sonic.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * sonic.c
  3. *
  4. * (C) 2005 Finn Thain
  5. *
  6. * Converted to DMA API, added zero-copy buffer handling, and
  7. * (from the mac68k project) introduced dhd's support for 16-bit cards.
  8. *
  9. * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
  10. *
  11. * This driver is based on work from Andreas Busse, but most of
  12. * the code is rewritten.
  13. *
  14. * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
  15. *
  16. * Core code included by system sonic drivers
  17. *
  18. * And... partially rewritten again by David Huggins-Daines in order
  19. * to cope with screwed up Macintosh NICs that may or may not use
  20. * 16-bit DMA.
  21. *
  22. * (C) 1999 David Huggins-Daines <dhd@debian.org>
  23. *
  24. */
  25. /*
  26. * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
  27. * National Semiconductors data sheet for the DP83932B Sonic Ethernet
  28. * controller, and the files "8390.c" and "skeleton.c" in this directory.
  29. *
  30. * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
  31. * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
  32. * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
  33. */
  34. /*
  35. * Open/initialize the SONIC controller.
  36. *
  37. * This routine should set everything up anew at each open, even
  38. * registers that "should" only need to be set once at boot, so that
  39. * there is non-reboot way to recover if something goes wrong.
  40. */
  41. static int sonic_open(struct net_device *dev)
  42. {
  43. struct sonic_local *lp = netdev_priv(dev);
  44. int i;
  45. if (sonic_debug > 2)
  46. printk("sonic_open: initializing sonic driver.\n");
  47. /*
  48. * We don't need to deal with auto-irq stuff since we
  49. * hardwire the sonic interrupt.
  50. */
  51. /*
  52. * XXX Horrible work around: We install sonic_interrupt as fast interrupt.
  53. * This means that during execution of the handler interrupt are disabled
  54. * covering another bug otherwise corrupting data. This doesn't mean
  55. * this glue works ok under all situations.
  56. *
  57. * Note (dhd): this also appears to prevent lockups on the Macintrash
  58. * when more than one Ethernet card is installed (knock on wood)
  59. *
  60. * Note (fthain): whether the above is still true is anyones guess. Certainly
  61. * the buffer handling algorithms will not tolerate re-entrance without some
  62. * mutual exclusion added. Anyway, the memcpy has now been eliminated from the
  63. * rx code to make this a faster "fast interrupt".
  64. */
  65. if (request_irq(dev->irq, &sonic_interrupt, SONIC_IRQ_FLAG, "sonic", dev)) {
  66. printk(KERN_ERR "\n%s: unable to get IRQ %d .\n", dev->name, dev->irq);
  67. return -EAGAIN;
  68. }
  69. for (i = 0; i < SONIC_NUM_RRS; i++) {
  70. struct sk_buff *skb = dev_alloc_skb(SONIC_RBSIZE + 2);
  71. if (skb == NULL) {
  72. while(i > 0) { /* free any that were allocated successfully */
  73. i--;
  74. dev_kfree_skb(lp->rx_skb[i]);
  75. lp->rx_skb[i] = NULL;
  76. }
  77. printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
  78. dev->name);
  79. return -ENOMEM;
  80. }
  81. /* align IP header unless DMA requires otherwise */
  82. if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
  83. skb_reserve(skb, 2);
  84. lp->rx_skb[i] = skb;
  85. }
  86. for (i = 0; i < SONIC_NUM_RRS; i++) {
  87. dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
  88. SONIC_RBSIZE, DMA_FROM_DEVICE);
  89. if (!laddr) {
  90. while(i > 0) { /* free any that were mapped successfully */
  91. i--;
  92. dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
  93. lp->rx_laddr[i] = (dma_addr_t)0;
  94. }
  95. for (i = 0; i < SONIC_NUM_RRS; i++) {
  96. dev_kfree_skb(lp->rx_skb[i]);
  97. lp->rx_skb[i] = NULL;
  98. }
  99. printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
  100. dev->name);
  101. return -ENOMEM;
  102. }
  103. lp->rx_laddr[i] = laddr;
  104. }
  105. /*
  106. * Initialize the SONIC
  107. */
  108. sonic_init(dev);
  109. netif_start_queue(dev);
  110. if (sonic_debug > 2)
  111. printk("sonic_open: Initialization done.\n");
  112. return 0;
  113. }
  114. /*
  115. * Close the SONIC device
  116. */
  117. static int sonic_close(struct net_device *dev)
  118. {
  119. struct sonic_local *lp = netdev_priv(dev);
  120. int i;
  121. if (sonic_debug > 2)
  122. printk("sonic_close\n");
  123. netif_stop_queue(dev);
  124. /*
  125. * stop the SONIC, disable interrupts
  126. */
  127. SONIC_WRITE(SONIC_IMR, 0);
  128. SONIC_WRITE(SONIC_ISR, 0x7fff);
  129. SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
