bnx2.c 206 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.0.8"
  57. #define DRV_MODULE_RELDATE "Feb 15, 2010"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j9.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp)
  561. {
  562. bnx2_cnic_stop(bp);
  563. if (netif_running(bp->dev)) {
  564. int i;
  565. bnx2_napi_disable(bp);
  566. netif_tx_disable(bp->dev);
  567. /* prevent tx timeout */
  568. for (i = 0; i < bp->dev->num_tx_queues; i++) {
  569. struct netdev_queue *txq;
  570. txq = netdev_get_tx_queue(bp->dev, i);
  571. txq->trans_start = jiffies;
  572. }
  573. }
  574. bnx2_disable_int_sync(bp);
  575. }
  576. static void
  577. bnx2_netif_start(struct bnx2 *bp)
  578. {
  579. if (atomic_dec_and_test(&bp->intr_sem)) {
  580. if (netif_running(bp->dev)) {
  581. netif_tx_wake_all_queues(bp->dev);
  582. bnx2_napi_enable(bp);
  583. bnx2_enable_int(bp);
  584. bnx2_cnic_start(bp);
  585. }
  586. }
  587. }
  588. static void
  589. bnx2_free_tx_mem(struct bnx2 *bp)
  590. {
  591. int i;
  592. for (i = 0; i < bp->num_tx_rings; i++) {
  593. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  594. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  595. if (txr->tx_desc_ring) {
  596. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  597. txr->tx_desc_ring,
  598. txr->tx_desc_mapping);
  599. txr->tx_desc_ring = NULL;
  600. }
  601. kfree(txr->tx_buf_ring);
  602. txr->tx_buf_ring = NULL;
  603. }
  604. }
  605. static void
  606. bnx2_free_rx_mem(struct bnx2 *bp)
  607. {
  608. int i;
  609. for (i = 0; i < bp->num_rx_rings; i++) {
  610. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  611. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  612. int j;
  613. for (j = 0; j < bp->rx_max_ring; j++) {
  614. if (rxr->rx_desc_ring[j])
  615. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  616. rxr->rx_desc_ring[j],
  617. rxr->rx_desc_mapping[j]);
  618. rxr->rx_desc_ring[j] = NULL;
  619. }
  620. vfree(rxr->rx_buf_ring);
  621. rxr->rx_buf_ring = NULL;
  622. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  623. if (rxr->rx_pg_desc_ring[j])
  624. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  625. rxr->rx_pg_desc_ring[j],
  626. rxr->rx_pg_desc_mapping[j]);
  627. rxr->rx_pg_desc_ring[j] = NULL;
  628. }
  629. vfree(rxr->rx_pg_ring);
  630. rxr->rx_pg_ring = NULL;
  631. }
  632. }
  633. static int
  634. bnx2_alloc_tx_mem(struct bnx2 *bp)
  635. {
  636. int i;
  637. for (i = 0; i < bp->num_tx_rings; i++) {
  638. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  639. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  640. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  641. if (txr->tx_buf_ring == NULL)
  642. return -ENOMEM;
  643. txr->tx_desc_ring =
  644. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  645. &txr->tx_desc_mapping);
  646. if (txr->tx_desc_ring == NULL)
  647. return -ENOMEM;
  648. }
  649. return 0;
  650. }
  651. static int
  652. bnx2_alloc_rx_mem(struct bnx2 *bp)
  653. {
  654. int i;
  655. for (i = 0; i < bp->num_rx_rings; i++) {
  656. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  657. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  658. int j;
  659. rxr->rx_buf_ring =
  660. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  661. if (rxr->rx_buf_ring == NULL)
  662. return -ENOMEM;
  663. memset(rxr->rx_buf_ring, 0,
  664. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  665. for (j = 0; j < bp->rx_max_ring; j++) {
  666. rxr->rx_desc_ring[j] =
  667. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  668. &rxr->rx_desc_mapping[j]);
  669. if (rxr->rx_desc_ring[j] == NULL)
  670. return -ENOMEM;
  671. }
  672. if (bp->rx_pg_ring_size) {
  673. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  674. bp->rx_max_pg_ring);
  675. if (rxr->rx_pg_ring == NULL)
  676. return -ENOMEM;
  677. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  678. bp->rx_max_pg_ring);
  679. }
  680. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  681. rxr->rx_pg_desc_ring[j] =
  682. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  683. &rxr->rx_pg_desc_mapping[j]);
  684. if (rxr->rx_pg_desc_ring[j] == NULL)
  685. return -ENOMEM;
  686. }
  687. }
  688. return 0;
  689. }
  690. static void
  691. bnx2_free_mem(struct bnx2 *bp)
  692. {
  693. int i;
  694. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  695. bnx2_free_tx_mem(bp);
  696. bnx2_free_rx_mem(bp);
  697. for (i = 0; i < bp->ctx_pages; i++) {
  698. if (bp->ctx_blk[i]) {
  699. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  700. bp->ctx_blk[i],
  701. bp->ctx_blk_mapping[i]);
  702. bp->ctx_blk[i] = NULL;
  703. }
  704. }
  705. if (bnapi->status_blk.msi) {
  706. pci_free_consistent(bp->pdev, bp->status_stats_size,
  707. bnapi->status_blk.msi,
  708. bp->status_blk_mapping);
  709. bnapi->status_blk.msi = NULL;
  710. bp->stats_blk = NULL;
  711. }
  712. }
  713. static int
  714. bnx2_alloc_mem(struct bnx2 *bp)
  715. {
  716. int i, status_blk_size, err;
  717. struct bnx2_napi *bnapi;
  718. void *status_blk;
  719. /* Combine status and statistics blocks into one allocation. */
  720. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  721. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  722. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  723. BNX2_SBLK_MSIX_ALIGN_SIZE);
  724. bp->status_stats_size = status_blk_size +
  725. sizeof(struct statistics_block);
  726. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  727. &bp->status_blk_mapping);
  728. if (status_blk == NULL)
  729. goto alloc_mem_err;
  730. memset(status_blk, 0, bp->status_stats_size);
  731. bnapi = &bp->bnx2_napi[0];
  732. bnapi->status_blk.msi = status_blk;
  733. bnapi->hw_tx_cons_ptr =
  734. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  735. bnapi->hw_rx_cons_ptr =
  736. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  737. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  738. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  739. struct status_block_msix *sblk;
  740. bnapi = &bp->bnx2_napi[i];
  741. sblk = (void *) (status_blk +
  742. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  743. bnapi->status_blk.msix = sblk;
  744. bnapi->hw_tx_cons_ptr =
  745. &sblk->status_tx_quick_consumer_index;
  746. bnapi->hw_rx_cons_ptr =
  747. &sblk->status_rx_quick_consumer_index;
  748. bnapi->int_num = i << 24;
  749. }
  750. }
  751. bp->stats_blk = status_blk + status_blk_size;
  752. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  753. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  754. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  755. if (bp->ctx_pages == 0)
  756. bp->ctx_pages = 1;
  757. for (i = 0; i < bp->ctx_pages; i++) {
  758. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  759. BCM_PAGE_SIZE,
  760. &bp->ctx_blk_mapping[i]);
