mmu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/mach-types.h>
  18. #include <asm/setup.h>
  19. #include <asm/sizes.h>
  20. #include <asm/tlb.h>
  21. #include <asm/mach/arch.h>
  22. #include <asm/mach/map.h>
  23. #include "mm.h"
  24. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  25. extern void _stext, _etext, __data_start, _end;
  26. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  27. /*
  28. * empty_zero_page is a special page that is used for
  29. * zero-initialized data and COW.
  30. */
  31. struct page *empty_zero_page;
  32. EXPORT_SYMBOL(empty_zero_page);
  33. /*
  34. * The pmd table for the upper-most set of pages.
  35. */
  36. pmd_t *top_pmd;
  37. #define CPOLICY_UNCACHED 0
  38. #define CPOLICY_BUFFERED 1
  39. #define CPOLICY_WRITETHROUGH 2
  40. #define CPOLICY_WRITEBACK 3
  41. #define CPOLICY_WRITEALLOC 4
  42. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  43. static unsigned int ecc_mask __initdata = 0;
  44. pgprot_t pgprot_user;
  45. pgprot_t pgprot_kernel;
  46. EXPORT_SYMBOL(pgprot_user);
  47. EXPORT_SYMBOL(pgprot_kernel);
  48. struct cachepolicy {
  49. const char policy[16];
  50. unsigned int cr_mask;
  51. unsigned int pmd;
  52. unsigned int pte;
  53. };
  54. static struct cachepolicy cache_policies[] __initdata = {
  55. {
  56. .policy = "uncached",
  57. .cr_mask = CR_W|CR_C,
  58. .pmd = PMD_SECT_UNCACHED,
  59. .pte = 0,
  60. }, {
  61. .policy = "buffered",
  62. .cr_mask = CR_C,
  63. .pmd = PMD_SECT_BUFFERED,
  64. .pte = PTE_BUFFERABLE,
  65. }, {
  66. .policy = "writethrough",
  67. .cr_mask = 0,
  68. .pmd = PMD_SECT_WT,
  69. .pte = PTE_CACHEABLE,
  70. }, {
  71. .policy = "writeback",
  72. .cr_mask = 0,
  73. .pmd = PMD_SECT_WB,
  74. .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
  75. }, {
  76. .policy = "writealloc",
  77. .cr_mask = 0,
  78. .pmd = PMD_SECT_WBWA,
  79. .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
  80. }
  81. };
  82. /*
  83. * These are useful for identifying cache coherency
  84. * problems by allowing the cache or the cache and
  85. * writebuffer to be turned off. (Note: the write
  86. * buffer should not be on and the cache off).
  87. */
  88. static void __init early_cachepolicy(char **p)
  89. {
  90. int i;
  91. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  92. int len = strlen(cache_policies[i].policy);
  93. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  94. cachepolicy = i;
  95. cr_alignment &= ~cache_policies[i].cr_mask;
  96. cr_no_alignment &= ~cache_policies[i].cr_mask;
  97. *p += len;
  98. break;
  99. }
  100. }
  101. if (i == ARRAY_SIZE(cache_policies))
  102. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  103. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  104. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  105. cachepolicy = CPOLICY_WRITEBACK;
  106. }
  107. flush_cache_all();
  108. set_cr(cr_alignment);
  109. }
  110. __early_param("cachepolicy=", early_cachepolicy);
  111. static void __init early_nocache(char **__unused)
  112. {
  113. char *p = "buffered";
  114. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  115. early_cachepolicy(&p);
  116. }
  117. __early_param("nocache", early_nocache);
  118. static void __init early_nowrite(char **__unused)
  119. {
  120. char *p = "uncached";
  121. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  122. early_cachepolicy(&p);
  123. }
  124. __early_param("nowb", early_nowrite);
  125. static void __init early_ecc(char **p)
  126. {
  127. if (memcmp(*p, "on", 2) == 0) {
  128. ecc_mask = PMD_PROTECTION;
  129. *p += 2;
  130. } else if (memcmp(*p, "off", 3) == 0) {
  131. ecc_mask = 0;
  132. *p += 3;
  133. }
  134. }
  135. __early_param("ecc=", early_ecc);
  136. static int __init noalign_setup(char *__unused)
  137. {
  138. cr_alignment &= ~CR_A;
  139. cr_no_alignment &= ~CR_A;
  140. set_cr(cr_alignment);
  141. return 1;
  142. }
  143. __setup("noalign", noalign_setup);
  144. #ifndef CONFIG_SMP
  145. void adjust_cr(unsigned long mask, unsigned long set)
  146. {
  147. unsigned long flags;
