qla3xxx.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k3"
  40. #define PFX DRV_NAME " "
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * Caller must take hw_lock.
  65. */
  66. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  67. u32 sem_mask, u32 sem_bits)
  68. {
  69. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  70. u32 value;
  71. unsigned int seconds = 3;
  72. do {
  73. writel((sem_mask | sem_bits),
  74. &port_regs->CommonRegs.semaphoreReg);
  75. value = readl(&port_regs->CommonRegs.semaphoreReg);
  76. if ((value & (sem_mask >> 16)) == sem_bits)
  77. return 0;
  78. ssleep(1);
  79. } while(--seconds);
  80. return -1;
  81. }
  82. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  83. {
  84. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  85. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  86. readl(&port_regs->CommonRegs.semaphoreReg);
  87. }
  88. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  91. u32 value;
  92. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  93. value = readl(&port_regs->CommonRegs.semaphoreReg);
  94. return ((value & (sem_mask >> 16)) == sem_bits);
  95. }
  96. /*
  97. * Caller holds hw_lock.
  98. */
  99. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  100. {
  101. int i = 0;
  102. while (1) {
  103. if (!ql_sem_lock(qdev,
  104. QL_DRVR_SEM_MASK,
  105. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  106. * 2) << 1)) {
  107. if (i < 10) {
  108. ssleep(1);
  109. i++;
  110. } else {
  111. printk(KERN_ERR PFX "%s: Timed out waiting for "
  112. "driver lock...\n",
  113. qdev->ndev->name);
  114. return 0;
  115. }
  116. } else {
  117. printk(KERN_DEBUG PFX
  118. "%s: driver lock acquired.\n",
  119. qdev->ndev->name);
  120. return 1;
  121. }
  122. }
  123. }
  124. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  125. {
  126. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  127. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  128. &port_regs->CommonRegs.ispControlStatus);
  129. readl(&port_regs->CommonRegs.ispControlStatus);
  130. qdev->current_page = page;
  131. }
  132. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  133. u32 __iomem * reg)
  134. {
  135. u32 value;
  136. unsigned long hw_flags;
  137. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  138. value = readl(reg);
  139. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  140. return value;
  141. }
  142. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  143. u32 __iomem * reg)
  144. {
  145. return readl(reg);
  146. }
  147. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  148. {
  149. u32 value;
  150. unsigned long hw_flags;
  151. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  152. if (qdev->current_page != 0)
  153. ql_set_register_page(qdev,0);
  154. value = readl(reg);
  155. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  156. return value;
  157. }
  158. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  159. {
  160. if (qdev->current_page != 0)
  161. ql_set_register_page(qdev,0);
  162. return readl(reg);
  163. }
  164. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  165. u32 __iomem *reg, u32 value)
  166. {
  167. unsigned long hw_flags;
  168. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  169. writel(value, reg);
  170. readl(reg);
  171. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  172. return;
  173. }
  174. static void ql_write_common_reg(struct ql3_adapter *qdev,
  175. u32 __iomem *reg, u32 value)
  176. {
  177. writel(value, reg);
  178. readl(reg);
  179. return;
  180. }
  181. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  182. u32 __iomem *reg, u32 value)
  183. {
  184. writel(value, reg);
  185. readl(reg);
  186. udelay(1);
  187. return;
  188. }
  189. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  190. u32 __iomem *reg, u32 value)
  191. {
  192. if (qdev->current_page != 0)
  193. ql_set_register_page(qdev,0);
  194. writel(value, reg);
  195. readl(reg);
  196. return;
  197. }
  198. /*
  199. * Caller holds hw_lock. Only called during init.
  200. */
  201. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. if (qdev->current_page != 1)
  205. ql_set_register_page(qdev,1);
  206. writel(value, reg);
  207. readl(reg);
  208. return;
  209. }
  210. /*
  211. * Caller holds hw_lock. Only called during init.
  212. */
  213. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  214. u32 __iomem *reg, u32 value)
  215. {
  216. if (qdev->current_page != 2)
  217. ql_set_register_page(qdev,2);
  218. writel(value, reg);
  219. readl(reg);
  220. return;
  221. }
  222. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  223. {
  224. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  225. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  226. (ISP_IMR_ENABLE_INT << 16));
  227. }
  228. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  229. {
  230. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  231. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  232. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  233. }
  234. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  235. struct ql_rcv_buf_cb *lrg_buf_cb)
  236. {
  237. dma_addr_t map;
  238. int err;
  239. lrg_buf_cb->next = NULL;
  240. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  241. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  242. } else {
  243. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  244. qdev->lrg_buf_free_tail = lrg_buf_cb;
  245. }
  246. if (!lrg_buf_cb->skb) {
  247. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  248. qdev->lrg_buffer_len);
  249. if (unlikely(!lrg_buf_cb->skb)) {
  250. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  251. qdev->ndev->name);
  252. qdev->lrg_buf_skb_check++;
  253. } else {
  254. /*
  255. * We save some space to copy the ethhdr from first
  256. * buffer
  257. */
  258. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  259. map = pci_map_single(qdev->pdev,
  260. lrg_buf_cb->skb->data,
  261. qdev->lrg_buffer_len -
  262. QL_HEADER_SPACE,
  263. PCI_DMA_FROMDEVICE);
  264. err = pci_dma_mapping_error(map);
  265. if(err) {
  266. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  267. qdev->ndev->name, err);
  268. dev_kfree_skb(lrg_buf_cb->skb);
  269. lrg_buf_cb->skb = NULL;
  270. qdev->lrg_buf_skb_check++;
  271. return;
  272. }
  273. lrg_buf_cb->buf_phy_addr_low =
  274. cpu_to_le32(LS_64BITS(map));
  275. lrg_buf_cb->buf_phy_addr_high =
  276. cpu_to_le32(MS_64BITS(map));
  277. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  278. pci_unmap_len_set(lrg_buf_cb, maplen,
  279. qdev->lrg_buffer_len -
  280. QL_HEADER_SPACE);
  281. }
  282. }
  283. qdev->lrg_buf_free_count++;
  284. }
  285. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  286. *qdev)
  287. {
  288. struct ql_rcv_buf_cb *lrg_buf_cb;
  289. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  290. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  291. qdev->lrg_buf_free_tail = NULL;
  292. qdev->lrg_buf_free_count--;
  293. }
  294. return lrg_buf_cb;
  295. }
  296. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  297. static u32 dataBits = EEPROM_NO_DATA_BITS;
  298. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  299. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  300. unsigned short *value);
  301. /*
  302. * Caller holds hw_lock.
  303. */
  304. static void fm93c56a_select(struct ql3_adapter *qdev)
  305. {
  306. struct ql3xxx_port_registers __iomem *port_regs =
  307. qdev->mem_map_registers;
  308. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  309. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  310. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  311. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  312. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  313. }
  314. /*
  315. * Caller holds hw_lock.
  316. */
  317. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  318. {
  319. int i;
  320. u32 mask;
  321. u32 dataBit;
  322. u32 previousBit;
  323. struct ql3xxx_port_registers __iomem *port_regs =
  324. qdev->mem_map_registers;
  325. /* Clock in a zero, then do the start bit */
  326. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  327. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  328. AUBURN_EEPROM_DO_1);
  329. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  330. ISP_NVRAM_MASK | qdev->
  331. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  332. AUBURN_EEPROM_CLK_RISE);
  333. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  334. ISP_NVRAM_MASK | qdev->
  335. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  336. AUBURN_EEPROM_CLK_FALL);
  337. mask = 1 << (FM93C56A_CMD_BITS - 1);
  338. /* Force the previous data bit to be different */
  339. previousBit = 0xffff;
  340. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  341. dataBit =
  342. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  343. if (previousBit != dataBit) {
  344. /*
  345. * If the bit changed, then change the DO state to
  346. * match
  347. */
  348. ql_write_nvram_reg(qdev,
  349. &port_regs->CommonRegs.
  350. serialPortInterfaceReg,
  351. ISP_NVRAM_MASK | qdev->
  352. eeprom_cmd_data | dataBit);
  353. previousBit = dataBit;
  354. }
  355. ql_write_nvram_reg(qdev,
  356. &port_regs->CommonRegs.
  357. serialPortInterfaceReg,
  358. ISP_NVRAM_MASK | qdev->
  359. eeprom_cmd_data | dataBit |
  360. AUBURN_EEPROM_CLK_RISE);
  361. ql_write_nvram_reg(qdev,
  362. &port_regs->CommonRegs.
  363. serialPortInterfaceReg,
  364. ISP_NVRAM_MASK | qdev->
  365. eeprom_cmd_data | dataBit |
  366. AUBURN_EEPROM_CLK_FALL);
  367. cmd = cmd << 1;
  368. }
  369. mask = 1 << (addrBits - 1);
  370. /* Force the previous data bit to be different */
  371. previousBit = 0xffff;
  372. for (i = 0; i < addrBits; i++) {
  373. dataBit =
  374. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  375. AUBURN_EEPROM_DO_0;
  376. if (previousBit != dataBit) {
  377. /*
  378. * If the bit changed, then change the DO state to
  379. * match
  380. */
  381. ql_write_nvram_reg(qdev,
  382. &port_regs->CommonRegs.
  383. serialPortInterfaceReg,
  384. ISP_NVRAM_MASK | qdev->
  385. eeprom_cmd_data | dataBit);
  386. previousBit = dataBit;
  387. }
  388. ql_write_nvram_reg(qdev,
  389. &port_regs->CommonRegs.
  390. serialPortInterfaceReg,
  391. ISP_NVRAM_MASK | qdev->
  392. eeprom_cmd_data | dataBit |
  393. AUBURN_EEPROM_CLK_RISE);
  394. ql_write_nvram_reg(qdev,
  395. &port_regs->CommonRegs.
  396. serialPortInterfaceReg,
  397. ISP_NVRAM_MASK | qdev->
  398. eeprom_cmd_data | dataBit |
  399. AUBURN_EEPROM_CLK_FALL);
  400. eepromAddr = eepromAddr << 1;
  401. }
  402. }
  403. /*
  404. * Caller holds hw_lock.
  405. */
  406. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  407. {
  408. struct ql3xxx_port_registers __iomem *port_regs =
  409. qdev->mem_map_registers;
  410. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  411. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  412. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  413. }
  414. /*
  415. * Caller holds hw_lock.
  416. */
  417. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  418. {
  419. int i;
  420. u32 data = 0;
  421. u32 dataBit;
  422. struct ql3xxx_port_registers __iomem *port_regs =
  423. qdev->mem_map_registers;
  424. /* Read the data bits */
  425. /* The first bit is a dummy. Clock right over it. */
  426. for (i = 0; i < dataBits; i++) {
  427. ql_write_nvram_reg(qdev,
  428. &port_regs->CommonRegs.
  429. serialPortInterfaceReg,
  430. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  431. AUBURN_EEPROM_CLK_RISE);
  432. ql_write_nvram_reg(qdev,
  433. &port_regs->CommonRegs.
  434. serialPortInterfaceReg,
  435. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  436. AUBURN_EEPROM_CLK_FALL);
  437. dataBit =
  438. (ql_read_common_reg
  439. (qdev,
  440. &port_regs->CommonRegs.
  441. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  442. data = (data << 1) | dataBit;
  443. }
  444. *value = (u16) data;
  445. }
  446. /*
  447. * Caller holds hw_lock.
  448. */
  449. static void eeprom_readword(struct ql3_adapter *qdev,
  450. u32 eepromAddr, unsigned short *value)
  451. {
  452. fm93c56a_select(qdev);
  453. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  454. fm93c56a_datain(qdev, value);
  455. fm93c56a_deselect(qdev);
  456. }
  457. static void ql_swap_mac_addr(u8 * macAddress)
  458. {
  459. #ifdef __BIG_ENDIAN
  460. u8 temp;
  461. temp = macAddress[0];
  462. macAddress[0] = macAddress[1];
  463. macAddress[1] = temp;
  464. temp = macAddress[2];
  465. macAddress[2] = macAddress[3];
  466. macAddress[3] = temp;
  467. temp = macAddress[4];
  468. macAddress[4] = macAddress[5];
  469. macAddress[5] = temp;
  470. #endif
  471. }
  472. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  473. {
  474. u16 *pEEPROMData;
  475. u16 checksum = 0;
  476. u32 index;
  477. unsigned long hw_flags;
  478. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  479. pEEPROMData = (u16 *) & qdev->nvram_data;
  480. qdev->eeprom_cmd_data = 0;
  481. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  482. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  483. 2) << 10)) {
  484. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  485. __func__);
  486. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  487. return -1;
  488. }
  489. for (index = 0; index < EEPROM_SIZE; index++) {
  490. eeprom_readword(qdev, index, pEEPROMData);
  491. checksum += *pEEPROMData;
  492. pEEPROMData++;
  493. }
  494. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  495. if (checksum != 0) {
  496. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  497. qdev->ndev->name, checksum);
  498. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  499. return -1;
  500. }
  501. /*
  502. * We have a problem with endianness for the MAC addresses
  503. * and the two 8-bit values version, and numPorts. We
  504. * have to swap them on big endian systems.
