intel_cacheinfo.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. */
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/device.h>
  11. #include <linux/compiler.h>
  12. #include <linux/cpu.h>
  13. #include <asm/processor.h>
  14. #include <asm/smp.h>
  15. #define LVL_1_INST 1
  16. #define LVL_1_DATA 2
  17. #define LVL_2 3
  18. #define LVL_3 4
  19. #define LVL_TRACE 5
  20. struct _cache_table
  21. {
  22. unsigned char descriptor;
  23. char cache_type;
  24. short size;
  25. };
  26. /* all the cache descriptor types we care about (no TLB or trace cache entries) */
  27. static struct _cache_table cache_table[] __cpuinitdata =
  28. {
  29. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  30. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  31. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  32. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  33. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  34. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  35. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  36. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  37. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  38. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  39. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  40. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  41. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  42. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  43. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  44. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  45. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  46. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  47. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  48. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  49. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  50. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  51. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  52. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  53. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  54. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  55. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  56. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  57. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  58. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  59. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  60. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  61. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  62. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  63. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  64. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  65. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  66. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  67. { 0x00, 0, 0}
  68. };
  69. enum _cache_type
  70. {
  71. CACHE_TYPE_NULL = 0,
  72. CACHE_TYPE_DATA = 1,
  73. CACHE_TYPE_INST = 2,
  74. CACHE_TYPE_UNIFIED = 3
  75. };
  76. union _cpuid4_leaf_eax {
  77. struct {
  78. enum _cache_type type:5;
  79. unsigned int level:3;
  80. unsigned int is_self_initializing:1;
  81. unsigned int is_fully_associative:1;
  82. unsigned int reserved:4;
  83. unsigned int num_threads_sharing:12;
  84. unsigned int num_cores_on_die:6;
  85. } split;
  86. u32 full;
  87. };
  88. union _cpuid4_leaf_ebx {
  89. struct {
  90. unsigned int coherency_line_size:12;
  91. unsigned int physical_line_partition:10;
  92. unsigned int ways_of_associativity:10;
  93. } split;
  94. u32 full;
  95. };
  96. union _cpuid4_leaf_ecx {
  97. struct {
  98. unsigned int number_of_sets:32;
  99. } split;
  100. u32 full;
  101. };
  102. struct _cpuid4_info {
  103. union _cpuid4_leaf_eax eax;
  104. union _cpuid4_leaf_ebx ebx;
  105. union _cpuid4_leaf_ecx ecx;
  106. unsigned long size;
  107. cpumask_t shared_cpu_map;
  108. };
  109. static unsigned short num_cache_leaves;
  110. static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  111. {
  112. unsigned int eax, ebx, ecx, edx;
  113. union _cpuid4_leaf_eax cache_eax;
  114. cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
  115. cache_eax.full = eax;
  116. if (cache_eax.split.type == CACHE_TYPE_NULL)
  117. return -EIO; /* better error ? */
  118. this_leaf->eax.full = eax;
  119. this_leaf->ebx.full = ebx;
  120. this_leaf->ecx.full = ecx;
  121. this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
  122. (this_leaf->ebx.split.coherency_line_size + 1) *
  123. (this_leaf->ebx.split.physical_line_partition + 1) *