  761. if (bp->ctx_blk[i] == NULL)
  762. goto alloc_mem_err;
  763. }
  764. }
  765. err = bnx2_alloc_rx_mem(bp);
  766. if (err)
  767. goto alloc_mem_err;
  768. err = bnx2_alloc_tx_mem(bp);
  769. if (err)
  770. goto alloc_mem_err;
  771. return 0;
  772. alloc_mem_err:
  773. bnx2_free_mem(bp);
  774. return -ENOMEM;
  775. }
  776. static void
  777. bnx2_report_fw_link(struct bnx2 *bp)
  778. {
  779. u32 fw_link_status = 0;
  780. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  781. return;
  782. if (bp->link_up) {
  783. u32 bmsr;
  784. switch (bp->line_speed) {
  785. case SPEED_10:
  786. if (bp->duplex == DUPLEX_HALF)
  787. fw_link_status = BNX2_LINK_STATUS_10HALF;
  788. else
  789. fw_link_status = BNX2_LINK_STATUS_10FULL;
  790. break;
  791. case SPEED_100:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_100HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_100FULL;
  796. break;
  797. case SPEED_1000:
  798. if (bp->duplex == DUPLEX_HALF)
  799. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  800. else
  801. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  802. break;
  803. case SPEED_2500:
  804. if (bp->duplex == DUPLEX_HALF)
  805. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  806. else
  807. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  808. break;
  809. }
  810. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  811. if (bp->autoneg) {
  812. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  813. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  814. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  815. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  816. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  817. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  818. else
  819. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  820. }
  821. }
  822. else
  823. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  824. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  825. }
  826. static char *
  827. bnx2_xceiver_str(struct bnx2 *bp)
  828. {
  829. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  830. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  831. "Copper"));
  832. }
  833. static void
  834. bnx2_report_link(struct bnx2 *bp)
  835. {
  836. if (bp->link_up) {
  837. netif_carrier_on(bp->dev);
  838. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  839. bnx2_xceiver_str(bp),
  840. bp->line_speed,
  841. bp->duplex == DUPLEX_FULL ? "full" : "half");
  842. if (bp->flow_ctrl) {
  843. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  844. pr_cont(", receive ");
  845. if (bp->flow_ctrl & FLOW_CTRL_TX)
  846. pr_cont("& transmit ");
  847. }
  848. else {
  849. pr_cont(", transmit ");
  850. }
  851. pr_cont("flow control ON");
  852. }
  853. pr_cont("\n");
  854. } else {
  855. netif_carrier_off(bp->dev);
  856. netdev_err(bp->dev, "NIC %s Link is Down\n",
  857. bnx2_xceiver_str(bp));
  858. }
  859. bnx2_report_fw_link(bp);
  860. }
  861. static void
  862. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  863. {
  864. u32 local_adv, remote_adv;
  865. bp->flow_ctrl = 0;
  866. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  867. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  868. if (bp->duplex == DUPLEX_FULL) {
  869. bp->flow_ctrl = bp->req_flow_ctrl;
  870. }
  871. return;
  872. }
  873. if (bp->duplex != DUPLEX_FULL) {
  874. return;
  875. }
  876. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  877. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  878. u32 val;
  879. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  880. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  881. bp->flow_ctrl |= FLOW_CTRL_TX;
  882. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  883. bp->flow_ctrl |= FLOW_CTRL_RX;
  884. return;
  885. }
  886. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  887. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  888. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  889. u32 new_local_adv = 0;
  890. u32 new_remote_adv = 0;
  891. if (local_adv & ADVERTISE_1000XPAUSE)
  892. new_local_adv |= ADVERTISE_PAUSE_CAP;
  893. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  894. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  895. if (remote_adv & ADVERTISE_1000XPAUSE)
  896. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  897. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  898. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  899. local_adv = new_local_adv;
  900. remote_adv = new_remote_adv;
  901. }
  902. /* See Table 28B-3 of 802.3ab-1999 spec. */
  903. if (local_adv & ADVERTISE_PAUSE_CAP) {
  904. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  905. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  906. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  907. }
  908. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  909. bp->flow_ctrl = FLOW_CTRL_RX;
  910. }
  911. }
  912. else {
  913. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  914. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  915. }
  916. }
  917. }
  918. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  919. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  920. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  921. bp->flow_ctrl = FLOW_CTRL_TX;
  922. }
  923. }
  924. }
  925. static int
  926. bnx2_5709s_linkup(struct bnx2 *bp)
  927. {
  928. u32 val, speed;
  929. bp->link_up = 1;
  930. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  931. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  932. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  933. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  934. bp->line_speed = bp->req_line_speed;
  935. bp->duplex = bp->req_duplex;
  936. return 0;
  937. }
  938. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  939. switch (speed) {
  940. case MII_BNX2_GP_TOP_AN_SPEED_10:
  941. bp->line_speed = SPEED_10;
  942. break;
  943. case MII_BNX2_GP_TOP_AN_SPEED_100:
  944. bp->line_speed = SPEED_100;
  945. break;
  946. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  947. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  948. bp->line_speed = SPEED_1000;
  949. break;
  950. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  951. bp->line_speed = SPEED_2500;
  952. break;
  953. }
  954. if (val & MII_BNX2_GP_TOP_AN_FD)
  955. bp->duplex = DUPLEX_FULL;
  956. else
  957. bp->duplex = DUPLEX_HALF;
  958. return 0;
  959. }
  960. static int
  961. bnx2_5708s_linkup(struct bnx2 *bp)
  962. {
  963. u32 val;
  964. bp->link_up = 1;
  965. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  966. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  967. case BCM5708S_1000X_STAT1_SPEED_10:
  968. bp->line_speed = SPEED_10;
  969. break;
  970. case BCM5708S_1000X_STAT1_SPEED_100:
  971. bp->line_speed = SPEED_100;
  972. break;
  973. case BCM5708S_1000X_STAT1_SPEED_1G:
  974. bp->line_speed = SPEED_1000;
  975. break;
  976. case BCM5708S_1000X_STAT1_SPEED_2G5:
  977. bp->line_speed = SPEED_2500;
  978. break;
  979. }
  980. if (val & BCM5708S_1000X_STAT1_FD)
  981. bp->duplex = DUPLEX_FULL;
  982. else
  983. bp->duplex = DUPLEX_HALF;
  984. return 0;
  985. }
  986. static int
  987. bnx2_5706s_linkup(struct bnx2 *bp)
  988. {
  989. u32 bmcr, local_adv, remote_adv, common;
  990. bp->link_up = 1;
  991. bp->line_speed = SPEED_1000;
  992. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  993. if (bmcr & BMCR_FULLDPLX) {
  994. bp->duplex = DUPLEX_FULL;
  995. }
  996. else {
  997. bp->duplex = DUPLEX_HALF;
  998. }
  999. if (!(bmcr & BMCR_ANENABLE)) {
  1000. return 0;
  1001. }
  1002. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1003. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1004. common = local_adv & remote_adv;
  1005. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1006. if (common & ADVERTISE_1000XFULL) {
  1007. bp->duplex = DUPLEX_FULL;
  1008. }
  1009. else {
  1010. bp->duplex = DUPLEX_HALF;
  1011. }
  1012. }
  1013. return 0;
  1014. }
  1015. static int
  1016. bnx2_copper_linkup(struct bnx2 *bp)
  1017. {
  1018. u32 bmcr;
  1019. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1020. if (bmcr & BMCR_ANENABLE) {
  1021. u32 local_adv, remote_adv, common;
  1022. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1023. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1024. common = local_adv & (remote_adv >> 2);
  1025. if (common & ADVERTISE_1000FULL) {
  1026. bp->line_speed = SPEED_1000;
  1027. bp->duplex = DUPLEX_FULL;
  1028. }
  1029. else if (common & ADVERTISE_1000HALF) {
  1030. bp->line_speed = SPEED_1000;
  1031. bp->duplex = DUPLEX_HALF;
  1032. }
  1033. else {
  1034. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1035. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1036. common = local_adv & remote_adv;
  1037. if (common & ADVERTISE_100FULL) {
  1038. bp->line_speed = SPEED_100;
  1039. bp->duplex = DUPLEX_FULL;
  1040. }
  1041. else if (common & ADVERTISE_100HALF) {
  1042. bp->line_speed = SPEED_100;
  1043. bp->duplex = DUPLEX_HALF;
  1044. }
  1045. else if (common & ADVERTISE_10FULL) {
  1046. bp->line_speed = SPEED_10;
  1047. bp->duplex = DUPLEX_FULL;
  1048. }
  1049. else if (common & ADVERTISE_10HALF) {
  1050. bp->line_speed = SPEED_10;
  1051. bp->duplex = DUPLEX_HALF;
  1052. }
  1053. else {
  1054. bp->line_speed = 0;
  1055. bp->link_up = 0;
  1056. }
  1057. }
  1058. }
  1059. else {
  1060. if (bmcr & BMCR_SPEED100) {
  1061. bp->line_speed = SPEED_100;
  1062. }
  1063. else {
  1064. bp->line_speed = SPEED_10;
  1065. }
  1066. if (bmcr & BMCR_FULLDPLX) {
  1067. bp->duplex = DUPLEX_FULL;
  1068. }
  1069. else {
  1070. bp->duplex = DUPLEX_HALF;
  1071. }
  1072. }
  1073. return 0;
  1074. }
  1075. static void
  1076. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1077. {
  1078. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1079. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1080. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1081. val |= 0x02 << 8;
  1082. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1083. u32 lo_water, hi_water;
  1084. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1085. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1086. else
  1087. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1088. if (lo_water >= bp->rx_ring_size)
  1089. lo_water = 0;
  1090. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1091. if (hi_water <= lo_water)
  1092. lo_water = 0;
  1093. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1094. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1095. if (hi_water > 0xf)
  1096. hi_water = 0xf;
  1097. else if (hi_water == 0)
  1098. lo_water = 0;
  1099. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1100. }
  1101. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1102. }
  1103. static void
  1104. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1105. {
  1106. int i;
  1107. u32 cid;
  1108. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1109. if (i == 1)
  1110. cid = RX_RSS_CID;
  1111. bnx2_init_rx_context(bp, cid);
  1112. }
  1113. }
  1114. static void
  1115. bnx2_set_mac_link(struct bnx2 *bp)
  1116. {
  1117. u32 val;
  1118. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1119. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1120. (bp->duplex == DUPLEX_HALF)) {
  1121. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1122. }
  1123. /* Configure the EMAC mode register. */
  1124. val = REG_RD(bp, BNX2_EMAC_MODE);
  1125. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1126. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1127. BNX2_EMAC_MODE_25G_MODE);
  1128. if (bp->link_up) {
  1129. switch (bp->line_speed) {
  1130. case SPEED_10:
  1131. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1132. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1133. break;
  1134. }
  1135. /* fall through */
  1136. case SPEED_100:
  1137. val |= BNX2_EMAC_MODE_PORT_MII;
  1138. break;
  1139. case SPEED_2500:
  1140. val |= BNX2_EMAC_MODE_25G_MODE;
  1141. /* fall through */
  1142. case SPEED_1000:
  1143. val |= BNX2_EMAC_MODE_PORT_GMII;
  1144. break;
  1145. }
  1146. }
  1147. else {
  1148. val |= BNX2_EMAC_MODE_PORT_GMII;
  1149. }
  1150. /* Set the MAC to operate in the appropriate duplex mode. */
  1151. if (bp->duplex == DUPLEX_HALF)
  1152. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1153. REG_WR(bp, BNX2_EMAC_MODE, val);
  1154. /* Enable/disable rx PAUSE. */
  1155. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1156. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1157. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1158. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1159. /* Enable/disable tx PAUSE. */
  1160. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1161. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1162. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1163. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1164. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1165. /* Acknowledge the interrupt. */
  1166. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1167. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1168. bnx2_init_all_rx_contexts(bp);
  1169. }
  1170. static void
  1171. bnx2_enable_bmsr1(struct bnx2 *bp)
  1172. {
  1173. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1174. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1175. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1176. MII_BNX2_BLK_ADDR_GP_STATUS);
  1177. }
  1178. static void
  1179. bnx2_disable_bmsr1(struct bnx2 *bp)
  1180. {