  148. mask &= ~CR_A;
  149. set &= mask;
  150. local_irq_save(flags);
  151. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  152. cr_alignment = (cr_alignment & ~mask) | set;
  153. set_cr((get_cr() & ~mask) | set);
  154. local_irq_restore(flags);
  155. }
  156. #endif
  157. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  158. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
  159. static struct mem_type mem_types[] = {
  160. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  161. .prot_pte = PROT_PTE_DEVICE,
  162. .prot_l1 = PMD_TYPE_TABLE,
  163. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
  164. .domain = DOMAIN_IO,
  165. },
  166. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  167. .prot_pte = PROT_PTE_DEVICE,
  168. .prot_pte_ext = PTE_EXT_TEX(2),
  169. .prot_l1 = PMD_TYPE_TABLE,
  170. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
  171. .domain = DOMAIN_IO,
  172. },
  173. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  174. .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
  175. .prot_l1 = PMD_TYPE_TABLE,
  176. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  177. .domain = DOMAIN_IO,
  178. },
  179. [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */
  180. .prot_pte = PROT_PTE_DEVICE,
  181. .prot_l1 = PMD_TYPE_TABLE,
  182. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
  183. PMD_SECT_TEX(1),
  184. .domain = DOMAIN_IO,
  185. },
  186. [MT_DEVICE_WC] = { /* ioremap_wc */
  187. .prot_pte = PROT_PTE_DEVICE,
  188. .prot_l1 = PMD_TYPE_TABLE,
  189. .prot_sect = PROT_SECT_DEVICE,
  190. .domain = DOMAIN_IO,
  191. },
  192. [MT_CACHECLEAN] = {
  193. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  194. .domain = DOMAIN_KERNEL,
  195. },
  196. [MT_MINICLEAN] = {
  197. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  198. .domain = DOMAIN_KERNEL,
  199. },
  200. [MT_LOW_VECTORS] = {
  201. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  202. L_PTE_EXEC,
  203. .prot_l1 = PMD_TYPE_TABLE,
  204. .domain = DOMAIN_USER,
  205. },
  206. [MT_HIGH_VECTORS] = {
  207. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  208. L_PTE_USER | L_PTE_EXEC,
  209. .prot_l1 = PMD_TYPE_TABLE,
  210. .domain = DOMAIN_USER,
  211. },
  212. [MT_MEMORY] = {
  213. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  214. .domain = DOMAIN_KERNEL,
  215. },
  216. [MT_ROM] = {
  217. .prot_sect = PMD_TYPE_SECT,
  218. .domain = DOMAIN_KERNEL,
  219. },
  220. };
  221. const struct mem_type *get_mem_type(unsigned int type)
  222. {
  223. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  224. }
  225. /*
  226. * Adjust the PMD section entries according to the CPU in use.
  227. */
  228. static void __init build_mem_type_table(void)
  229. {
  230. struct cachepolicy *cp;
  231. unsigned int cr = get_cr();
  232. unsigned int user_pgprot, kern_pgprot;
  233. int cpu_arch = cpu_architecture();
  234. int i;
  235. if (cpu_arch < CPU_ARCH_ARMv6) {
  236. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  237. if (cachepolicy > CPOLICY_BUFFERED)
  238. cachepolicy = CPOLICY_BUFFERED;
  239. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  240. if (cachepolicy > CPOLICY_WRITETHROUGH)
  241. cachepolicy = CPOLICY_WRITETHROUGH;
  242. #endif
  243. }
  244. if (cpu_arch < CPU_ARCH_ARMv5) {
  245. if (cachepolicy >= CPOLICY_WRITEALLOC)
  246. cachepolicy = CPOLICY_WRITEBACK;
  247. ecc_mask = 0;
  248. }
  249. /*
  250. * On non-Xscale3 ARMv5-and-older systems, use CB=01
  251. * (Uncached/Buffered) for ioremap_wc() mappings. On XScale3
  252. * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
  253. * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
  254. */
  255. if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
  256. mem_types[MT_DEVICE_WC].prot_pte_ext |= PTE_EXT_TEX(1);
  257. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  258. } else {
  259. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_BUFFERABLE;
  260. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  261. }
  262. /*
  263. * ARMv5 and lower, bit 4 must be set for page tables.