  505. */
  506. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  507. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  508. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  509. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  510. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  511. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  512. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  513. return checksum;
  514. }
  515. static const u32 PHYAddr[2] = {
  516. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  517. };
  518. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  519. {
  520. struct ql3xxx_port_registers __iomem *port_regs =
  521. qdev->mem_map_registers;
  522. u32 temp;
  523. int count = 1000;
  524. while (count) {
  525. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  526. if (!(temp & MAC_MII_STATUS_BSY))
  527. return 0;
  528. udelay(10);
  529. count--;
  530. }
  531. return -1;
  532. }
  533. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  534. {
  535. struct ql3xxx_port_registers __iomem *port_regs =
  536. qdev->mem_map_registers;
  537. u32 scanControl;
  538. if (qdev->numPorts > 1) {
  539. /* Auto scan will cycle through multiple ports */
  540. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  541. } else {
  542. scanControl = MAC_MII_CONTROL_SC;
  543. }
  544. /*
  545. * Scan register 1 of PHY/PETBI,
  546. * Set up to scan both devices
  547. * The autoscan starts from the first register, completes
  548. * the last one before rolling over to the first
  549. */
  550. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  551. PHYAddr[0] | MII_SCAN_REGISTER);
  552. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  553. (scanControl) |
  554. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  555. }
  556. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  557. {
  558. u8 ret;
  559. struct ql3xxx_port_registers __iomem *port_regs =
  560. qdev->mem_map_registers;
  561. /* See if scan mode is enabled before we turn it off */
  562. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  563. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  564. /* Scan is enabled */
  565. ret = 1;
  566. } else {
  567. /* Scan is disabled */
  568. ret = 0;
  569. }
  570. /*
  571. * When disabling scan mode you must first change the MII register
  572. * address
  573. */
  574. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  575. PHYAddr[0] | MII_SCAN_REGISTER);
  576. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  577. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  578. MAC_MII_CONTROL_RC) << 16));
  579. return ret;
  580. }
  581. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  582. u16 regAddr, u16 value, u32 mac_index)
  583. {
  584. struct ql3xxx_port_registers __iomem *port_regs =
  585. qdev->mem_map_registers;
  586. u8 scanWasEnabled;
  587. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  588. if (ql_wait_for_mii_ready(qdev)) {
  589. if (netif_msg_link(qdev))
  590. printk(KERN_WARNING PFX
  591. "%s Timed out waiting for management port to "
  592. "get free before issuing command.\n",
  593. qdev->ndev->name);
  594. return -1;
  595. }
  596. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  597. PHYAddr[mac_index] | regAddr);
  598. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  599. /* Wait for write to complete 9/10/04 SJP */
  600. if (ql_wait_for_mii_ready(qdev)) {
  601. if (netif_msg_link(qdev))
  602. printk(KERN_WARNING PFX
  603. "%s: Timed out waiting for management port to"
  604. "get free before issuing command.\n",
  605. qdev->ndev->name);
  606. return -1;
  607. }
  608. if (scanWasEnabled)
  609. ql_mii_enable_scan_mode(qdev);
  610. return 0;
  611. }
  612. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  613. u16 * value, u32 mac_index)
  614. {
  615. struct ql3xxx_port_registers __iomem *port_regs =
  616. qdev->mem_map_registers;
  617. u8 scanWasEnabled;
  618. u32 temp;
  619. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  620. if (ql_wait_for_mii_ready(qdev)) {
  621. if (netif_msg_link(qdev))
  622. printk(KERN_WARNING PFX
  623. "%s: Timed out waiting for management port to "
  624. "get free before issuing command.\n",
  625. qdev->ndev->name);
  626. return -1;
  627. }
  628. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  629. PHYAddr[mac_index] | regAddr);
  630. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  631. (MAC_MII_CONTROL_RC << 16));
  632. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  633. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  634. /* Wait for the read to complete */
  635. if (ql_wait_for_mii_ready(qdev)) {
  636. if (netif_msg_link(qdev))
  637. printk(KERN_WARNING PFX
  638. "%s: Timed out waiting for management port to "
  639. "get free after issuing command.\n",
  640. qdev->ndev->name);
  641. return -1;
  642. }
  643. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  644. *value = (u16) temp;
  645. if (scanWasEnabled)
  646. ql_mii_enable_scan_mode(qdev);
  647. return 0;
  648. }
  649. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  650. {
  651. struct ql3xxx_port_registers __iomem *port_regs =
  652. qdev->mem_map_registers;
  653. ql_mii_disable_scan_mode(qdev);
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free before issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  663. qdev->PHYAddr | regAddr);
  664. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  665. /* Wait for write to complete. */
  666. if (ql_wait_for_mii_ready(qdev)) {
  667. if (netif_msg_link(qdev))
  668. printk(KERN_WARNING PFX
  669. "%s: Timed out waiting for management port to "
  670. "get free before issuing command.\n",
  671. qdev->ndev->name);
  672. return -1;
  673. }
  674. ql_mii_enable_scan_mode(qdev);
  675. return 0;
  676. }
  677. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  678. {
  679. u32 temp;
  680. struct ql3xxx_port_registers __iomem *port_regs =
  681. qdev->mem_map_registers;
  682. ql_mii_disable_scan_mode(qdev);
  683. if (ql_wait_for_mii_ready(qdev)) {
  684. if (netif_msg_link(qdev))
  685. printk(KERN_WARNING PFX
  686. "%s: Timed out waiting for management port to "
  687. "get free before issuing command.\n",
  688. qdev->ndev->name);
  689. return -1;
  690. }
  691. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  692. qdev->PHYAddr | regAddr);
  693. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  694. (MAC_MII_CONTROL_RC << 16));
  695. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  696. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  697. /* Wait for the read to complete */
  698. if (ql_wait_for_mii_ready(qdev)) {
  699. if (netif_msg_link(qdev))
  700. printk(KERN_WARNING PFX
  701. "%s: Timed out waiting for management port to "
  702. "get free before issuing command.\n",
  703. qdev->ndev->name);
  704. return -1;
  705. }
  706. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  707. *value = (u16) temp;
  708. ql_mii_enable_scan_mode(qdev);
  709. return 0;
  710. }
  711. static void ql_petbi_reset(struct ql3_adapter *qdev)
  712. {
  713. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  714. }
  715. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  716. {
  717. u16 reg;
  718. /* Enable Auto-negotiation sense */
  719. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  720. reg |= PETBI_TBI_AUTO_SENSE;
  721. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  722. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  723. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  724. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  725. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  726. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  727. }
  728. static void ql_petbi_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  729. {
  730. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  731. mac_index);
  732. }
  733. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  734. {
  735. u16 reg;
  736. /* Enable Auto-negotiation sense */
  737. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg, mac_index);
  738. reg |= PETBI_TBI_AUTO_SENSE;
  739. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg, mac_index);
  740. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  741. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX, mac_index);
  742. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  743. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  744. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  745. mac_index);
  746. }
  747. static void ql_petbi_init(struct ql3_adapter *qdev)
  748. {
  749. ql_petbi_reset(qdev);
  750. ql_petbi_start_neg(qdev);
  751. }
  752. static void ql_petbi_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  753. {
  754. ql_petbi_reset_ex(qdev, mac_index);
  755. ql_petbi_start_neg_ex(qdev, mac_index);
  756. }
  757. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  758. {
  759. u16 reg;
  760. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  761. return 0;
  762. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  763. }
  764. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  765. {
  766. u16 reg;
  767. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  768. return 0;
  769. reg = (((reg & 0x18) >> 3) & 3);
  770. if (reg == 2)
  771. return SPEED_1000;
  772. else if (reg == 1)
  773. return SPEED_100;
  774. else if (reg == 0)
  775. return SPEED_10;
  776. else
  777. return -1;
  778. }
  779. static int ql_is_full_dup(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  783. return 0;
  784. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  785. }
  786. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  787. {
  788. u16 reg;
  789. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  790. return 0;
  791. return (reg & PHY_NEG_PAUSE) != 0;
  792. }
  793. /*
  794. * Caller holds hw_lock.
  795. */
  796. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  797. {
  798. struct ql3xxx_port_registers __iomem *port_regs =
  799. qdev->mem_map_registers;
  800. u32 value;
  801. if (enable)
  802. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  803. else
  804. value = (MAC_CONFIG_REG_PE << 16);
  805. if (qdev->mac_index)
  806. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  807. else
  808. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  809. }
  810. /*
  811. * Caller holds hw_lock.
  812. */
  813. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  814. {
  815. struct ql3xxx_port_registers __iomem *port_regs =
  816. qdev->mem_map_registers;
  817. u32 value;
  818. if (enable)
  819. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  820. else
  821. value = (MAC_CONFIG_REG_SR << 16);
  822. if (qdev->mac_index)
  823. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  824. else
  825. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  826. }
  827. /*
  828. * Caller holds hw_lock.
  829. */
  830. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  831. {
  832. struct ql3xxx_port_registers __iomem *port_regs =
  833. qdev->mem_map_registers;
  834. u32 value;
  835. if (enable)
  836. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  837. else
  838. value = (MAC_CONFIG_REG_GM << 16);
  839. if (qdev->mac_index)
  840. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  841. else
  842. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  843. }
  844. /*
  845. * Caller holds hw_lock.
  846. */
  847. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  848. {
  849. struct ql3xxx_port_registers __iomem *port_regs =
  850. qdev->mem_map_registers;
  851. u32 value;
  852. if (enable)
  853. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  854. else
  855. value = (MAC_CONFIG_REG_FD << 16);
  856. if (qdev->mac_index)
  857. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  858. else
  859. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  860. }
  861. /*
  862. * Caller holds hw_lock.
  863. */
  864. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  865. {
  866. struct ql3xxx_port_registers __iomem *port_regs =
  867. qdev->mem_map_registers;
  868. u32 value;
  869. if (enable)
  870. value =
  871. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  872. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  873. else
  874. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  875. if (qdev->mac_index)
  876. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  877. else
  878. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  879. }
  880. /*
  881. * Caller holds hw_lock.
  882. */
  883. static int ql_is_fiber(struct ql3_adapter *qdev)
  884. {
  885. struct ql3xxx_port_registers __iomem *port_regs =
  886. qdev->mem_map_registers;
  887. u32 bitToCheck = 0;
  888. u32 temp;
  889. switch (qdev->mac_index) {
  890. case 0:
  891. bitToCheck = PORT_STATUS_SM0;
  892. break;
  893. case 1:
  894. bitToCheck = PORT_STATUS_SM1;
  895. break;
  896. }
  897. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  898. return (temp & bitToCheck) != 0;
  899. }
  900. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  901. {
  902. u16 reg;
  903. ql_mii_read_reg(qdev, 0x00, &reg);
  904. return (reg & 0x1000) != 0;
  905. }
  906. /*
  907. * Caller holds hw_lock.
  908. */
  909. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  910. {
  911. struct ql3xxx_port_registers __iomem *port_regs =
  912. qdev->mem_map_registers;
  913. u32 bitToCheck = 0;
  914. u32 temp;
  915. switch (qdev->mac_index) {
  916. case 0:
  917. bitToCheck = PORT_STATUS_AC0;
  918. break;
  919. case 1:
  920. bitToCheck = PORT_STATUS_AC1;
  921. break;
  922. }
  923. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  924. if (temp & bitToCheck) {
  925. if (netif_msg_link(qdev))
  926. printk(KERN_INFO PFX
  927. "%s: Auto-Negotiate complete.\n",
  928. qdev->ndev->name);
  929. return 1;
  930. } else {
  931. if (netif_msg_link(qdev))
  932. printk(KERN_WARNING PFX
  933. "%s: Auto-Negotiate incomplete.\n",
  934. qdev->ndev->name);
  935. return 0;
  936. }
  937. }
  938. /*
  939. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  940. */
  941. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  942. {
  943. if (ql_is_fiber(qdev))
  944. return ql_is_petbi_neg_pause(qdev);
  945. else
  946. return ql_is_phy_neg_pause(qdev);
  947. }
  948. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  949. {
  950. struct ql3xxx_port_registers __iomem *port_regs =
  951. qdev->mem_map_registers;
  952. u32 bitToCheck = 0;
  953. u32 temp;
  954. switch (qdev->mac_index) {
  955. case 0:
  956. bitToCheck = PORT_STATUS_AE0;
  957. break;
  958. case 1:
  959. bitToCheck = PORT_STATUS_AE1;
  960. break;
  961. }
  962. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  963. return (temp & bitToCheck) != 0;
  964. }
  965. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  966. {
  967. if (ql_is_fiber(qdev))
  968. return SPEED_1000;
  969. else
  970. return ql_phy_get_speed(qdev);
  971. }
  972. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  973. {
  974. if (ql_is_fiber(qdev))
  975. return 1;
  976. else
  977. return ql_is_full_dup(qdev);
  978. }
  979. /*
  980. * Caller holds hw_lock.
  981. */
  982. static int ql_link_down_detect(struct ql3_adapter *qdev)
  983. {
  984. struct ql3xxx_port_registers __iomem *port_regs =
  985. qdev->mem_map_registers;
  986. u32 bitToCheck = 0;
  987. u32 temp;
  988. switch (qdev->mac_index) {
  989. case 0:
  990. bitToCheck = ISP_CONTROL_LINK_DN_0;
  991. break;
  992. case 1:
  993. bitToCheck = ISP_CONTROL_LINK_DN_1;
  994. break;
  995. }
  996. temp =
  997. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  998. return (temp & bitToCheck) != 0;
  999. }
  1000. /*
  1001. * Caller holds hw_lock.
  1002. */
  1003. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1004. {
  1005. struct ql3xxx_port_registers __iomem *port_regs =
  1006. qdev->mem_map_registers;
  1007. switch (qdev->mac_index) {
  1008. case 0:
  1009. ql_write_common_reg(qdev,
  1010. &port_regs->CommonRegs.ispControlStatus,
  1011. (ISP_CONTROL_LINK_DN_0) |
  1012. (ISP_CONTROL_LINK_DN_0 << 16));
  1013. break;
  1014. case 1:
  1015. ql_write_common_reg(qdev,
  1016. &port_regs->CommonRegs.ispControlStatus,
  1017. (ISP_CONTROL_LINK_DN_1) |
  1018. (ISP_CONTROL_LINK_DN_1 << 16));
  1019. break;
  1020. default:
  1021. return 1;
  1022. }
  1023. return 0;
  1024. }
  1025. /*
  1026. * Caller holds hw_lock.