  130. /* unmap and free skbs that haven't been transmitted */
  131. for (i = 0; i < SONIC_NUM_TDS; i++) {
  132. if(lp->tx_laddr[i]) {
  133. dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
  134. lp->tx_laddr[i] = (dma_addr_t)0;
  135. }
  136. if(lp->tx_skb[i]) {
  137. dev_kfree_skb(lp->tx_skb[i]);
  138. lp->tx_skb[i] = NULL;
  139. }
  140. }
  141. /* unmap and free the receive buffers */
  142. for (i = 0; i < SONIC_NUM_RRS; i++) {
  143. if(lp->rx_laddr[i]) {
  144. dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
  145. lp->rx_laddr[i] = (dma_addr_t)0;
  146. }
  147. if(lp->rx_skb[i]) {
  148. dev_kfree_skb(lp->rx_skb[i]);
  149. lp->rx_skb[i] = NULL;
  150. }
  151. }
  152. free_irq(dev->irq, dev); /* release the IRQ */
  153. return 0;
  154. }
  155. static void sonic_tx_timeout(struct net_device *dev)
  156. {
  157. struct sonic_local *lp = netdev_priv(dev);
  158. int i;
  159. /* Stop the interrupts for this */
  160. SONIC_WRITE(SONIC_IMR, 0);
  161. /* We could resend the original skbs. Easier to re-initialise. */
  162. for (i = 0; i < SONIC_NUM_TDS; i++) {
  163. if(lp->tx_laddr[i]) {
  164. dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
  165. lp->tx_laddr[i] = (dma_addr_t)0;
  166. }
  167. if(lp->tx_skb[i]) {
  168. dev_kfree_skb(lp->tx_skb[i]);
  169. lp->tx_skb[i] = NULL;
  170. }
  171. }
  172. /* Try to restart the adaptor. */
  173. sonic_init(dev);
  174. lp->stats.tx_errors++;
  175. dev->trans_start = jiffies;
  176. netif_wake_queue(dev);
  177. }
  178. /*
  179. * transmit packet
  180. *
  181. * Appends new TD during transmission thus avoiding any TX interrupts
  182. * until we run out of TDs.
  183. * This routine interacts closely with the ISR in that it may,
  184. * set tx_skb[i]
  185. * reset the status flags of the new TD
  186. * set and reset EOL flags
  187. * stop the tx queue
  188. * The ISR interacts with this routine in various ways. It may,
  189. * reset tx_skb[i]
  190. * test the EOL and status flags of the TDs
  191. * wake the tx queue
  192. * Concurrently with all of this, the SONIC is potentially writing to
  193. * the status flags of the TDs.
  194. * Until some mutual exclusion is added, this code will not work with SMP. However,
  195. * MIPS Jazz machines and m68k Macs were all uni-processor machines.
  196. */
  197. static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
  198. {
  199. struct sonic_local *lp = netdev_priv(dev);
  200. dma_addr_t laddr;
  201. int length;
  202. int entry = lp->next_tx;
  203. if (sonic_debug > 2)
  204. printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev);
  205. length = skb->len;
  206. if (length < ETH_ZLEN) {
  207. if (skb_padto(skb, ETH_ZLEN))
  208. return 0;
  209. length = ETH_ZLEN;
  210. }
  211. /*
  212. * Map the packet data into the logical DMA address space
  213. */
  214. laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
  215. if (!laddr) {
  216. printk(KERN_ERR "%s: failed to map tx DMA buffer.\n", dev->name);
  217. dev_kfree_skb(skb);
  218. return 1;
  219. }
  220. sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
  221. sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
  222. sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
  223. sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
  224. sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
  225. sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
  226. sonic_tda_put(dev, entry, SONIC_TD_LINK,
  227. sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
  228. /*
  229. * Must set tx_skb[entry] only after clearing status, and
  230. * before clearing EOL and before stopping queue
  231. */
  232. wmb();
  233. lp->tx_len[entry] = length;
  234. lp->tx_laddr[entry] = laddr;
  235. lp->tx_skb[entry] = skb;
  236. wmb();
  237. sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
  238. sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
  239. lp->eol_tx = entry;
  240. lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
  241. if (lp->tx_skb[lp->next_tx] != NULL) {
  242. /* The ring is full, the ISR has yet to process the next TD. */
  243. if (sonic_debug > 3)
  244. printk("%s: stopping queue\n", dev->name);
  245. netif_stop_queue(dev);
  246. /* after this packet, wait for ISR to free up some TDAs */
  247. } else netif_start_queue(dev);
  248. if (sonic_debug > 2)
  249. printk("sonic_send_packet: issuing Tx command\n");
  250. SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
  251. dev->trans_start = jiffies;
  252. return 0;
  253. }
  254. /*
  255. * The typical workload of the driver:
  256. * Handle the network interface interrupts.