  264. * (was: cache "update-able on write" bit on ARM610)
  265. * However, Xscale cores require this bit to be cleared.
  266. */
  267. if (cpu_is_xscale()) {
  268. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  269. mem_types[i].prot_sect &= ~PMD_BIT4;
  270. mem_types[i].prot_l1 &= ~PMD_BIT4;
  271. }
  272. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  273. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  274. if (mem_types[i].prot_l1)
  275. mem_types[i].prot_l1 |= PMD_BIT4;
  276. if (mem_types[i].prot_sect)
  277. mem_types[i].prot_sect |= PMD_BIT4;
  278. }
  279. }
  280. cp = &cache_policies[cachepolicy];
  281. kern_pgprot = user_pgprot = cp->pte;
  282. /*
  283. * Enable CPU-specific coherency if supported.
  284. * (Only available on XSC3 at the moment.)
  285. */
  286. if (arch_is_coherent()) {
  287. if (cpu_is_xsc3()) {
  288. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  289. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  290. }
  291. }
  292. /*
  293. * ARMv6 and above have extended page tables.
  294. */
  295. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  296. /*
  297. * Mark cache clean areas and XIP ROM read only
  298. * from SVC mode and no access from userspace.
  299. */
  300. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  301. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  302. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  303. /*
  304. * Mark the device area as "shared device"
  305. */
  306. mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
  307. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  308. #ifdef CONFIG_SMP
  309. /*
  310. * Mark memory with the "shared" attribute for SMP systems
  311. */
  312. user_pgprot |= L_PTE_SHARED;
  313. kern_pgprot |= L_PTE_SHARED;
  314. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  315. #endif
  316. }
  317. for (i = 0; i < 16; i++) {
  318. unsigned long v = pgprot_val(protection_map[i]);
  319. v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
  320. protection_map[i] = __pgprot(v);
  321. }
  322. mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
  323. mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
  324. if (cpu_arch >= CPU_ARCH_ARMv5) {
  325. #ifndef CONFIG_SMP
  326. /*
  327. * Only use write-through for non-SMP systems
  328. */
  329. mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
  330. mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
  331. #endif
  332. } else {
  333. mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
  334. }
  335. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  336. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  337. L_PTE_DIRTY | L_PTE_WRITE |
  338. L_PTE_EXEC | kern_pgprot);
  339. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  340. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  341. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  342. mem_types[MT_ROM].prot_sect |= cp->pmd;
  343. switch (cp->pmd) {
  344. case PMD_SECT_WT:
  345. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  346. break;
  347. case PMD_SECT_WB:
  348. case PMD_SECT_WBWA:
  349. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  350. break;
  351. }
  352. printk("Memory policy: ECC %sabled, Data cache %s\n",
  353. ecc_mask ? "en" : "dis", cp->policy);
  354. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  355. struct mem_type *t = &mem_types[i];
  356. if (t->prot_l1)
  357. t->prot_l1 |= PMD_DOMAIN(t->domain);
  358. if (t->prot_sect)
  359. t->prot_sect |= PMD_DOMAIN(t->domain);
  360. }
  361. }
  362. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  363. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  364. unsigned long end, unsigned long pfn,
  365. const struct mem_type *type)
  366. {
  367. pte_t *pte;
  368. if (pmd_none(*pmd)) {
  369. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  370. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  371. }
  372. pte = pte_offset_kernel(pmd, addr);
  373. do {
  374. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
  375. type->prot_pte_ext);
  376. pfn++;
  377. } while (pte++, addr += PAGE_SIZE, addr != end);
  378. }
  379. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  380. unsigned long end, unsigned long phys,
  381. const struct mem_type *type)
  382. {
  383. pmd_t *pmd = pmd_offset(pgd, addr);
  384. /*
  385. * Try a section mapping - end, addr and phys must all be aligned
  386. * to a section boundary. Note that PMDs refer to the individual
  387. * L1 entries, whereas PGDs refer to a group of L1 entries making
  388. * up one logical pointer to an L2 table.