  1027. */
  1028. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev,
  1029. u32 mac_index)
  1030. {
  1031. struct ql3xxx_port_registers __iomem *port_regs =
  1032. qdev->mem_map_registers;
  1033. u32 bitToCheck = 0;
  1034. u32 temp;
  1035. switch (mac_index) {
  1036. case 0:
  1037. bitToCheck = PORT_STATUS_F1_ENABLED;
  1038. break;
  1039. case 1:
  1040. bitToCheck = PORT_STATUS_F3_ENABLED;
  1041. break;
  1042. default:
  1043. break;
  1044. }
  1045. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1046. if (temp & bitToCheck) {
  1047. if (netif_msg_link(qdev))
  1048. printk(KERN_DEBUG PFX
  1049. "%s: is not link master.\n", qdev->ndev->name);
  1050. return 0;
  1051. } else {
  1052. if (netif_msg_link(qdev))
  1053. printk(KERN_DEBUG PFX
  1054. "%s: is link master.\n", qdev->ndev->name);
  1055. return 1;
  1056. }
  1057. }
  1058. static void ql_phy_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  1059. {
  1060. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET, mac_index);
  1061. }
  1062. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  1063. {
  1064. u16 reg;
  1065. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER,
  1066. PHY_NEG_PAUSE | PHY_NEG_ADV_SPEED | 1, mac_index);
  1067. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, mac_index);
  1068. ql_mii_write_reg_ex(qdev, CONTROL_REG, reg | PHY_CTRL_RESTART_NEG,
  1069. mac_index);
  1070. }
  1071. static void ql_phy_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  1072. {
  1073. ql_phy_reset_ex(qdev, mac_index);
  1074. ql_phy_start_neg_ex(qdev, mac_index);
  1075. }
  1076. /*
  1077. * Caller holds hw_lock.
  1078. */
  1079. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1080. {
  1081. struct ql3xxx_port_registers __iomem *port_regs =
  1082. qdev->mem_map_registers;
  1083. u32 bitToCheck = 0;
  1084. u32 temp, linkState;
  1085. switch (qdev->mac_index) {
  1086. case 0:
  1087. bitToCheck = PORT_STATUS_UP0;
  1088. break;
  1089. case 1:
  1090. bitToCheck = PORT_STATUS_UP1;
  1091. break;
  1092. }
  1093. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1094. if (temp & bitToCheck) {
  1095. linkState = LS_UP;
  1096. } else {
  1097. linkState = LS_DOWN;
  1098. if (netif_msg_link(qdev))
  1099. printk(KERN_WARNING PFX
  1100. "%s: Link is down.\n", qdev->ndev->name);
  1101. }
  1102. return linkState;
  1103. }
  1104. static int ql_port_start(struct ql3_adapter *qdev)
  1105. {
  1106. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1107. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1108. 2) << 7))
  1109. return -1;
  1110. if (ql_is_fiber(qdev)) {
  1111. ql_petbi_init(qdev);
  1112. } else {
  1113. /* Copper port */
  1114. ql_phy_init_ex(qdev, qdev->mac_index);
  1115. }
  1116. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1117. return 0;
  1118. }
  1119. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1120. {
  1121. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1122. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1123. 2) << 7))
  1124. return -1;
  1125. if (!ql_auto_neg_error(qdev)) {
  1126. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1127. /* configure the MAC */
  1128. if (netif_msg_link(qdev))
  1129. printk(KERN_DEBUG PFX
  1130. "%s: Configuring link.\n",
  1131. qdev->ndev->
  1132. name);
  1133. ql_mac_cfg_soft_reset(qdev, 1);
  1134. ql_mac_cfg_gig(qdev,
  1135. (ql_get_link_speed
  1136. (qdev) ==
  1137. SPEED_1000));
  1138. ql_mac_cfg_full_dup(qdev,
  1139. ql_is_link_full_dup
  1140. (qdev));
  1141. ql_mac_cfg_pause(qdev,
  1142. ql_is_neg_pause
  1143. (qdev));
  1144. ql_mac_cfg_soft_reset(qdev, 0);
  1145. /* enable the MAC */
  1146. if (netif_msg_link(qdev))
  1147. printk(KERN_DEBUG PFX
  1148. "%s: Enabling mac.\n",
  1149. qdev->ndev->
  1150. name);
  1151. ql_mac_enable(qdev, 1);
  1152. }
  1153. if (netif_msg_link(qdev))
  1154. printk(KERN_DEBUG PFX
  1155. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1156. qdev->ndev->name);
  1157. qdev->port_link_state = LS_UP;
  1158. netif_start_queue(qdev->ndev);
  1159. netif_carrier_on(qdev->ndev);
  1160. if (netif_msg_link(qdev))
  1161. printk(KERN_INFO PFX
  1162. "%s: Link is up at %d Mbps, %s duplex.\n",
  1163. qdev->ndev->name,
  1164. ql_get_link_speed(qdev),
  1165. ql_is_link_full_dup(qdev)
  1166. ? "full" : "half");
  1167. } else { /* Remote error detected */
  1168. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1169. if (netif_msg_link(qdev))
  1170. printk(KERN_DEBUG PFX
  1171. "%s: Remote error detected. "
  1172. "Calling ql_port_start().\n",
  1173. qdev->ndev->
  1174. name);
  1175. /*
  1176. * ql_port_start() is shared code and needs
  1177. * to lock the PHY on it's own.
  1178. */
  1179. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1180. if(ql_port_start(qdev)) {/* Restart port */
  1181. return -1;
  1182. } else
  1183. return 0;
  1184. }
  1185. }
  1186. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1187. return 0;
  1188. }
  1189. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1190. {
  1191. u32 curr_link_state;
  1192. unsigned long hw_flags;
  1193. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1194. curr_link_state = ql_get_link_state(qdev);
  1195. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1196. if (netif_msg_link(qdev))
  1197. printk(KERN_INFO PFX
  1198. "%s: Reset in progress, skip processing link "
  1199. "state.\n", qdev->ndev->name);
  1200. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1201. return;
  1202. }
  1203. switch (qdev->port_link_state) {
  1204. default:
  1205. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1206. ql_port_start(qdev);
  1207. }
  1208. qdev->port_link_state = LS_DOWN;
  1209. /* Fall Through */
  1210. case LS_DOWN:
  1211. if (netif_msg_link(qdev))
  1212. printk(KERN_DEBUG PFX
  1213. "%s: port_link_state = LS_DOWN.\n",
  1214. qdev->ndev->name);
  1215. if (curr_link_state == LS_UP) {
  1216. if (netif_msg_link(qdev))
  1217. printk(KERN_DEBUG PFX
  1218. "%s: curr_link_state = LS_UP.\n",
  1219. qdev->ndev->name);
  1220. if (ql_is_auto_neg_complete(qdev))
  1221. ql_finish_auto_neg(qdev);
  1222. if (qdev->port_link_state == LS_UP)
  1223. ql_link_down_detect_clear(qdev);
  1224. }
  1225. break;
  1226. case LS_UP:
  1227. /*
  1228. * See if the link is currently down or went down and came
  1229. * back up
  1230. */
  1231. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1232. if (netif_msg_link(qdev))
  1233. printk(KERN_INFO PFX "%s: Link is down.\n",
  1234. qdev->ndev->name);
  1235. qdev->port_link_state = LS_DOWN;
  1236. }
  1237. break;
  1238. }
  1239. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1240. }
  1241. /*
  1242. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1243. */
  1244. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1245. {
  1246. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1247. set_bit(QL_LINK_MASTER,&qdev->flags);
  1248. else
  1249. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1250. }
  1251. /*
  1252. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1253. */
  1254. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1255. {
  1256. ql_mii_enable_scan_mode(qdev);
  1257. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1258. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1259. ql_petbi_init_ex(qdev, qdev->mac_index);
  1260. } else {
  1261. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1262. ql_phy_init_ex(qdev, qdev->mac_index);
  1263. }
  1264. }
  1265. /*
  1266. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1267. * management interface clock speed can be set properly. It would be better if
  1268. * we had a way to disable MDC until after the PHY is out of reset, but we
  1269. * don't have that capability.
  1270. */
  1271. static int ql_mii_setup(struct ql3_adapter *qdev)
  1272. {
  1273. u32 reg;
  1274. struct ql3xxx_port_registers __iomem *port_regs =
  1275. qdev->mem_map_registers;
  1276. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1277. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1278. 2) << 7))
  1279. return -1;
  1280. if (qdev->device_id == QL3032_DEVICE_ID)
  1281. ql_write_page0_reg(qdev,
  1282. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1283. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1284. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1285. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1286. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1287. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1288. return 0;
  1289. }
  1290. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1291. {
  1292. u32 supported;
  1293. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1294. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1295. | SUPPORTED_Autoneg;
  1296. } else {
  1297. supported = SUPPORTED_10baseT_Half
  1298. | SUPPORTED_10baseT_Full
  1299. | SUPPORTED_100baseT_Half
  1300. | SUPPORTED_100baseT_Full
  1301. | SUPPORTED_1000baseT_Half
  1302. | SUPPORTED_1000baseT_Full
  1303. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1304. }
  1305. return supported;
  1306. }
  1307. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1308. {
  1309. int status;
  1310. unsigned long hw_flags;
  1311. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1312. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1313. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1314. 2) << 7)) {
  1315. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1316. return 0;
  1317. }
  1318. status = ql_is_auto_cfg(qdev);
  1319. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1320. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1321. return status;
  1322. }
  1323. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1324. {
  1325. u32 status;
  1326. unsigned long hw_flags;
  1327. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1328. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1329. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1330. 2) << 7)) {
  1331. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1332. return 0;
  1333. }
  1334. status = ql_get_link_speed(qdev);
  1335. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1336. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1337. return status;
  1338. }
  1339. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1340. {
  1341. int status;
  1342. unsigned long hw_flags;
  1343. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1344. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1345. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1346. 2) << 7)) {
  1347. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1348. return 0;
  1349. }
  1350. status = ql_is_link_full_dup(qdev);
  1351. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1352. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1353. return status;
  1354. }
  1355. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1356. {
  1357. struct ql3_adapter *qdev = netdev_priv(ndev);
  1358. ecmd->transceiver = XCVR_INTERNAL;
  1359. ecmd->supported = ql_supported_modes(qdev);
  1360. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1361. ecmd->port = PORT_FIBRE;
  1362. } else {
  1363. ecmd->port = PORT_TP;
  1364. ecmd->phy_address = qdev->PHYAddr;
  1365. }
  1366. ecmd->advertising = ql_supported_modes(qdev);
  1367. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1368. ecmd->speed = ql_get_speed(qdev);
  1369. ecmd->duplex = ql_get_full_dup(qdev);
  1370. return 0;
  1371. }
  1372. static void ql_get_drvinfo(struct net_device *ndev,
  1373. struct ethtool_drvinfo *drvinfo)
  1374. {
  1375. struct ql3_adapter *qdev = netdev_priv(ndev);
  1376. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1377. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1378. strncpy(drvinfo->fw_version, "N/A", 32);
  1379. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1380. drvinfo->n_stats = 0;
  1381. drvinfo->testinfo_len = 0;
  1382. drvinfo->regdump_len = 0;
  1383. drvinfo->eedump_len = 0;
  1384. }
  1385. static u32 ql_get_msglevel(struct net_device *ndev)
  1386. {
  1387. struct ql3_adapter *qdev = netdev_priv(ndev);
  1388. return qdev->msg_enable;
  1389. }
  1390. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1391. {
  1392. struct ql3_adapter *qdev = netdev_priv(ndev);
  1393. qdev->msg_enable = value;
  1394. }
  1395. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1396. .get_settings = ql_get_settings,
  1397. .get_drvinfo = ql_get_drvinfo,
  1398. .get_perm_addr = ethtool_op_get_perm_addr,
  1399. .get_link = ethtool_op_get_link,
  1400. .get_msglevel = ql_get_msglevel,
  1401. .set_msglevel = ql_set_msglevel,
  1402. };
  1403. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1404. {
  1405. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1406. dma_addr_t map;
  1407. int err;
  1408. while (lrg_buf_cb) {
  1409. if (!lrg_buf_cb->skb) {
  1410. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1411. qdev->lrg_buffer_len);
  1412. if (unlikely(!lrg_buf_cb->skb)) {
  1413. printk(KERN_DEBUG PFX
  1414. "%s: Failed netdev_alloc_skb().\n",
  1415. qdev->ndev->name);
  1416. break;
  1417. } else {
  1418. /*
  1419. * We save some space to copy the ethhdr from
  1420. * first buffer
  1421. */
  1422. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1423. map = pci_map_single(qdev->pdev,
  1424. lrg_buf_cb->skb->data,
  1425. qdev->lrg_buffer_len -
  1426. QL_HEADER_SPACE,
  1427. PCI_DMA_FROMDEVICE);
  1428. err = pci_dma_mapping_error(map);
  1429. if(err) {
  1430. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1431. qdev->ndev->name, err);
  1432. dev_kfree_skb(lrg_buf_cb->skb);
  1433. lrg_buf_cb->skb = NULL;
  1434. break;
  1435. }
  1436. lrg_buf_cb->buf_phy_addr_low =
  1437. cpu_to_le32(LS_64BITS(map));
  1438. lrg_buf_cb->buf_phy_addr_high =
  1439. cpu_to_le32(MS_64BITS(map));
  1440. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1441. pci_unmap_len_set(lrg_buf_cb, maplen,
  1442. qdev->lrg_buffer_len -
  1443. QL_HEADER_SPACE);
  1444. --qdev->lrg_buf_skb_check;
  1445. if (!qdev->lrg_buf_skb_check)
  1446. return 1;
  1447. }
  1448. }
  1449. lrg_buf_cb = lrg_buf_cb->next;
  1450. }
  1451. return 0;
  1452. }
  1453. /*
  1454. * Caller holds hw_lock.
