kvm_main.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. static struct dentry *debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. static inline int valid_vcpu(int n)
  61. {
  62. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  63. }
  64. /*
  65. * Switches to specified vcpu, until a matching vcpu_put()
  66. */
  67. void vcpu_load(struct kvm_vcpu *vcpu)
  68. {
  69. int cpu;
  70. mutex_lock(&vcpu->mutex);
  71. cpu = get_cpu();
  72. preempt_notifier_register(&vcpu->preempt_notifier);
  73. kvm_arch_vcpu_load(vcpu, cpu);
  74. put_cpu();
  75. }
  76. void vcpu_put(struct kvm_vcpu *vcpu)
  77. {
  78. preempt_disable();
  79. kvm_arch_vcpu_put(vcpu);
  80. preempt_notifier_unregister(&vcpu->preempt_notifier);
  81. preempt_enable();
  82. mutex_unlock(&vcpu->mutex);
  83. }
  84. static void ack_flush(void *_completed)
  85. {
  86. }
  87. void kvm_flush_remote_tlbs(struct kvm *kvm)
  88. {
  89. int i, cpu;
  90. cpumask_t cpus;
  91. struct kvm_vcpu *vcpu;
  92. cpus_clear(cpus);
  93. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  94. vcpu = kvm->vcpus[i];
  95. if (!vcpu)
  96. continue;
  97. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  98. continue;
  99. cpu = vcpu->cpu;
  100. if (cpu != -1 && cpu != raw_smp_processor_id())
  101. cpu_set(cpu, cpus);
  102. }
  103. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  104. }
  105. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  106. {
  107. struct page *page;
  108. int r;
  109. mutex_init(&vcpu->mutex);
  110. vcpu->cpu = -1;
  111. vcpu->mmu.root_hpa = INVALID_PAGE;
  112. vcpu->kvm = kvm;
  113. vcpu->vcpu_id = id;
  114. if (!irqchip_in_kernel(kvm) || id == 0)
  115. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  116. else
  117. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  118. init_waitqueue_head(&vcpu->wq);
  119. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  120. if (!page) {
  121. r = -ENOMEM;
  122. goto fail;
  123. }
  124. vcpu->run = page_address(page);
  125. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  126. if (!page) {
  127. r = -ENOMEM;
  128. goto fail_free_run;
  129. }
  130. vcpu->pio_data = page_address(page);
  131. r = kvm_mmu_create(vcpu);
  132. if (r < 0)
  133. goto fail_free_pio_data;
  134. if (irqchip_in_kernel(kvm)) {
  135. r = kvm_create_lapic(vcpu);
  136. if (r < 0)
  137. goto fail_mmu_destroy;
  138. }
  139. return 0;
  140. fail_mmu_destroy:
  141. kvm_mmu_destroy(vcpu);
  142. fail_free_pio_data:
  143. free_page((unsigned long)vcpu->pio_data);
  144. fail_free_run:
  145. free_page((unsigned long)vcpu->run);
  146. fail:
  147. return r;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  150. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  151. {
  152. kvm_free_lapic(vcpu);
  153. kvm_mmu_destroy(vcpu);
  154. free_page((unsigned long)vcpu->pio_data);
  155. free_page((unsigned long)vcpu->run);
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  158. static struct kvm *kvm_create_vm(void)
  159. {
  160. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  161. if (!kvm)
  162. return ERR_PTR(-ENOMEM);
  163. kvm_io_bus_init(&kvm->pio_bus);
  164. mutex_init(&kvm->lock);
  165. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  166. kvm_io_bus_init(&kvm->mmio_bus);
  167. spin_lock(&kvm_lock);
  168. list_add(&kvm->vm_list, &vm_list);
  169. spin_unlock(&kvm_lock);
  170. return kvm;
  171. }
  172. /*
  173. * Free any memory in @free but not in @dont.
  174. */
  175. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  176. struct kvm_memory_slot *dont)
  177. {
  178. if (!dont || free->rmap != dont->rmap)
  179. vfree(free->rmap);
  180. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  181. vfree(free->dirty_bitmap);
  182. free->npages = 0;
  183. free->dirty_bitmap = NULL;
  184. free->rmap = NULL;
  185. }
  186. static void kvm_free_physmem(struct kvm *kvm)
  187. {
  188. int i;
  189. for (i = 0; i < kvm->nmemslots; ++i)
  190. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  191. }
  192. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  193. {
  194. vcpu_load(vcpu);
  195. kvm_mmu_unload(vcpu);
  196. vcpu_put(vcpu);
  197. }
  198. static void kvm_free_vcpus(struct kvm *kvm)
  199. {
  200. unsigned int i;
  201. /*
  202. * Unpin any mmu pages first.
  203. */
  204. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  205. if (kvm->vcpus[i])
  206. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  207. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  208. if (kvm->vcpus[i]) {
  209. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  210. kvm->vcpus[i] = NULL;
  211. }
  212. }
  213. }
  214. static void kvm_destroy_vm(struct kvm *kvm)
  215. {
  216. spin_lock(&kvm_lock);
  217. list_del(&kvm->vm_list);
  218. spin_unlock(&kvm_lock);
  219. kvm_io_bus_destroy(&kvm->pio_bus);
  220. kvm_io_bus_destroy(&kvm->mmio_bus);
  221. kfree(kvm->vpic);
  222. kfree(kvm->vioapic);
  223. kvm_free_vcpus(kvm);
  224. kvm_free_physmem(kvm);
  225. kfree(kvm);
  226. }
  227. static int kvm_vm_release(struct inode *inode, struct file *filp)
  228. {
  229. struct kvm *kvm = filp->private_data;
  230. kvm_destroy_vm(kvm);
  231. return 0;
  232. }
  233. /*
  234. * Allocate some memory and give it an address in the guest physical address
  235. * space.
