driver++;
  1276. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1277. cfqd->rq_in_driver);
  1278. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1279. }
  1280. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1281. {
  1282. struct cfq_data *cfqd = q->elevator->elevator_data;
  1283. WARN_ON(!cfqd->rq_in_driver);
  1284. cfqd->rq_in_driver--;
  1285. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1286. cfqd->rq_in_driver);
  1287. }
  1288. static void cfq_remove_request(struct request *rq)
  1289. {
  1290. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1291. if (cfqq->next_rq == rq)
  1292. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1293. list_del_init(&rq->queuelist);
  1294. cfq_del_rq_rb(rq);
  1295. cfqq->cfqd->rq_queued--;
  1296. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1297. rq_data_dir(rq), rq_is_sync(rq));
  1298. if (rq->cmd_flags & REQ_PRIO) {
  1299. WARN_ON(!cfqq->prio_pending);
  1300. cfqq->prio_pending--;
  1301. }
  1302. }
  1303. static int cfq_merge(struct request_queue *q, struct request **req,
  1304. struct bio *bio)
  1305. {
  1306. struct cfq_data *cfqd = q->elevator->elevator_data;
  1307. struct request *__rq;
  1308. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1309. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1310. *req = __rq;
  1311. return ELEVATOR_FRONT_MERGE;
  1312. }
  1313. return ELEVATOR_NO_MERGE;
  1314. }
  1315. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1316. int type)
  1317. {
  1318. if (type == ELEVATOR_FRONT_MERGE) {
  1319. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1320. cfq_reposition_rq_rb(cfqq, req);
  1321. }
  1322. }
  1323. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1324. struct bio *bio)
  1325. {
  1326. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
  1327. bio_data_dir(bio), cfq_bio_sync(bio));
  1328. }
  1329. static void
  1330. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1331. struct request *next)
  1332. {
  1333. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1334. struct cfq_data *cfqd = q->elevator->elevator_data;
  1335. /*
  1336. * reposition in fifo if next is older than rq
  1337. */
  1338. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1339. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1340. list_move(&rq->queuelist, &next->queuelist);
  1341. rq_set_fifo_time(rq, rq_fifo_time(next));
  1342. }
  1343. if (cfqq->next_rq == next)
  1344. cfqq->next_rq = rq;
  1345. cfq_remove_request(next);
  1346. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1347. rq_data_dir(next), rq_is_sync(next));
  1348. cfqq = RQ_CFQQ(next);
  1349. /*
  1350. * all requests of this queue are merged to other queues, delete it
  1351. * from the service tree. If it's the active_queue,
  1352. * cfq_dispatch_requests() will choose to expire it or do idle
  1353. */
  1354. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1355. cfqq != cfqd->active_queue)
  1356. cfq_del_cfqq_rr(cfqd, cfqq);
  1357. }
  1358. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1359. struct bio *bio)
  1360. {
  1361. struct cfq_data *cfqd = q->elevator->elevator_data;
  1362. struct cfq_io_cq *cic;
  1363. struct cfq_queue *cfqq;
  1364. /*
  1365. * Disallow merge of a sync bio into an async request.
  1366. */
  1367. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1368. return false;
  1369. /*
  1370. * Lookup the cfqq that this bio will be queued with and allow
  1371. * merge only if rq is queued there.
  1372. */
  1373. cic = cfq_cic_lookup(cfqd, current->io_context);
  1374. if (!cic)
  1375. return false;
  1376. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1377. return cfqq == RQ_CFQQ(rq);
  1378. }
  1379. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1380. {
  1381. del_timer(&cfqd->idle_slice_timer);
  1382. cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg));
  1383. }
  1384. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1385. struct cfq_queue *cfqq)
  1386. {
  1387. if (cfqq) {
  1388. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1389. cfqd->serving_prio, cfqd->serving_type);
  1390. cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg));
  1391. cfqq->slice_start = 0;
  1392. cfqq->dispatch_start = jiffies;
  1393. cfqq->allocated_slice = 0;
  1394. cfqq->slice_end = 0;
  1395. cfqq->slice_dispatch = 0;
  1396. cfqq->nr_sectors = 0;
  1397. cfq_clear_cfqq_wait_request(cfqq);
  1398. cfq_clear_cfqq_must_dispatch(cfqq);
  1399. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1400. cfq_clear_cfqq_fifo_expire(cfqq);
  1401. cfq_mark_cfqq_slice_new(cfqq);
  1402. cfq_del_timer(cfqd, cfqq);
  1403. }
  1404. cfqd->active_queue = cfqq;
  1405. }
  1406. /*
  1407. * current cfqq expired its slice (or was too idle), select new one
  1408. */
  1409. static void
  1410. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1411. bool timed_out)
  1412. {
  1413. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1414. if (cfq_cfqq_wait_request(cfqq))
  1415. cfq_del_timer(cfqd, cfqq);
  1416. cfq_clear_cfqq_wait_request(cfqq);
  1417. cfq_clear_cfqq_wait_busy(cfqq);
  1418. /*
  1419. * If this cfqq is shared between multiple processes, check to
  1420. * make sure that those processes are still issuing I/Os within
  1421. * the mean seek distance. If not, it may be time to break the
  1422. * queues apart again.
  1423. */
  1424. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1425. cfq_mark_cfqq_split_coop(cfqq);
  1426. /*
  1427. * store what was left of this slice, if the queue idled/timed out
  1428. */
  1429. if (timed_out) {
  1430. if (cfq_cfqq_slice_new(cfqq))
  1431. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1432. else
  1433. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1434. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1435. }
  1436. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1437. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1438. cfq_del_cfqq_rr(cfqd, cfqq);
  1439. cfq_resort_rr_list(cfqd, cfqq);
  1440. if (cfqq == cfqd->active_queue)
  1441. cfqd->active_queue = NULL;
  1442. if (cfqd->active_cic) {
  1443. put_io_context(cfqd->active_cic->icq.ioc);
  1444. cfqd->active_cic = NULL;
  1445. }
  1446. }
  1447. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1448. {
  1449. struct cfq_queue *cfqq = cfqd->active_queue;
  1450. if (cfqq)
  1451. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1452. }
  1453. /*
  1454. * Get next queue for service. Unless we have a queue preemption,
  1455. * we'll simply select the first cfqq in the service tree.
  1456. */
  1457. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1458. {
  1459. struct cfq_rb_root *service_tree =
  1460. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1461. cfqd->serving_type);
  1462. if (!cfqd->rq_queued)
  1463. return NULL;
  1464. /* There is nothing to dispatch */
  1465. if (!service_tree)
  1466. return NULL;
  1467. if (RB_EMPTY_ROOT(&service_tree->rb))
  1468. return NULL;
  1469. return cfq_rb_first(service_tree);
  1470. }
  1471. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1472. {
  1473. struct cfq_group *cfqg;
  1474. struct cfq_queue *cfqq;
  1475. int i, j;
  1476. struct cfq_rb_root *st;
  1477. if (!cfqd->rq_queued)
  1478. return NULL;
  1479. cfqg = cfq_get_next_cfqg(cfqd);
  1480. if (!cfqg)
  1481. return NULL;
  1482. for_each_cfqg_st(cfqg, i, j, st)
  1483. if ((cfqq = cfq_rb_first(st)) != NULL)
  1484. return cfqq;
  1485. return NULL;
  1486. }
  1487. /*
  1488. * Get and set a new active queue for service.
  1489. */
  1490. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1491. struct cfq_queue *cfqq)
  1492. {
  1493. if (!cfqq)
  1494. cfqq = cfq_get_next_queue(cfqd);
  1495. __cfq_set_active_queue(cfqd, cfqq);
  1496. return cfqq;
  1497. }
  1498. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1499. struct request *rq)
  1500. {
  1501. if (blk_rq_pos(rq) >= cfqd->last_position)
  1502. return blk_rq_pos(rq) - cfqd->last_position;
  1503. else
  1504. return cfqd->last_position - blk_rq_pos(rq);
  1505. }
  1506. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1507. struct request *rq)
  1508. {
  1509. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1510. }
  1511. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1512. struct cfq_queue *cur_cfqq)
  1513. {
  1514. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1515. struct rb_node *parent, *node;
  1516. struct cfq_queue *__cfqq;
  1517. sector_t sector = cfqd->last_position;
  1518. if (RB_EMPTY_ROOT(root))
  1519. return NULL;
  1520. /*
  1521. * First, if we find a request starting at the end of the last
  1522. * request, choose it.