  1455. */
  1456. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1457. {
  1458. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1459. if (qdev->small_buf_release_cnt >= 16) {
  1460. while (qdev->small_buf_release_cnt >= 16) {
  1461. qdev->small_buf_q_producer_index++;
  1462. if (qdev->small_buf_q_producer_index ==
  1463. NUM_SBUFQ_ENTRIES)
  1464. qdev->small_buf_q_producer_index = 0;
  1465. qdev->small_buf_release_cnt -= 8;
  1466. }
  1467. wmb();
  1468. writel(qdev->small_buf_q_producer_index,
  1469. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1470. }
  1471. }
  1472. /*
  1473. * Caller holds hw_lock.
  1474. */
  1475. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1476. {
  1477. struct bufq_addr_element *lrg_buf_q_ele;
  1478. int i;
  1479. struct ql_rcv_buf_cb *lrg_buf_cb;
  1480. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1481. if ((qdev->lrg_buf_free_count >= 8)
  1482. && (qdev->lrg_buf_release_cnt >= 16)) {
  1483. if (qdev->lrg_buf_skb_check)
  1484. if (!ql_populate_free_queue(qdev))
  1485. return;
  1486. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1487. while ((qdev->lrg_buf_release_cnt >= 16)
  1488. && (qdev->lrg_buf_free_count >= 8)) {
  1489. for (i = 0; i < 8; i++) {
  1490. lrg_buf_cb =
  1491. ql_get_from_lrg_buf_free_list(qdev);
  1492. lrg_buf_q_ele->addr_high =
  1493. lrg_buf_cb->buf_phy_addr_high;
  1494. lrg_buf_q_ele->addr_low =
  1495. lrg_buf_cb->buf_phy_addr_low;
  1496. lrg_buf_q_ele++;
  1497. qdev->lrg_buf_release_cnt--;
  1498. }
  1499. qdev->lrg_buf_q_producer_index++;
  1500. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1501. qdev->lrg_buf_q_producer_index = 0;
  1502. if (qdev->lrg_buf_q_producer_index ==
  1503. (qdev->num_lbufq_entries - 1)) {
  1504. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1505. }
  1506. }
  1507. wmb();
  1508. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1509. writel(qdev->lrg_buf_q_producer_index,
  1510. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1511. }
  1512. }
  1513. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1514. struct ob_mac_iocb_rsp *mac_rsp)
  1515. {
  1516. struct ql_tx_buf_cb *tx_cb;
  1517. int i;
  1518. int retval = 0;
  1519. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1520. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1521. }
  1522. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1523. /* Check the transmit response flags for any errors */
  1524. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1525. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1526. qdev->stats.tx_errors++;
  1527. retval = -EIO;
  1528. goto frame_not_sent;
  1529. }
  1530. if(tx_cb->seg_count == 0) {
  1531. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1532. qdev->stats.tx_errors++;
  1533. retval = -EIO;
  1534. goto invalid_seg_count;
  1535. }
  1536. pci_unmap_single(qdev->pdev,
  1537. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1538. pci_unmap_len(&tx_cb->map[0], maplen),
  1539. PCI_DMA_TODEVICE);
  1540. tx_cb->seg_count--;
  1541. if (tx_cb->seg_count) {
  1542. for (i = 1; i < tx_cb->seg_count; i++) {
  1543. pci_unmap_page(qdev->pdev,
  1544. pci_unmap_addr(&tx_cb->map[i],
  1545. mapaddr),
  1546. pci_unmap_len(&tx_cb->map[i], maplen),
  1547. PCI_DMA_TODEVICE);
  1548. }
  1549. }
  1550. qdev->stats.tx_packets++;
  1551. qdev->stats.tx_bytes += tx_cb->skb->len;
  1552. frame_not_sent:
  1553. dev_kfree_skb_irq(tx_cb->skb);
  1554. tx_cb->skb = NULL;
  1555. invalid_seg_count:
  1556. atomic_inc(&qdev->tx_count);
  1557. }
  1558. void ql_get_sbuf(struct ql3_adapter *qdev)
  1559. {
  1560. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1561. qdev->small_buf_index = 0;
  1562. qdev->small_buf_release_cnt++;
  1563. }
  1564. struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1565. {
  1566. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1567. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1568. qdev->lrg_buf_release_cnt++;
  1569. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1570. qdev->lrg_buf_index = 0;
  1571. return(lrg_buf_cb);
  1572. }
  1573. /*
  1574. * The difference between 3022 and 3032 for inbound completions:
  1575. * 3022 uses two buffers per completion. The first buffer contains
  1576. * (some) header info, the second the remainder of the headers plus
  1577. * the data. For this chip we reserve some space at the top of the
  1578. * receive buffer so that the header info in buffer one can be
  1579. * prepended to the buffer two. Buffer two is the sent up while
  1580. * buffer one is returned to the hardware to be reused.
  1581. * 3032 receives all of it's data and headers in one buffer for a
  1582. * simpler process. 3032 also supports checksum verification as
  1583. * can be seen in ql_process_macip_rx_intr().
  1584. */
  1585. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1586. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1587. {
  1588. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1589. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1590. struct sk_buff *skb;
  1591. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1592. /*
  1593. * Get the inbound address list (small buffer).
  1594. */
  1595. ql_get_sbuf(qdev);
  1596. if (qdev->device_id == QL3022_DEVICE_ID)
  1597. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1598. /* start of second buffer */
  1599. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1600. skb = lrg_buf_cb2->skb;
  1601. qdev->stats.rx_packets++;
  1602. qdev->stats.rx_bytes += length;
  1603. skb_put(skb, length);
  1604. pci_unmap_single(qdev->pdev,
  1605. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1606. pci_unmap_len(lrg_buf_cb2, maplen),
  1607. PCI_DMA_FROMDEVICE);
  1608. prefetch(skb->data);
  1609. skb->ip_summed = CHECKSUM_NONE;
  1610. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1611. netif_receive_skb(skb);
  1612. qdev->ndev->last_rx = jiffies;
  1613. lrg_buf_cb2->skb = NULL;
  1614. if (qdev->device_id == QL3022_DEVICE_ID)
  1615. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1616. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1617. }
  1618. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1619. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1620. {
  1621. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1622. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1623. struct sk_buff *skb1 = NULL, *skb2;
  1624. struct net_device *ndev = qdev->ndev;
  1625. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1626. u16 size = 0;
  1627. /*
  1628. * Get the inbound address list (small buffer).
  1629. */
  1630. ql_get_sbuf(qdev);
  1631. if (qdev->device_id == QL3022_DEVICE_ID) {
  1632. /* start of first buffer on 3022 */
  1633. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1634. skb1 = lrg_buf_cb1->skb;
  1635. size = ETH_HLEN;
  1636. if (*((u16 *) skb1->data) != 0xFFFF)
  1637. size += VLAN_ETH_HLEN - ETH_HLEN;
  1638. }
  1639. /* start of second buffer */
  1640. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1641. skb2 = lrg_buf_cb2->skb;
  1642. skb_put(skb2, length); /* Just the second buffer length here. */
  1643. pci_unmap_single(qdev->pdev,
  1644. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1645. pci_unmap_len(lrg_buf_cb2, maplen),
  1646. PCI_DMA_FROMDEVICE);
  1647. prefetch(skb2->data);
  1648. skb2->ip_summed = CHECKSUM_NONE;
  1649. if (qdev->device_id == QL3022_DEVICE_ID) {
  1650. /*
  1651. * Copy the ethhdr from first buffer to second. This
  1652. * is necessary for 3022 IP completions.
  1653. */
  1654. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1655. skb_push(skb2, size), size);
  1656. } else {
  1657. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1658. if (checksum &
  1659. (IB_IP_IOCB_RSP_3032_ICE |
  1660. IB_IP_IOCB_RSP_3032_CE)) {
  1661. printk(KERN_ERR
  1662. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1663. __func__,
  1664. ((checksum &
  1665. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1666. "UDP"),checksum);
  1667. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1668. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1669. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1670. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1671. }
  1672. }
  1673. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1674. netif_receive_skb(skb2);
  1675. qdev->stats.rx_packets++;
  1676. qdev->stats.rx_bytes += length;
  1677. ndev->last_rx = jiffies;
  1678. lrg_buf_cb2->skb = NULL;
  1679. if (qdev->device_id == QL3022_DEVICE_ID)
  1680. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1681. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1682. }
  1683. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1684. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1685. {
  1686. struct net_rsp_iocb *net_rsp;
  1687. struct net_device *ndev = qdev->ndev;
  1688. int work_done = 0;
  1689. /* While there are entries in the completion queue. */
  1690. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1691. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1692. net_rsp = qdev->rsp_current;
  1693. switch (net_rsp->opcode) {
  1694. case OPCODE_OB_MAC_IOCB_FN0:
  1695. case OPCODE_OB_MAC_IOCB_FN2:
  1696. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1697. net_rsp);
  1698. (*tx_cleaned)++;
  1699. break;
  1700. case OPCODE_IB_MAC_IOCB:
  1701. case OPCODE_IB_3032_MAC_IOCB:
  1702. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1703. net_rsp);
  1704. (*rx_cleaned)++;
  1705. break;
  1706. case OPCODE_IB_IP_IOCB:
  1707. case OPCODE_IB_3032_IP_IOCB:
  1708. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1709. net_rsp);
  1710. (*rx_cleaned)++;
  1711. break;
  1712. default:
  1713. {
  1714. u32 *tmp = (u32 *) net_rsp;
  1715. printk(KERN_ERR PFX
  1716. "%s: Hit default case, not "
  1717. "handled!\n"
  1718. " dropping the packet, opcode = "
  1719. "%x.\n",
  1720. ndev->name, net_rsp->opcode);
  1721. printk(KERN_ERR PFX
  1722. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1723. (unsigned long int)tmp[0],
  1724. (unsigned long int)tmp[1],
  1725. (unsigned long int)tmp[2],
  1726. (unsigned long int)tmp[3]);
  1727. }
  1728. }
  1729. qdev->rsp_consumer_index++;
  1730. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1731. qdev->rsp_consumer_index = 0;
  1732. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1733. } else {
  1734. qdev->rsp_current++;
  1735. }
  1736. work_done = *tx_cleaned + *rx_cleaned;
  1737. }
  1738. return work_done;
  1739. }
  1740. static int ql_poll(struct net_device *ndev, int *budget)
  1741. {
  1742. struct ql3_adapter *qdev = netdev_priv(ndev);
  1743. int work_to_do = min(*budget, ndev->quota);
  1744. int rx_cleaned = 0, tx_cleaned = 0;
  1745. unsigned long hw_flags;
  1746. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1747. if (!netif_carrier_ok(ndev))
  1748. goto quit_polling;
  1749. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1750. *budget -= rx_cleaned;
  1751. ndev->quota -= rx_cleaned;
  1752. if( tx_cleaned + rx_cleaned != work_to_do ||
  1753. !netif_running(ndev)) {
  1754. quit_polling:
  1755. netif_rx_complete(ndev);
  1756. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1757. ql_update_small_bufq_prod_index(qdev);
  1758. ql_update_lrg_bufq_prod_index(qdev);
  1759. writel(qdev->rsp_consumer_index,
  1760. &port_regs->CommonRegs.rspQConsumerIndex);
  1761. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1762. ql_enable_interrupts(qdev);
  1763. return 0;
  1764. }
  1765. return 1;
  1766. }
  1767. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1768. {
  1769. struct net_device *ndev = dev_id;
  1770. struct ql3_adapter *qdev = netdev_priv(ndev);
  1771. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1772. u32 value;
  1773. int handled = 1;
  1774. u32 var;
  1775. port_regs = qdev->mem_map_registers;
  1776. value =
  1777. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  1778. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1779. spin_lock(&qdev->adapter_lock);
  1780. netif_stop_queue(qdev->ndev);
  1781. netif_carrier_off(qdev->ndev);
  1782. ql_disable_interrupts(qdev);
  1783. qdev->port_link_state = LS_DOWN;
  1784. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  1785. if (value & ISP_CONTROL_FE) {
  1786. /*
  1787. * Chip Fatal Error.
  1788. */
  1789. var =
  1790. ql_read_page0_reg_l(qdev,
  1791. &port_regs->PortFatalErrStatus);
  1792. printk(KERN_WARNING PFX
  1793. "%s: Resetting chip. PortFatalErrStatus "
  1794. "register = 0x%x\n", ndev->name, var);
  1795. set_bit(QL_RESET_START,&qdev->flags) ;
  1796. } else {
  1797. /*
  1798. * Soft Reset Requested.