  236. *
  237. * Discontiguous memory is allowed, mostly for framebuffers.
  238. *
  239. * Must be called holding kvm->lock.
  240. */
  241. int __kvm_set_memory_region(struct kvm *kvm,
  242. struct kvm_userspace_memory_region *mem,
  243. int user_alloc)
  244. {
  245. int r;
  246. gfn_t base_gfn;
  247. unsigned long npages;
  248. unsigned long i;
  249. struct kvm_memory_slot *memslot;
  250. struct kvm_memory_slot old, new;
  251. r = -EINVAL;
  252. /* General sanity checks */
  253. if (mem->memory_size & (PAGE_SIZE - 1))
  254. goto out;
  255. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  256. goto out;
  257. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  258. goto out;
  259. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  260. goto out;
  261. memslot = &kvm->memslots[mem->slot];
  262. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  263. npages = mem->memory_size >> PAGE_SHIFT;
  264. if (!npages)
  265. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  266. new = old = *memslot;
  267. new.base_gfn = base_gfn;
  268. new.npages = npages;
  269. new.flags = mem->flags;
  270. /* Disallow changing a memory slot's size. */
  271. r = -EINVAL;
  272. if (npages && old.npages && npages != old.npages)
  273. goto out_free;
  274. /* Check for overlaps */
  275. r = -EEXIST;
  276. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  277. struct kvm_memory_slot *s = &kvm->memslots[i];
  278. if (s == memslot)
  279. continue;
  280. if (!((base_gfn + npages <= s->base_gfn) ||
  281. (base_gfn >= s->base_gfn + s->npages)))
  282. goto out_free;
  283. }
  284. /* Free page dirty bitmap if unneeded */
  285. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  286. new.dirty_bitmap = NULL;
  287. r = -ENOMEM;
  288. /* Allocate if a slot is being created */
  289. if (npages && !new.rmap) {
  290. new.rmap = vmalloc(npages * sizeof(struct page *));
  291. if (!new.rmap)
  292. goto out_free;
  293. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  294. new.user_alloc = user_alloc;
  295. if (user_alloc)
  296. new.userspace_addr = mem->userspace_addr;
  297. else {
  298. down_write(&current->mm->mmap_sem);
  299. new.userspace_addr = do_mmap(NULL, 0,
  300. npages * PAGE_SIZE,
  301. PROT_READ | PROT_WRITE,
  302. MAP_SHARED | MAP_ANONYMOUS,
  303. 0);
  304. up_write(&current->mm->mmap_sem);
  305. if (IS_ERR((void *)new.userspace_addr))
  306. goto out_free;
  307. }
  308. } else {
  309. if (!old.user_alloc && old.rmap) {
  310. int ret;
  311. down_write(&current->mm->mmap_sem);
  312. ret = do_munmap(current->mm, old.userspace_addr,
  313. old.npages * PAGE_SIZE);
  314. up_write(&current->mm->mmap_sem);
  315. if (ret < 0)
  316. printk(KERN_WARNING
  317. "kvm_vm_ioctl_set_memory_region: "
  318. "failed to munmap memory\n");
  319. }
  320. }
  321. /* Allocate page dirty bitmap if needed */
  322. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  323. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  324. new.dirty_bitmap = vmalloc(dirty_bytes);
  325. if (!new.dirty_bitmap)
  326. goto out_free;
  327. memset(new.dirty_bitmap, 0, dirty_bytes);
  328. }
  329. if (mem->slot >= kvm->nmemslots)
  330. kvm->nmemslots = mem->slot + 1;
  331. if (!kvm->n_requested_mmu_pages) {
  332. unsigned int n_pages;
  333. if (npages) {
  334. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  335. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  336. n_pages);
  337. } else {
  338. unsigned int nr_mmu_pages;
  339. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  340. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  341. nr_mmu_pages = max(nr_mmu_pages,
  342. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  343. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  344. }
  345. }
  346. *memslot = new;
  347. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  348. kvm_flush_remote_tlbs(kvm);
  349. kvm_free_physmem_slot(&old, &new);
  350. return 0;
  351. out_free:
  352. kvm_free_physmem_slot(&new, &old);
  353. out:
  354. return r;
  355. }
  356. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  357. int kvm_set_memory_region(struct kvm *kvm,
  358. struct kvm_userspace_memory_region *mem,
  359. int user_alloc)
  360. {
  361. int r;
  362. mutex_lock(&kvm->lock);
  363. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  364. mutex_unlock(&kvm->lock);
  365. return r;
  366. }
  367. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  368. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  369. struct
  370. kvm_userspace_memory_region *mem,
  371. int user_alloc)
  372. {
  373. if (mem->slot >= KVM_MEMORY_SLOTS)
  374. return -EINVAL;
  375. return kvm_set_memory_region(kvm, mem, user_alloc);
  376. }
  377. /*
  378. * Get (and clear) the dirty memory log for a memory slot.