  1181. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1182. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1183. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1184. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1185. }
  1186. static int
  1187. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1188. {
  1189. u32 up1;
  1190. int ret = 1;
  1191. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1192. return 0;
  1193. if (bp->autoneg & AUTONEG_SPEED)
  1194. bp->advertising |= ADVERTISED_2500baseX_Full;
  1195. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1196. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1197. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1198. if (!(up1 & BCM5708S_UP1_2G5)) {
  1199. up1 |= BCM5708S_UP1_2G5;
  1200. bnx2_write_phy(bp, bp->mii_up1, up1);
  1201. ret = 0;
  1202. }
  1203. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1204. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1205. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1206. return ret;
  1207. }
  1208. static int
  1209. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1210. {
  1211. u32 up1;
  1212. int ret = 0;
  1213. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1214. return 0;
  1215. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1216. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1217. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1218. if (up1 & BCM5708S_UP1_2G5) {
  1219. up1 &= ~BCM5708S_UP1_2G5;
  1220. bnx2_write_phy(bp, bp->mii_up1, up1);
  1221. ret = 1;
  1222. }
  1223. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1224. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1225. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1226. return ret;
  1227. }
  1228. static void
  1229. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1230. {
  1231. u32 bmcr;
  1232. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1233. return;
  1234. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1235. u32 val;
  1236. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1237. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1238. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1239. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1240. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1241. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1242. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1243. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1244. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1245. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1246. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1247. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1248. } else {
  1249. return;
  1250. }
  1251. if (bp->autoneg & AUTONEG_SPEED) {
  1252. bmcr &= ~BMCR_ANENABLE;
  1253. if (bp->req_duplex == DUPLEX_FULL)
  1254. bmcr |= BMCR_FULLDPLX;
  1255. }
  1256. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1257. }
  1258. static void
  1259. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1260. {
  1261. u32 bmcr;
  1262. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1263. return;
  1264. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1265. u32 val;
  1266. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1267. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1268. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1269. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1270. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1271. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1272. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1273. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1274. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1275. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1276. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1277. } else {
  1278. return;
  1279. }
  1280. if (bp->autoneg & AUTONEG_SPEED)
  1281. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1282. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1283. }
  1284. static void
  1285. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1286. {
  1287. u32 val;
  1288. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1289. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1290. if (start)
  1291. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1292. else
  1293. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1294. }
  1295. static int
  1296. bnx2_set_link(struct bnx2 *bp)
  1297. {
  1298. u32 bmsr;
  1299. u8 link_up;
  1300. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1301. bp->link_up = 1;
  1302. return 0;
  1303. }
  1304. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1305. return 0;
  1306. link_up = bp->link_up;
  1307. bnx2_enable_bmsr1(bp);
  1308. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1309. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1310. bnx2_disable_bmsr1(bp);
  1311. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1312. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1313. u32 val, an_dbg;
  1314. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1315. bnx2_5706s_force_link_dn(bp, 0);
  1316. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1317. }
  1318. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1319. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1320. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1321. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1322. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1323. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1324. bmsr |= BMSR_LSTATUS;
  1325. else
  1326. bmsr &= ~BMSR_LSTATUS;
  1327. }
  1328. if (bmsr & BMSR_LSTATUS) {
  1329. bp->link_up = 1;
  1330. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1331. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1332. bnx2_5706s_linkup(bp);
  1333. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1334. bnx2_5708s_linkup(bp);
  1335. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1336. bnx2_5709s_linkup(bp);
  1337. }
  1338. else {
  1339. bnx2_copper_linkup(bp);
  1340. }
  1341. bnx2_resolve_flow_ctrl(bp);
  1342. }
  1343. else {
  1344. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1345. (bp->autoneg & AUTONEG_SPEED))
  1346. bnx2_disable_forced_2g5(bp);
  1347. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1348. u32 bmcr;
  1349. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1350. bmcr |= BMCR_ANENABLE;
  1351. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1352. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1353. }
  1354. bp->link_up = 0;
  1355. }
  1356. if (bp->link_up != link_up) {
  1357. bnx2_report_link(bp);
  1358. }
  1359. bnx2_set_mac_link(bp);
  1360. return 0;
  1361. }
  1362. static int
  1363. bnx2_reset_phy(struct bnx2 *bp)
  1364. {
  1365. int i;
  1366. u32 reg;
  1367. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1368. #define PHY_RESET_MAX_WAIT 100