  1523. */
  1524. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1525. if (__cfqq)
  1526. return __cfqq;
  1527. /*
  1528. * If the exact sector wasn't found, the parent of the NULL leaf
  1529. * will contain the closest sector.
  1530. */
  1531. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1532. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1533. return __cfqq;
  1534. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1535. node = rb_next(&__cfqq->p_node);
  1536. else
  1537. node = rb_prev(&__cfqq->p_node);
  1538. if (!node)
  1539. return NULL;
  1540. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1541. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1542. return __cfqq;
  1543. return NULL;
  1544. }
  1545. /*
  1546. * cfqd - obvious
  1547. * cur_cfqq - passed in so that we don't decide that the current queue is
  1548. * closely cooperating with itself.
  1549. *
  1550. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1551. * one request, and that cfqd->last_position reflects a position on the disk
  1552. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1553. * assumption.
  1554. */
  1555. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1556. struct cfq_queue *cur_cfqq)
  1557. {
  1558. struct cfq_queue *cfqq;
  1559. if (cfq_class_idle(cur_cfqq))
  1560. return NULL;
  1561. if (!cfq_cfqq_sync(cur_cfqq))
  1562. return NULL;
  1563. if (CFQQ_SEEKY(cur_cfqq))
  1564. return NULL;
  1565. /*
  1566. * Don't search priority tree if it's the only queue in the group.
  1567. */
  1568. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1569. return NULL;
  1570. /*
  1571. * We should notice if some of the queues are cooperating, eg
  1572. * working closely on the same area of the disk. In that case,
  1573. * we can group them together and don't waste time idling.
  1574. */
  1575. cfqq = cfqq_close(cfqd, cur_cfqq);
  1576. if (!cfqq)
  1577. return NULL;
  1578. /* If new queue belongs to different cfq_group, don't choose it */
  1579. if (cur_cfqq->cfqg != cfqq->cfqg)
  1580. return NULL;
  1581. /*
  1582. * It only makes sense to merge sync queues.
  1583. */
  1584. if (!cfq_cfqq_sync(cfqq))
  1585. return NULL;
  1586. if (CFQQ_SEEKY(cfqq))
  1587. return NULL;
  1588. /*
  1589. * Do not merge queues of different priority classes
  1590. */
  1591. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1592. return NULL;
  1593. return cfqq;
  1594. }
  1595. /*
  1596. * Determine whether we should enforce idle window for this queue.
  1597. */
  1598. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1599. {
  1600. enum wl_prio_t prio = cfqq_prio(cfqq);
  1601. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1602. BUG_ON(!service_tree);
  1603. BUG_ON(!service_tree->count);
  1604. if (!cfqd->cfq_slice_idle)
  1605. return false;
  1606. /* We never do for idle class queues. */
  1607. if (prio == IDLE_WORKLOAD)
  1608. return false;
  1609. /* We do for queues that were marked with idle window flag. */
  1610. if (cfq_cfqq_idle_window(cfqq) &&
  1611. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1612. return true;
  1613. /*
  1614. * Otherwise, we do only if they are the last ones
  1615. * in their service tree.
  1616. */
  1617. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1618. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1619. return true;
  1620. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1621. service_tree->count);
  1622. return false;
  1623. }
  1624. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1625. {
  1626. struct cfq_queue *cfqq = cfqd->active_queue;
  1627. struct cfq_io_cq *cic;
  1628. unsigned long sl, group_idle = 0;
  1629. /*
  1630. * SSD device without seek penalty, disable idling. But only do so
  1631. * for devices that support queuing, otherwise we still have a problem
  1632. * with sync vs async workloads.
  1633. */
  1634. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1635. return;
  1636. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1637. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1638. /*
  1639. * idle is disabled, either manually or by past process history
  1640. */
  1641. if (!cfq_should_idle(cfqd, cfqq)) {
  1642. /* no queue idling. Check for group idling */
  1643. if (cfqd->cfq_group_idle)
  1644. group_idle = cfqd->cfq_group_idle;
  1645. else
  1646. return;
  1647. }
  1648. /*
  1649. * still active requests from this queue, don't idle
  1650. */
  1651. if (cfqq->dispatched)
  1652. return;
  1653. /*
  1654. * task has exited, don't wait
  1655. */
  1656. cic = cfqd->active_cic;
  1657. if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
  1658. return;
  1659. /*
  1660. * If our average think time is larger than the remaining time
  1661. * slice, then don't idle. This avoids overrunning the allotted
  1662. * time slice.
  1663. */
  1664. if (sample_valid(cic->ttime.ttime_samples) &&
  1665. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1666. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1667. cic->ttime.ttime_mean);
  1668. return;
  1669. }
  1670. /* There are other queues in the group, don't do group idle */
  1671. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1672. return;
  1673. cfq_mark_cfqq_wait_request(cfqq);
  1674. if (group_idle)
  1675. sl = cfqd->cfq_group_idle;
  1676. else
  1677. sl = cfqd->cfq_slice_idle;
  1678. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1679. cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg));
  1680. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1681. group_idle ? 1 : 0);
  1682. }
  1683. /*
  1684. * Move request from internal lists to the request queue dispatch list.
  1685. */
  1686. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1687. {
  1688. struct cfq_data *cfqd = q->elevator->elevator_data;
  1689. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1690. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1691. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1692. cfq_remove_request(rq);
  1693. cfqq->dispatched++;
  1694. (RQ_CFQG(rq))->dispatched++;
  1695. elv_dispatch_sort(q, rq);
  1696. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1697. cfqq->nr_sectors += blk_rq_sectors(rq);
  1698. cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
  1699. blk_rq_bytes(rq), rq_data_dir(rq),
  1700. rq_is_sync(rq));
  1701. }
  1702. /*
  1703. * return expired entry, or NULL to just start from scratch in rbtree
  1704. */
  1705. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1706. {
  1707. struct request *rq = NULL;
  1708. if (cfq_cfqq_fifo_expire(cfqq))
  1709. return NULL;
  1710. cfq_mark_cfqq_fifo_expire(cfqq);
  1711. if (list_empty(&cfqq->fifo))
  1712. return NULL;
  1713. rq = rq_entry_fifo(cfqq->fifo.next);
  1714. if (time_before(jiffies, rq_fifo_time(rq)))
  1715. rq = NULL;
  1716. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1717. return rq;
  1718. }
  1719. static inline int
  1720. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1721. {
  1722. const int base_rq = cfqd->cfq_slice_async_rq;
  1723. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1724. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1725. }
  1726. /*
  1727. * Must be called with the queue_lock held.
  1728. */
  1729. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1730. {
  1731. int process_refs, io_refs;
  1732. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1733. process_refs = cfqq->ref - io_refs;
  1734. BUG_ON(process_refs < 0);
  1735. return process_refs;
  1736. }
  1737. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1738. {
  1739. int process_refs, new_process_refs;
  1740. struct cfq_queue *__cfqq;
  1741. /*
  1742. * If there are no process references on the new_cfqq, then it is
  1743. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1744. * chain may have dropped their last reference (not just their
  1745. * last process reference).
  1746. */
  1747. if (!cfqq_process_refs(new_cfqq))
  1748. return;
  1749. /* Avoid a circular list and skip interim queue merges */
  1750. while ((__cfqq = new_cfqq->new_cfqq)) {
  1751. if (__cfqq == cfqq)
  1752. return;
  1753. new_cfqq = __cfqq;
  1754. }
  1755. process_refs = cfqq_process_refs(cfqq);
  1756. new_process_refs = cfqq_process_refs(new_cfqq);
  1757. /*
  1758. * If the process for the cfqq has gone away, there is no
  1759. * sense in merging the queues.
  1760. */
  1761. if (process_refs == 0 || new_process_refs == 0)
  1762. return;
  1763. /*
  1764. * Merge in the direction of the lesser amount of work.