  124. (this_leaf->ebx.split.ways_of_associativity + 1);
  125. return 0;
  126. }
  127. static int __init find_num_cache_leaves(void)
  128. {
  129. unsigned int eax, ebx, ecx, edx;
  130. union _cpuid4_leaf_eax cache_eax;
  131. int i = -1;
  132. do {
  133. ++i;
  134. /* Do cpuid(4) loop to find out num_cache_leaves */
  135. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  136. cache_eax.full = eax;
  137. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  138. return i;
  139. }
  140. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  141. {
  142. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
  143. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  144. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  145. if (c->cpuid_level > 4) {
  146. static int is_initialized;
  147. if (is_initialized == 0) {
  148. /* Init num_cache_leaves from boot CPU */
  149. num_cache_leaves = find_num_cache_leaves();
  150. is_initialized++;
  151. }
  152. /*
  153. * Whenever possible use cpuid(4), deterministic cache
  154. * parameters cpuid leaf to find the cache details
  155. */
  156. for (i = 0; i < num_cache_leaves; i++) {
  157. struct _cpuid4_info this_leaf;
  158. int retval;
  159. retval = cpuid4_cache_lookup(i, &this_leaf);
  160. if (retval >= 0) {
  161. switch(this_leaf.eax.split.level) {
  162. case 1:
  163. if (this_leaf.eax.split.type ==
  164. CACHE_TYPE_DATA)
  165. new_l1d = this_leaf.size/1024;
  166. else if (this_leaf.eax.split.type ==
  167. CACHE_TYPE_INST)
  168. new_l1i = this_leaf.size/1024;
  169. break;
  170. case 2:
  171. new_l2 = this_leaf.size/1024;
  172. break;
  173. case 3:
  174. new_l3 = this_leaf.size/1024;
  175. break;
  176. default:
  177. break;
  178. }
  179. }
  180. }
  181. }
  182. if (c->cpuid_level > 1) {
  183. /* supports eax=2 call */
  184. int i, j, n;
  185. int regs[4];
  186. unsigned char *dp = (unsigned char *)regs;
  187. /* Number of times to iterate */
  188. n = cpuid_eax(2) & 0xFF;
  189. for ( i = 0 ; i < n ; i++ ) {
  190. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  191. /* If bit 31 is set, this is an unknown format */
  192. for ( j = 0 ; j < 3 ; j++ ) {
  193. if ( regs[j] < 0 ) regs[j] = 0;
  194. }
  195. /* Byte 0 is level count, not a descriptor */
  196. for ( j = 1 ; j < 16 ; j++ ) {
  197. unsigned char des = dp[j];
  198. unsigned char k = 0;
  199. /* look up this descriptor in the table */
  200. while (cache_table[k].descriptor != 0)
  201. {
  202. if (cache_table[k].descriptor == des) {
  203. switch (cache_table[k].cache_type) {
  204. case LVL_1_INST:
  205. l1i += cache_table[k].size;
  206. break;
  207. case LVL_1_DATA:
  208. l1d += cache_table[k].size;
  209. break;
  210. case LVL_2:
  211. l2 += cache_table[k].size;
  212. break;
  213. case LVL_3:
  214. l3 += cache_table[k].size;
  215. break;
  216. case LVL_TRACE:
  217. trace += cache_table[k].size;
  218. break;
  219. }
  220. break;
  221. }
  222. k++;
  223. }
  224. }
  225. }
  226. if (new_l1d)
  227. l1d = new_l1d;
  228. if (new_l1i)
  229. l1i = new_l1i;
  230. if (new_l2)
  231. l2 = new_l2;
  232. if (new_l3)
  233. l3 = new_l3;
  234. if ( trace )
  235. printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
  236. else if ( l1i )
  237. printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
  238. if ( l1d )
  239. printk(", L1 D cache: %dK\n", l1d);
  240. else
  241. printk("\n");
  242. if ( l2 )
  243. printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
  244. if ( l3 )
  245. printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
  246. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  247. }
  248. return l2;
  249. }
  250. /* pointer to _cpuid4_info array (for each cache leaf) */
  251. static struct _cpuid4_info *cpuid4_info[NR_CPUS];
  252. #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
  253. #ifdef CONFIG_SMP
  254. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  255. {
  256. struct _cpuid4_info *this_leaf;
  257. unsigned long num_threads_sharing;
  258. #ifdef CONFIG_X86_HT
  259. struct cpuinfo_x86 *c = cpu_data + cpu;
  260. #endif
  261. this_leaf = CPUID4_INFO_IDX(cpu, index);
  262. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  263. if (num_threads_sharing == 1)
  264. cpu_set(cpu, this_leaf->shared_cpu_map);
  265. #ifdef CONFIG_X86_HT
  266. else if (num_threads_sharing == smp_num_siblings)
  267. this_leaf->shared_cpu_map = cpu_sibling_map[cpu];
  268. else if (num_threads_sharing == (c->x86_num_cores * smp_num_siblings))
  269. this_leaf->shared_cpu_map = cpu_core_map[cpu];