  1369. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1370. udelay(10);
  1371. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1372. if (!(reg & BMCR_RESET)) {
  1373. udelay(20);
  1374. break;
  1375. }
  1376. }
  1377. if (i == PHY_RESET_MAX_WAIT) {
  1378. return -EBUSY;
  1379. }
  1380. return 0;
  1381. }
  1382. static u32
  1383. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1384. {
  1385. u32 adv = 0;
  1386. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1387. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1388. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1389. adv = ADVERTISE_1000XPAUSE;
  1390. }
  1391. else {
  1392. adv = ADVERTISE_PAUSE_CAP;
  1393. }
  1394. }
  1395. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1396. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1397. adv = ADVERTISE_1000XPSE_ASYM;
  1398. }
  1399. else {
  1400. adv = ADVERTISE_PAUSE_ASYM;
  1401. }
  1402. }
  1403. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1404. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1405. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1406. }
  1407. else {
  1408. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1409. }
  1410. }
  1411. return adv;
  1412. }
  1413. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1414. static int
  1415. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1416. __releases(&bp->phy_lock)
  1417. __acquires(&bp->phy_lock)
  1418. {
  1419. u32 speed_arg = 0, pause_adv;
  1420. pause_adv = bnx2_phy_get_pause_adv(bp);
  1421. if (bp->autoneg & AUTONEG_SPEED) {
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1423. if (bp->advertising & ADVERTISED_10baseT_Half)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1425. if (bp->advertising & ADVERTISED_10baseT_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1427. if (bp->advertising & ADVERTISED_100baseT_Half)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1429. if (bp->advertising & ADVERTISED_100baseT_Full)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1431. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1433. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1435. } else {
  1436. if (bp->req_line_speed == SPEED_2500)
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1438. else if (bp->req_line_speed == SPEED_1000)
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1440. else if (bp->req_line_speed == SPEED_100) {
  1441. if (bp->req_duplex == DUPLEX_FULL)
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1443. else
  1444. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1445. } else if (bp->req_line_speed == SPEED_10) {
  1446. if (bp->req_duplex == DUPLEX_FULL)
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1448. else
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1450. }
  1451. }
  1452. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1454. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1456. if (port == PORT_TP)
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1458. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1459. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1460. spin_unlock_bh(&bp->phy_lock);
  1461. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1462. spin_lock_bh(&bp->phy_lock);
  1463. return 0;
  1464. }
  1465. static int
  1466. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1467. __releases(&bp->phy_lock)
  1468. __acquires(&bp->phy_lock)
  1469. {
  1470. u32 adv, bmcr;
  1471. u32 new_adv = 0;
  1472. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1473. return (bnx2_setup_remote_phy(bp, port));
  1474. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1475. u32 new_bmcr;
  1476. int force_link_down = 0;
  1477. if (bp->req_line_speed == SPEED_2500) {
  1478. if (!bnx2_test_and_enable_2g5(bp))
  1479. force_link_down = 1;
  1480. } else if (bp->req_line_speed == SPEED_1000) {
  1481. if (bnx2_test_and_disable_2g5(bp))
  1482. force_link_down = 1;
  1483. }
  1484. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1485. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1486. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1487. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1488. new_bmcr |= BMCR_SPEED1000;
  1489. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1490. if (bp->req_line_speed == SPEED_2500)
  1491. bnx2_enable_forced_2g5(bp);
  1492. else if (bp->req_line_speed == SPEED_1000) {
  1493. bnx2_disable_forced_2g5(bp);
  1494. new_bmcr &= ~0x2000;
  1495. }
  1496. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1497. if (bp->req_line_speed == SPEED_2500)
  1498. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1499. else
  1500. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1501. }
  1502. if (bp->req_duplex == DUPLEX_FULL) {
  1503. adv |= ADVERTISE_1000XFULL;
  1504. new_bmcr |= BMCR_FULLDPLX;
  1505. }
  1506. else {
  1507. adv |= ADVERTISE_1000XHALF;
  1508. new_bmcr &= ~BMCR_FULLDPLX;
  1509. }
  1510. if ((new_bmcr != bmcr) || (force_link_down)) {
  1511. /* Force a link down visible on the other side */
  1512. if (bp->link_up) {
  1513. bnx2_write_phy(bp, bp->mii_adv, adv &
  1514. ~(ADVERTISE_1000XFULL |
  1515. ADVERTISE_1000XHALF));
  1516. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1517. BMCR_ANRESTART | BMCR_ANENABLE);
  1518. bp->link_up = 0;
  1519. netif_carrier_off(bp->dev);
  1520. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1521. bnx2_report_link(bp);
  1522. }
  1523. bnx2_write_phy(bp, bp->mii_adv, adv);
  1524. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1525. } else {
  1526. bnx2_resolve_flow_ctrl(bp);
  1527. bnx2_set_mac_link(bp);
  1528. }
  1529. return 0;
  1530. }
  1531. bnx2_test_and_enable_2g5(bp);
  1532. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1533. new_adv |= ADVERTISE_1000XFULL;
  1534. new_adv |= bnx2_phy_get_pause_adv(bp);
  1535. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1536. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1537. bp->serdes_an_pending = 0;
  1538. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1539. /* Force a link down visible on the other side */
  1540. if (bp->link_up) {
  1541. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1542. spin_unlock_bh(&bp->phy_lock);
  1543. msleep(20);
  1544. spin_lock_bh(&bp->phy_lock);
  1545. }
  1546. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1547. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1548. BMCR_ANENABLE);
  1549. /* Speed up link-up time when the link partner
  1550. * does not autonegotiate which is very common
  1551. * in blade servers. Some blade servers use
  1552. * IPMI for kerboard input and it's important
  1553. * to minimize link disruptions. Autoneg. involves
  1554. * exchanging base pages plus 3 next pages and
  1555. * normally completes in about 120 msec.