  379. */
  380. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  381. struct kvm_dirty_log *log)
  382. {
  383. struct kvm_memory_slot *memslot;
  384. int r, i;
  385. int n;
  386. unsigned long any = 0;
  387. mutex_lock(&kvm->lock);
  388. r = -EINVAL;
  389. if (log->slot >= KVM_MEMORY_SLOTS)
  390. goto out;
  391. memslot = &kvm->memslots[log->slot];
  392. r = -ENOENT;
  393. if (!memslot->dirty_bitmap)
  394. goto out;
  395. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  396. for (i = 0; !any && i < n/sizeof(long); ++i)
  397. any = memslot->dirty_bitmap[i];
  398. r = -EFAULT;
  399. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  400. goto out;
  401. /* If nothing is dirty, don't bother messing with page tables. */
  402. if (any) {
  403. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  404. kvm_flush_remote_tlbs(kvm);
  405. memset(memslot->dirty_bitmap, 0, n);
  406. }
  407. r = 0;
  408. out:
  409. mutex_unlock(&kvm->lock);
  410. return r;
  411. }
  412. int is_error_page(struct page *page)
  413. {
  414. return page == bad_page;
  415. }
  416. EXPORT_SYMBOL_GPL(is_error_page);
  417. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  418. {
  419. int i;
  420. struct kvm_mem_alias *alias;
  421. for (i = 0; i < kvm->naliases; ++i) {
  422. alias = &kvm->aliases[i];
  423. if (gfn >= alias->base_gfn
  424. && gfn < alias->base_gfn + alias->npages)
  425. return alias->target_gfn + gfn - alias->base_gfn;
  426. }
  427. return gfn;
  428. }
  429. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  430. {
  431. int i;
  432. for (i = 0; i < kvm->nmemslots; ++i) {
  433. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  434. if (gfn >= memslot->base_gfn
  435. && gfn < memslot->base_gfn + memslot->npages)
  436. return memslot;
  437. }
  438. return NULL;
  439. }
  440. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  441. {
  442. gfn = unalias_gfn(kvm, gfn);
  443. return __gfn_to_memslot(kvm, gfn);
  444. }
  445. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  446. {
  447. int i;
  448. gfn = unalias_gfn(kvm, gfn);
  449. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  450. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  451. if (gfn >= memslot->base_gfn
  452. && gfn < memslot->base_gfn + memslot->npages)
  453. return 1;
  454. }
  455. return 0;
  456. }
  457. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  458. /*
  459. * Requires current->mm->mmap_sem to be held
  460. */
  461. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  462. {
  463. struct kvm_memory_slot *slot;
  464. struct page *page[1];
  465. int npages;
  466. might_sleep();
  467. gfn = unalias_gfn(kvm, gfn);
  468. slot = __gfn_to_memslot(kvm, gfn);
  469. if (!slot) {
  470. get_page(bad_page);
  471. return bad_page;
  472. }
  473. npages = get_user_pages(current, current->mm,
  474. slot->userspace_addr
  475. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  476. 1, 1, page, NULL);
  477. if (npages != 1) {
  478. get_page(bad_page);
  479. return bad_page;
  480. }
  481. return page[0];
  482. }
  483. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  484. {
  485. struct page *page;
  486. down_read(&current->mm->mmap_sem);
  487. page = __gfn_to_page(kvm, gfn);
  488. up_read(&current->mm->mmap_sem);
  489. return page;
  490. }
  491. EXPORT_SYMBOL_GPL(gfn_to_page);
  492. void kvm_release_page(struct page *page)
  493. {
  494. if (!PageReserved(page))
  495. SetPageDirty(page);
  496. put_page(page);
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_release_page);
  499. static int next_segment(unsigned long len, int offset)
  500. {
  501. if (len > PAGE_SIZE - offset)
  502. return PAGE_SIZE - offset;
  503. else
  504. return len;
  505. }
  506. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  507. int len)
  508. {
  509. void *page_virt;
  510. struct page *page;
  511. page = gfn_to_page(kvm, gfn);
  512. if (is_error_page(page)) {
  513. kvm_release_page(page);
  514. return -EFAULT;
  515. }
  516. page_virt = kmap_atomic(page, KM_USER0);
  517. memcpy(data, page_virt + offset, len);
  518. kunmap_atomic(page_virt, KM_USER0);
  519. kvm_release_page(page);
  520. return 0;
  521. }
  522. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  523. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  524. {
  525. gfn_t gfn = gpa >> PAGE_SHIFT;
  526. int seg;
  527. int offset = offset_in_page(gpa);
  528. int ret;
  529. while ((seg = next_segment(len, offset)) != 0) {
  530. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  531. if (ret < 0)
  532. return ret;
  533. offset = 0;
  534. len -= seg;
  535. data += seg;
  536. ++gfn;
  537. }
  538. return 0;
  539. }
  540. EXPORT_SYMBOL_GPL(kvm_read_guest);
  541. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  542. int offset, int len)
  543. {
  544. void *page_virt;
  545. struct page *page;
  546. page = gfn_to_page(kvm, gfn);
  547. if (is_error_page(page)) {
  548. kvm_release_page(page);
  549. return -EFAULT;
  550. }
  551. page_virt = kmap_atomic(page, KM_USER0);
  552. memcpy(page_virt + offset, data, len);
  553. kunmap_atomic(page_virt, KM_USER0);
  554. mark_page_dirty(kvm, gfn);
  555. kvm_release_page(page);
  556. return 0;
  557. }
  558. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  559. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  560. unsigned long len)