  257. */
  258. static irqreturn_t sonic_interrupt(int irq, void *dev_id)
  259. {
  260. struct net_device *dev = dev_id;
  261. struct sonic_local *lp = netdev_priv(dev);
  262. int status;
  263. if (!(status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT))
  264. return IRQ_NONE;
  265. do {
  266. if (status & SONIC_INT_PKTRX) {
  267. if (sonic_debug > 2)
  268. printk("%s: packet rx\n", dev->name);
  269. sonic_rx(dev); /* got packet(s) */
  270. SONIC_WRITE(SONIC_ISR, SONIC_INT_PKTRX); /* clear the interrupt */
  271. }
  272. if (status & SONIC_INT_TXDN) {
  273. int entry = lp->cur_tx;
  274. int td_status;
  275. int freed_some = 0;
  276. /* At this point, cur_tx is the index of a TD that is one of:
  277. * unallocated/freed (status set & tx_skb[entry] clear)
  278. * allocated and sent (status set & tx_skb[entry] set )
  279. * allocated and not yet sent (status clear & tx_skb[entry] set )
  280. * still being allocated by sonic_send_packet (status clear & tx_skb[entry] clear)
  281. */
  282. if (sonic_debug > 2)
  283. printk("%s: tx done\n", dev->name);
  284. while (lp->tx_skb[entry] != NULL) {
  285. if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
  286. break;
  287. if (td_status & 0x0001) {
  288. lp->stats.tx_packets++;
  289. lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
  290. } else {
  291. lp->stats.tx_errors++;
  292. if (td_status & 0x0642)
  293. lp->stats.tx_aborted_errors++;
  294. if (td_status & 0x0180)
  295. lp->stats.tx_carrier_errors++;
  296. if (td_status & 0x0020)
  297. lp->stats.tx_window_errors++;
  298. if (td_status & 0x0004)
  299. lp->stats.tx_fifo_errors++;
  300. }
  301. /* We must free the original skb */
  302. dev_kfree_skb_irq(lp->tx_skb[entry]);
  303. lp->tx_skb[entry] = NULL;
  304. /* and unmap DMA buffer */
  305. dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
  306. lp->tx_laddr[entry] = (dma_addr_t)0;
  307. freed_some = 1;
  308. if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
  309. entry = (entry + 1) & SONIC_TDS_MASK;
  310. break;
  311. }
  312. entry = (entry + 1) & SONIC_TDS_MASK;
  313. }
  314. if (freed_some || lp->tx_skb[entry] == NULL)
  315. netif_wake_queue(dev); /* The ring is no longer full */
  316. lp->cur_tx = entry;
  317. SONIC_WRITE(SONIC_ISR, SONIC_INT_TXDN); /* clear the interrupt */
  318. }
  319. /*
  320. * check error conditions
  321. */
  322. if (status & SONIC_INT_RFO) {
  323. if (sonic_debug > 1)
  324. printk("%s: rx fifo overrun\n", dev->name);
  325. lp->stats.rx_fifo_errors++;
  326. SONIC_WRITE(SONIC_ISR, SONIC_INT_RFO); /* clear the interrupt */
  327. }
  328. if (status & SONIC_INT_RDE) {
  329. if (sonic_debug > 1)
  330. printk("%s: rx descriptors exhausted\n", dev->name);
  331. lp->stats.rx_dropped++;
  332. SONIC_WRITE(SONIC_ISR, SONIC_INT_RDE); /* clear the interrupt */
  333. }
  334. if (status & SONIC_INT_RBAE) {
  335. if (sonic_debug > 1)
  336. printk("%s: rx buffer area exceeded\n", dev->name);
  337. lp->stats.rx_dropped++;
  338. SONIC_WRITE(SONIC_ISR, SONIC_INT_RBAE); /* clear the interrupt */
  339. }
  340. /* counter overruns; all counters are 16bit wide */
  341. if (status & SONIC_INT_FAE) {
  342. lp->stats.rx_frame_errors += 65536;
  343. SONIC_WRITE(SONIC_ISR, SONIC_INT_FAE); /* clear the interrupt */
  344. }
  345. if (status & SONIC_INT_CRC) {
  346. lp->stats.rx_crc_errors += 65536;
  347. SONIC_WRITE(SONIC_ISR, SONIC_INT_CRC); /* clear the interrupt */
  348. }
  349. if (status & SONIC_INT_MP) {
  350. lp->stats.rx_missed_errors += 65536;