  1556. */
  1557. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1558. bp->serdes_an_pending = 1;
  1559. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1560. } else {
  1561. bnx2_resolve_flow_ctrl(bp);
  1562. bnx2_set_mac_link(bp);
  1563. }
  1564. return 0;
  1565. }
  1566. #define ETHTOOL_ALL_FIBRE_SPEED \
  1567. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1568. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1569. (ADVERTISED_1000baseT_Full)
  1570. #define ETHTOOL_ALL_COPPER_SPEED \
  1571. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1572. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1573. ADVERTISED_1000baseT_Full)
  1574. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1575. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1576. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1577. static void
  1578. bnx2_set_default_remote_link(struct bnx2 *bp)
  1579. {
  1580. u32 link;
  1581. if (bp->phy_port == PORT_TP)
  1582. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1583. else
  1584. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1585. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1586. bp->req_line_speed = 0;
  1587. bp->autoneg |= AUTONEG_SPEED;
  1588. bp->advertising = ADVERTISED_Autoneg;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1590. bp->advertising |= ADVERTISED_10baseT_Half;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1592. bp->advertising |= ADVERTISED_10baseT_Full;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1594. bp->advertising |= ADVERTISED_100baseT_Half;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1596. bp->advertising |= ADVERTISED_100baseT_Full;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1598. bp->advertising |= ADVERTISED_1000baseT_Full;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1600. bp->advertising |= ADVERTISED_2500baseX_Full;
  1601. } else {
  1602. bp->autoneg = 0;
  1603. bp->advertising = 0;
  1604. bp->req_duplex = DUPLEX_FULL;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1606. bp->req_line_speed = SPEED_10;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1608. bp->req_duplex = DUPLEX_HALF;
  1609. }
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1611. bp->req_line_speed = SPEED_100;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1613. bp->req_duplex = DUPLEX_HALF;
  1614. }
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1616. bp->req_line_speed = SPEED_1000;
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1618. bp->req_line_speed = SPEED_2500;
  1619. }
  1620. }
  1621. static void
  1622. bnx2_set_default_link(struct bnx2 *bp)
  1623. {
  1624. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1625. bnx2_set_default_remote_link(bp);
  1626. return;
  1627. }
  1628. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1629. bp->req_line_speed = 0;
  1630. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1631. u32 reg;
  1632. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1633. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1634. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1635. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1636. bp->autoneg = 0;
  1637. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1638. bp->req_duplex = DUPLEX_FULL;
  1639. }
  1640. } else
  1641. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1642. }
  1643. static void
  1644. bnx2_send_heart_beat(struct bnx2 *bp)
  1645. {
  1646. u32 msg;
  1647. u32 addr;
  1648. spin_lock(&bp->indirect_lock);
  1649. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1650. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1651. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1652. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1653. spin_unlock(&bp->indirect_lock);
  1654. }
  1655. static void
  1656. bnx2_remote_phy_event(struct bnx2 *bp)
  1657. {
  1658. u32 msg;
  1659. u8 link_up = bp->link_up;
  1660. u8 old_port;
  1661. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1662. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1663. bnx2_send_heart_beat(bp);
  1664. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1665. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1666. bp->link_up = 0;
  1667. else {
  1668. u32 speed;
  1669. bp->link_up = 1;
  1670. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1671. bp->duplex = DUPLEX_FULL;
  1672. switch (speed) {
  1673. case BNX2_LINK_STATUS_10HALF:
  1674. bp->duplex = DUPLEX_HALF;
  1675. case BNX2_LINK_STATUS_10FULL:
  1676. bp->line_speed = SPEED_10;
  1677. break;
  1678. case BNX2_LINK_STATUS_100HALF:
  1679. bp->duplex = DUPLEX_HALF;
  1680. case BNX2_LINK_STATUS_100BASE_T4:
  1681. case BNX2_LINK_STATUS_100FULL:
  1682. bp->line_speed = SPEED_100;
  1683. break;
  1684. case BNX2_LINK_STATUS_1000HALF:
  1685. bp->duplex = DUPLEX_HALF;
  1686. case BNX2_LINK_STATUS_1000FULL:
  1687. bp->line_speed = SPEED_1000;
  1688. break;
  1689. case BNX2_LINK_STATUS_2500HALF:
  1690. bp->duplex = DUPLEX_HALF;
  1691. case BNX2_LINK_STATUS_2500FULL:
  1692. bp->line_speed = SPEED_2500;
  1693. break;
  1694. default:
  1695. bp->line_speed = 0;
  1696. break;
  1697. }
  1698. bp->flow_ctrl = 0;
  1699. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1700. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1701. if (bp->duplex == DUPLEX_FULL)
  1702. bp->flow_ctrl = bp->req_flow_ctrl;
  1703. } else {
  1704. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1705. bp->flow_ctrl |= FLOW_CTRL_TX;
  1706. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1707. bp->flow_ctrl |= FLOW_CTRL_RX;
  1708. }
  1709. old_port = bp->phy_port;
  1710. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1711. bp->phy_port = PORT_FIBRE;
  1712. else
  1713. bp->phy_port = PORT_TP;
  1714. if (old_port != bp->phy_port)
  1715. bnx2_set_default_link(bp);
  1716. }
  1717. if (bp->link_up != link_up)
  1718. bnx2_report_link(bp);
  1719. bnx2_set_mac_link(bp);
  1720. }
  1721. static int
  1722. bnx2_set_remote_link(struct bnx2 *bp)
  1723. {
  1724. u32 evt_code;
  1725. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1726. switch (evt_code) {
  1727. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1728. bnx2_remote_phy_event(bp);
  1729. break;
  1730. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1731. default:
  1732. bnx2_send_heart_beat(bp);
  1733. break;
  1734. }
  1735. return 0;
  1736. }
  1737. static int
  1738. bnx2_setup_copper_phy(struct bnx2 *bp)
  1739. __releases(&bp->phy_lock)
  1740. __acquires(&bp->phy_lock)
  1741. {
  1742. u32 bmcr;
  1743. u32 new_bmcr;
  1744. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1745. if (bp->autoneg & AUTONEG_SPEED) {
  1746. u32 adv_reg, adv1000_reg;
  1747. u32 new_adv_reg = 0;
  1748. u32 new_adv1000_reg = 0;
  1749. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1750. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1751. ADVERTISE_PAUSE_ASYM);
  1752. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1753. adv1000_reg &= PHY_ALL_1000_SPEED;
  1754. if (bp->advertising & ADVERTISED_10baseT_Half)
  1755. new_adv_reg |= ADVERTISE_10HALF;
  1756. if (bp->advertising & ADVERTISED_10baseT_Full)
  1757. new_adv_reg |= ADVERTISE_10FULL;
  1758. if (bp->advertising & ADVERTISED_100baseT_Half)
  1759. new_adv_reg |= ADVERTISE_100HALF;
  1760. if (bp->advertising & ADVERTISED_100baseT_Full)
  1761. new_adv_reg |= ADVERTISE_100FULL;