  1765. */
  1766. if (new_process_refs >= process_refs) {
  1767. cfqq->new_cfqq = new_cfqq;
  1768. new_cfqq->ref += process_refs;
  1769. } else {
  1770. new_cfqq->new_cfqq = cfqq;
  1771. cfqq->ref += new_process_refs;
  1772. }
  1773. }
  1774. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1775. struct cfq_group *cfqg, enum wl_prio_t prio)
  1776. {
  1777. struct cfq_queue *queue;
  1778. int i;
  1779. bool key_valid = false;
  1780. unsigned long lowest_key = 0;
  1781. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1782. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1783. /* select the one with lowest rb_key */
  1784. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1785. if (queue &&
  1786. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1787. lowest_key = queue->rb_key;
  1788. cur_best = i;
  1789. key_valid = true;
  1790. }
  1791. }
  1792. return cur_best;
  1793. }
  1794. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1795. {
  1796. unsigned slice;
  1797. unsigned count;
  1798. struct cfq_rb_root *st;
  1799. unsigned group_slice;
  1800. enum wl_prio_t original_prio = cfqd->serving_prio;
  1801. /* Choose next priority. RT > BE > IDLE */
  1802. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1803. cfqd->serving_prio = RT_WORKLOAD;
  1804. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1805. cfqd->serving_prio = BE_WORKLOAD;
  1806. else {
  1807. cfqd->serving_prio = IDLE_WORKLOAD;
  1808. cfqd->workload_expires = jiffies + 1;
  1809. return;
  1810. }
  1811. if (original_prio != cfqd->serving_prio)
  1812. goto new_workload;
  1813. /*
  1814. * For RT and BE, we have to choose also the type
  1815. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1816. * expiration time
  1817. */
  1818. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1819. count = st->count;
  1820. /*
  1821. * check workload expiration, and that we still have other queues ready
  1822. */
  1823. if (count && !time_after(jiffies, cfqd->workload_expires))
  1824. return;
  1825. new_workload:
  1826. /* otherwise select new workload type */
  1827. cfqd->serving_type =
  1828. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1829. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1830. count = st->count;
  1831. /*
  1832. * the workload slice is computed as a fraction of target latency
  1833. * proportional to the number of queues in that workload, over
  1834. * all the queues in the same priority class
  1835. */
  1836. group_slice = cfq_group_slice(cfqd, cfqg);
  1837. slice = group_slice * count /
  1838. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1839. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1840. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1841. unsigned int tmp;
  1842. /*
  1843. * Async queues are currently system wide. Just taking
  1844. * proportion of queues with-in same group will lead to higher
  1845. * async ratio system wide as generally root group is going
  1846. * to have higher weight. A more accurate thing would be to
  1847. * calculate system wide asnc/sync ratio.
  1848. */
  1849. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1850. tmp = tmp/cfqd->busy_queues;
  1851. slice = min_t(unsigned, slice, tmp);
  1852. /* async workload slice is scaled down according to
  1853. * the sync/async slice ratio. */
  1854. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1855. } else
  1856. /* sync workload slice is at least 2 * cfq_slice_idle */
  1857. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1858. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1859. cfq_log(cfqd, "workload slice:%d", slice);
  1860. cfqd->workload_expires = jiffies + slice;
  1861. }
  1862. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1863. {
  1864. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1865. struct cfq_group *cfqg;
  1866. if (RB_EMPTY_ROOT(&st->rb))
  1867. return NULL;
  1868. cfqg = cfq_rb_first_group(st);
  1869. update_min_vdisktime(st);
  1870. return cfqg;
  1871. }
  1872. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1873. {
  1874. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1875. cfqd->serving_group = cfqg;
  1876. /* Restore the workload type data */
  1877. if (cfqg->saved_workload_slice) {
  1878. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1879. cfqd->serving_type = cfqg->saved_workload;
  1880. cfqd->serving_prio = cfqg->saved_serving_prio;
  1881. } else
  1882. cfqd->workload_expires = jiffies - 1;
  1883. choose_service_tree(cfqd, cfqg);
  1884. }
  1885. /*
  1886. * Select a queue for service. If we have a current active queue,
  1887. * check whether to continue servicing it, or retrieve and set a new one.
  1888. */
  1889. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1890. {
  1891. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1892. cfqq = cfqd->active_queue;
  1893. if (!cfqq)
  1894. goto new_queue;
  1895. if (!cfqd->rq_queued)
  1896. return NULL;
  1897. /*
  1898. * We were waiting for group to get backlogged. Expire the queue
  1899. */
  1900. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1901. goto expire;
  1902. /*
  1903. * The active queue has run out of time, expire it and select new.
  1904. */
  1905. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1906. /*
  1907. * If slice had not expired at the completion of last request
  1908. * we might not have turned on wait_busy flag. Don't expire
  1909. * the queue yet. Allow the group to get backlogged.
  1910. *
  1911. * The very fact that we have used the slice, that means we
  1912. * have been idling all along on this queue and it should be
  1913. * ok to wait for this request to complete.
  1914. */
  1915. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1916. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1917. cfqq = NULL;
  1918. goto keep_queue;
  1919. } else
  1920. goto check_group_idle;
  1921. }
  1922. /*
  1923. * The active queue has requests and isn't expired, allow it to
  1924. * dispatch.
  1925. */
  1926. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1927. goto keep_queue;
  1928. /*
  1929. * If another queue has a request waiting within our mean seek
  1930. * distance, let it run. The expire code will check for close
  1931. * cooperators and put the close queue at the front of the service
  1932. * tree. If possible, merge the expiring queue with the new cfqq.
  1933. */
  1934. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1935. if (new_cfqq) {
  1936. if (!cfqq->new_cfqq)
  1937. cfq_setup_merge(cfqq, new_cfqq);
  1938. goto expire;
  1939. }
  1940. /*
  1941. * No requests pending. If the active queue still has requests in
  1942. * flight or is idling for a new request, allow either of these
  1943. * conditions to happen (or time out) before selecting a new queue.
  1944. */
  1945. if (timer_pending(&cfqd->idle_slice_timer)) {
  1946. cfqq = NULL;
  1947. goto keep_queue;
  1948. }
  1949. /*
  1950. * This is a deep seek queue, but the device is much faster than
  1951. * the queue can deliver, don't idle
  1952. **/
  1953. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1954. (cfq_cfqq_slice_new(cfqq) ||
  1955. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1956. cfq_clear_cfqq_deep(cfqq);
  1957. cfq_clear_cfqq_idle_window(cfqq);
  1958. }
  1959. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1960. cfqq = NULL;
  1961. goto keep_queue;
  1962. }
  1963. /*
  1964. * If group idle is enabled and there are requests dispatched from
  1965. * this group, wait for requests to complete.
  1966. */
  1967. check_group_idle:
  1968. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  1969. cfqq->cfqg->dispatched &&
  1970. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  1971. cfqq = NULL;
  1972. goto keep_queue;
  1973. }
  1974. expire:
  1975. cfq_slice_expired(cfqd, 0);
  1976. new_queue:
  1977. /*
  1978. * Current queue expired. Check if we have to switch to a new
  1979. * service tree
  1980. */
  1981. if (!new_cfqq)
  1982. cfq_choose_cfqg(cfqd);
  1983. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1984. keep_queue:
  1985. return cfqq;
  1986. }
  1987. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1988. {
  1989. int dispatched = 0;
  1990. while (cfqq->next_rq) {
  1991. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1992. dispatched++;
  1993. }
  1994. BUG_ON(!list_empty(&cfqq->fifo));
  1995. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1996. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1997. return dispatched;
  1998. }
  1999. /*
  2000. * Drain our current requests. Used for barriers and when switching
  2001. * io schedulers on-the-fly.
  2002. */
  2003. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2004. {
  2005. struct cfq_queue *cfqq;
  2006. int dispatched = 0;
  2007. /* Expire the timeslice of the current active queue first */
  2008. cfq_slice_expired(cfqd, 0);
  2009. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2010. __cfq_set_active_queue(cfqd, cfqq);
  2011. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2012. }
  2013. BUG_ON(cfqd->busy_queues);
  2014. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2015. return dispatched;
  2016. }
  2017. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2018. struct cfq_queue *cfqq)
  2019. {
  2020. /* the queue hasn't finished any request, can't estimate */
  2021. if (cfq_cfqq_slice_new(cfqq))
  2022. return true;
  2023. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2024. cfqq->slice_end))
  2025. return true;
  2026. return false;
  2027. }
  2028. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2029. {
  2030. unsigned int max_dispatch;
  2031. /*
  2032. * Drain async requests before we start sync IO
  2033. */
  2034. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2035. return false;
  2036. /*
  2037. * If this is an async queue and we have sync IO in flight, let it wait
  2038. */
  2039. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2040. return false;
  2041. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2042. if (cfq_class_idle(cfqq))
  2043. max_dispatch = 1;
  2044. /*
  2045. * Does this cfqq already have too much IO in flight?
  2046. */
  2047. if (cfqq->dispatched >= max_dispatch) {
  2048. bool promote_sync = false;
  2049. /*
  2050. * idle queue must always only have a single IO in flight
  2051. */
  2052. if (cfq_class_idle(cfqq))
  2053. return false;
  2054. /*
  2055. * If there is only one sync queue
  2056. * we can ignore async queue here and give the sync
  2057. * queue no dispatch limit. The reason is a sync queue can
  2058. * preempt async queue, limiting the sync queue doesn't make
  2059. * sense. This is useful for aiostress test.