  1799. */
  1800. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  1801. printk(KERN_ERR PFX
  1802. "%s: Another function issued a reset to the "
  1803. "chip. ISR value = %x.\n", ndev->name, value);
  1804. }
  1805. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1806. spin_unlock(&qdev->adapter_lock);
  1807. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1808. ql_disable_interrupts(qdev);
  1809. if (likely(netif_rx_schedule_prep(ndev))) {
  1810. __netif_rx_schedule(ndev);
  1811. }
  1812. } else {
  1813. return IRQ_NONE;
  1814. }
  1815. return IRQ_RETVAL(handled);
  1816. }
  1817. /*
  1818. * Get the total number of segments needed for the
  1819. * given number of fragments. This is necessary because
  1820. * outbound address lists (OAL) will be used when more than
  1821. * two frags are given. Each address list has 5 addr/len
  1822. * pairs. The 5th pair in each AOL is used to point to
  1823. * the next AOL if more frags are coming.
  1824. * That is why the frags:segment count ratio is not linear.
  1825. */
  1826. static int ql_get_seg_count(struct ql3_adapter *qdev,
  1827. unsigned short frags)
  1828. {
  1829. if (qdev->device_id == QL3022_DEVICE_ID)
  1830. return 1;
  1831. switch(frags) {
  1832. case 0: return 1; /* just the skb->data seg */
  1833. case 1: return 2; /* skb->data + 1 frag */
  1834. case 2: return 3; /* skb->data + 2 frags */
  1835. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  1836. case 4: return 6;
  1837. case 5: return 7;
  1838. case 6: return 8;
  1839. case 7: return 10;
  1840. case 8: return 11;
  1841. case 9: return 12;
  1842. case 10: return 13;
  1843. case 11: return 15;
  1844. case 12: return 16;
  1845. case 13: return 17;
  1846. case 14: return 18;
  1847. case 15: return 20;
  1848. case 16: return 21;
  1849. case 17: return 22;
  1850. case 18: return 23;
  1851. }
  1852. return -1;
  1853. }
  1854. static void ql_hw_csum_setup(struct sk_buff *skb,
  1855. struct ob_mac_iocb_req *mac_iocb_ptr)
  1856. {
  1857. struct ethhdr *eth;
  1858. struct iphdr *ip = NULL;
  1859. u8 offset = ETH_HLEN;
  1860. eth = (struct ethhdr *)(skb->data);
  1861. if (eth->h_proto == __constant_htons(ETH_P_IP)) {
  1862. ip = (struct iphdr *)&skb->data[ETH_HLEN];
  1863. } else if (eth->h_proto == htons(ETH_P_8021Q) &&
  1864. ((struct vlan_ethhdr *)skb->data)->
  1865. h_vlan_encapsulated_proto == __constant_htons(ETH_P_IP)) {
  1866. ip = (struct iphdr *)&skb->data[VLAN_ETH_HLEN];
  1867. offset = VLAN_ETH_HLEN;
  1868. }
  1869. if (ip) {
  1870. if (ip->protocol == IPPROTO_TCP) {
  1871. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1872. OB_3032MAC_IOCB_REQ_IC;
  1873. mac_iocb_ptr->ip_hdr_off = offset;
  1874. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1875. } else if (ip->protocol == IPPROTO_UDP) {
  1876. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1877. OB_3032MAC_IOCB_REQ_IC;
  1878. mac_iocb_ptr->ip_hdr_off = offset;
  1879. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1880. }
  1881. }
  1882. }
  1883. /*
  1884. * Map the buffers for this transmit. This will return
  1885. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1886. */
  1887. static int ql_send_map(struct ql3_adapter *qdev,
  1888. struct ob_mac_iocb_req *mac_iocb_ptr,
  1889. struct ql_tx_buf_cb *tx_cb,
  1890. struct sk_buff *skb)
  1891. {
  1892. struct oal *oal;
  1893. struct oal_entry *oal_entry;
  1894. int len = skb_headlen(skb);
  1895. dma_addr_t map;
  1896. int err;
  1897. int completed_segs, i;
  1898. int seg_cnt, seg = 0;
  1899. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1900. seg_cnt = tx_cb->seg_count;
  1901. /*
  1902. * Map the skb buffer first.
  1903. */
  1904. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1905. err = pci_dma_mapping_error(map);
  1906. if(err) {
  1907. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1908. qdev->ndev->name, err);
  1909. return NETDEV_TX_BUSY;
  1910. }
  1911. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1912. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1913. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1914. oal_entry->len = cpu_to_le32(len);
  1915. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1916. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1917. seg++;
  1918. if (seg_cnt == 1) {
  1919. /* Terminate the last segment. */
  1920. oal_entry->len =
  1921. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1922. } else {
  1923. oal = tx_cb->oal;
  1924. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  1925. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1926. oal_entry++;
  1927. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1928. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1929. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1930. (seg == 17 && seg_cnt > 18)) {
  1931. /* Continuation entry points to outbound address list. */
  1932. map = pci_map_single(qdev->pdev, oal,
  1933. sizeof(struct oal),
  1934. PCI_DMA_TODEVICE);
  1935. err = pci_dma_mapping_error(map);
  1936. if(err) {
  1937. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  1938. qdev->ndev->name, err);
  1939. goto map_error;
  1940. }
  1941. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1942. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1943. oal_entry->len =
  1944. cpu_to_le32(sizeof(struct oal) |
  1945. OAL_CONT_ENTRY);
  1946. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  1947. map);
  1948. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1949. sizeof(struct oal));
  1950. oal_entry = (struct oal_entry *)oal;
  1951. oal++;
  1952. seg++;
  1953. }
  1954. map =
  1955. pci_map_page(qdev->pdev, frag->page,
  1956. frag->page_offset, frag->size,
  1957. PCI_DMA_TODEVICE);
  1958. err = pci_dma_mapping_error(map);
  1959. if(err) {
  1960. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  1961. qdev->ndev->name, err);
  1962. goto map_error;
  1963. }
  1964. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1965. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1966. oal_entry->len = cpu_to_le32(frag->size);
  1967. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1968. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1969. frag->size);
  1970. }
  1971. /* Terminate the last segment. */
  1972. oal_entry->len =
  1973. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1974. }
  1975. return NETDEV_TX_OK;
  1976. map_error:
  1977. /* A PCI mapping failed and now we will need to back out
  1978. * We need to traverse through the oal's and associated pages which
  1979. * have been mapped and now we must unmap them to clean up properly
  1980. */
  1981. seg = 1;
  1982. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1983. oal = tx_cb->oal;
  1984. for (i=0; i<completed_segs; i++,seg++) {
  1985. oal_entry++;
  1986. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1987. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1988. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1989. (seg == 17 && seg_cnt > 18)) {
  1990. pci_unmap_single(qdev->pdev,
  1991. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  1992. pci_unmap_len(&tx_cb->map[seg], maplen),
  1993. PCI_DMA_TODEVICE);
  1994. oal++;
  1995. seg++;
  1996. }
  1997. pci_unmap_page(qdev->pdev,
  1998. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  1999. pci_unmap_len(&tx_cb->map[seg], maplen),
  2000. PCI_DMA_TODEVICE);
  2001. }
  2002. pci_unmap_single(qdev->pdev,
  2003. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2004. pci_unmap_addr(&tx_cb->map[0], maplen),
  2005. PCI_DMA_TODEVICE);
  2006. return NETDEV_TX_BUSY;
  2007. }
  2008. /*
  2009. * The difference between 3022 and 3032 sends:
  2010. * 3022 only supports a simple single segment transmission.
  2011. * 3032 supports checksumming and scatter/gather lists (fragments).
  2012. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2013. * in the IOCB plus a chain of outbound address lists (OAL) that
  2014. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2015. * will used to point to an OAL when more ALP entries are required.
  2016. * The IOCB is always the top of the chain followed by one or more
  2017. * OALs (when necessary).
  2018. */
  2019. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2020. {
  2021. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2022. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2023. struct ql_tx_buf_cb *tx_cb;
  2024. u32 tot_len = skb->len;
  2025. struct ob_mac_iocb_req *mac_iocb_ptr;
  2026. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2027. return NETDEV_TX_BUSY;
  2028. }
  2029. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2030. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2031. (skb_shinfo(skb)->nr_frags))) == -1) {
  2032. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2033. return NETDEV_TX_OK;
  2034. }
  2035. mac_iocb_ptr = tx_cb->queue_entry;
  2036. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2037. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2038. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2039. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2040. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2041. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2042. tx_cb->skb = skb;
  2043. if (qdev->device_id == QL3032_DEVICE_ID &&
  2044. skb->ip_summed == CHECKSUM_PARTIAL)
  2045. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2046. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2047. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2048. return NETDEV_TX_BUSY;
  2049. }
  2050. wmb();
  2051. qdev->req_producer_index++;
  2052. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2053. qdev->req_producer_index = 0;
  2054. wmb();
  2055. ql_write_common_reg_l(qdev,
  2056. &port_regs->CommonRegs.reqQProducerIndex,
  2057. qdev->req_producer_index);
  2058. ndev->trans_start = jiffies;
  2059. if (netif_msg_tx_queued(qdev))
  2060. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2061. ndev->name, qdev->req_producer_index, skb->len);
  2062. atomic_dec(&qdev->tx_count);
  2063. return NETDEV_TX_OK;
  2064. }
  2065. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2066. {
  2067. qdev->req_q_size =
  2068. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2069. qdev->req_q_virt_addr =
  2070. pci_alloc_consistent(qdev->pdev,
  2071. (size_t) qdev->req_q_size,
  2072. &qdev->req_q_phy_addr);
  2073. if ((qdev->req_q_virt_addr == NULL) ||
  2074. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2075. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2076. qdev->ndev->name);
  2077. return -ENOMEM;
  2078. }
  2079. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2080. qdev->rsp_q_virt_addr =
  2081. pci_alloc_consistent(qdev->pdev,
  2082. (size_t) qdev->rsp_q_size,
  2083. &qdev->rsp_q_phy_addr);
  2084. if ((qdev->rsp_q_virt_addr == NULL) ||
  2085. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2086. printk(KERN_ERR PFX
  2087. "%s: rspQ allocation failed\n",
  2088. qdev->ndev->name);
  2089. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2090. qdev->req_q_virt_addr,
  2091. qdev->req_q_phy_addr);
  2092. return -ENOMEM;
  2093. }
  2094. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2095. return 0;
  2096. }
  2097. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2098. {
  2099. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2100. printk(KERN_INFO PFX
  2101. "%s: Already done.\n", qdev->ndev->name);
  2102. return;
  2103. }
  2104. pci_free_consistent(qdev->pdev,
  2105. qdev->req_q_size,
  2106. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2107. qdev->req_q_virt_addr = NULL;
  2108. pci_free_consistent(qdev->pdev,
  2109. qdev->rsp_q_size,
  2110. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2111. qdev->rsp_q_virt_addr = NULL;
  2112. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2113. }
  2114. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2115. {
  2116. /* Create Large Buffer Queue */
  2117. qdev->lrg_buf_q_size =
  2118. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2119. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2120. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2121. else
  2122. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2123. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2124. if (qdev->lrg_buf == NULL) {
  2125. printk(KERN_ERR PFX
  2126. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2127. return -ENOMEM;
  2128. }
  2129. qdev->lrg_buf_q_alloc_virt_addr =
  2130. pci_alloc_consistent(qdev->pdev,
  2131. qdev->lrg_buf_q_alloc_size,
  2132. &qdev->lrg_buf_q_alloc_phy_addr);
  2133. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2134. printk(KERN_ERR PFX
  2135. "%s: lBufQ failed\n", qdev->ndev->name);
  2136. return -ENOMEM;
  2137. }
  2138. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2139. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2140. /* Create Small Buffer Queue */
  2141. qdev->small_buf_q_size =
  2142. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2143. if (qdev->small_buf_q_size < PAGE_SIZE)
  2144. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2145. else
  2146. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2147. qdev->small_buf_q_alloc_virt_addr =
  2148. pci_alloc_consistent(qdev->pdev,
  2149. qdev->small_buf_q_alloc_size,
  2150. &qdev->small_buf_q_alloc_phy_addr);
  2151. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2152. printk(KERN_ERR PFX
  2153. "%s: Small Buffer Queue allocation failed.\n",
  2154. qdev->ndev->name);
  2155. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2156. qdev->lrg_buf_q_alloc_virt_addr,
  2157. qdev->lrg_buf_q_alloc_phy_addr);
  2158. return -ENOMEM;
  2159. }
  2160. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2161. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2162. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2163. return 0;
  2164. }
  2165. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2166. {
  2167. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2168. printk(KERN_INFO PFX
  2169. "%s: Already done.\n", qdev->ndev->name);
  2170. return;
  2171. }
  2172. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2173. pci_free_consistent(qdev->pdev,
  2174. qdev->lrg_buf_q_alloc_size,
  2175. qdev->lrg_buf_q_alloc_virt_addr,
  2176. qdev->lrg_buf_q_alloc_phy_addr);
  2177. qdev->lrg_buf_q_virt_addr = NULL;
  2178. pci_free_consistent(qdev->pdev,
  2179. qdev->small_buf_q_alloc_size,
  2180. qdev->small_buf_q_alloc_virt_addr,
  2181. qdev->small_buf_q_alloc_phy_addr);
  2182. qdev->small_buf_q_virt_addr = NULL;
  2183. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2184. }
  2185. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2186. {
  2187. int i;