  561. {
  562. gfn_t gfn = gpa >> PAGE_SHIFT;
  563. int seg;
  564. int offset = offset_in_page(gpa);
  565. int ret;
  566. while ((seg = next_segment(len, offset)) != 0) {
  567. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  568. if (ret < 0)
  569. return ret;
  570. offset = 0;
  571. len -= seg;
  572. data += seg;
  573. ++gfn;
  574. }
  575. return 0;
  576. }
  577. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  578. {
  579. void *page_virt;
  580. struct page *page;
  581. page = gfn_to_page(kvm, gfn);
  582. if (is_error_page(page)) {
  583. kvm_release_page(page);
  584. return -EFAULT;
  585. }
  586. page_virt = kmap_atomic(page, KM_USER0);
  587. memset(page_virt + offset, 0, len);
  588. kunmap_atomic(page_virt, KM_USER0);
  589. kvm_release_page(page);
  590. mark_page_dirty(kvm, gfn);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  594. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  595. {
  596. gfn_t gfn = gpa >> PAGE_SHIFT;
  597. int seg;
  598. int offset = offset_in_page(gpa);
  599. int ret;
  600. while ((seg = next_segment(len, offset)) != 0) {
  601. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  602. if (ret < 0)
  603. return ret;
  604. offset = 0;
  605. len -= seg;
  606. ++gfn;
  607. }
  608. return 0;
  609. }
  610. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  611. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  612. {
  613. struct kvm_memory_slot *memslot;
  614. gfn = unalias_gfn(kvm, gfn);
  615. memslot = __gfn_to_memslot(kvm, gfn);
  616. if (memslot && memslot->dirty_bitmap) {
  617. unsigned long rel_gfn = gfn - memslot->base_gfn;
  618. /* avoid RMW */
  619. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  620. set_bit(rel_gfn, memslot->dirty_bitmap);
  621. }
  622. }
  623. /*
  624. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  625. */
  626. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  627. {
  628. DECLARE_WAITQUEUE(wait, current);
  629. add_wait_queue(&vcpu->wq, &wait);
  630. /*
  631. * We will block until either an interrupt or a signal wakes us up
  632. */
  633. while (!kvm_cpu_has_interrupt(vcpu)
  634. && !signal_pending(current)
  635. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  636. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  637. set_current_state(TASK_INTERRUPTIBLE);
  638. vcpu_put(vcpu);
  639. schedule();
  640. vcpu_load(vcpu);
  641. }
  642. __set_current_state(TASK_RUNNING);
  643. remove_wait_queue(&vcpu->wq, &wait);
  644. }
  645. void kvm_resched(struct kvm_vcpu *vcpu)
  646. {
  647. if (!need_resched())
  648. return;
  649. cond_resched();
  650. }
  651. EXPORT_SYMBOL_GPL(kvm_resched);
  652. /*
  653. * Translate a guest virtual address to a guest physical address.
  654. */
  655. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  656. struct kvm_translation *tr)
  657. {
  658. unsigned long vaddr = tr->linear_address;
  659. gpa_t gpa;
  660. vcpu_load(vcpu);
  661. mutex_lock(&vcpu->kvm->lock);
  662. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  663. tr->physical_address = gpa;
  664. tr->valid = gpa != UNMAPPED_GVA;
  665. tr->writeable = 1;
  666. tr->usermode = 0;
  667. mutex_unlock(&vcpu->kvm->lock);
  668. vcpu_put(vcpu);
  669. return 0;
  670. }
  671. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  672. struct kvm_interrupt *irq)
  673. {
  674. if (irq->irq < 0 || irq->irq >= 256)
  675. return -EINVAL;
  676. if (irqchip_in_kernel(vcpu->kvm))
  677. return -ENXIO;
  678. vcpu_load(vcpu);
  679. set_bit(irq->irq, vcpu->irq_pending);
  680. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  681. vcpu_put(vcpu);
  682. return 0;
  683. }
  684. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  685. unsigned long address,
  686. int *type)
  687. {
  688. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  689. unsigned long pgoff;
  690. struct page *page;
  691. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  692. if (pgoff == 0)
  693. page = virt_to_page(vcpu->run);
  694. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  695. page = virt_to_page(vcpu->pio_data);
  696. else
  697. return NOPAGE_SIGBUS;
  698. get_page(page);
  699. if (type != NULL)
  700. *type = VM_FAULT_MINOR;
  701. return page;
  702. }
  703. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  704. .nopage = kvm_vcpu_nopage,
  705. };
  706. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  707. {
  708. vma->vm_ops = &kvm_vcpu_vm_ops;
  709. return 0;
  710. }
  711. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  712. {
  713. struct kvm_vcpu *vcpu = filp->private_data;
  714. fput(vcpu->kvm->filp);
  715. return 0;
  716. }
  717. static struct file_operations kvm_vcpu_fops = {
  718. .release = kvm_vcpu_release,
  719. .unlocked_ioctl = kvm_vcpu_ioctl,
  720. .compat_ioctl = kvm_vcpu_ioctl,
  721. .mmap = kvm_vcpu_mmap,
  722. };
  723. /*
  724. * Allocates an inode for the vcpu.
  725. */
  726. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  727. {
  728. int fd, r;
  729. struct inode *inode;
  730. struct file *file;
  731. r = anon_inode_getfd(&fd, &inode, &file,
  732. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  733. if (r)
  734. return r;
  735. atomic_inc(&vcpu->kvm->filp->f_count);
  736. return fd;
  737. }
  738. /*
  739. * Creates some virtual cpus. Good luck creating more than one.