  2060. */
  2061. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2062. promote_sync = true;
  2063. /*
  2064. * We have other queues, don't allow more IO from this one
  2065. */
  2066. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2067. !promote_sync)
  2068. return false;
  2069. /*
  2070. * Sole queue user, no limit
  2071. */
  2072. if (cfqd->busy_queues == 1 || promote_sync)
  2073. max_dispatch = -1;
  2074. else
  2075. /*
  2076. * Normally we start throttling cfqq when cfq_quantum/2
  2077. * requests have been dispatched. But we can drive
  2078. * deeper queue depths at the beginning of slice
  2079. * subjected to upper limit of cfq_quantum.
  2080. * */
  2081. max_dispatch = cfqd->cfq_quantum;
  2082. }
  2083. /*
  2084. * Async queues must wait a bit before being allowed dispatch.
  2085. * We also ramp up the dispatch depth gradually for async IO,
  2086. * based on the last sync IO we serviced
  2087. */
  2088. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2089. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2090. unsigned int depth;
  2091. depth = last_sync / cfqd->cfq_slice[1];
  2092. if (!depth && !cfqq->dispatched)
  2093. depth = 1;
  2094. if (depth < max_dispatch)
  2095. max_dispatch = depth;
  2096. }
  2097. /*
  2098. * If we're below the current max, allow a dispatch
  2099. */
  2100. return cfqq->dispatched < max_dispatch;
  2101. }
  2102. /*
  2103. * Dispatch a request from cfqq, moving them to the request queue
  2104. * dispatch list.
  2105. */
  2106. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2107. {
  2108. struct request *rq;
  2109. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2110. if (!cfq_may_dispatch(cfqd, cfqq))
  2111. return false;
  2112. /*
  2113. * follow expired path, else get first next available
  2114. */
  2115. rq = cfq_check_fifo(cfqq);
  2116. if (!rq)
  2117. rq = cfqq->next_rq;
  2118. /*
  2119. * insert request into driver dispatch list
  2120. */
  2121. cfq_dispatch_insert(cfqd->queue, rq);
  2122. if (!cfqd->active_cic) {
  2123. struct cfq_io_cq *cic = RQ_CIC(rq);
  2124. atomic_long_inc(&cic->icq.ioc->refcount);
  2125. cfqd->active_cic = cic;
  2126. }
  2127. return true;
  2128. }
  2129. /*
  2130. * Find the cfqq that we need to service and move a request from that to the
  2131. * dispatch list
  2132. */
  2133. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2134. {
  2135. struct cfq_data *cfqd = q->elevator->elevator_data;
  2136. struct cfq_queue *cfqq;
  2137. if (!cfqd->busy_queues)
  2138. return 0;
  2139. if (unlikely(force))
  2140. return cfq_forced_dispatch(cfqd);
  2141. cfqq = cfq_select_queue(cfqd);
  2142. if (!cfqq)
  2143. return 0;
  2144. /*
  2145. * Dispatch a request from this cfqq, if it is allowed
  2146. */
  2147. if (!cfq_dispatch_request(cfqd, cfqq))
  2148. return 0;
  2149. cfqq->slice_dispatch++;
  2150. cfq_clear_cfqq_must_dispatch(cfqq);
  2151. /*
  2152. * expire an async queue immediately if it has used up its slice. idle
  2153. * queue always expire after 1 dispatch round.
  2154. */
  2155. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2156. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2157. cfq_class_idle(cfqq))) {
  2158. cfqq->slice_end = jiffies + 1;
  2159. cfq_slice_expired(cfqd, 0);
  2160. }
  2161. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2162. return 1;
  2163. }
  2164. /*
  2165. * task holds one reference to the queue, dropped when task exits. each rq
  2166. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2167. *
  2168. * Each cfq queue took a reference on the parent group. Drop it now.
  2169. * queue lock must be held here.
  2170. */
  2171. static void cfq_put_queue(struct cfq_queue *cfqq)
  2172. {
  2173. struct cfq_data *cfqd = cfqq->cfqd;
  2174. struct cfq_group *cfqg;
  2175. BUG_ON(cfqq->ref <= 0);
  2176. cfqq->ref--;
  2177. if (cfqq->ref)
  2178. return;
  2179. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2180. BUG_ON(rb_first(&cfqq->sort_list));
  2181. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2182. cfqg = cfqq->cfqg;
  2183. if (unlikely(cfqd->active_queue == cfqq)) {
  2184. __cfq_slice_expired(cfqd, cfqq, 0);
  2185. cfq_schedule_dispatch(cfqd);
  2186. }
  2187. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2188. kmem_cache_free(cfq_pool, cfqq);
  2189. blkg_put(cfqg_to_blkg(cfqg));
  2190. }
  2191. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2192. {
  2193. struct cfq_queue *__cfqq, *next;
  2194. /*
  2195. * If this queue was scheduled to merge with another queue, be
  2196. * sure to drop the reference taken on that queue (and others in
  2197. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2198. */
  2199. __cfqq = cfqq->new_cfqq;
  2200. while (__cfqq) {
  2201. if (__cfqq == cfqq) {
  2202. WARN(1, "cfqq->new_cfqq loop detected\n");
  2203. break;
  2204. }
  2205. next = __cfqq->new_cfqq;
  2206. cfq_put_queue(__cfqq);
  2207. __cfqq = next;
  2208. }
  2209. }
  2210. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2211. {
  2212. if (unlikely(cfqq == cfqd->active_queue)) {
  2213. __cfq_slice_expired(cfqd, cfqq, 0);
  2214. cfq_schedule_dispatch(cfqd);
  2215. }
  2216. cfq_put_cooperator(cfqq);
  2217. cfq_put_queue(cfqq);
  2218. }
  2219. static void cfq_init_icq(struct io_cq *icq)
  2220. {
  2221. struct cfq_io_cq *cic = icq_to_cic(icq);
  2222. cic->ttime.last_end_request = jiffies;
  2223. }
  2224. static void cfq_exit_icq(struct io_cq *icq)
  2225. {
  2226. struct cfq_io_cq *cic = icq_to_cic(icq);
  2227. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2228. if (cic->cfqq[BLK_RW_ASYNC]) {
  2229. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2230. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2231. }
  2232. if (cic->cfqq[BLK_RW_SYNC]) {
  2233. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2234. cic->cfqq[BLK_RW_SYNC] = NULL;
  2235. }
  2236. }
  2237. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2238. {
  2239. struct task_struct *tsk = current;
  2240. int ioprio_class;
  2241. if (!cfq_cfqq_prio_changed(cfqq))
  2242. return;
  2243. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2244. switch (ioprio_class) {
  2245. default:
  2246. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2247. case IOPRIO_CLASS_NONE:
  2248. /*
  2249. * no prio set, inherit CPU scheduling settings
  2250. */
  2251. cfqq->ioprio = task_nice_ioprio(tsk);
  2252. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2253. break;
  2254. case IOPRIO_CLASS_RT:
  2255. cfqq->ioprio = task_ioprio(ioc);
  2256. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2257. break;
  2258. case IOPRIO_CLASS_BE:
  2259. cfqq->ioprio = task_ioprio(ioc);
  2260. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2261. break;
  2262. case IOPRIO_CLASS_IDLE:
  2263. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2264. cfqq->ioprio = 7;
  2265. cfq_clear_cfqq_idle_window(cfqq);
  2266. break;
  2267. }
  2268. /*
  2269. * keep track of original prio settings in case we have to temporarily
  2270. * elevate the priority of this queue
  2271. */
  2272. cfqq->org_ioprio = cfqq->ioprio;
  2273. cfq_clear_cfqq_prio_changed(cfqq);
  2274. }
  2275. static void changed_ioprio(struct cfq_io_cq *cic)
  2276. {
  2277. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2278. struct cfq_queue *cfqq;
  2279. if (unlikely(!cfqd))
  2280. return;
  2281. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2282. if (cfqq) {
  2283. struct cfq_queue *new_cfqq;
  2284. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
  2285. GFP_ATOMIC);
  2286. if (new_cfqq) {
  2287. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2288. cfq_put_queue(cfqq);
  2289. }
  2290. }
  2291. cfqq = cic->cfqq[BLK_RW_SYNC];
  2292. if (cfqq)
  2293. cfq_mark_cfqq_prio_changed(cfqq);
  2294. }
  2295. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2296. pid_t pid, bool is_sync)
  2297. {
  2298. RB_CLEAR_NODE(&cfqq->rb_node);
  2299. RB_CLEAR_NODE(&cfqq->p_node);
  2300. INIT_LIST_HEAD(&cfqq->fifo);
  2301. cfqq->ref = 0;
  2302. cfqq->cfqd = cfqd;
  2303. cfq_mark_cfqq_prio_changed(cfqq);
  2304. if (is_sync) {
  2305. if (!cfq_class_idle(cfqq))
  2306. cfq_mark_cfqq_idle_window(cfqq);
  2307. cfq_mark_cfqq_sync(cfqq);
  2308. }
  2309. cfqq->pid = pid;
  2310. }
  2311. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2312. static void changed_cgroup(struct cfq_io_cq *cic)
  2313. {
  2314. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2315. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2316. struct request_queue *q;
  2317. if (unlikely(!cfqd))
  2318. return;
  2319. q = cfqd->queue;
  2320. if (sync_cfqq) {
  2321. /*
  2322. * Drop reference to sync queue. A new sync queue will be
  2323. * assigned in new group upon arrival of a fresh request.