  389. */
  390. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  391. pmd_t *p = pmd;
  392. if (addr & SECTION_SIZE)
  393. pmd++;
  394. do {
  395. *pmd = __pmd(phys | type->prot_sect);
  396. phys += SECTION_SIZE;
  397. } while (pmd++, addr += SECTION_SIZE, addr != end);
  398. flush_pmd_entry(p);
  399. } else {
  400. /*
  401. * No need to loop; pte's aren't interested in the
  402. * individual L1 entries.
  403. */
  404. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  405. }
  406. }
  407. static void __init create_36bit_mapping(struct map_desc *md,
  408. const struct mem_type *type)
  409. {
  410. unsigned long phys, addr, length, end;
  411. pgd_t *pgd;
  412. addr = md->virtual;
  413. phys = (unsigned long)__pfn_to_phys(md->pfn);
  414. length = PAGE_ALIGN(md->length);
  415. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  416. printk(KERN_ERR "MM: CPU does not support supersection "
  417. "mapping for 0x%08llx at 0x%08lx\n",
  418. __pfn_to_phys((u64)md->pfn), addr);
  419. return;
  420. }
  421. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  422. * Since domain assignments can in fact be arbitrary, the
  423. * 'domain == 0' check below is required to insure that ARMv6
  424. * supersections are only allocated for domain 0 regardless
  425. * of the actual domain assignments in use.
  426. */
  427. if (type->domain) {
  428. printk(KERN_ERR "MM: invalid domain in supersection "
  429. "mapping for 0x%08llx at 0x%08lx\n",
  430. __pfn_to_phys((u64)md->pfn), addr);
  431. return;
  432. }
  433. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  434. printk(KERN_ERR "MM: cannot create mapping for "
  435. "0x%08llx at 0x%08lx invalid alignment\n",
  436. __pfn_to_phys((u64)md->pfn), addr);
  437. return;
  438. }
  439. /*
  440. * Shift bits [35:32] of address into bits [23:20] of PMD
  441. * (See ARMv6 spec).
  442. */
  443. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  444. pgd = pgd_offset_k(addr);
  445. end = addr + length;
  446. do {
  447. pmd_t *pmd = pmd_offset(pgd, addr);
  448. int i;
  449. for (i = 0; i < 16; i++)
  450. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  451. addr += SUPERSECTION_SIZE;
  452. phys += SUPERSECTION_SIZE;
  453. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  454. } while (addr != end);
  455. }
  456. /*
  457. * Create the page directory entries and any necessary
  458. * page tables for the mapping specified by `md'. We
  459. * are able to cope here with varying sizes and address
  460. * offsets, and we take full advantage of sections and
  461. * supersections.
  462. */
  463. void __init create_mapping(struct map_desc *md)
  464. {
  465. unsigned long phys, addr, length, end;
  466. const struct mem_type *type;
  467. pgd_t *pgd;
  468. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  469. printk(KERN_WARNING "BUG: not creating mapping for "
  470. "0x%08llx at 0x%08lx in user region\n",
  471. __pfn_to_phys((u64)md->pfn), md->virtual);
  472. return;
  473. }
  474. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  475. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  476. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  477. "overlaps vmalloc space\n",
  478. __pfn_to_phys((u64)md->pfn), md->virtual);
  479. }
  480. type = &mem_types[md->type];
  481. /*
  482. * Catch 36-bit addresses
  483. */
  484. if (md->pfn >= 0x100000) {
  485. create_36bit_mapping(md, type);
  486. return;
  487. }
  488. addr = md->virtual & PAGE_MASK;
  489. phys = (unsigned long)__pfn_to_phys(md->pfn);
  490. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  491. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  492. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  493. "be mapped using pages, ignoring.\n",
  494. __pfn_to_phys(md->pfn), addr);
  495. return;
  496. }
  497. pgd = pgd_offset_k(addr);
  498. end = addr + length;
  499. do {
  500. unsigned long next = pgd_addr_end(addr, end);
  501. alloc_init_section(pgd, addr, next, phys, type);
  502. phys += next - addr;
  503. addr = next;
  504. } while (pgd++, addr != end);
  505. }
  506. /*
  507. * Create the architecture specific mappings
  508. */
  509. void __init iotable_init(struct map_desc *io_desc, int nr)
  510. {
  511. int i;
  512. for (i = 0; i < nr; i++)
  513. create_mapping(io_desc + i);
  514. }
  515. static int __init check_membank_valid(struct membank *mb)
  516. {
  517. /*
  518. * Check whether this memory region has non-zero size.