  270. else
  271. printk(KERN_DEBUG "Number of CPUs sharing cache didn't match "
  272. "any known set of CPUs\n");
  273. #endif
  274. }
  275. #else
  276. static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
  277. #endif
  278. static void free_cache_attributes(unsigned int cpu)
  279. {
  280. kfree(cpuid4_info[cpu]);
  281. cpuid4_info[cpu] = NULL;
  282. }
  283. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  284. {
  285. struct _cpuid4_info *this_leaf;
  286. unsigned long j;
  287. int retval;
  288. cpumask_t oldmask;
  289. if (num_cache_leaves == 0)
  290. return -ENOENT;
  291. cpuid4_info[cpu] = kmalloc(
  292. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  293. if (unlikely(cpuid4_info[cpu] == NULL))
  294. return -ENOMEM;
  295. memset(cpuid4_info[cpu], 0,
  296. sizeof(struct _cpuid4_info) * num_cache_leaves);
  297. oldmask = current->cpus_allowed;
  298. retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
  299. if (retval)
  300. goto out;
  301. /* Do cpuid and store the results */
  302. retval = 0;
  303. for (j = 0; j < num_cache_leaves; j++) {
  304. this_leaf = CPUID4_INFO_IDX(cpu, j);
  305. retval = cpuid4_cache_lookup(j, this_leaf);
  306. if (unlikely(retval < 0))
  307. break;
  308. cache_shared_cpu_map_setup(cpu, j);
  309. }
  310. set_cpus_allowed(current, oldmask);
  311. out:
  312. if (retval)
  313. free_cache_attributes(cpu);
  314. return retval;
  315. }
  316. #ifdef CONFIG_SYSFS
  317. #include <linux/kobject.h>
  318. #include <linux/sysfs.h>
  319. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  320. /* pointer to kobject for cpuX/cache */
  321. static struct kobject * cache_kobject[NR_CPUS];
  322. struct _index_kobject {
  323. struct kobject kobj;
  324. unsigned int cpu;
  325. unsigned short index;
  326. };
  327. /* pointer to array of kobjects for cpuX/cache/indexY */
  328. static struct _index_kobject *index_kobject[NR_CPUS];
  329. #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
  330. #define show_one_plus(file_name, object, val) \
  331. static ssize_t show_##file_name \
  332. (struct _cpuid4_info *this_leaf, char *buf) \
  333. { \
  334. return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  335. }
  336. show_one_plus(level, eax.split.level, 0);
  337. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  338. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  339. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  340. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  341. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  342. {
  343. return sprintf (buf, "%luK\n", this_leaf->size / 1024);
  344. }
  345. static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
  346. {
  347. char mask_str[NR_CPUS];
  348. cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
  349. return sprintf(buf, "%s\n", mask_str);
  350. }
  351. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
  352. switch(this_leaf->eax.split.type) {
  353. case CACHE_TYPE_DATA:
  354. return sprintf(buf, "Data\n");
  355. break;
  356. case CACHE_TYPE_INST:
  357. return sprintf(buf, "Instruction\n");
  358. break;
  359. case CACHE_TYPE_UNIFIED:
  360. return sprintf(buf, "Unified\n");
  361. break;
  362. default:
  363. return sprintf(buf, "Unknown\n");
  364. break;
  365. }
  366. }
  367. struct _cache_attr {
  368. struct attribute attr;
  369. ssize_t (*show)(struct _cpuid4_info *, char *);
  370. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  371. };
  372. #define define_one_ro(_name) \
  373. static struct _cache_attr _name = \
  374. __ATTR(_name, 0444, show_##_name, NULL)
  375. define_one_ro(level);
  376. define_one_ro(type);
  377. define_one_ro(coherency_line_size);
  378. define_one_ro(physical_line_partition);
  379. define_one_ro(ways_of_associativity);
  380. define_one_ro(number_of_sets);
  381. define_one_ro(size);
  382. define_one_ro(shared_cpu_map);
  383. static struct attribute * default_attrs[] = {
  384. &type.attr,
  385. &level.attr,
  386. &coherency_line_size.attr,
  387. &physical_line_partition.attr,
  388. &ways_of_associativity.attr,
  389. &number_of_sets.attr,
  390. &size.attr,
  391. &shared_cpu_map.attr,
  392. NULL
  393. };
  394. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  395. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  396. static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
  397. {
  398. struct _cache_attr *fattr = to_attr(attr);
  399. struct _index_kobject *this_leaf = to_object(kobj);
  400. ssize_t ret;
  401. ret = fattr->show ?