  2324. */
  2325. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2326. cic_set_cfqq(cic, NULL, 1);
  2327. cfq_put_queue(sync_cfqq);
  2328. }
  2329. }
  2330. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2331. static struct cfq_queue *
  2332. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2333. struct io_context *ioc, gfp_t gfp_mask)
  2334. {
  2335. struct blkio_cgroup *blkcg;
  2336. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2337. struct cfq_io_cq *cic;
  2338. struct cfq_group *cfqg;
  2339. retry:
  2340. rcu_read_lock();
  2341. blkcg = task_blkio_cgroup(current);
  2342. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2343. cic = cfq_cic_lookup(cfqd, ioc);
  2344. /* cic always exists here */
  2345. cfqq = cic_to_cfqq(cic, is_sync);
  2346. /*
  2347. * Always try a new alloc if we fell back to the OOM cfqq
  2348. * originally, since it should just be a temporary situation.
  2349. */
  2350. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2351. cfqq = NULL;
  2352. if (new_cfqq) {
  2353. cfqq = new_cfqq;
  2354. new_cfqq = NULL;
  2355. } else if (gfp_mask & __GFP_WAIT) {
  2356. rcu_read_unlock();
  2357. spin_unlock_irq(cfqd->queue->queue_lock);
  2358. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2359. gfp_mask | __GFP_ZERO,
  2360. cfqd->queue->node);
  2361. spin_lock_irq(cfqd->queue->queue_lock);
  2362. if (new_cfqq)
  2363. goto retry;
  2364. } else {
  2365. cfqq = kmem_cache_alloc_node(cfq_pool,
  2366. gfp_mask | __GFP_ZERO,
  2367. cfqd->queue->node);
  2368. }
  2369. if (cfqq) {
  2370. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2371. cfq_init_prio_data(cfqq, ioc);
  2372. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2373. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2374. } else
  2375. cfqq = &cfqd->oom_cfqq;
  2376. }
  2377. if (new_cfqq)
  2378. kmem_cache_free(cfq_pool, new_cfqq);
  2379. rcu_read_unlock();
  2380. return cfqq;
  2381. }
  2382. static struct cfq_queue **
  2383. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2384. {
  2385. switch (ioprio_class) {
  2386. case IOPRIO_CLASS_RT:
  2387. return &cfqd->async_cfqq[0][ioprio];
  2388. case IOPRIO_CLASS_BE:
  2389. return &cfqd->async_cfqq[1][ioprio];
  2390. case IOPRIO_CLASS_IDLE:
  2391. return &cfqd->async_idle_cfqq;
  2392. default:
  2393. BUG();
  2394. }
  2395. }
  2396. static struct cfq_queue *
  2397. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2398. gfp_t gfp_mask)
  2399. {
  2400. const int ioprio = task_ioprio(ioc);
  2401. const int ioprio_class = task_ioprio_class(ioc);
  2402. struct cfq_queue **async_cfqq = NULL;
  2403. struct cfq_queue *cfqq = NULL;
  2404. if (!is_sync) {
  2405. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2406. cfqq = *async_cfqq;
  2407. }
  2408. if (!cfqq)
  2409. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2410. /*
  2411. * pin the queue now that it's allocated, scheduler exit will prune it
  2412. */
  2413. if (!is_sync && !(*async_cfqq)) {
  2414. cfqq->ref++;
  2415. *async_cfqq = cfqq;
  2416. }
  2417. cfqq->ref++;
  2418. return cfqq;
  2419. }
  2420. static void
  2421. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2422. {
  2423. unsigned long elapsed = jiffies - ttime->last_end_request;
  2424. elapsed = min(elapsed, 2UL * slice_idle);
  2425. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2426. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2427. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2428. }
  2429. static void
  2430. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2431. struct cfq_io_cq *cic)
  2432. {
  2433. if (cfq_cfqq_sync(cfqq)) {
  2434. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2435. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2436. cfqd->cfq_slice_idle);
  2437. }
  2438. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2439. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2440. #endif
  2441. }
  2442. static void
  2443. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2444. struct request *rq)
  2445. {
  2446. sector_t sdist = 0;
  2447. sector_t n_sec = blk_rq_sectors(rq);
  2448. if (cfqq->last_request_pos) {
  2449. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2450. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2451. else
  2452. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2453. }
  2454. cfqq->seek_history <<= 1;
  2455. if (blk_queue_nonrot(cfqd->queue))
  2456. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2457. else
  2458. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2459. }
  2460. /*
  2461. * Disable idle window if the process thinks too long or seeks so much that
  2462. * it doesn't matter
  2463. */
  2464. static void
  2465. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2466. struct cfq_io_cq *cic)
  2467. {
  2468. int old_idle, enable_idle;
  2469. /*
  2470. * Don't idle for async or idle io prio class
  2471. */
  2472. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2473. return;
  2474. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2475. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2476. cfq_mark_cfqq_deep(cfqq);
  2477. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2478. enable_idle = 0;
  2479. else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
  2480. !cfqd->cfq_slice_idle ||
  2481. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2482. enable_idle = 0;
  2483. else if (sample_valid(cic->ttime.ttime_samples)) {
  2484. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2485. enable_idle = 0;
  2486. else
  2487. enable_idle = 1;
  2488. }
  2489. if (old_idle != enable_idle) {
  2490. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2491. if (enable_idle)
  2492. cfq_mark_cfqq_idle_window(cfqq);
  2493. else
  2494. cfq_clear_cfqq_idle_window(cfqq);
  2495. }
  2496. }
  2497. /*
  2498. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2499. * no or if we aren't sure, a 1 will cause a preempt.
  2500. */
  2501. static bool
  2502. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2503. struct request *rq)
  2504. {
  2505. struct cfq_queue *cfqq;
  2506. cfqq = cfqd->active_queue;
  2507. if (!cfqq)
  2508. return false;
  2509. if (cfq_class_idle(new_cfqq))
  2510. return false;
  2511. if (cfq_class_idle(cfqq))
  2512. return true;
  2513. /*
  2514. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2515. */
  2516. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2517. return false;
  2518. /*
  2519. * if the new request is sync, but the currently running queue is
  2520. * not, let the sync request have priority.
  2521. */
  2522. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2523. return true;
  2524. if (new_cfqq->cfqg != cfqq->cfqg)
  2525. return false;
  2526. if (cfq_slice_used(cfqq))
  2527. return true;
  2528. /* Allow preemption only if we are idling on sync-noidle tree */
  2529. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2530. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2531. new_cfqq->service_tree->count == 2 &&
  2532. RB_EMPTY_ROOT(&cfqq->sort_list))
  2533. return true;
  2534. /*
  2535. * So both queues are sync. Let the new request get disk time if
  2536. * it's a metadata request and the current queue is doing regular IO.
  2537. */
  2538. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2539. return true;
  2540. /*
  2541. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2542. */
  2543. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2544. return true;
  2545. /* An idle queue should not be idle now for some reason */
  2546. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2547. return true;
  2548. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2549. return false;
  2550. /*
  2551. * if this request is as-good as one we would expect from the
  2552. * current cfqq, let it preempt
  2553. */
  2554. if (cfq_rq_close(cfqd, cfqq, rq))
  2555. return true;
  2556. return false;
  2557. }
  2558. /*
  2559. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2560. * let it have half of its nominal slice.