  519. */
  520. if (mb->size == 0)
  521. return 0;
  522. /*
  523. * Check whether this memory region would entirely overlap
  524. * the vmalloc area.
  525. */
  526. if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
  527. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  528. "(vmalloc region overlap).\n",
  529. mb->start, mb->start + mb->size - 1);
  530. return 0;
  531. }
  532. /*
  533. * Check whether this memory region would partially overlap
  534. * the vmalloc area.
  535. */
  536. if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
  537. phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
  538. unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
  539. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  540. "to -%.8lx (vmalloc region overlap).\n",
  541. mb->start, mb->start + mb->size - 1,
  542. mb->start + newsize - 1);
  543. mb->size = newsize;
  544. }
  545. return 1;
  546. }
  547. static void __init sanity_check_meminfo(struct meminfo *mi)
  548. {
  549. int i;
  550. int j;
  551. for (i = 0, j = 0; i < mi->nr_banks; i++) {
  552. if (check_membank_valid(&mi->bank[i]))
  553. mi->bank[j++] = mi->bank[i];
  554. }
  555. mi->nr_banks = j;
  556. }
  557. static inline void prepare_page_table(struct meminfo *mi)
  558. {
  559. unsigned long addr;
  560. /*
  561. * Clear out all the mappings below the kernel image.
  562. */
  563. for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
  564. pmd_clear(pmd_off_k(addr));
  565. #ifdef CONFIG_XIP_KERNEL
  566. /* The XIP kernel is mapped in the module area -- skip over it */
  567. addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  568. #endif
  569. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  570. pmd_clear(pmd_off_k(addr));
  571. /*
  572. * Clear out all the kernel space mappings, except for the first
  573. * memory bank, up to the end of the vmalloc region.
  574. */
  575. for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
  576. addr < VMALLOC_END; addr += PGDIR_SIZE)
  577. pmd_clear(pmd_off_k(addr));
  578. }
  579. /*
  580. * Reserve the various regions of node 0
  581. */
  582. void __init reserve_node_zero(pg_data_t *pgdat)
  583. {
  584. unsigned long res_size = 0;
  585. /*
  586. * Register the kernel text and data with bootmem.
  587. * Note that this can only be in node 0.
  588. */
  589. #ifdef CONFIG_XIP_KERNEL
  590. reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
  591. BOOTMEM_DEFAULT);
  592. #else
  593. reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
  594. BOOTMEM_DEFAULT);
  595. #endif
  596. /*
  597. * Reserve the page tables. These are already in use,
  598. * and can only be in node 0.
  599. */
  600. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  601. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  602. /*
  603. * Hmm... This should go elsewhere, but we really really need to
  604. * stop things allocating the low memory; ideally we need a better
  605. * implementation of GFP_DMA which does not assume that DMA-able
  606. * memory starts at zero.
  607. */
  608. if (machine_is_integrator() || machine_is_cintegrator())
  609. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  610. /*
  611. * These should likewise go elsewhere. They pre-reserve the
  612. * screen memory region at the start of main system memory.
  613. */
  614. if (machine_is_edb7211())
  615. res_size = 0x00020000;
  616. if (machine_is_p720t())
  617. res_size = 0x00014000;
  618. /* H1940 and RX3715 need to reserve this for suspend */
  619. if (machine_is_h1940() || machine_is_rx3715()) {
  620. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  621. BOOTMEM_DEFAULT);
  622. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  623. BOOTMEM_DEFAULT);
  624. }
  625. #ifdef CONFIG_SA1111
  626. /*
  627. * Because of the SA1111 DMA bug, we want to preserve our
  628. * precious DMA-able memory...