  351. SONIC_WRITE(SONIC_ISR, SONIC_INT_MP); /* clear the interrupt */
  352. }
  353. /* transmit error */
  354. if (status & SONIC_INT_TXER) {
  355. if ((SONIC_READ(SONIC_TCR) & SONIC_TCR_FU) && (sonic_debug > 2))
  356. printk(KERN_ERR "%s: tx fifo underrun\n", dev->name);
  357. SONIC_WRITE(SONIC_ISR, SONIC_INT_TXER); /* clear the interrupt */
  358. }
  359. /* bus retry */
  360. if (status & SONIC_INT_BR) {
  361. printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
  362. dev->name);
  363. /* ... to help debug DMA problems causing endless interrupts. */
  364. /* Bounce the eth interface to turn on the interrupt again. */
  365. SONIC_WRITE(SONIC_IMR, 0);
  366. SONIC_WRITE(SONIC_ISR, SONIC_INT_BR); /* clear the interrupt */
  367. }
  368. /* load CAM done */
  369. if (status & SONIC_INT_LCD)
  370. SONIC_WRITE(SONIC_ISR, SONIC_INT_LCD); /* clear the interrupt */
  371. } while((status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT));
  372. return IRQ_HANDLED;
  373. }
  374. /*
  375. * We have a good packet(s), pass it/them up the network stack.
  376. */
  377. static void sonic_rx(struct net_device *dev)
  378. {
  379. struct sonic_local *lp = netdev_priv(dev);
  380. int status;
  381. int entry = lp->cur_rx;
  382. while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
  383. struct sk_buff *used_skb;
  384. struct sk_buff *new_skb;
  385. dma_addr_t new_laddr;
  386. u16 bufadr_l;
  387. u16 bufadr_h;
  388. int pkt_len;
  389. status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
  390. if (status & SONIC_RCR_PRX) {
  391. /* Malloc up new buffer. */
  392. new_skb = dev_alloc_skb(SONIC_RBSIZE + 2);
  393. if (new_skb == NULL) {
  394. printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name);
  395. lp->stats.rx_dropped++;
  396. break;
  397. }
  398. /* provide 16 byte IP header alignment unless DMA requires otherwise */
  399. if(SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
  400. skb_reserve(new_skb, 2);
  401. new_laddr = dma_map_single(lp->device, skb_put(new_skb, SONIC_RBSIZE),
  402. SONIC_RBSIZE, DMA_FROM_DEVICE);
  403. if (!new_laddr) {
  404. dev_kfree_skb(new_skb);
  405. printk(KERN_ERR "%s: Failed to map rx buffer, dropping packet.\n", dev->name);
  406. lp->stats.rx_dropped++;
  407. break;
  408. }
  409. /* now we have a new skb to replace it, pass the used one up the stack */
  410. dma_unmap_single(lp->device, lp->rx_laddr[entry], SONIC_RBSIZE, DMA_FROM_DEVICE);
  411. used_skb = lp->rx_skb[entry];
  412. pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN);
  413. skb_trim(used_skb, pkt_len);
  414. used_skb->protocol = eth_type_trans(used_skb, dev);
  415. netif_rx(used_skb);
  416. dev->last_rx = jiffies;
  417. lp->stats.rx_packets++;
  418. lp->stats.rx_bytes += pkt_len;
  419. /* and insert the new skb */
  420. lp->rx_laddr[entry] = new_laddr;
  421. lp->rx_skb[entry] = new_skb;
  422. bufadr_l = (unsigned long)new_laddr & 0xffff;
  423. bufadr_h = (unsigned long)new_laddr >> 16;
  424. sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, bufadr_l);
  425. sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, bufadr_h);
  426. } else {
  427. /* This should only happen, if we enable accepting broken packets. */
  428. lp->stats.rx_errors++;
  429. if (status & SONIC_RCR_FAER)
  430. lp->stats.rx_frame_errors++;
  431. if (status & SONIC_RCR_CRCR)
  432. lp->stats.rx_crc_errors++;
  433. }
  434. if (status & SONIC_RCR_LPKT) {
  435. /*
  436. * this was the last packet out of the current receive buffer