  1762. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1763. new_adv1000_reg |= ADVERTISE_1000FULL;
  1764. new_adv_reg |= ADVERTISE_CSMA;
  1765. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1766. if ((adv1000_reg != new_adv1000_reg) ||
  1767. (adv_reg != new_adv_reg) ||
  1768. ((bmcr & BMCR_ANENABLE) == 0)) {
  1769. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1770. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1771. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1772. BMCR_ANENABLE);
  1773. }
  1774. else if (bp->link_up) {
  1775. /* Flow ctrl may have changed from auto to forced */
  1776. /* or vice-versa. */
  1777. bnx2_resolve_flow_ctrl(bp);
  1778. bnx2_set_mac_link(bp);
  1779. }
  1780. return 0;
  1781. }
  1782. new_bmcr = 0;
  1783. if (bp->req_line_speed == SPEED_100) {
  1784. new_bmcr |= BMCR_SPEED100;
  1785. }
  1786. if (bp->req_duplex == DUPLEX_FULL) {
  1787. new_bmcr |= BMCR_FULLDPLX;
  1788. }
  1789. if (new_bmcr != bmcr) {
  1790. u32 bmsr;
  1791. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1792. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1793. if (bmsr & BMSR_LSTATUS) {
  1794. /* Force link down */
  1795. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1796. spin_unlock_bh(&bp->phy_lock);
  1797. msleep(50);
  1798. spin_lock_bh(&bp->phy_lock);
  1799. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1800. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1801. }
  1802. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1803. /* Normally, the new speed is setup after the link has
  1804. * gone down and up again. In some cases, link will not go
  1805. * down so we need to set up the new speed here.
  1806. */
  1807. if (bmsr & BMSR_LSTATUS) {
  1808. bp->line_speed = bp->req_line_speed;
  1809. bp->duplex = bp->req_duplex;
  1810. bnx2_resolve_flow_ctrl(bp);
  1811. bnx2_set_mac_link(bp);
  1812. }
  1813. } else {
  1814. bnx2_resolve_flow_ctrl(bp);
  1815. bnx2_set_mac_link(bp);
  1816. }
  1817. return 0;
  1818. }
  1819. static int
  1820. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1821. __releases(&bp->phy_lock)
  1822. __acquires(&bp->phy_lock)
  1823. {
  1824. if (bp->loopback == MAC_LOOPBACK)
  1825. return 0;
  1826. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1827. return (bnx2_setup_serdes_phy(bp, port));
  1828. }
  1829. else {
  1830. return (bnx2_setup_copper_phy(bp));
  1831. }
  1832. }
  1833. static int
  1834. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1835. {
  1836. u32 val;
  1837. bp->mii_bmcr = MII_BMCR + 0x10;
  1838. bp->mii_bmsr = MII_BMSR + 0x10;
  1839. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1840. bp->mii_adv = MII_ADVERTISE + 0x10;
  1841. bp->mii_lpa = MII_LPA + 0x10;
  1842. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1843. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1844. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1846. if (reset_phy)
  1847. bnx2_reset_phy(bp);
  1848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1849. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1850. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1851. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1852. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1853. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1854. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1855. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1856. val |= BCM5708S_UP1_2G5;
  1857. else
  1858. val &= ~BCM5708S_UP1_2G5;
  1859. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1860. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1861. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1862. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1863. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1864. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1865. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1866. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1867. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1868. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1869. return 0;
  1870. }
  1871. static int
  1872. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1873. {
  1874. u32 val;
  1875. if (reset_phy)
  1876. bnx2_reset_phy(bp);
  1877. bp->mii_up1 = BCM5708S_UP1;
  1878. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1879. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1880. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1881. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1882. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1883. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1884. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1885. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1886. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1887. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1888. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1889. val |= BCM5708S_UP1_2G5;
  1890. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1891. }
  1892. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1893. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1894. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1895. /* increase tx signal amplitude */
  1896. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1897. BCM5708S_BLK_ADDR_TX_MISC);
  1898. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1899. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1900. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1901. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1902. }
  1903. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1904. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1905. if (val) {
  1906. u32 is_backplane;
  1907. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1908. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1909. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1910. BCM5708S_BLK_ADDR_TX_MISC);
  1911. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1912. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1913. BCM5708S_BLK_ADDR_DIG);
  1914. }
  1915. }
  1916. return 0;
  1917. }
  1918. static int
  1919. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1920. {
  1921. if (reset_phy)
  1922. bnx2_reset_phy(bp);
  1923. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1924. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1925. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1926. if (bp->dev->mtu > 1500) {
  1927. u32 val;
  1928. /* Set extended packet length bit */
  1929. bnx2_write_phy(bp, 0x18, 0x7);
  1930. bnx2_read_phy(bp, 0x18, &val);
  1931. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1932. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1933. bnx2_read_phy(bp, 0x1c, &val);
  1934. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1935. }
  1936. else {
  1937. u32 val;
  1938. bnx2_write_phy(bp, 0x18, 0x7);
  1939. bnx2_read_phy(bp, 0x18, &val);
  1940. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1941. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1942. bnx2_read_phy(bp, 0x1c, &val);
  1943. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1944. }
  1945. return 0;
  1946. }
  1947. static int
  1948. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1949. {
  1950. u32 val;
  1951. if (reset_phy)
  1952. bnx2_reset_phy(bp);
  1953. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1954. bnx2_write_phy(bp, 0x18, 0x0c00);