  2561. */
  2562. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2563. {
  2564. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2565. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2566. cfq_slice_expired(cfqd, 1);
  2567. /*
  2568. * workload type is changed, don't save slice, otherwise preempt
  2569. * doesn't happen
  2570. */
  2571. if (old_type != cfqq_type(cfqq))
  2572. cfqq->cfqg->saved_workload_slice = 0;
  2573. /*
  2574. * Put the new queue at the front of the of the current list,
  2575. * so we know that it will be selected next.
  2576. */
  2577. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2578. cfq_service_tree_add(cfqd, cfqq, 1);
  2579. cfqq->slice_end = 0;
  2580. cfq_mark_cfqq_slice_new(cfqq);
  2581. }
  2582. /*
  2583. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2584. * something we should do about it
  2585. */
  2586. static void
  2587. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2588. struct request *rq)
  2589. {
  2590. struct cfq_io_cq *cic = RQ_CIC(rq);
  2591. cfqd->rq_queued++;
  2592. if (rq->cmd_flags & REQ_PRIO)
  2593. cfqq->prio_pending++;
  2594. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2595. cfq_update_io_seektime(cfqd, cfqq, rq);
  2596. cfq_update_idle_window(cfqd, cfqq, cic);
  2597. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2598. if (cfqq == cfqd->active_queue) {
  2599. /*
  2600. * Remember that we saw a request from this process, but
  2601. * don't start queuing just yet. Otherwise we risk seeing lots
  2602. * of tiny requests, because we disrupt the normal plugging
  2603. * and merging. If the request is already larger than a single
  2604. * page, let it rip immediately. For that case we assume that
  2605. * merging is already done. Ditto for a busy system that
  2606. * has other work pending, don't risk delaying until the
  2607. * idle timer unplug to continue working.
  2608. */
  2609. if (cfq_cfqq_wait_request(cfqq)) {
  2610. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2611. cfqd->busy_queues > 1) {
  2612. cfq_del_timer(cfqd, cfqq);
  2613. cfq_clear_cfqq_wait_request(cfqq);
  2614. __blk_run_queue(cfqd->queue);
  2615. } else {
  2616. cfq_blkiocg_update_idle_time_stats(
  2617. cfqg_to_blkg(cfqq->cfqg));
  2618. cfq_mark_cfqq_must_dispatch(cfqq);
  2619. }
  2620. }
  2621. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2622. /*
  2623. * not the active queue - expire current slice if it is
  2624. * idle and has expired it's mean thinktime or this new queue
  2625. * has some old slice time left and is of higher priority or
  2626. * this new queue is RT and the current one is BE
  2627. */
  2628. cfq_preempt_queue(cfqd, cfqq);
  2629. __blk_run_queue(cfqd->queue);
  2630. }
  2631. }
  2632. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2633. {
  2634. struct cfq_data *cfqd = q->elevator->elevator_data;
  2635. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2636. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2637. cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
  2638. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2639. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2640. cfq_add_rq_rb(rq);
  2641. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  2642. cfqg_to_blkg(cfqd->serving_group),
  2643. rq_data_dir(rq), rq_is_sync(rq));
  2644. cfq_rq_enqueued(cfqd, cfqq, rq);
  2645. }
  2646. /*
  2647. * Update hw_tag based on peak queue depth over 50 samples under
  2648. * sufficient load.
  2649. */
  2650. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2651. {
  2652. struct cfq_queue *cfqq = cfqd->active_queue;
  2653. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2654. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2655. if (cfqd->hw_tag == 1)
  2656. return;
  2657. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2658. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2659. return;
  2660. /*
  2661. * If active queue hasn't enough requests and can idle, cfq might not
  2662. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2663. * case
  2664. */
  2665. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2666. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2667. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2668. return;
  2669. if (cfqd->hw_tag_samples++ < 50)
  2670. return;
  2671. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2672. cfqd->hw_tag = 1;
  2673. else
  2674. cfqd->hw_tag = 0;
  2675. }
  2676. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2677. {
  2678. struct cfq_io_cq *cic = cfqd->active_cic;
  2679. /* If the queue already has requests, don't wait */
  2680. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2681. return false;
  2682. /* If there are other queues in the group, don't wait */
  2683. if (cfqq->cfqg->nr_cfqq > 1)
  2684. return false;
  2685. /* the only queue in the group, but think time is big */
  2686. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2687. return false;
  2688. if (cfq_slice_used(cfqq))
  2689. return true;
  2690. /* if slice left is less than think time, wait busy */
  2691. if (cic && sample_valid(cic->ttime.ttime_samples)
  2692. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2693. return true;
  2694. /*
  2695. * If think times is less than a jiffy than ttime_mean=0 and above
  2696. * will not be true. It might happen that slice has not expired yet
  2697. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2698. * case where think time is less than a jiffy, mark the queue wait
  2699. * busy if only 1 jiffy is left in the slice.
  2700. */
  2701. if (cfqq->slice_end - jiffies == 1)
  2702. return true;
  2703. return false;
  2704. }
  2705. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2706. {
  2707. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2708. struct cfq_data *cfqd = cfqq->cfqd;
  2709. const int sync = rq_is_sync(rq);
  2710. unsigned long now;
  2711. now = jiffies;
  2712. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2713. !!(rq->cmd_flags & REQ_NOIDLE));
  2714. cfq_update_hw_tag(cfqd);
  2715. WARN_ON(!cfqd->rq_in_driver);
  2716. WARN_ON(!cfqq->dispatched);
  2717. cfqd->rq_in_driver--;
  2718. cfqq->dispatched--;
  2719. (RQ_CFQG(rq))->dispatched--;
  2720. cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
  2721. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2722. rq_data_dir(rq), rq_is_sync(rq));
  2723. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2724. if (sync) {
  2725. struct cfq_rb_root *service_tree;
  2726. RQ_CIC(rq)->ttime.last_end_request = now;
  2727. if (cfq_cfqq_on_rr(cfqq))
  2728. service_tree = cfqq->service_tree;
  2729. else
  2730. service_tree = service_tree_for(cfqq->cfqg,
  2731. cfqq_prio(cfqq), cfqq_type(cfqq));
  2732. service_tree->ttime.last_end_request = now;
  2733. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2734. cfqd->last_delayed_sync = now;
  2735. }
  2736. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2737. cfqq->cfqg->ttime.last_end_request = now;
  2738. #endif
  2739. /*
  2740. * If this is the active queue, check if it needs to be expired,
  2741. * or if we want to idle in case it has no pending requests.
  2742. */
  2743. if (cfqd->active_queue == cfqq) {
  2744. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2745. if (cfq_cfqq_slice_new(cfqq)) {
  2746. cfq_set_prio_slice(cfqd, cfqq);
  2747. cfq_clear_cfqq_slice_new(cfqq);
  2748. }
  2749. /*
  2750. * Should we wait for next request to come in before we expire
  2751. * the queue.
  2752. */
  2753. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2754. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2755. if (!cfqd->cfq_slice_idle)
  2756. extend_sl = cfqd->cfq_group_idle;
  2757. cfqq->slice_end = jiffies + extend_sl;
  2758. cfq_mark_cfqq_wait_busy(cfqq);
  2759. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2760. }
  2761. /*
  2762. * Idling is not enabled on:
  2763. * - expired queues
  2764. * - idle-priority queues
  2765. * - async queues
  2766. * - queues with still some requests queued
  2767. * - when there is a close cooperator
  2768. */
  2769. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2770. cfq_slice_expired(cfqd, 1);
  2771. else if (sync && cfqq_empty &&
  2772. !cfq_close_cooperator(cfqd, cfqq)) {
  2773. cfq_arm_slice_timer(cfqd);
  2774. }
  2775. }
  2776. if (!cfqd->rq_in_driver)
  2777. cfq_schedule_dispatch(cfqd);
  2778. }
  2779. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2780. {
  2781. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2782. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2783. return ELV_MQUEUE_MUST;
  2784. }
  2785. return ELV_MQUEUE_MAY;
  2786. }
  2787. static int cfq_may_queue(struct request_queue *q, int rw)
  2788. {
  2789. struct cfq_data *cfqd = q->elevator->elevator_data;
  2790. struct task_struct *tsk = current;
  2791. struct cfq_io_cq *cic;
  2792. struct cfq_queue *cfqq;
  2793. /*
  2794. * don't force setup of a queue from here, as a call to may_queue
  2795. * does not necessarily imply that a request actually will be queued.