  437. * give the buffer back to the SONIC
  438. */
  439. lp->cur_rwp += SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode);
  440. if (lp->cur_rwp >= lp->rra_end) lp->cur_rwp = lp->rra_laddr & 0xffff;
  441. SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
  442. if (SONIC_READ(SONIC_ISR) & SONIC_INT_RBE) {
  443. if (sonic_debug > 2)
  444. printk("%s: rx buffer exhausted\n", dev->name);
  445. SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); /* clear the flag */
  446. }
  447. } else
  448. printk(KERN_ERR "%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
  449. dev->name);
  450. /*
  451. * give back the descriptor
  452. */
  453. sonic_rda_put(dev, entry, SONIC_RD_LINK,
  454. sonic_rda_get(dev, entry, SONIC_RD_LINK) | SONIC_EOL);
  455. sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
  456. sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK,
  457. sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK) & ~SONIC_EOL);
  458. lp->eol_rx = entry;
  459. lp->cur_rx = entry = (entry + 1) & SONIC_RDS_MASK;
  460. }
  461. /*
  462. * If any worth-while packets have been received, netif_rx()
  463. * has done a mark_bh(NET_BH) for us and will work on them
  464. * when we get to the bottom-half routine.
  465. */
  466. }
  467. /*
  468. * Get the current statistics.
  469. * This may be called with the device open or closed.
  470. */
  471. static struct net_device_stats *sonic_get_stats(struct net_device *dev)
  472. {
  473. struct sonic_local *lp = netdev_priv(dev);
  474. /* read the tally counter from the SONIC and reset them */
  475. lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
  476. SONIC_WRITE(SONIC_CRCT, 0xffff);
  477. lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
  478. SONIC_WRITE(SONIC_FAET, 0xffff);
  479. lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
  480. SONIC_WRITE(SONIC_MPT, 0xffff);
  481. return &lp->stats;
  482. }
  483. /*
  484. * Set or clear the multicast filter for this adaptor.
  485. */
  486. static void sonic_multicast_list(struct net_device *dev)
  487. {
  488. struct sonic_local *lp = netdev_priv(dev);
  489. unsigned int rcr;
  490. struct dev_mc_list *dmi = dev->mc_list;
  491. unsigned char *addr;
  492. int i;
  493. rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
  494. rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
  495. if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
  496. rcr |= SONIC_RCR_PRO;
  497. } else {
  498. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
  499. rcr |= SONIC_RCR_AMC;
  500. } else {
  501. if (sonic_debug > 2)
  502. printk("sonic_multicast_list: mc_count %d\n", dev->mc_count);
  503. sonic_set_cam_enable(dev, 1); /* always enable our own address */
  504. for (i = 1; i <= dev->mc_count; i++) {
  505. addr = dmi->dmi_addr;
  506. dmi = dmi->next;
  507. sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
  508. sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
  509. sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
  510. sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
  511. }
  512. SONIC_WRITE(SONIC_CDC, 16);
  513. /* issue Load CAM command */
  514. SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
  515. SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
  516. }
  517. }
  518. if (sonic_debug > 2)
  519. printk("sonic_multicast_list: setting RCR=%x\n", rcr);
  520. SONIC_WRITE(SONIC_RCR, rcr);
  521. }
  522. /*
  523. * Initialize the SONIC ethernet controller.