  740. */
  741. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  742. {
  743. int r;
  744. struct kvm_vcpu *vcpu;
  745. if (!valid_vcpu(n))
  746. return -EINVAL;
  747. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  748. if (IS_ERR(vcpu))
  749. return PTR_ERR(vcpu);
  750. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  751. /* We do fxsave: this must be aligned. */
  752. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  753. vcpu_load(vcpu);
  754. r = kvm_x86_ops->vcpu_reset(vcpu);
  755. if (r == 0)
  756. r = kvm_mmu_setup(vcpu);
  757. vcpu_put(vcpu);
  758. if (r < 0)
  759. goto free_vcpu;
  760. mutex_lock(&kvm->lock);
  761. if (kvm->vcpus[n]) {
  762. r = -EEXIST;
  763. mutex_unlock(&kvm->lock);
  764. goto mmu_unload;
  765. }
  766. kvm->vcpus[n] = vcpu;
  767. mutex_unlock(&kvm->lock);
  768. /* Now it's all set up, let userspace reach it */
  769. r = create_vcpu_fd(vcpu);
  770. if (r < 0)
  771. goto unlink;
  772. return r;
  773. unlink:
  774. mutex_lock(&kvm->lock);
  775. kvm->vcpus[n] = NULL;
  776. mutex_unlock(&kvm->lock);
  777. mmu_unload:
  778. vcpu_load(vcpu);
  779. kvm_mmu_unload(vcpu);
  780. vcpu_put(vcpu);
  781. free_vcpu:
  782. kvm_x86_ops->vcpu_free(vcpu);
  783. return r;
  784. }
  785. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  786. {
  787. if (sigset) {
  788. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  789. vcpu->sigset_active = 1;
  790. vcpu->sigset = *sigset;
  791. } else
  792. vcpu->sigset_active = 0;
  793. return 0;
  794. }
  795. static long kvm_vcpu_ioctl(struct file *filp,
  796. unsigned int ioctl, unsigned long arg)
  797. {
  798. struct kvm_vcpu *vcpu = filp->private_data;
  799. void __user *argp = (void __user *)arg;
  800. int r;
  801. switch (ioctl) {
  802. case KVM_RUN:
  803. r = -EINVAL;
  804. if (arg)
  805. goto out;
  806. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  807. break;
  808. case KVM_GET_REGS: {
  809. struct kvm_regs kvm_regs;
  810. memset(&kvm_regs, 0, sizeof kvm_regs);
  811. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  812. if (r)
  813. goto out;
  814. r = -EFAULT;
  815. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  816. goto out;
  817. r = 0;
  818. break;
  819. }
  820. case KVM_SET_REGS: {
  821. struct kvm_regs kvm_regs;
  822. r = -EFAULT;
  823. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  824. goto out;
  825. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  826. if (r)
  827. goto out;
  828. r = 0;
  829. break;
  830. }
  831. case KVM_GET_SREGS: {
  832. struct kvm_sregs kvm_sregs;
  833. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  834. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  835. if (r)
  836. goto out;
  837. r = -EFAULT;
  838. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  839. goto out;
  840. r = 0;
  841. break;
  842. }
  843. case KVM_SET_SREGS: {
  844. struct kvm_sregs kvm_sregs;
  845. r = -EFAULT;
  846. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  847. goto out;
  848. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  849. if (r)
  850. goto out;
  851. r = 0;
  852. break;
  853. }
  854. case KVM_TRANSLATE: {
  855. struct kvm_translation tr;
  856. r = -EFAULT;
  857. if (copy_from_user(&tr, argp, sizeof tr))
  858. goto out;
  859. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  860. if (r)
  861. goto out;
  862. r = -EFAULT;
  863. if (copy_to_user(argp, &tr, sizeof tr))
  864. goto out;
  865. r = 0;
  866. break;
  867. }
  868. case KVM_INTERRUPT: {
  869. struct kvm_interrupt irq;
  870. r = -EFAULT;
  871. if (copy_from_user(&irq, argp, sizeof irq))
  872. goto out;
  873. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  874. if (r)
  875. goto out;
  876. r = 0;
  877. break;
  878. }
  879. case KVM_DEBUG_GUEST: {
  880. struct kvm_debug_guest dbg;
  881. r = -EFAULT;
  882. if (copy_from_user(&dbg, argp, sizeof dbg))
  883. goto out;
  884. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  885. if (r)
  886. goto out;
  887. r = 0;
  888. break;
  889. }
  890. case KVM_SET_SIGNAL_MASK: {
  891. struct kvm_signal_mask __user *sigmask_arg = argp;
  892. struct kvm_signal_mask kvm_sigmask;
  893. sigset_t sigset, *p;
  894. p = NULL;
  895. if (argp) {
  896. r = -EFAULT;
  897. if (copy_from_user(&kvm_sigmask, argp,
  898. sizeof kvm_sigmask))
  899. goto out;
  900. r = -EINVAL;
  901. if (kvm_sigmask.len != sizeof sigset)
  902. goto out;
  903. r = -EFAULT;
  904. if (copy_from_user(&sigset, sigmask_arg->sigset,
  905. sizeof sigset))
  906. goto out;
  907. p = &sigset;
  908. }
  909. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  910. break;
  911. }
  912. case KVM_GET_FPU: {
  913. struct kvm_fpu fpu;
