tick-common.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. /*
  2. * linux/kernel/time/tick-common.c
  3. *
  4. * This file contains the base functions to manage periodic tick
  5. * related events.
  6. *
  7. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9. * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10. *
  11. * This code is licenced under the GPL version 2. For details see
  12. * kernel-base/COPYING.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/percpu.h>
  19. #include <linux/profile.h>
  20. #include <linux/sched.h>
  21. #include <linux/module.h>
  22. #include <asm/irq_regs.h>
  23. #include "tick-internal.h"
  24. /*
  25. * Tick devices
  26. */
  27. DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
  28. /*
  29. * Tick next event: keeps track of the tick time
  30. */
  31. ktime_t tick_next_period;
  32. ktime_t tick_period;
  33. /*
  34. * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
  35. * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
  36. * variable has two functions:
  37. *
  38. * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
  39. * timekeeping lock all at once. Only the CPU which is assigned to do the
  40. * update is handling it.
  41. *
  42. * 2) Hand off the duty in the NOHZ idle case by setting the value to
  43. * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
  44. * at it will take over and keep the time keeping alive. The handover
  45. * procedure also covers cpu hotplug.
  46. */
  47. int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
  48. /*
  49. * Debugging: see timer_list.c
  50. */
  51. struct tick_device *tick_get_device(int cpu)
  52. {
  53. return &per_cpu(tick_cpu_device, cpu);
  54. }
  55. /**
  56. * tick_is_oneshot_available - check for a oneshot capable event device
  57. */
  58. int tick_is_oneshot_available(void)
  59. {
  60. struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  61. if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
  62. return 0;
  63. if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  64. return 1;
  65. return tick_broadcast_oneshot_available();
  66. }
  67. /*
  68. * Periodic tick
  69. */
  70. static void tick_periodic(int cpu)
  71. {
  72. if (tick_do_timer_cpu == cpu) {
  73. write_seqlock(&jiffies_lock);
  74. /* Keep track of the next tick event */
  75. tick_next_period = ktime_add(tick_next_period, tick_period);
  76. do_timer(1);
  77. write_sequnlock(&jiffies_lock);
  78. }
  79. update_process_times(user_mode(get_irq_regs()));
  80. profile_tick(CPU_PROFILING);
  81. }
  82. /*
  83. * Event handler for periodic ticks
  84. */
  85. void tick_handle_periodic(struct clock_event_device *dev)
  86. {
  87. int cpu = smp_processor_id();
  88. ktime_t next;
  89. tick_periodic(cpu);
  90. if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
  91. return;
  92. /*
  93. * Setup the next period for devices, which do not have
  94. * periodic mode:
  95. */
  96. next = ktime_add(dev->next_event, tick_period);
  97. for (;;) {
  98. if (!clockevents_program_event(dev, next, false))
  99. return;
  100. /*
  101. * Have to be careful here. If we're in oneshot mode,
  102. * before we call tick_periodic() in a loop, we need
  103. * to be sure we're using a real hardware clocksource.
  104. * Otherwise we could get trapped in an infinite
  105. * loop, as the tick_periodic() increments jiffies,
  106. * when then will increment time, posibly causing
  107. * the loop to trigger again and again.
  108. */
  109. if (timekeeping_valid_for_hres())
  110. tick_periodic(cpu);
  111. next = ktime_add(next, tick_period);
  112. }
  113. }
  114. /*
  115. * Setup the device for a periodic tick
  116. */
  117. void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
  118. {
  119. tick_set_periodic_handler(dev, broadcast);
  120. /* Broadcast setup ? */
  121. if (!tick_device_is_functional(dev))
  122. return;
  123. if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
  124. !tick_broadcast_oneshot_active()) {
  125. clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
  126. } else {
  127. unsigned long seq;
  128. ktime_t next;
  129. do {
  130. seq = read_seqbegin(&jiffies_lock);
  131. next = tick_next_period;
  132. } while (read_seqretry(&jiffies_lock, seq));
  133. clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
  134. for (;;) {
  135. if (!clockevents_program_event(dev, next, false))
  136. return;
  137. next = ktime_add(next, tick_period);
  138. }
  139. }
  140. }
  141. /*
  142. * Setup the tick device
  143. */
  144. static void tick_setup_device(struct tick_device *td,
  145. struct clock_event_device *newdev, int cpu,
  146. const struct cpumask *cpumask)
  147. {
  148. ktime_t next_event;
  149. void (*handler)(struct clock_event_device *) = NULL;
  150. /*
  151. * First device setup ?
  152. */
  153. if (!td->evtdev) {
  154. /*
  155. * If no cpu took the do_timer update, assign it to
  156. * this cpu:
  157. */
  158. if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
  159. if (!tick_nohz_full_cpu(cpu))
  160. tick_do_timer_cpu = cpu;
  161. else
  162. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  163. tick_next_period = ktime_get();
  164. tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
  165. }
  166. /*
  167. * Startup in periodic mode first.
  168. */
  169. td->mode = TICKDEV_MODE_PERIODIC;
  170. } else {
  171. handler = td->evtdev->event_handler;
  172. next_event = td->evtdev->next_event;
  173. td->evtdev->event_handler = clockevents_handle_noop;
  174. }
  175. td->evtdev = newdev;
  176. /*
  177. * When the device is not per cpu, pin the interrupt to the
  178. * current cpu:
  179. */
  180. if (!cpumask_equal(newdev->cpumask, cpumask))
  181. irq_set_affinity(newdev->irq, cpumask);
  182. /*
  183. * When global broadcasting is active, check if the current
  184. * device is registered as a placeholder for broadcast mode.
  185. * This allows us to handle this x86 misfeature in a generic
  186. * way. This function also returns !=0 when we keep the
  187. * current active broadcast state for this CPU.