  524. */
  525. static int sonic_init(struct net_device *dev)
  526. {
  527. unsigned int cmd;
  528. struct sonic_local *lp = netdev_priv(dev);
  529. int i;
  530. /*
  531. * put the Sonic into software-reset mode and
  532. * disable all interrupts
  533. */
  534. SONIC_WRITE(SONIC_IMR, 0);
  535. SONIC_WRITE(SONIC_ISR, 0x7fff);
  536. SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
  537. /*
  538. * clear software reset flag, disable receiver, clear and
  539. * enable interrupts, then completely initialize the SONIC
  540. */
  541. SONIC_WRITE(SONIC_CMD, 0);
  542. SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
  543. /*
  544. * initialize the receive resource area
  545. */
  546. if (sonic_debug > 2)
  547. printk("sonic_init: initialize receive resource area\n");
  548. for (i = 0; i < SONIC_NUM_RRS; i++) {
  549. u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
  550. u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
  551. sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
  552. sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
  553. sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
  554. sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
  555. }
  556. /* initialize all RRA registers */
  557. lp->rra_end = (lp->rra_laddr + SONIC_NUM_RRS * SIZEOF_SONIC_RR *
  558. SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
  559. lp->cur_rwp = (lp->rra_laddr + (SONIC_NUM_RRS - 1) * SIZEOF_SONIC_RR *
  560. SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
  561. SONIC_WRITE(SONIC_RSA, lp->rra_laddr & 0xffff);
  562. SONIC_WRITE(SONIC_REA, lp->rra_end);
  563. SONIC_WRITE(SONIC_RRP, lp->rra_laddr & 0xffff);
  564. SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
  565. SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
  566. SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
  567. /* load the resource pointers */
  568. if (sonic_debug > 3)
  569. printk("sonic_init: issuing RRRA command\n");
  570. SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
  571. i = 0;
  572. while (i++ < 100) {
  573. if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
  574. break;
  575. }
  576. if (sonic_debug > 2)
  577. printk("sonic_init: status=%x i=%d\n", SONIC_READ(SONIC_CMD), i);
  578. /*
  579. * Initialize the receive descriptors so that they
  580. * become a circular linked list, ie. let the last
  581. * descriptor point to the first again.
  582. */
  583. if (sonic_debug > 2)
  584. printk("sonic_init: initialize receive descriptors\n");
  585. for (i=0; i<SONIC_NUM_RDS; i++) {
  586. sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
  587. sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
  588. sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
  589. sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
  590. sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
  591. sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
  592. sonic_rda_put(dev, i, SONIC_RD_LINK,
  593. lp->rda_laddr +
  594. ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
  595. }
  596. /* fix last descriptor */
  597. sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
  598. (lp->rda_laddr & 0xffff) | SONIC_EOL);
  599. lp->eol_rx = SONIC_NUM_RDS - 1;
  600. lp->cur_rx = 0;
  601. SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
  602. SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
  603. /*
  604. * initialize transmit descriptors
  605. */
  606. if (sonic_debug > 2)
  607. printk("sonic_init: initialize transmit descriptors\n");
  608. for (i = 0; i < SONIC_NUM_TDS; i++) {
  609. sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
  610. sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
  611. sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
  612. sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
  613. sonic_tda_put(dev, i, SONIC_TD_LINK,
  614. (lp->tda_laddr & 0xffff) +
  615. (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
  616. lp->tx_skb[i] = NULL;
  617. }
  618. /* fix last descriptor */
  619. sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
  620. (lp->tda_laddr & 0xffff));
  621. SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
  622. SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
  623. lp->cur_tx = lp->next_tx = 0;
  624. lp->eol_tx = SONIC_NUM_TDS - 1;
  625. /*
  626. * put our own address to CAM desc[0]
  627. */
  628. sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
  629. sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
  630. sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
  631. sonic_set_cam_enable(dev, 1);
  632. for (i = 0; i < 16; i++)
  633. sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
  634. /*
  635. * initialize CAM registers
  636. */
  637. SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
  638. SONIC_WRITE(SONIC_CDC, 16);
  639. /*
  640. * load the CAM
  641. */
  642. SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
  643. i = 0;
  644. while (i++ < 100) {
  645. if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
  646. break;
  647. }
  648. if (sonic_debug > 2) {
  649. printk("sonic_init: CMD=%x, ISR=%x\n, i=%d",
  650. SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR), i);
  651. }
  652. /*
  653. * enable receiver, disable loopback
  654. * and enable all interrupts
  655. */
  656. SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
  657. SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
  658. SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
  659. SONIC_WRITE(SONIC_ISR, 0x7fff);
  660. SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
  661. cmd = SONIC_READ(SONIC_CMD);
  662. if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
  663. printk(KERN_ERR "sonic_init: failed, status=%x\n", cmd);
  664. if (sonic_debug > 2)
  665. printk("sonic_init: new status=%x\n",
  666. SONIC_READ(SONIC_CMD));
  667. return 0;
  668. }
  669. MODULE_LICENSE("GPL");