  629. */
  630. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  631. #endif
  632. if (res_size)
  633. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  634. BOOTMEM_DEFAULT);
  635. }
  636. /*
  637. * Set up device the mappings. Since we clear out the page tables for all
  638. * mappings above VMALLOC_END, we will remove any debug device mappings.
  639. * This means you have to be careful how you debug this function, or any
  640. * called function. This means you can't use any function or debugging
  641. * method which may touch any device, otherwise the kernel _will_ crash.
  642. */
  643. static void __init devicemaps_init(struct machine_desc *mdesc)
  644. {
  645. struct map_desc map;
  646. unsigned long addr;
  647. void *vectors;
  648. /*
  649. * Allocate the vector page early.
  650. */
  651. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  652. BUG_ON(!vectors);
  653. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  654. pmd_clear(pmd_off_k(addr));
  655. /*
  656. * Map the kernel if it is XIP.
  657. * It is always first in the modulearea.
  658. */
  659. #ifdef CONFIG_XIP_KERNEL
  660. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  661. map.virtual = MODULE_START;
  662. map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  663. map.type = MT_ROM;
  664. create_mapping(&map);
  665. #endif
  666. /*
  667. * Map the cache flushing regions.
  668. */
  669. #ifdef FLUSH_BASE
  670. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  671. map.virtual = FLUSH_BASE;
  672. map.length = SZ_1M;
  673. map.type = MT_CACHECLEAN;
  674. create_mapping(&map);
  675. #endif
  676. #ifdef FLUSH_BASE_MINICACHE
  677. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  678. map.virtual = FLUSH_BASE_MINICACHE;
  679. map.length = SZ_1M;
  680. map.type = MT_MINICLEAN;
  681. create_mapping(&map);
  682. #endif
  683. /*
  684. * Create a mapping for the machine vectors at the high-vectors
  685. * location (0xffff0000). If we aren't using high-vectors, also
  686. * create a mapping at the low-vectors virtual address.
  687. */
  688. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  689. map.virtual = 0xffff0000;
  690. map.length = PAGE_SIZE;
  691. map.type = MT_HIGH_VECTORS;
  692. create_mapping(&map);
  693. if (!vectors_high()) {
  694. map.virtual = 0;
  695. map.type = MT_LOW_VECTORS;
  696. create_mapping(&map);
  697. }
  698. /*
  699. * Ask the machine support to map in the statically mapped devices.
  700. */
  701. if (mdesc->map_io)
  702. mdesc->map_io();
  703. /*
  704. * Finally flush the caches and tlb to ensure that we're in a
  705. * consistent state wrt the writebuffer. This also ensures that
  706. * any write-allocated cache lines in the vector page are written
  707. * back. After this point, we can start to touch devices again.
  708. */
  709. local_flush_tlb_all();
  710. flush_cache_all();
  711. }
  712. /*
  713. * paging_init() sets up the page tables, initialises the zone memory
  714. * maps, and sets up the zero page, bad page and bad page tables.
  715. */
  716. void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
  717. {
  718. void *zero_page;
  719. build_mem_type_table();
  720. sanity_check_meminfo(mi);
  721. prepare_page_table(mi);
  722. bootmem_init(mi);
  723. devicemaps_init(mdesc);
  724. top_pmd = pmd_off_k(0xffff0000);
  725. /*
  726. * allocate the zero page. Note that we count on this going ok.
  727. */
  728. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  729. memzero(zero_page, PAGE_SIZE);
  730. empty_zero_page = virt_to_page(zero_page);
  731. flush_dcache_page(empty_zero_page);
  732. }
  733. /*
  734. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  735. * the user-mode pages. This will then ensure that we have predictable
  736. * results when turning the mmu off
  737. */
  738. void setup_mm_for_reboot(char mode)
  739. {
  740. unsigned long base_pmdval;
  741. pgd_t *pgd;
  742. int i;
  743. if (current->mm && current->mm->pgd)
  744. pgd = current->mm->pgd;
  745. else
  746. pgd = init_mm.pgd;
  747. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  748. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  749. base_pmdval |= PMD_BIT4;
  750. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  751. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  752. pmd_t *pmd;
  753. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  754. pmd[0] = __pmd(pmdval);
  755. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  756. flush_pmd_entry(pmd);
  757. }
  758. }