  914. memset(&fpu, 0, sizeof fpu);
  915. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  916. if (r)
  917. goto out;
  918. r = -EFAULT;
  919. if (copy_to_user(argp, &fpu, sizeof fpu))
  920. goto out;
  921. r = 0;
  922. break;
  923. }
  924. case KVM_SET_FPU: {
  925. struct kvm_fpu fpu;
  926. r = -EFAULT;
  927. if (copy_from_user(&fpu, argp, sizeof fpu))
  928. goto out;
  929. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  930. if (r)
  931. goto out;
  932. r = 0;
  933. break;
  934. }
  935. default:
  936. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  937. }
  938. out:
  939. return r;
  940. }
  941. static long kvm_vm_ioctl(struct file *filp,
  942. unsigned int ioctl, unsigned long arg)
  943. {
  944. struct kvm *kvm = filp->private_data;
  945. void __user *argp = (void __user *)arg;
  946. int r;
  947. switch (ioctl) {
  948. case KVM_CREATE_VCPU:
  949. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  950. if (r < 0)
  951. goto out;
  952. break;
  953. case KVM_SET_USER_MEMORY_REGION: {
  954. struct kvm_userspace_memory_region kvm_userspace_mem;
  955. r = -EFAULT;
  956. if (copy_from_user(&kvm_userspace_mem, argp,
  957. sizeof kvm_userspace_mem))
  958. goto out;
  959. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  960. if (r)
  961. goto out;
  962. break;
  963. }
  964. case KVM_GET_DIRTY_LOG: {
  965. struct kvm_dirty_log log;
  966. r = -EFAULT;
  967. if (copy_from_user(&log, argp, sizeof log))
  968. goto out;
  969. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  970. if (r)
  971. goto out;
  972. break;
  973. }
  974. default:
  975. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  976. }
  977. out:
  978. return r;
  979. }
  980. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  981. unsigned long address,
  982. int *type)
  983. {
  984. struct kvm *kvm = vma->vm_file->private_data;
  985. unsigned long pgoff;
  986. struct page *page;
  987. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  988. if (!kvm_is_visible_gfn(kvm, pgoff))
  989. return NOPAGE_SIGBUS;
  990. /* current->mm->mmap_sem is already held so call lockless version */
  991. page = __gfn_to_page(kvm, pgoff);
  992. if (is_error_page(page)) {
  993. kvm_release_page(page);
  994. return NOPAGE_SIGBUS;
  995. }
  996. if (type != NULL)
  997. *type = VM_FAULT_MINOR;
  998. return page;
  999. }
  1000. static struct vm_operations_struct kvm_vm_vm_ops = {
  1001. .nopage = kvm_vm_nopage,
  1002. };
  1003. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1004. {
  1005. vma->vm_ops = &kvm_vm_vm_ops;
  1006. return 0;
  1007. }
  1008. static struct file_operations kvm_vm_fops = {
  1009. .release = kvm_vm_release,
  1010. .unlocked_ioctl = kvm_vm_ioctl,
  1011. .compat_ioctl = kvm_vm_ioctl,
  1012. .mmap = kvm_vm_mmap,
  1013. };
  1014. static int kvm_dev_ioctl_create_vm(void)
  1015. {
  1016. int fd, r;
  1017. struct inode *inode;
  1018. struct file *file;
  1019. struct kvm *kvm;
  1020. kvm = kvm_create_vm();
  1021. if (IS_ERR(kvm))
  1022. return PTR_ERR(kvm);
  1023. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1024. if (r) {
  1025. kvm_destroy_vm(kvm);
  1026. return r;
  1027. }
  1028. kvm->filp = file;
  1029. return fd;
  1030. }
  1031. static long kvm_dev_ioctl(struct file *filp,
  1032. unsigned int ioctl, unsigned long arg)
  1033. {
  1034. void __user *argp = (void __user *)arg;
  1035. long r = -EINVAL;
  1036. switch (ioctl) {
  1037. case KVM_GET_API_VERSION:
  1038. r = -EINVAL;
  1039. if (arg)
  1040. goto out;
  1041. r = KVM_API_VERSION;
  1042. break;
  1043. case KVM_CREATE_VM:
  1044. r = -EINVAL;
  1045. if (arg)
  1046. goto out;
  1047. r = kvm_dev_ioctl_create_vm();
  1048. break;
  1049. case KVM_CHECK_EXTENSION: {
  1050. int ext = (long)argp;
  1051. switch (ext) {
  1052. case KVM_CAP_IRQCHIP:
  1053. case KVM_CAP_HLT:
  1054. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1055. case KVM_CAP_USER_MEMORY:
  1056. case KVM_CAP_SET_TSS_ADDR:
  1057. r = 1;
  1058. break;
  1059. default:
  1060. r = 0;
  1061. break;
  1062. }
  1063. break;
  1064. }
  1065. case KVM_GET_VCPU_MMAP_SIZE:
  1066. r = -EINVAL;
  1067. if (arg)
  1068. goto out;
  1069. r = 2 * PAGE_SIZE;
  1070. break;
  1071. default:
  1072. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1073. }
  1074. out:
  1075. return r;
  1076. }
  1077. static struct file_operations kvm_chardev_ops = {
  1078. .unlocked_ioctl = kvm_dev_ioctl,
  1079. .compat_ioctl = kvm_dev_ioctl,
  1080. };
  1081. static struct miscdevice kvm_dev = {
  1082. KVM_MINOR,
  1083. "kvm",
  1084. &kvm_chardev_ops,
  1085. };
  1086. /*
  1087. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1088. * cached on it.