  2188. struct bufq_addr_element *small_buf_q_entry;
  2189. /* Currently we allocate on one of memory and use it for smallbuffers */
  2190. qdev->small_buf_total_size =
  2191. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2192. QL_SMALL_BUFFER_SIZE);
  2193. qdev->small_buf_virt_addr =
  2194. pci_alloc_consistent(qdev->pdev,
  2195. qdev->small_buf_total_size,
  2196. &qdev->small_buf_phy_addr);
  2197. if (qdev->small_buf_virt_addr == NULL) {
  2198. printk(KERN_ERR PFX
  2199. "%s: Failed to get small buffer memory.\n",
  2200. qdev->ndev->name);
  2201. return -ENOMEM;
  2202. }
  2203. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2204. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2205. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2206. /* Initialize the small buffer queue. */
  2207. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2208. small_buf_q_entry->addr_high =
  2209. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2210. small_buf_q_entry->addr_low =
  2211. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2212. (i * QL_SMALL_BUFFER_SIZE));
  2213. small_buf_q_entry++;
  2214. }
  2215. qdev->small_buf_index = 0;
  2216. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2217. return 0;
  2218. }
  2219. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2220. {
  2221. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2222. printk(KERN_INFO PFX
  2223. "%s: Already done.\n", qdev->ndev->name);
  2224. return;
  2225. }
  2226. if (qdev->small_buf_virt_addr != NULL) {
  2227. pci_free_consistent(qdev->pdev,
  2228. qdev->small_buf_total_size,
  2229. qdev->small_buf_virt_addr,
  2230. qdev->small_buf_phy_addr);
  2231. qdev->small_buf_virt_addr = NULL;
  2232. }
  2233. }
  2234. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2235. {
  2236. int i = 0;
  2237. struct ql_rcv_buf_cb *lrg_buf_cb;
  2238. for (i = 0; i < qdev->num_large_buffers; i++) {
  2239. lrg_buf_cb = &qdev->lrg_buf[i];
  2240. if (lrg_buf_cb->skb) {
  2241. dev_kfree_skb(lrg_buf_cb->skb);
  2242. pci_unmap_single(qdev->pdev,
  2243. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2244. pci_unmap_len(lrg_buf_cb, maplen),
  2245. PCI_DMA_FROMDEVICE);
  2246. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2247. } else {
  2248. break;
  2249. }
  2250. }
  2251. }
  2252. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2253. {
  2254. int i;
  2255. struct ql_rcv_buf_cb *lrg_buf_cb;
  2256. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2257. for (i = 0; i < qdev->num_large_buffers; i++) {
  2258. lrg_buf_cb = &qdev->lrg_buf[i];
  2259. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2260. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2261. buf_addr_ele++;
  2262. }
  2263. qdev->lrg_buf_index = 0;
  2264. qdev->lrg_buf_skb_check = 0;
  2265. }
  2266. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2267. {
  2268. int i;
  2269. struct ql_rcv_buf_cb *lrg_buf_cb;
  2270. struct sk_buff *skb;
  2271. dma_addr_t map;
  2272. int err;
  2273. for (i = 0; i < qdev->num_large_buffers; i++) {
  2274. skb = netdev_alloc_skb(qdev->ndev,
  2275. qdev->lrg_buffer_len);
  2276. if (unlikely(!skb)) {
  2277. /* Better luck next round */
  2278. printk(KERN_ERR PFX
  2279. "%s: large buff alloc failed, "
  2280. "for %d bytes at index %d.\n",
  2281. qdev->ndev->name,
  2282. qdev->lrg_buffer_len * 2, i);
  2283. ql_free_large_buffers(qdev);
  2284. return -ENOMEM;
  2285. } else {
  2286. lrg_buf_cb = &qdev->lrg_buf[i];
  2287. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2288. lrg_buf_cb->index = i;
  2289. lrg_buf_cb->skb = skb;
  2290. /*
  2291. * We save some space to copy the ethhdr from first
  2292. * buffer
  2293. */
  2294. skb_reserve(skb, QL_HEADER_SPACE);
  2295. map = pci_map_single(qdev->pdev,
  2296. skb->data,
  2297. qdev->lrg_buffer_len -
  2298. QL_HEADER_SPACE,
  2299. PCI_DMA_FROMDEVICE);
  2300. err = pci_dma_mapping_error(map);
  2301. if(err) {
  2302. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2303. qdev->ndev->name, err);
  2304. ql_free_large_buffers(qdev);
  2305. return -ENOMEM;
  2306. }
  2307. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2308. pci_unmap_len_set(lrg_buf_cb, maplen,
  2309. qdev->lrg_buffer_len -
  2310. QL_HEADER_SPACE);
  2311. lrg_buf_cb->buf_phy_addr_low =
  2312. cpu_to_le32(LS_64BITS(map));
  2313. lrg_buf_cb->buf_phy_addr_high =
  2314. cpu_to_le32(MS_64BITS(map));
  2315. }
  2316. }
  2317. return 0;
  2318. }
  2319. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2320. {
  2321. struct ql_tx_buf_cb *tx_cb;
  2322. int i;
  2323. tx_cb = &qdev->tx_buf[0];
  2324. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2325. if (tx_cb->oal) {
  2326. kfree(tx_cb->oal);
  2327. tx_cb->oal = NULL;
  2328. }
  2329. tx_cb++;
  2330. }
  2331. }
  2332. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2333. {
  2334. struct ql_tx_buf_cb *tx_cb;
  2335. int i;
  2336. struct ob_mac_iocb_req *req_q_curr =
  2337. qdev->req_q_virt_addr;
  2338. /* Create free list of transmit buffers */
  2339. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2340. tx_cb = &qdev->tx_buf[i];
  2341. tx_cb->skb = NULL;
  2342. tx_cb->queue_entry = req_q_curr;
  2343. req_q_curr++;
  2344. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2345. if (tx_cb->oal == NULL)
  2346. return -1;
  2347. }
  2348. return 0;
  2349. }
  2350. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2351. {
  2352. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2353. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2354. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2355. }
  2356. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2357. /*
  2358. * Bigger buffers, so less of them.
  2359. */
  2360. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2361. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2362. } else {
  2363. printk(KERN_ERR PFX
  2364. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2365. qdev->ndev->name);
  2366. return -ENOMEM;
  2367. }
  2368. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2369. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2370. qdev->max_frame_size =
  2371. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2372. /*
  2373. * First allocate a page of shared memory and use it for shadow
  2374. * locations of Network Request Queue Consumer Address Register and
  2375. * Network Completion Queue Producer Index Register
  2376. */
  2377. qdev->shadow_reg_virt_addr =
  2378. pci_alloc_consistent(qdev->pdev,
  2379. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2380. if (qdev->shadow_reg_virt_addr != NULL) {
  2381. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2382. qdev->req_consumer_index_phy_addr_high =
  2383. MS_64BITS(qdev->shadow_reg_phy_addr);
  2384. qdev->req_consumer_index_phy_addr_low =
  2385. LS_64BITS(qdev->shadow_reg_phy_addr);
  2386. qdev->prsp_producer_index =
  2387. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2388. qdev->rsp_producer_index_phy_addr_high =
  2389. qdev->req_consumer_index_phy_addr_high;
  2390. qdev->rsp_producer_index_phy_addr_low =
  2391. qdev->req_consumer_index_phy_addr_low + 8;
  2392. } else {
  2393. printk(KERN_ERR PFX
  2394. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2395. return -ENOMEM;
  2396. }
  2397. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2398. printk(KERN_ERR PFX
  2399. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2400. qdev->ndev->name);
  2401. goto err_req_rsp;
  2402. }
  2403. if (ql_alloc_buffer_queues(qdev) != 0) {
  2404. printk(KERN_ERR PFX
  2405. "%s: ql_alloc_buffer_queues failed.\n",
  2406. qdev->ndev->name);
  2407. goto err_buffer_queues;
  2408. }
  2409. if (ql_alloc_small_buffers(qdev) != 0) {
  2410. printk(KERN_ERR PFX
  2411. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2412. goto err_small_buffers;
  2413. }
  2414. if (ql_alloc_large_buffers(qdev) != 0) {
  2415. printk(KERN_ERR PFX
  2416. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2417. goto err_small_buffers;
  2418. }
  2419. /* Initialize the large buffer queue. */
  2420. ql_init_large_buffers(qdev);
  2421. if (ql_create_send_free_list(qdev))
  2422. goto err_free_list;
  2423. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2424. return 0;
  2425. err_free_list:
  2426. ql_free_send_free_list(qdev);
  2427. err_small_buffers:
  2428. ql_free_buffer_queues(qdev);
  2429. err_buffer_queues:
  2430. ql_free_net_req_rsp_queues(qdev);
  2431. err_req_rsp:
  2432. pci_free_consistent(qdev->pdev,
  2433. PAGE_SIZE,
  2434. qdev->shadow_reg_virt_addr,
  2435. qdev->shadow_reg_phy_addr);
  2436. return -ENOMEM;
  2437. }
  2438. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2439. {
  2440. ql_free_send_free_list(qdev);
  2441. ql_free_large_buffers(qdev);
  2442. ql_free_small_buffers(qdev);
  2443. ql_free_buffer_queues(qdev);
  2444. ql_free_net_req_rsp_queues(qdev);
  2445. if (qdev->shadow_reg_virt_addr != NULL) {
  2446. pci_free_consistent(qdev->pdev,
  2447. PAGE_SIZE,
  2448. qdev->shadow_reg_virt_addr,
  2449. qdev->shadow_reg_phy_addr);
  2450. qdev->shadow_reg_virt_addr = NULL;
  2451. }
  2452. }
  2453. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2454. {
  2455. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2456. (void __iomem *)qdev->mem_map_registers;
  2457. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2458. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2459. 2) << 4))
  2460. return -1;
  2461. ql_write_page2_reg(qdev,
  2462. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2463. ql_write_page2_reg(qdev,
  2464. &local_ram->maxBufletCount,
  2465. qdev->nvram_data.bufletCount);
  2466. ql_write_page2_reg(qdev,
  2467. &local_ram->freeBufletThresholdLow,
  2468. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2469. (qdev->nvram_data.tcpWindowThreshold0));
  2470. ql_write_page2_reg(qdev,
  2471. &local_ram->freeBufletThresholdHigh,
  2472. qdev->nvram_data.tcpWindowThreshold50);
  2473. ql_write_page2_reg(qdev,
  2474. &local_ram->ipHashTableBase,
  2475. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2476. qdev->nvram_data.ipHashTableBaseLo);
  2477. ql_write_page2_reg(qdev,
  2478. &local_ram->ipHashTableCount,
  2479. qdev->nvram_data.ipHashTableSize);
  2480. ql_write_page2_reg(qdev,
  2481. &local_ram->tcpHashTableBase,
  2482. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2483. qdev->nvram_data.tcpHashTableBaseLo);
  2484. ql_write_page2_reg(qdev,
  2485. &local_ram->tcpHashTableCount,
  2486. qdev->nvram_data.tcpHashTableSize);
  2487. ql_write_page2_reg(qdev,
  2488. &local_ram->ncbBase,
  2489. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2490. qdev->nvram_data.ncbTableBaseLo);
  2491. ql_write_page2_reg(qdev,
  2492. &local_ram->maxNcbCount,
  2493. qdev->nvram_data.ncbTableSize);
  2494. ql_write_page2_reg(qdev,
  2495. &local_ram->drbBase,
  2496. (qdev->nvram_data.drbTableBaseHi << 16) |
  2497. qdev->nvram_data.drbTableBaseLo);
  2498. ql_write_page2_reg(qdev,
  2499. &local_ram->maxDrbCount,
  2500. qdev->nvram_data.drbTableSize);
  2501. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2502. return 0;
  2503. }
  2504. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2505. {
  2506. u32 value;
  2507. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2508. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2509. (void __iomem *)port_regs;
  2510. u32 delay = 10;
  2511. int status = 0;
  2512. if(ql_mii_setup(qdev))
  2513. return -1;
  2514. /* Bring out PHY out of reset */
  2515. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2516. (ISP_SERIAL_PORT_IF_WE |
  2517. (ISP_SERIAL_PORT_IF_WE << 16)));
  2518. qdev->port_link_state = LS_DOWN;
  2519. netif_carrier_off(qdev->ndev);
  2520. /* V2 chip fix for ARS-39168. */
  2521. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2522. (ISP_SERIAL_PORT_IF_SDE |
  2523. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2524. /* Request Queue Registers */
  2525. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2526. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2527. qdev->req_producer_index = 0;
  2528. ql_write_page1_reg(qdev,
  2529. &hmem_regs->reqConsumerIndexAddrHigh,
  2530. qdev->req_consumer_index_phy_addr_high);
  2531. ql_write_page1_reg(qdev,
  2532. &hmem_regs->reqConsumerIndexAddrLow,
  2533. qdev->req_consumer_index_phy_addr_low);
  2534. ql_write_page1_reg(qdev,
  2535. &hmem_regs->reqBaseAddrHigh,
  2536. MS_64BITS(qdev->req_q_phy_addr));
  2537. ql_write_page1_reg(qdev,
  2538. &hmem_regs->reqBaseAddrLow,
  2539. LS_64BITS(qdev->req_q_phy_addr));
  2540. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2541. /* Response Queue Registers */
  2542. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2543. qdev->rsp_consumer_index = 0;
  2544. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2545. ql_write_page1_reg(qdev,
  2546. &hmem_regs->rspProducerIndexAddrHigh,
  2547. qdev->rsp_producer_index_phy_addr_high);
  2548. ql_write_page1_reg(qdev,
  2549. &hmem_regs->rspProducerIndexAddrLow,
  2550. qdev->rsp_producer_index_phy_addr_low);
  2551. ql_write_page1_reg(qdev,
  2552. &hmem_regs->rspBaseAddrHigh,
  2553. MS_64BITS(qdev->rsp_q_phy_addr));
  2554. ql_write_page1_reg(qdev,
  2555. &hmem_regs->rspBaseAddrLow,
  2556. LS_64BITS(qdev->rsp_q_phy_addr));
  2557. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2558. /* Large Buffer Queue */
  2559. ql_write_page1_reg(qdev,
  2560. &hmem_regs->rxLargeQBaseAddrHigh,
  2561. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2562. ql_write_page1_reg(qdev,
  2563. &hmem_regs->rxLargeQBaseAddrLow,
  2564. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2565. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2566. ql_write_page1_reg(qdev,
  2567. &hmem_regs->rxLargeBufferLength,
  2568. qdev->lrg_buffer_len);
  2569. /* Small Buffer Queue */
  2570. ql_write_page1_reg(qdev,
  2571. &hmem_regs->rxSmallQBaseAddrHigh,
  2572. MS_64BITS(qdev->small_buf_q_phy_addr));
  2573. ql_write_page1_reg(qdev,
  2574. &hmem_regs->rxSmallQBaseAddrLow,
  2575. LS_64BITS(qdev->small_buf_q_phy_addr));
  2576. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2577. ql_write_page1_reg(qdev,
  2578. &hmem_regs->rxSmallBufferLength,
  2579. QL_SMALL_BUFFER_SIZE);
  2580. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2581. qdev->small_buf_release_cnt = 8;
  2582. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2583. qdev->lrg_buf_release_cnt = 8;
  2584. qdev->lrg_buf_next_free =
  2585. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2586. qdev->small_buf_index = 0;
  2587. qdev->lrg_buf_index = 0;
  2588. qdev->lrg_buf_free_count = 0;
  2589. qdev->lrg_buf_free_head = NULL;
  2590. qdev->lrg_buf_free_tail = NULL;
  2591. ql_write_common_reg(qdev,
  2592. &port_regs->CommonRegs.