  188. */
  189. if (tick_device_uses_broadcast(newdev, cpu))
  190. return;
  191. if (td->mode == TICKDEV_MODE_PERIODIC)
  192. tick_setup_periodic(newdev, 0);
  193. else
  194. tick_setup_oneshot(newdev, handler, next_event);
  195. }
  196. void tick_install_replacement(struct clock_event_device *newdev)
  197. {
  198. struct tick_device *td = &__get_cpu_var(tick_cpu_device);
  199. int cpu = smp_processor_id();
  200. clockevents_exchange_device(td->evtdev, newdev);
  201. tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
  202. if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
  203. tick_oneshot_notify();
  204. }
  205. static bool tick_check_percpu(struct clock_event_device *curdev,
  206. struct clock_event_device *newdev, int cpu)
  207. {
  208. if (!cpumask_test_cpu(cpu, newdev->cpumask))
  209. return false;
  210. if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
  211. return true;
  212. /* Check if irq affinity can be set */
  213. if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
  214. return false;
  215. /* Prefer an existing cpu local device */
  216. if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
  217. return false;
  218. return true;
  219. }
  220. static bool tick_check_preferred(struct clock_event_device *curdev,
  221. struct clock_event_device *newdev)
  222. {
  223. /* Prefer oneshot capable device */
  224. if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
  225. if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
  226. return false;
  227. if (tick_oneshot_mode_active())
  228. return false;
  229. }
  230. /*
  231. * Use the higher rated one, but prefer a CPU local device with a lower
  232. * rating than a non-CPU local device
  233. */
  234. return !curdev ||
  235. newdev->rating > curdev->rating ||
  236. !cpumask_equal(curdev->cpumask, newdev->cpumask);
  237. }
  238. /*
  239. * Check whether the new device is a better fit than curdev. curdev
  240. * can be NULL !
  241. */
  242. bool tick_check_replacement(struct clock_event_device *curdev,
  243. struct clock_event_device *newdev)
  244. {
  245. if (tick_check_percpu(curdev, newdev, smp_processor_id()))
  246. return false;
  247. return tick_check_preferred(curdev, newdev);
  248. }
  249. /*
  250. * Check, if the new registered device should be used. Called with
  251. * clockevents_lock held and interrupts disabled.
  252. */
  253. void tick_check_new_device(struct clock_event_device *newdev)
  254. {
  255. struct clock_event_device *curdev;
  256. struct tick_device *td;
  257. int cpu;
  258. cpu = smp_processor_id();
  259. if (!cpumask_test_cpu(cpu, newdev->cpumask))
  260. goto out_bc;
  261. td = &per_cpu(tick_cpu_device, cpu);
  262. curdev = td->evtdev;
  263. /* cpu local device ? */
  264. if (!tick_check_percpu(curdev, newdev, cpu))
  265. goto out_bc;
  266. /* Preference decision */
  267. if (!tick_check_preferred(curdev, newdev))
  268. goto out_bc;
  269. if (!try_module_get(newdev->owner))
  270. return;
  271. /*
  272. * Replace the eventually existing device by the new
  273. * device. If the current device is the broadcast device, do
  274. * not give it back to the clockevents layer !
  275. */
  276. if (tick_is_broadcast_device(curdev)) {
  277. clockevents_shutdown(curdev);
  278. curdev = NULL;
  279. }
  280. clockevents_exchange_device(curdev, newdev);
  281. tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
  282. if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
  283. tick_oneshot_notify();
  284. return;
  285. out_bc:
  286. /*
  287. * Can the new device be used as a broadcast device ?
  288. */
  289. tick_install_broadcast_device(newdev);
  290. }
  291. /*
  292. * Transfer the do_timer job away from a dying cpu.
  293. *
  294. * Called with interrupts disabled.
  295. */
  296. void tick_handover_do_timer(int *cpup)
  297. {
  298. if (*cpup == tick_do_timer_cpu) {
  299. int cpu = cpumask_first(cpu_online_mask);
  300. tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
  301. TICK_DO_TIMER_NONE;
  302. }
  303. }
  304. /*
  305. * Shutdown an event device on a given cpu:
  306. *
  307. * This is called on a life CPU, when a CPU is dead. So we cannot
  308. * access the hardware device itself.
  309. * We just set the mode and remove it from the lists.
  310. */
  311. void tick_shutdown(unsigned int *cpup)
  312. {
  313. struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
  314. struct clock_event_device *dev = td->evtdev;
  315. td->mode = TICKDEV_MODE_PERIODIC;
  316. if (dev) {
  317. /*
  318. * Prevent that the clock events layer tries to call
  319. * the set mode function!
  320. */
  321. dev->mode = CLOCK_EVT_MODE_UNUSED;
  322. clockevents_exchange_device(dev, NULL);
  323. dev->event_handler = clockevents_handle_noop;
  324. td->evtdev = NULL;
  325. }
  326. }
  327. void tick_suspend(void)
  328. {
  329. struct tick_device *td = &__get_cpu_var(tick_cpu_device);
  330. clockevents_shutdown(td->evtdev);
  331. }
  332. void tick_resume(void)
  333. {
  334. struct tick_device *td = &__get_cpu_var(tick_cpu_device);
  335. int broadcast = tick_resume_broadcast();
  336. clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
  337. if (!broadcast) {
  338. if (td->mode == TICKDEV_MODE_PERIODIC)
  339. tick_setup_periodic(td->evtdev, 0);
  340. else
  341. tick_resume_oneshot();
  342. }
  343. }
  344. /**
  345. * tick_init - initialize the tick control
  346. */
  347. void __init tick_init(void)
  348. {
  349. tick_broadcast_init();
  350. }