  1089. */
  1090. static void decache_vcpus_on_cpu(int cpu)
  1091. {
  1092. struct kvm *vm;
  1093. struct kvm_vcpu *vcpu;
  1094. int i;
  1095. spin_lock(&kvm_lock);
  1096. list_for_each_entry(vm, &vm_list, vm_list)
  1097. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1098. vcpu = vm->vcpus[i];
  1099. if (!vcpu)
  1100. continue;
  1101. /*
  1102. * If the vcpu is locked, then it is running on some
  1103. * other cpu and therefore it is not cached on the
  1104. * cpu in question.
  1105. *
  1106. * If it's not locked, check the last cpu it executed
  1107. * on.
  1108. */
  1109. if (mutex_trylock(&vcpu->mutex)) {
  1110. if (vcpu->cpu == cpu) {
  1111. kvm_x86_ops->vcpu_decache(vcpu);
  1112. vcpu->cpu = -1;
  1113. }
  1114. mutex_unlock(&vcpu->mutex);
  1115. }
  1116. }
  1117. spin_unlock(&kvm_lock);
  1118. }
  1119. static void hardware_enable(void *junk)
  1120. {
  1121. int cpu = raw_smp_processor_id();
  1122. if (cpu_isset(cpu, cpus_hardware_enabled))
  1123. return;
  1124. cpu_set(cpu, cpus_hardware_enabled);
  1125. kvm_x86_ops->hardware_enable(NULL);
  1126. }
  1127. static void hardware_disable(void *junk)
  1128. {
  1129. int cpu = raw_smp_processor_id();
  1130. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1131. return;
  1132. cpu_clear(cpu, cpus_hardware_enabled);
  1133. decache_vcpus_on_cpu(cpu);
  1134. kvm_x86_ops->hardware_disable(NULL);
  1135. }
  1136. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1137. void *v)
  1138. {
  1139. int cpu = (long)v;
  1140. val &= ~CPU_TASKS_FROZEN;
  1141. switch (val) {
  1142. case CPU_DYING:
  1143. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1144. cpu);
  1145. hardware_disable(NULL);
  1146. break;
  1147. case CPU_UP_CANCELED:
  1148. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1149. cpu);
  1150. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1151. break;
  1152. case CPU_ONLINE:
  1153. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1154. cpu);
  1155. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1156. break;
  1157. }
  1158. return NOTIFY_OK;
  1159. }
  1160. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1161. void *v)
  1162. {
  1163. if (val == SYS_RESTART) {
  1164. /*
  1165. * Some (well, at least mine) BIOSes hang on reboot if
  1166. * in vmx root mode.
  1167. */
  1168. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1169. on_each_cpu(hardware_disable, NULL, 0, 1);
  1170. }
  1171. return NOTIFY_OK;
  1172. }
  1173. static struct notifier_block kvm_reboot_notifier = {
  1174. .notifier_call = kvm_reboot,
  1175. .priority = 0,
  1176. };
  1177. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1178. {
  1179. memset(bus, 0, sizeof(*bus));
  1180. }
  1181. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1182. {
  1183. int i;
  1184. for (i = 0; i < bus->dev_count; i++) {
  1185. struct kvm_io_device *pos = bus->devs[i];
  1186. kvm_iodevice_destructor(pos);
  1187. }
  1188. }
  1189. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1190. {
  1191. int i;
  1192. for (i = 0; i < bus->dev_count; i++) {
  1193. struct kvm_io_device *pos = bus->devs[i];
  1194. if (pos->in_range(pos, addr))
  1195. return pos;
  1196. }
  1197. return NULL;
  1198. }
  1199. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1200. {
  1201. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1202. bus->devs[bus->dev_count++] = dev;
  1203. }
  1204. static struct notifier_block kvm_cpu_notifier = {
  1205. .notifier_call = kvm_cpu_hotplug,
  1206. .priority = 20, /* must be > scheduler priority */
  1207. };
  1208. static u64 stat_get(void *_offset)
  1209. {
  1210. unsigned offset = (long)_offset;
  1211. u64 total = 0;
  1212. struct kvm *kvm;
  1213. struct kvm_vcpu *vcpu;
  1214. int i;
  1215. spin_lock(&kvm_lock);
  1216. list_for_each_entry(kvm, &vm_list, vm_list)
  1217. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1218. vcpu = kvm->vcpus[i];
  1219. if (vcpu)
  1220. total += *(u32 *)((void *)vcpu + offset);
  1221. }
  1222. spin_unlock(&kvm_lock);
  1223. return total;
  1224. }
  1225. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1226. static __init void kvm_init_debug(void)
  1227. {
  1228. struct kvm_stats_debugfs_item *p;
  1229. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1230. for (p = debugfs_entries; p->name; ++p)
  1231. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1232. (void *)(long)p->offset,
  1233. &stat_fops);
  1234. }
  1235. static void kvm_exit_debug(void)
  1236. {
  1237. struct kvm_stats_debugfs_item *p;
  1238. for (p = debugfs_entries; p->name; ++p)
  1239. debugfs_remove(p->dentry);