  2593. rxSmallQProducerIndex,
  2594. qdev->small_buf_q_producer_index);
  2595. ql_write_common_reg(qdev,
  2596. &port_regs->CommonRegs.
  2597. rxLargeQProducerIndex,
  2598. qdev->lrg_buf_q_producer_index);
  2599. /*
  2600. * Find out if the chip has already been initialized. If it has, then
  2601. * we skip some of the initialization.
  2602. */
  2603. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2604. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2605. if ((value & PORT_STATUS_IC) == 0) {
  2606. /* Chip has not been configured yet, so let it rip. */
  2607. if(ql_init_misc_registers(qdev)) {
  2608. status = -1;
  2609. goto out;
  2610. }
  2611. value = qdev->nvram_data.tcpMaxWindowSize;
  2612. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2613. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2614. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2615. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2616. * 2) << 13)) {
  2617. status = -1;
  2618. goto out;
  2619. }
  2620. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2621. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2622. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2623. 16) | (INTERNAL_CHIP_SD |
  2624. INTERNAL_CHIP_WE)));
  2625. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2626. }
  2627. if (qdev->mac_index)
  2628. ql_write_page0_reg(qdev,
  2629. &port_regs->mac1MaxFrameLengthReg,
  2630. qdev->max_frame_size);
  2631. else
  2632. ql_write_page0_reg(qdev,
  2633. &port_regs->mac0MaxFrameLengthReg,
  2634. qdev->max_frame_size);
  2635. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2636. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2637. 2) << 7)) {
  2638. status = -1;
  2639. goto out;
  2640. }
  2641. ql_init_scan_mode(qdev);
  2642. ql_get_phy_owner(qdev);
  2643. /* Load the MAC Configuration */
  2644. /* Program lower 32 bits of the MAC address */
  2645. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2646. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2647. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2648. ((qdev->ndev->dev_addr[2] << 24)
  2649. | (qdev->ndev->dev_addr[3] << 16)
  2650. | (qdev->ndev->dev_addr[4] << 8)
  2651. | qdev->ndev->dev_addr[5]));
  2652. /* Program top 16 bits of the MAC address */
  2653. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2654. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2655. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2656. ((qdev->ndev->dev_addr[0] << 8)
  2657. | qdev->ndev->dev_addr[1]));
  2658. /* Enable Primary MAC */
  2659. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2660. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2661. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2662. /* Clear Primary and Secondary IP addresses */
  2663. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2664. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2665. (qdev->mac_index << 2)));
  2666. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2667. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2668. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2669. ((qdev->mac_index << 2) + 1)));
  2670. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2671. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2672. /* Indicate Configuration Complete */
  2673. ql_write_page0_reg(qdev,
  2674. &port_regs->portControl,
  2675. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2676. do {
  2677. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2678. if (value & PORT_STATUS_IC)
  2679. break;
  2680. msleep(500);
  2681. } while (--delay);
  2682. if (delay == 0) {
  2683. printk(KERN_ERR PFX
  2684. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2685. status = -1;
  2686. goto out;
  2687. }
  2688. /* Enable Ethernet Function */
  2689. if (qdev->device_id == QL3032_DEVICE_ID) {
  2690. value =
  2691. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2692. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2693. QL3032_PORT_CONTROL_ET);
  2694. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2695. ((value << 16) | value));
  2696. } else {
  2697. value =
  2698. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2699. PORT_CONTROL_HH);
  2700. ql_write_page0_reg(qdev, &port_regs->portControl,
  2701. ((value << 16) | value));
  2702. }
  2703. out:
  2704. return status;
  2705. }
  2706. /*
  2707. * Caller holds hw_lock.
  2708. */
  2709. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2710. {
  2711. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2712. int status = 0;
  2713. u16 value;
  2714. int max_wait_time;
  2715. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2716. clear_bit(QL_RESET_DONE, &qdev->flags);
  2717. /*
  2718. * Issue soft reset to chip.
  2719. */
  2720. printk(KERN_DEBUG PFX
  2721. "%s: Issue soft reset to chip.\n",
  2722. qdev->ndev->name);
  2723. ql_write_common_reg(qdev,
  2724. &port_regs->CommonRegs.ispControlStatus,
  2725. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2726. /* Wait 3 seconds for reset to complete. */
  2727. printk(KERN_DEBUG PFX
  2728. "%s: Wait 10 milliseconds for reset to complete.\n",
  2729. qdev->ndev->name);
  2730. /* Wait until the firmware tells us the Soft Reset is done */
  2731. max_wait_time = 5;
  2732. do {
  2733. value =
  2734. ql_read_common_reg(qdev,
  2735. &port_regs->CommonRegs.ispControlStatus);
  2736. if ((value & ISP_CONTROL_SR) == 0)
  2737. break;
  2738. ssleep(1);
  2739. } while ((--max_wait_time));
  2740. /*
  2741. * Also, make sure that the Network Reset Interrupt bit has been
  2742. * cleared after the soft reset has taken place.
  2743. */
  2744. value =
  2745. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2746. if (value & ISP_CONTROL_RI) {
  2747. printk(KERN_DEBUG PFX
  2748. "ql_adapter_reset: clearing RI after reset.\n");
  2749. ql_write_common_reg(qdev,
  2750. &port_regs->CommonRegs.
  2751. ispControlStatus,
  2752. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2753. }
  2754. if (max_wait_time == 0) {
  2755. /* Issue Force Soft Reset */
  2756. ql_write_common_reg(qdev,
  2757. &port_regs->CommonRegs.
  2758. ispControlStatus,
  2759. ((ISP_CONTROL_FSR << 16) |
  2760. ISP_CONTROL_FSR));
  2761. /*
  2762. * Wait until the firmware tells us the Force Soft Reset is
  2763. * done
  2764. */
  2765. max_wait_time = 5;
  2766. do {
  2767. value =
  2768. ql_read_common_reg(qdev,
  2769. &port_regs->CommonRegs.
  2770. ispControlStatus);
  2771. if ((value & ISP_CONTROL_FSR) == 0) {
  2772. break;
  2773. }
  2774. ssleep(1);
  2775. } while ((--max_wait_time));
  2776. }
  2777. if (max_wait_time == 0)
  2778. status = 1;
  2779. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2780. set_bit(QL_RESET_DONE, &qdev->flags);
  2781. return status;
  2782. }
  2783. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2784. {
  2785. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2786. u32 value, port_status;
  2787. u8 func_number;
  2788. /* Get the function number */
  2789. value =
  2790. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2791. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2792. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2793. switch (value & ISP_CONTROL_FN_MASK) {
  2794. case ISP_CONTROL_FN0_NET:
  2795. qdev->mac_index = 0;
  2796. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2797. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2798. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2799. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2800. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2801. if (port_status & PORT_STATUS_SM0)
  2802. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2803. else
  2804. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2805. break;
  2806. case ISP_CONTROL_FN1_NET:
  2807. qdev->mac_index = 1;
  2808. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2809. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2810. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2811. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2812. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2813. if (port_status & PORT_STATUS_SM1)
  2814. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2815. else
  2816. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2817. break;
  2818. case ISP_CONTROL_FN0_SCSI:
  2819. case ISP_CONTROL_FN1_SCSI:
  2820. default:
  2821. printk(KERN_DEBUG PFX
  2822. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  2823. qdev->ndev->name,value);
  2824. break;
  2825. }
  2826. qdev->numPorts = qdev->nvram_data.numPorts;
  2827. }
  2828. static void ql_display_dev_info(struct net_device *ndev)
  2829. {
  2830. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2831. struct pci_dev *pdev = qdev->pdev;
  2832. printk(KERN_INFO PFX
  2833. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  2834. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2835. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  2836. qdev->pci_slot);
  2837. printk(KERN_INFO PFX
  2838. "%s Interface.\n",
  2839. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  2840. /*
  2841. * Print PCI bus width/type.
  2842. */
  2843. printk(KERN_INFO PFX
  2844. "Bus interface is %s %s.\n",
  2845. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2846. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2847. printk(KERN_INFO PFX
  2848. "mem IO base address adjusted = 0x%p\n",
  2849. qdev->mem_map_registers);
  2850. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  2851. if (netif_msg_probe(qdev))
  2852. printk(KERN_INFO PFX
  2853. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  2854. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  2855. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  2856. ndev->dev_addr[5]);
  2857. }
  2858. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2859. {
  2860. struct net_device *ndev = qdev->ndev;
  2861. int retval = 0;
  2862. netif_stop_queue(ndev);
  2863. netif_carrier_off(ndev);
  2864. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  2865. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2866. ql_disable_interrupts(qdev);
  2867. free_irq(qdev->pdev->irq, ndev);
  2868. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2869. printk(KERN_INFO PFX
  2870. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  2871. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2872. pci_disable_msi(qdev->pdev);
  2873. }
  2874. del_timer_sync(&qdev->adapter_timer);
  2875. netif_poll_disable(ndev);
  2876. if (do_reset) {
  2877. int soft_reset;
  2878. unsigned long hw_flags;
  2879. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2880. if (ql_wait_for_drvr_lock(qdev)) {
  2881. if ((soft_reset = ql_adapter_reset(qdev))) {
  2882. printk(KERN_ERR PFX
  2883. "%s: ql_adapter_reset(%d) FAILED!\n",
  2884. ndev->name, qdev->index);
  2885. }
  2886. printk(KERN_ERR PFX
  2887. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  2888. } else {
  2889. printk(KERN_ERR PFX
  2890. "%s: Could not acquire driver lock to do "
  2891. "reset!\n", ndev->name);
  2892. retval = -1;
  2893. }
  2894. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2895. }
  2896. ql_free_mem_resources(qdev);
  2897. return retval;
  2898. }
  2899. static int ql_adapter_up(struct ql3_adapter *qdev)
  2900. {
  2901. struct net_device *ndev = qdev->ndev;
  2902. int err;
  2903. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  2904. unsigned long hw_flags;
  2905. if (ql_alloc_mem_resources(qdev)) {
  2906. printk(KERN_ERR PFX
  2907. "%s Unable to allocate buffers.\n", ndev->name);
  2908. return -ENOMEM;
  2909. }
  2910. if (qdev->msi) {
  2911. if (pci_enable_msi(qdev->pdev)) {
  2912. printk(KERN_ERR PFX
  2913. "%s: User requested MSI, but MSI failed to "
  2914. "initialize. Continuing without MSI.\n",
  2915. qdev->ndev->name);
  2916. qdev->msi = 0;
  2917. } else {
  2918. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  2919. set_bit(QL_MSI_ENABLED,&qdev->flags);
  2920. irq_flags &= ~IRQF_SHARED;
  2921. }
  2922. }
  2923. if ((err = request_irq(qdev->pdev->irq,
  2924. ql3xxx_isr,
  2925. irq_flags, ndev->name, ndev))) {
  2926. printk(KERN_ERR PFX
  2927. "%s: Failed to reserve interrupt %d already in use.\n",
  2928. ndev->name, qdev->pdev->irq);
  2929. goto err_irq;
  2930. }
  2931. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2932. if ((err = ql_wait_for_drvr_lock(qdev))) {
  2933. if ((err = ql_adapter_initialize(qdev))) {
  2934. printk(KERN_ERR PFX
  2935. "%s: Unable to initialize adapter.\n",
  2936. ndev->name);
  2937. goto err_init;
  2938. }
  2939. printk(KERN_ERR PFX
  2940. "%s: Releaseing driver lock.\n",ndev->name);
  2941. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2942. } else {
  2943. printk(KERN_ERR PFX
  2944. "%s: Could not aquire driver lock.\n",
  2945. ndev->name);
  2946. goto err_lock;
  2947. }
  2948. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2949. set_bit(QL_ADAPTER_UP,&qdev->flags);
  2950. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2951. netif_poll_enable(ndev);
  2952. ql_enable_interrupts(qdev);
  2953. return 0;
  2954. err_init:
  2955. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2956. err_lock:
  2957. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2958. free_irq(qdev->pdev->irq, ndev);
  2959. err_irq:
  2960. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2961. printk(KERN_INFO PFX
  2962. "%s: calling pci_disable_msi().\n",
  2963. qdev->ndev->name);
  2964. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2965. pci_disable_msi(qdev->pdev);
  2966. }
  2967. return err;
  2968. }
  2969. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2970. {
  2971. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  2972. printk(KERN_ERR PFX
  2973. "%s: Driver up/down cycle failed, "
  2974. "closing device\n",qdev->ndev->name);
  2975. dev_close(qdev->ndev);
  2976. return -1;
  2977. }
  2978. return 0;
  2979. }
  2980. static int ql3xxx_close(struct net_device *ndev)
  2981. {
  2982. struct ql3_adapter *qdev = netdev_priv(ndev);
  2983. /*
  2984. * Wait for device to recover from a reset.