  2796. * so just lookup a possibly existing queue, or return 'may queue'
  2797. * if that fails
  2798. */
  2799. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2800. if (!cic)
  2801. return ELV_MQUEUE_MAY;
  2802. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2803. if (cfqq) {
  2804. cfq_init_prio_data(cfqq, cic->icq.ioc);
  2805. return __cfq_may_queue(cfqq);
  2806. }
  2807. return ELV_MQUEUE_MAY;
  2808. }
  2809. /*
  2810. * queue lock held here
  2811. */
  2812. static void cfq_put_request(struct request *rq)
  2813. {
  2814. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2815. if (cfqq) {
  2816. const int rw = rq_data_dir(rq);
  2817. BUG_ON(!cfqq->allocated[rw]);
  2818. cfqq->allocated[rw]--;
  2819. /* Put down rq reference on cfqg */
  2820. blkg_put(cfqg_to_blkg(RQ_CFQG(rq)));
  2821. rq->elv.priv[0] = NULL;
  2822. rq->elv.priv[1] = NULL;
  2823. cfq_put_queue(cfqq);
  2824. }
  2825. }
  2826. static struct cfq_queue *
  2827. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2828. struct cfq_queue *cfqq)
  2829. {
  2830. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2831. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2832. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2833. cfq_put_queue(cfqq);
  2834. return cic_to_cfqq(cic, 1);
  2835. }
  2836. /*
  2837. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2838. * was the last process referring to said cfqq.
  2839. */
  2840. static struct cfq_queue *
  2841. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2842. {
  2843. if (cfqq_process_refs(cfqq) == 1) {
  2844. cfqq->pid = current->pid;
  2845. cfq_clear_cfqq_coop(cfqq);
  2846. cfq_clear_cfqq_split_coop(cfqq);
  2847. return cfqq;
  2848. }
  2849. cic_set_cfqq(cic, NULL, 1);
  2850. cfq_put_cooperator(cfqq);
  2851. cfq_put_queue(cfqq);
  2852. return NULL;
  2853. }
  2854. /*
  2855. * Allocate cfq data structures associated with this request.
  2856. */
  2857. static int
  2858. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2859. {
  2860. struct cfq_data *cfqd = q->elevator->elevator_data;
  2861. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  2862. const int rw = rq_data_dir(rq);
  2863. const bool is_sync = rq_is_sync(rq);
  2864. struct cfq_queue *cfqq;
  2865. unsigned int changed;
  2866. might_sleep_if(gfp_mask & __GFP_WAIT);
  2867. spin_lock_irq(q->queue_lock);
  2868. /* handle changed notifications */
  2869. changed = icq_get_changed(&cic->icq);
  2870. if (unlikely(changed & ICQ_IOPRIO_CHANGED))
  2871. changed_ioprio(cic);
  2872. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2873. if (unlikely(changed & ICQ_CGROUP_CHANGED))
  2874. changed_cgroup(cic);
  2875. #endif
  2876. new_queue:
  2877. cfqq = cic_to_cfqq(cic, is_sync);
  2878. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2879. cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
  2880. cic_set_cfqq(cic, cfqq, is_sync);
  2881. } else {
  2882. /*
  2883. * If the queue was seeky for too long, break it apart.
  2884. */
  2885. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2886. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2887. cfqq = split_cfqq(cic, cfqq);
  2888. if (!cfqq)
  2889. goto new_queue;
  2890. }
  2891. /*
  2892. * Check to see if this queue is scheduled to merge with
  2893. * another, closely cooperating queue. The merging of
  2894. * queues happens here as it must be done in process context.
  2895. * The reference on new_cfqq was taken in merge_cfqqs.
  2896. */
  2897. if (cfqq->new_cfqq)
  2898. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2899. }
  2900. cfqq->allocated[rw]++;
  2901. cfqq->ref++;
  2902. blkg_get(cfqg_to_blkg(cfqq->cfqg));
  2903. rq->elv.priv[0] = cfqq;
  2904. rq->elv.priv[1] = cfqq->cfqg;
  2905. spin_unlock_irq(q->queue_lock);
  2906. return 0;
  2907. }
  2908. static void cfq_kick_queue(struct work_struct *work)
  2909. {
  2910. struct cfq_data *cfqd =
  2911. container_of(work, struct cfq_data, unplug_work);
  2912. struct request_queue *q = cfqd->queue;
  2913. spin_lock_irq(q->queue_lock);
  2914. __blk_run_queue(cfqd->queue);
  2915. spin_unlock_irq(q->queue_lock);
  2916. }
  2917. /*
  2918. * Timer running if the active_queue is currently idling inside its time slice
  2919. */
  2920. static void cfq_idle_slice_timer(unsigned long data)
  2921. {
  2922. struct cfq_data *cfqd = (struct cfq_data *) data;
  2923. struct cfq_queue *cfqq;
  2924. unsigned long flags;
  2925. int timed_out = 1;
  2926. cfq_log(cfqd, "idle timer fired");
  2927. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2928. cfqq = cfqd->active_queue;
  2929. if (cfqq) {
  2930. timed_out = 0;
  2931. /*
  2932. * We saw a request before the queue expired, let it through
  2933. */
  2934. if (cfq_cfqq_must_dispatch(cfqq))
  2935. goto out_kick;
  2936. /*
  2937. * expired
  2938. */
  2939. if (cfq_slice_used(cfqq))
  2940. goto expire;
  2941. /*
  2942. * only expire and reinvoke request handler, if there are
  2943. * other queues with pending requests
  2944. */
  2945. if (!cfqd->busy_queues)
  2946. goto out_cont;
  2947. /*
  2948. * not expired and it has a request pending, let it dispatch
  2949. */
  2950. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2951. goto out_kick;
  2952. /*
  2953. * Queue depth flag is reset only when the idle didn't succeed
  2954. */
  2955. cfq_clear_cfqq_deep(cfqq);
  2956. }
  2957. expire:
  2958. cfq_slice_expired(cfqd, timed_out);
  2959. out_kick:
  2960. cfq_schedule_dispatch(cfqd);
  2961. out_cont:
  2962. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2963. }
  2964. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2965. {
  2966. del_timer_sync(&cfqd->idle_slice_timer);
  2967. cancel_work_sync(&cfqd->unplug_work);
  2968. }
  2969. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2970. {
  2971. int i;
  2972. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2973. if (cfqd->async_cfqq[0][i])
  2974. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2975. if (cfqd->async_cfqq[1][i])
  2976. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2977. }
  2978. if (cfqd->async_idle_cfqq)
  2979. cfq_put_queue(cfqd->async_idle_cfqq);
  2980. }
  2981. static void cfq_exit_queue(struct elevator_queue *e)
  2982. {
  2983. struct cfq_data *cfqd = e->elevator_data;
  2984. struct request_queue *q = cfqd->queue;
  2985. bool wait = false;
  2986. cfq_shutdown_timer_wq(cfqd);
  2987. spin_lock_irq(q->queue_lock);
  2988. if (cfqd->active_queue)
  2989. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2990. cfq_put_async_queues(cfqd);
  2991. cfq_release_cfq_groups(cfqd);
  2992. /*
  2993. * If there are groups which we could not unlink from blkcg list,
  2994. * wait for a rcu period for them to be freed.
  2995. */
  2996. if (cfqd->nr_blkcg_linked_grps)
  2997. wait = true;
  2998. spin_unlock_irq(q->queue_lock);
  2999. cfq_shutdown_timer_wq(cfqd);
  3000. /*
  3001. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3002. * Do this wait only if there are other unlinked groups out
  3003. * there. This can happen if cgroup deletion path claimed the
  3004. * responsibility of cleaning up a group before queue cleanup code
  3005. * get to the group.
  3006. *
  3007. * Do not call synchronize_rcu() unconditionally as there are drivers
  3008. * which create/delete request queue hundreds of times during scan/boot
  3009. * and synchronize_rcu() can take significant time and slow down boot.