  1240. debugfs_remove(debugfs_dir);
  1241. }
  1242. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1243. {
  1244. hardware_disable(NULL);
  1245. return 0;
  1246. }
  1247. static int kvm_resume(struct sys_device *dev)
  1248. {
  1249. hardware_enable(NULL);
  1250. return 0;
  1251. }
  1252. static struct sysdev_class kvm_sysdev_class = {
  1253. .name = "kvm",
  1254. .suspend = kvm_suspend,
  1255. .resume = kvm_resume,
  1256. };
  1257. static struct sys_device kvm_sysdev = {
  1258. .id = 0,
  1259. .cls = &kvm_sysdev_class,
  1260. };
  1261. struct page *bad_page;
  1262. static inline
  1263. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1264. {
  1265. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1266. }
  1267. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1268. {
  1269. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1270. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1271. }
  1272. static void kvm_sched_out(struct preempt_notifier *pn,
  1273. struct task_struct *next)
  1274. {
  1275. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1276. kvm_x86_ops->vcpu_put(vcpu);
  1277. }
  1278. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  1279. struct module *module)
  1280. {
  1281. int r;
  1282. int cpu;
  1283. if (kvm_x86_ops) {
  1284. printk(KERN_ERR "kvm: already loaded the other module\n");
  1285. return -EEXIST;
  1286. }
  1287. if (!ops->cpu_has_kvm_support()) {
  1288. printk(KERN_ERR "kvm: no hardware support\n");
  1289. return -EOPNOTSUPP;
  1290. }
  1291. if (ops->disabled_by_bios()) {
  1292. printk(KERN_ERR "kvm: disabled by bios\n");
  1293. return -EOPNOTSUPP;
  1294. }
  1295. kvm_x86_ops = ops;
  1296. r = kvm_x86_ops->hardware_setup();
  1297. if (r < 0)
  1298. goto out;
  1299. for_each_online_cpu(cpu) {
  1300. smp_call_function_single(cpu,
  1301. kvm_x86_ops->check_processor_compatibility,
  1302. &r, 0, 1);
  1303. if (r < 0)
  1304. goto out_free_0;
  1305. }
  1306. on_each_cpu(hardware_enable, NULL, 0, 1);
  1307. r = register_cpu_notifier(&kvm_cpu_notifier);
  1308. if (r)
  1309. goto out_free_1;
  1310. register_reboot_notifier(&kvm_reboot_notifier);
  1311. r = sysdev_class_register(&kvm_sysdev_class);
  1312. if (r)
  1313. goto out_free_2;
  1314. r = sysdev_register(&kvm_sysdev);
  1315. if (r)
  1316. goto out_free_3;
  1317. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1318. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1319. __alignof__(struct kvm_vcpu), 0, 0);
  1320. if (!kvm_vcpu_cache) {
  1321. r = -ENOMEM;
  1322. goto out_free_4;
  1323. }
  1324. kvm_chardev_ops.owner = module;
  1325. r = misc_register(&kvm_dev);
  1326. if (r) {
  1327. printk(KERN_ERR "kvm: misc device register failed\n");
  1328. goto out_free;
  1329. }
  1330. kvm_preempt_ops.sched_in = kvm_sched_in;
  1331. kvm_preempt_ops.sched_out = kvm_sched_out;
  1332. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1333. return 0;
  1334. out_free:
  1335. kmem_cache_destroy(kvm_vcpu_cache);
  1336. out_free_4:
  1337. sysdev_unregister(&kvm_sysdev);
  1338. out_free_3:
  1339. sysdev_class_unregister(&kvm_sysdev_class);
  1340. out_free_2:
  1341. unregister_reboot_notifier(&kvm_reboot_notifier);
  1342. unregister_cpu_notifier(&kvm_cpu_notifier);
  1343. out_free_1:
  1344. on_each_cpu(hardware_disable, NULL, 0, 1);
  1345. out_free_0:
  1346. kvm_x86_ops->hardware_unsetup();
  1347. out:
  1348. kvm_x86_ops = NULL;
  1349. return r;
  1350. }
  1351. EXPORT_SYMBOL_GPL(kvm_init_x86);
  1352. void kvm_exit_x86(void)
  1353. {
  1354. misc_deregister(&kvm_dev);
  1355. kmem_cache_destroy(kvm_vcpu_cache);
  1356. sysdev_unregister(&kvm_sysdev);
  1357. sysdev_class_unregister(&kvm_sysdev_class);
  1358. unregister_reboot_notifier(&kvm_reboot_notifier);
  1359. unregister_cpu_notifier(&kvm_cpu_notifier);
  1360. on_each_cpu(hardware_disable, NULL, 0, 1);
  1361. kvm_x86_ops->hardware_unsetup();
  1362. kvm_x86_ops = NULL;
  1363. }
  1364. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  1365. static __init int kvm_init(void)
  1366. {
  1367. int r;
  1368. r = kvm_mmu_module_init();
  1369. if (r)
  1370. goto out4;
  1371. kvm_init_debug();
  1372. kvm_arch_init();
  1373. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1374. if (bad_page == NULL) {
  1375. r = -ENOMEM;
  1376. goto out;
  1377. }
  1378. return 0;
  1379. out:
  1380. kvm_exit_debug();
  1381. kvm_mmu_module_exit();
  1382. out4:
  1383. return r;
  1384. }
  1385. static __exit void kvm_exit(void)
  1386. {
  1387. kvm_exit_debug();
  1388. __free_page(bad_page);
  1389. kvm_mmu_module_exit();
  1390. }
  1391. module_init(kvm_init)
  1392. module_exit(kvm_exit)