  2985. * (Rarely happens, but possible.)
  2986. */
  2987. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  2988. msleep(50);
  2989. ql_adapter_down(qdev,QL_DO_RESET);
  2990. return 0;
  2991. }
  2992. static int ql3xxx_open(struct net_device *ndev)
  2993. {
  2994. struct ql3_adapter *qdev = netdev_priv(ndev);
  2995. return (ql_adapter_up(qdev));
  2996. }
  2997. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  2998. {
  2999. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  3000. return &qdev->stats;
  3001. }
  3002. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3003. {
  3004. /*
  3005. * We are manually parsing the list in the net_device structure.
  3006. */
  3007. return;
  3008. }
  3009. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3010. {
  3011. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3012. struct ql3xxx_port_registers __iomem *port_regs =
  3013. qdev->mem_map_registers;
  3014. struct sockaddr *addr = p;
  3015. unsigned long hw_flags;
  3016. if (netif_running(ndev))
  3017. return -EBUSY;
  3018. if (!is_valid_ether_addr(addr->sa_data))
  3019. return -EADDRNOTAVAIL;
  3020. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3021. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3022. /* Program lower 32 bits of the MAC address */
  3023. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3024. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3025. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3026. ((ndev->dev_addr[2] << 24) | (ndev->
  3027. dev_addr[3] << 16) |
  3028. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3029. /* Program top 16 bits of the MAC address */
  3030. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3031. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3032. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3033. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3034. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3035. return 0;
  3036. }
  3037. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3038. {
  3039. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3040. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3041. /*
  3042. * Stop the queues, we've got a problem.
  3043. */
  3044. netif_stop_queue(ndev);
  3045. /*
  3046. * Wake up the worker to process this event.
  3047. */
  3048. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3049. }
  3050. static void ql_reset_work(struct work_struct *work)
  3051. {
  3052. struct ql3_adapter *qdev =
  3053. container_of(work, struct ql3_adapter, reset_work.work);
  3054. struct net_device *ndev = qdev->ndev;
  3055. u32 value;
  3056. struct ql_tx_buf_cb *tx_cb;
  3057. int max_wait_time, i;
  3058. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3059. unsigned long hw_flags;
  3060. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3061. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3062. /*
  3063. * Loop through the active list and return the skb.
  3064. */
  3065. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3066. int j;
  3067. tx_cb = &qdev->tx_buf[i];
  3068. if (tx_cb->skb) {
  3069. printk(KERN_DEBUG PFX
  3070. "%s: Freeing lost SKB.\n",
  3071. qdev->ndev->name);
  3072. pci_unmap_single(qdev->pdev,
  3073. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3074. pci_unmap_len(&tx_cb->map[0], maplen),
  3075. PCI_DMA_TODEVICE);
  3076. for(j=1;j<tx_cb->seg_count;j++) {
  3077. pci_unmap_page(qdev->pdev,
  3078. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3079. pci_unmap_len(&tx_cb->map[j],maplen),
  3080. PCI_DMA_TODEVICE);
  3081. }
  3082. dev_kfree_skb(tx_cb->skb);
  3083. tx_cb->skb = NULL;
  3084. }
  3085. }
  3086. printk(KERN_ERR PFX
  3087. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3088. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3089. ql_write_common_reg(qdev,
  3090. &port_regs->CommonRegs.
  3091. ispControlStatus,
  3092. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3093. /*
  3094. * Wait the for Soft Reset to Complete.
  3095. */
  3096. max_wait_time = 10;
  3097. do {
  3098. value = ql_read_common_reg(qdev,
  3099. &port_regs->CommonRegs.
  3100. ispControlStatus);
  3101. if ((value & ISP_CONTROL_SR) == 0) {
  3102. printk(KERN_DEBUG PFX
  3103. "%s: reset completed.\n",
  3104. qdev->ndev->name);
  3105. break;
  3106. }
  3107. if (value & ISP_CONTROL_RI) {
  3108. printk(KERN_DEBUG PFX
  3109. "%s: clearing NRI after reset.\n",
  3110. qdev->ndev->name);
  3111. ql_write_common_reg(qdev,
  3112. &port_regs->
  3113. CommonRegs.
  3114. ispControlStatus,
  3115. ((ISP_CONTROL_RI <<
  3116. 16) | ISP_CONTROL_RI));
  3117. }
  3118. ssleep(1);
  3119. } while (--max_wait_time);
  3120. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3121. if (value & ISP_CONTROL_SR) {
  3122. /*
  3123. * Set the reset flags and clear the board again.
  3124. * Nothing else to do...
  3125. */
  3126. printk(KERN_ERR PFX
  3127. "%s: Timed out waiting for reset to "
  3128. "complete.\n", ndev->name);
  3129. printk(KERN_ERR PFX
  3130. "%s: Do a reset.\n", ndev->name);
  3131. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3132. clear_bit(QL_RESET_START,&qdev->flags);
  3133. ql_cycle_adapter(qdev,QL_DO_RESET);
  3134. return;
  3135. }
  3136. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3137. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3138. clear_bit(QL_RESET_START,&qdev->flags);
  3139. ql_cycle_adapter(qdev,QL_NO_RESET);
  3140. }
  3141. }
  3142. static void ql_tx_timeout_work(struct work_struct *work)
  3143. {
  3144. struct ql3_adapter *qdev =
  3145. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3146. ql_cycle_adapter(qdev, QL_DO_RESET);
  3147. }
  3148. static void ql_get_board_info(struct ql3_adapter *qdev)
  3149. {
  3150. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3151. u32 value;
  3152. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3153. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3154. if (value & PORT_STATUS_64)
  3155. qdev->pci_width = 64;
  3156. else
  3157. qdev->pci_width = 32;
  3158. if (value & PORT_STATUS_X)
  3159. qdev->pci_x = 1;
  3160. else
  3161. qdev->pci_x = 0;
  3162. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3163. }
  3164. static void ql3xxx_timer(unsigned long ptr)
  3165. {
  3166. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3167. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3168. printk(KERN_DEBUG PFX
  3169. "%s: Reset in progress.\n",
  3170. qdev->ndev->name);
  3171. goto end;
  3172. }
  3173. ql_link_state_machine(qdev);
  3174. /* Restart timer on 2 second interval. */
  3175. end:
  3176. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3177. }
  3178. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3179. const struct pci_device_id *pci_entry)
  3180. {
  3181. struct net_device *ndev = NULL;
  3182. struct ql3_adapter *qdev = NULL;
  3183. static int cards_found = 0;
  3184. int pci_using_dac, err;
  3185. err = pci_enable_device(pdev);
  3186. if (err) {
  3187. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3188. pci_name(pdev));
  3189. goto err_out;
  3190. }
  3191. err = pci_request_regions(pdev, DRV_NAME);
  3192. if (err) {
  3193. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3194. pci_name(pdev));
  3195. goto err_out_disable_pdev;
  3196. }
  3197. pci_set_master(pdev);
  3198. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3199. pci_using_dac = 1;
  3200. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3201. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3202. pci_using_dac = 0;
  3203. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3204. }
  3205. if (err) {
  3206. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3207. pci_name(pdev));
  3208. goto err_out_free_regions;
  3209. }
  3210. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3211. if (!ndev) {
  3212. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3213. pci_name(pdev));
  3214. err = -ENOMEM;
  3215. goto err_out_free_regions;
  3216. }
  3217. SET_MODULE_OWNER(ndev);
  3218. SET_NETDEV_DEV(ndev, &pdev->dev);
  3219. pci_set_drvdata(pdev, ndev);
  3220. qdev = netdev_priv(ndev);
  3221. qdev->index = cards_found;
  3222. qdev->ndev = ndev;
  3223. qdev->pdev = pdev;
  3224. qdev->device_id = pci_entry->device;
  3225. qdev->port_link_state = LS_DOWN;
  3226. if (msi)
  3227. qdev->msi = 1;
  3228. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3229. if (pci_using_dac)
  3230. ndev->features |= NETIF_F_HIGHDMA;
  3231. if (qdev->device_id == QL3032_DEVICE_ID)
  3232. ndev->features |= (NETIF_F_HW_CSUM | NETIF_F_SG);
  3233. qdev->mem_map_registers =
  3234. ioremap_nocache(pci_resource_start(pdev, 1),
  3235. pci_resource_len(qdev->pdev, 1));
  3236. if (!qdev->mem_map_registers) {
  3237. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3238. pci_name(pdev));
  3239. err = -EIO;
  3240. goto err_out_free_ndev;
  3241. }
  3242. spin_lock_init(&qdev->adapter_lock);
  3243. spin_lock_init(&qdev->hw_lock);
  3244. /* Set driver entry points */
  3245. ndev->open = ql3xxx_open;
  3246. ndev->hard_start_xmit = ql3xxx_send;
  3247. ndev->stop = ql3xxx_close;
  3248. ndev->get_stats = ql3xxx_get_stats;
  3249. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3250. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3251. ndev->set_mac_address = ql3xxx_set_mac_address;
  3252. ndev->tx_timeout = ql3xxx_tx_timeout;
  3253. ndev->watchdog_timeo = 5 * HZ;
  3254. ndev->poll = &ql_poll;
  3255. ndev->weight = 64;
  3256. ndev->irq = pdev->irq;
  3257. /* make sure the EEPROM is good */
  3258. if (ql_get_nvram_params(qdev)) {
  3259. printk(KERN_ALERT PFX
  3260. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3261. qdev->index);
  3262. err = -EIO;
  3263. goto err_out_iounmap;
  3264. }
  3265. ql_set_mac_info(qdev);
  3266. /* Validate and set parameters */
  3267. if (qdev->mac_index) {
  3268. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3269. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3270. ETH_ALEN);
  3271. } else {
  3272. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3273. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3274. ETH_ALEN);
  3275. }
  3276. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3277. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3278. /* Turn off support for multicasting */
  3279. ndev->flags &= ~IFF_MULTICAST;
  3280. /* Record PCI bus information. */
  3281. ql_get_board_info(qdev);
  3282. /*
  3283. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3284. * jumbo frames.
  3285. */
  3286. if (qdev->pci_x) {
  3287. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3288. }
  3289. err = register_netdev(ndev);
  3290. if (err) {
  3291. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3292. pci_name(pdev));
  3293. goto err_out_iounmap;
  3294. }
  3295. /* we're going to reset, so assume we have no link for now */
  3296. netif_carrier_off(ndev);
  3297. netif_stop_queue(ndev);
  3298. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3299. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3300. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3301. init_timer(&qdev->adapter_timer);
  3302. qdev->adapter_timer.function = ql3xxx_timer;
  3303. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3304. qdev->adapter_timer.data = (unsigned long)qdev;
  3305. if(!cards_found) {
  3306. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3307. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3308. DRV_NAME, DRV_VERSION);
  3309. }
  3310. ql_display_dev_info(ndev);
  3311. cards_found++;
  3312. return 0;
  3313. err_out_iounmap:
  3314. iounmap(qdev->mem_map_registers);
  3315. err_out_free_ndev:
  3316. free_netdev(ndev);
  3317. err_out_free_regions:
  3318. pci_release_regions(pdev);
  3319. err_out_disable_pdev:
  3320. pci_disable_device(pdev);
  3321. pci_set_drvdata(pdev, NULL);
  3322. err_out:
  3323. return err;
  3324. }
  3325. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3326. {
  3327. struct net_device *ndev = pci_get_drvdata(pdev);
  3328. struct ql3_adapter *qdev = netdev_priv(ndev);
  3329. unregister_netdev(ndev);
  3330. qdev = netdev_priv(ndev);
  3331. ql_disable_interrupts(qdev);
  3332. if (qdev->workqueue) {
  3333. cancel_delayed_work(&qdev->reset_work);
  3334. cancel_delayed_work(&qdev->tx_timeout_work);
  3335. destroy_workqueue(qdev->workqueue);
  3336. qdev->workqueue = NULL;
  3337. }
  3338. iounmap(qdev->mem_map_registers);
  3339. pci_release_regions(pdev);
  3340. pci_set_drvdata(pdev, NULL);
  3341. free_netdev(ndev);
  3342. }
  3343. static struct pci_driver ql3xxx_driver = {
  3344. .name = DRV_NAME,
  3345. .id_table = ql3xxx_pci_tbl,
  3346. .probe = ql3xxx_probe,
  3347. .remove = __devexit_p(ql3xxx_remove),
  3348. };
  3349. static int __init ql3xxx_init_module(void)
  3350. {
  3351. return pci_register_driver(&ql3xxx_driver);
  3352. }
  3353. static void __exit ql3xxx_exit(void)
  3354. {
  3355. pci_unregister_driver(&ql3xxx_driver);
  3356. }
  3357. module_init(ql3xxx_init_module);
  3358. module_exit(ql3xxx_exit);