  402. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  403. buf) :
  404. 0;
  405. return ret;
  406. }
  407. static ssize_t store(struct kobject * kobj, struct attribute * attr,
  408. const char * buf, size_t count)
  409. {
  410. return 0;
  411. }
  412. static struct sysfs_ops sysfs_ops = {
  413. .show = show,
  414. .store = store,
  415. };
  416. static struct kobj_type ktype_cache = {
  417. .sysfs_ops = &sysfs_ops,
  418. .default_attrs = default_attrs,
  419. };
  420. static struct kobj_type ktype_percpu_entry = {
  421. .sysfs_ops = &sysfs_ops,
  422. };
  423. static void cpuid4_cache_sysfs_exit(unsigned int cpu)
  424. {
  425. kfree(cache_kobject[cpu]);
  426. kfree(index_kobject[cpu]);
  427. cache_kobject[cpu] = NULL;
  428. index_kobject[cpu] = NULL;
  429. free_cache_attributes(cpu);
  430. }
  431. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  432. {
  433. if (num_cache_leaves == 0)
  434. return -ENOENT;
  435. detect_cache_attributes(cpu);
  436. if (cpuid4_info[cpu] == NULL)
  437. return -ENOENT;
  438. /* Allocate all required memory */
  439. cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
  440. if (unlikely(cache_kobject[cpu] == NULL))
  441. goto err_out;
  442. memset(cache_kobject[cpu], 0, sizeof(struct kobject));
  443. index_kobject[cpu] = kmalloc(
  444. sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
  445. if (unlikely(index_kobject[cpu] == NULL))
  446. goto err_out;
  447. memset(index_kobject[cpu], 0,
  448. sizeof(struct _index_kobject) * num_cache_leaves);
  449. return 0;
  450. err_out:
  451. cpuid4_cache_sysfs_exit(cpu);
  452. return -ENOMEM;
  453. }
  454. /* Add/Remove cache interface for CPU device */
  455. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  456. {
  457. unsigned int cpu = sys_dev->id;
  458. unsigned long i, j;
  459. struct _index_kobject *this_object;
  460. int retval = 0;
  461. retval = cpuid4_cache_sysfs_init(cpu);
  462. if (unlikely(retval < 0))
  463. return retval;
  464. cache_kobject[cpu]->parent = &sys_dev->kobj;
  465. kobject_set_name(cache_kobject[cpu], "%s", "cache");
  466. cache_kobject[cpu]->ktype = &ktype_percpu_entry;
  467. retval = kobject_register(cache_kobject[cpu]);
  468. for (i = 0; i < num_cache_leaves; i++) {
  469. this_object = INDEX_KOBJECT_PTR(cpu,i);
  470. this_object->cpu = cpu;
  471. this_object->index = i;
  472. this_object->kobj.parent = cache_kobject[cpu];
  473. kobject_set_name(&(this_object->kobj), "index%1lu", i);
  474. this_object->kobj.ktype = &ktype_cache;
  475. retval = kobject_register(&(this_object->kobj));
  476. if (unlikely(retval)) {
  477. for (j = 0; j < i; j++) {
  478. kobject_unregister(
  479. &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
  480. }
  481. kobject_unregister(cache_kobject[cpu]);
  482. cpuid4_cache_sysfs_exit(cpu);
  483. break;
  484. }
  485. }
  486. return retval;
  487. }
  488. static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
  489. {
  490. unsigned int cpu = sys_dev->id;
  491. unsigned long i;
  492. for (i = 0; i < num_cache_leaves; i++)
  493. kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
  494. kobject_unregister(cache_kobject[cpu]);
  495. cpuid4_cache_sysfs_exit(cpu);
  496. return;
  497. }
  498. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  499. unsigned long action, void *hcpu)
  500. {
  501. unsigned int cpu = (unsigned long)hcpu;
  502. struct sys_device *sys_dev;
  503. sys_dev = get_cpu_sysdev(cpu);
  504. switch (action) {
  505. case CPU_ONLINE:
  506. cache_add_dev(sys_dev);
  507. break;
  508. case CPU_DEAD:
  509. cache_remove_dev(sys_dev);
  510. break;
  511. }
  512. return NOTIFY_OK;
  513. }
  514. static struct notifier_block cacheinfo_cpu_notifier =
  515. {
  516. .notifier_call = cacheinfo_cpu_callback,
  517. };
  518. static int __cpuinit cache_sysfs_init(void)
  519. {
  520. int i;
  521. if (num_cache_leaves == 0)
  522. return 0;
  523. register_cpu_notifier(&cacheinfo_cpu_notifier);
  524. for_each_online_cpu(i) {
  525. cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
  526. (void *)(long)i);
  527. }
  528. return 0;
  529. }
  530. device_initcall(cache_sysfs_init);
  531. #endif