  3010. */
  3011. if (wait)
  3012. synchronize_rcu();
  3013. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  3014. kfree(cfqd->root_group);
  3015. #endif
  3016. kfree(cfqd);
  3017. }
  3018. static int cfq_init_queue(struct request_queue *q)
  3019. {
  3020. struct cfq_data *cfqd;
  3021. struct blkio_group *blkg __maybe_unused;
  3022. int i;
  3023. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3024. if (!cfqd)
  3025. return -ENOMEM;
  3026. cfqd->queue = q;
  3027. q->elevator->elevator_data = cfqd;
  3028. /* Init root service tree */
  3029. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3030. /* Init root group and prefer root group over other groups by default */
  3031. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3032. rcu_read_lock();
  3033. spin_lock_irq(q->queue_lock);
  3034. blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
  3035. true);
  3036. if (!IS_ERR(blkg))
  3037. cfqd->root_group = blkg_to_cfqg(blkg);
  3038. spin_unlock_irq(q->queue_lock);
  3039. rcu_read_unlock();
  3040. #else
  3041. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  3042. GFP_KERNEL, cfqd->queue->node);
  3043. if (cfqd->root_group)
  3044. cfq_init_cfqg_base(cfqd->root_group);
  3045. #endif
  3046. if (!cfqd->root_group) {
  3047. kfree(cfqd);
  3048. return -ENOMEM;
  3049. }
  3050. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3051. /*
  3052. * Not strictly needed (since RB_ROOT just clears the node and we
  3053. * zeroed cfqd on alloc), but better be safe in case someone decides
  3054. * to add magic to the rb code
  3055. */
  3056. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3057. cfqd->prio_trees[i] = RB_ROOT;
  3058. /*
  3059. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3060. * Grab a permanent reference to it, so that the normal code flow
  3061. * will not attempt to free it. oom_cfqq is linked to root_group
  3062. * but shouldn't hold a reference as it'll never be unlinked. Lose
  3063. * the reference from linking right away.
  3064. */
  3065. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3066. cfqd->oom_cfqq.ref++;
  3067. spin_lock_irq(q->queue_lock);
  3068. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  3069. blkg_put(cfqg_to_blkg(cfqd->root_group));
  3070. spin_unlock_irq(q->queue_lock);
  3071. init_timer(&cfqd->idle_slice_timer);
  3072. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3073. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3074. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3075. cfqd->cfq_quantum = cfq_quantum;
  3076. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3077. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3078. cfqd->cfq_back_max = cfq_back_max;
  3079. cfqd->cfq_back_penalty = cfq_back_penalty;
  3080. cfqd->cfq_slice[0] = cfq_slice_async;
  3081. cfqd->cfq_slice[1] = cfq_slice_sync;
  3082. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3083. cfqd->cfq_slice_idle = cfq_slice_idle;
  3084. cfqd->cfq_group_idle = cfq_group_idle;
  3085. cfqd->cfq_latency = 1;
  3086. cfqd->hw_tag = -1;
  3087. /*
  3088. * we optimistically start assuming sync ops weren't delayed in last
  3089. * second, in order to have larger depth for async operations.
  3090. */
  3091. cfqd->last_delayed_sync = jiffies - HZ;
  3092. return 0;
  3093. }
  3094. /*
  3095. * sysfs parts below -->
  3096. */
  3097. static ssize_t
  3098. cfq_var_show(unsigned int var, char *page)
  3099. {
  3100. return sprintf(page, "%d\n", var);
  3101. }
  3102. static ssize_t
  3103. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3104. {
  3105. char *p = (char *) page;
  3106. *var = simple_strtoul(p, &p, 10);
  3107. return count;
  3108. }
  3109. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3110. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3111. { \
  3112. struct cfq_data *cfqd = e->elevator_data; \
  3113. unsigned int __data = __VAR; \
  3114. if (__CONV) \
  3115. __data = jiffies_to_msecs(__data); \
  3116. return cfq_var_show(__data, (page)); \
  3117. }
  3118. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3119. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3120. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3121. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3122. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3123. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3124. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3125. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3126. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3127. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3128. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3129. #undef SHOW_FUNCTION
  3130. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3131. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3132. { \
  3133. struct cfq_data *cfqd = e->elevator_data; \
  3134. unsigned int __data; \
  3135. int ret = cfq_var_store(&__data, (page), count); \
  3136. if (__data < (MIN)) \
  3137. __data = (MIN); \
  3138. else if (__data > (MAX)) \
  3139. __data = (MAX); \
  3140. if (__CONV) \
  3141. *(__PTR) = msecs_to_jiffies(__data); \
  3142. else \
  3143. *(__PTR) = __data; \
  3144. return ret; \
  3145. }
  3146. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3147. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3148. UINT_MAX, 1);
  3149. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3150. UINT_MAX, 1);
  3151. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3152. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3153. UINT_MAX, 0);
  3154. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3155. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3156. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3157. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3158. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3159. UINT_MAX, 0);
  3160. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3161. #undef STORE_FUNCTION
  3162. #define CFQ_ATTR(name) \
  3163. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3164. static struct elv_fs_entry cfq_attrs[] = {
  3165. CFQ_ATTR(quantum),
  3166. CFQ_ATTR(fifo_expire_sync),
  3167. CFQ_ATTR(fifo_expire_async),
  3168. CFQ_ATTR(back_seek_max),
  3169. CFQ_ATTR(back_seek_penalty),
  3170. CFQ_ATTR(slice_sync),
  3171. CFQ_ATTR(slice_async),
  3172. CFQ_ATTR(slice_async_rq),
  3173. CFQ_ATTR(slice_idle),
  3174. CFQ_ATTR(group_idle),
  3175. CFQ_ATTR(low_latency),
  3176. __ATTR_NULL
  3177. };
  3178. static struct elevator_type iosched_cfq = {
  3179. .ops = {
  3180. .elevator_merge_fn = cfq_merge,
  3181. .elevator_merged_fn = cfq_merged_request,
  3182. .elevator_merge_req_fn = cfq_merged_requests,
  3183. .elevator_allow_merge_fn = cfq_allow_merge,
  3184. .elevator_bio_merged_fn = cfq_bio_merged,
  3185. .elevator_dispatch_fn = cfq_dispatch_requests,
  3186. .elevator_add_req_fn = cfq_insert_request,
  3187. .elevator_activate_req_fn = cfq_activate_request,
  3188. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3189. .elevator_completed_req_fn = cfq_completed_request,
  3190. .elevator_former_req_fn = elv_rb_former_request,
  3191. .elevator_latter_req_fn = elv_rb_latter_request,
  3192. .elevator_init_icq_fn = cfq_init_icq,
  3193. .elevator_exit_icq_fn = cfq_exit_icq,
  3194. .elevator_set_req_fn = cfq_set_request,
  3195. .elevator_put_req_fn = cfq_put_request,
  3196. .elevator_may_queue_fn = cfq_may_queue,
  3197. .elevator_init_fn = cfq_init_queue,
  3198. .elevator_exit_fn = cfq_exit_queue,
  3199. },
  3200. .icq_size = sizeof(struct cfq_io_cq),
  3201. .icq_align = __alignof__(struct cfq_io_cq),
  3202. .elevator_attrs = cfq_attrs,
  3203. .elevator_name = "cfq",
  3204. .elevator_owner = THIS_MODULE,
  3205. };
  3206. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3207. static struct blkio_policy_type blkio_policy_cfq = {
  3208. .ops = {
  3209. .blkio_init_group_fn = cfq_init_blkio_group,
  3210. .blkio_link_group_fn = cfq_link_blkio_group,
  3211. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3212. .blkio_clear_queue_fn = cfq_clear_queue,
  3213. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3214. },
  3215. .plid = BLKIO_POLICY_PROP,
  3216. .pdata_size = sizeof(struct cfq_group),
  3217. };
  3218. #endif
  3219. static int __init cfq_init(void)
  3220. {
  3221. int ret;
  3222. /*
  3223. * could be 0 on HZ < 1000 setups
  3224. */
  3225. if (!cfq_slice_async)
  3226. cfq_slice_async = 1;
  3227. if (!cfq_slice_idle)
  3228. cfq_slice_idle = 1;
  3229. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3230. if (!cfq_group_idle)
  3231. cfq_group_idle = 1;
  3232. #else
  3233. cfq_group_idle = 0;
  3234. #endif
  3235. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3236. if (!cfq_pool)
  3237. return -ENOMEM;
  3238. ret = elv_register(&iosched_cfq);
  3239. if (ret) {
  3240. kmem_cache_destroy(cfq_pool);
  3241. return ret;
  3242. }
  3243. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3244. blkio_policy_register(&blkio_policy_cfq);
  3245. #endif
  3246. return 0;
  3247. }
  3248. static void __exit cfq_exit(void)
  3249. {
  3250. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3251. blkio_policy_unregister(&blkio_policy_cfq);
  3252. #endif
  3253. elv_unregister(&iosched_cfq);
  3254. kmem_cache_destroy(cfq_pool);
  3255. }
  3256. module_init(cfq_init);
  3257. module_exit(cfq_exit);
  3258. MODULE_AUTHOR("Jens Axboe");
  3259. MODULE_LICENSE("GPL");
  3260. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");