  1955. bnx2_write_phy(bp, 0x17, 0x000a);
  1956. bnx2_write_phy(bp, 0x15, 0x310b);
  1957. bnx2_write_phy(bp, 0x17, 0x201f);
  1958. bnx2_write_phy(bp, 0x15, 0x9506);
  1959. bnx2_write_phy(bp, 0x17, 0x401f);
  1960. bnx2_write_phy(bp, 0x15, 0x14e2);
  1961. bnx2_write_phy(bp, 0x18, 0x0400);
  1962. }
  1963. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1964. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1965. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1966. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1967. val &= ~(1 << 8);
  1968. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1969. }
  1970. if (bp->dev->mtu > 1500) {
  1971. /* Set extended packet length bit */
  1972. bnx2_write_phy(bp, 0x18, 0x7);
  1973. bnx2_read_phy(bp, 0x18, &val);
  1974. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1975. bnx2_read_phy(bp, 0x10, &val);
  1976. bnx2_write_phy(bp, 0x10, val | 0x1);
  1977. }
  1978. else {
  1979. bnx2_write_phy(bp, 0x18, 0x7);
  1980. bnx2_read_phy(bp, 0x18, &val);
  1981. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1982. bnx2_read_phy(bp, 0x10, &val);
  1983. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1984. }
  1985. /* ethernet@wirespeed */
  1986. bnx2_write_phy(bp, 0x18, 0x7007);
  1987. bnx2_read_phy(bp, 0x18, &val);
  1988. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1989. return 0;
  1990. }
  1991. static int
  1992. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1993. __releases(&bp->phy_lock)
  1994. __acquires(&bp->phy_lock)
  1995. {
  1996. u32 val;
  1997. int rc = 0;
  1998. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1999. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2000. bp->mii_bmcr = MII_BMCR;
  2001. bp->mii_bmsr = MII_BMSR;
  2002. bp->mii_bmsr1 = MII_BMSR;
  2003. bp->mii_adv = MII_ADVERTISE;
  2004. bp->mii_lpa = MII_LPA;
  2005. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2006. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2007. goto setup_phy;
  2008. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2009. bp->phy_id = val << 16;
  2010. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2011. bp->phy_id |= val & 0xffff;
  2012. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2013. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2014. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2015. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2016. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2017. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2018. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2019. }
  2020. else {
  2021. rc = bnx2_init_copper_phy(bp, reset_phy);
  2022. }
  2023. setup_phy:
  2024. if (!rc)
  2025. rc = bnx2_setup_phy(bp, bp->phy_port);
  2026. return rc;
  2027. }
  2028. static int
  2029. bnx2_set_mac_loopback(struct bnx2 *bp)
  2030. {
  2031. u32 mac_mode;
  2032. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2033. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2034. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2035. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2036. bp->link_up = 1;
  2037. return 0;
  2038. }
  2039. static int bnx2_test_link(struct bnx2 *);
  2040. static int
  2041. bnx2_set_phy_loopback(struct bnx2 *bp)
  2042. {
  2043. u32 mac_mode;
  2044. int rc, i;
  2045. spin_lock_bh(&bp->phy_lock);
  2046. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2047. BMCR_SPEED1000);
  2048. spin_unlock_bh(&bp->phy_lock);
  2049. if (rc)
  2050. return rc;
  2051. for (i = 0; i < 10; i++) {
  2052. if (bnx2_test_link(bp) == 0)
  2053. break;
  2054. msleep(100);
  2055. }
  2056. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2057. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2058. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2059. BNX2_EMAC_MODE_25G_MODE);
  2060. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2061. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2062. bp->link_up = 1;
  2063. return 0;
  2064. }
  2065. static int
  2066. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2067. {
  2068. int i;
  2069. u32 val;
  2070. bp->fw_wr_seq++;
  2071. msg_data |= bp->fw_wr_seq;
  2072. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2073. if (!ack)
  2074. return 0;
  2075. /* wait for an acknowledgement. */
  2076. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2077. msleep(10);
  2078. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2079. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2080. break;
  2081. }
  2082. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2083. return 0;
  2084. /* If we timed out, inform the firmware that this is the case. */
  2085. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2086. if (!silent)
  2087. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2088. msg_data &= ~BNX2_DRV_MSG_CODE;
  2089. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2090. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2091. return -EBUSY;
  2092. }
  2093. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2094. return -EIO;
  2095. return 0;
  2096. }
  2097. static int
  2098. bnx2_init_5709_context(struct bnx2 *bp)
  2099. {
  2100. int i, ret = 0;
  2101. u32 val;
  2102. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2103. val |= (BCM_PAGE_BITS - 8) << 16;
  2104. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2105. for (i = 0; i < 10; i++) {
  2106. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2107. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2108. break;
  2109. udelay(2);
  2110. }
  2111. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2112. return -EBUSY;
  2113. for (i = 0; i < bp->ctx_pages; i++) {
  2114. int j;
  2115. if (bp->ctx_blk[i])
  2116. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2117. else
  2118. return -ENOMEM;
  2119. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2120. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2121. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2122. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2123. (u64) bp->ctx_blk_mapping[i] >> 32);
  2124. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2125. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2126. for (j = 0; j < 10; j++) {
  2127. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2128. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2129. break;
  2130. udelay(5);
  2131. }
  2132. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2133. ret = -EBUSY;
  2134. break;
  2135. }
  2136. }
  2137. return ret;
  2138. }
  2139. static void
  2140. bnx2_init_context(struct bnx2 *bp)
  2141. {
  2142. u32 vcid;
  2143. vcid = 96;
  2144. while (vcid) {
  2145. u32 vcid_addr, pcid_addr, offset;
  2146. int i;
  2147. vcid--;
  2148. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2149. u32 new_vcid;
  2150. vcid_addr = GET_PCID_ADDR(vcid);
  2151. if (vcid & 0x8) {
  2152. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2153. }
  2154. else {
  2155. new_vcid = vcid;
  2156. }
  2157. pcid_addr = GET_PCID_ADDR(new_vcid);
  2158. }
  2159. else {
  2160. vcid_addr = GET_CID_ADDR(vcid);
  2161. pcid_addr = vcid_addr;
  2162. }
  2163. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2164. vcid_addr += (i << PHY_CTX_SHIFT);
  2165. pcid_addr += (i << PHY_CTX_SHIFT);
  2166. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2167. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2168. /* Zero out the context. */
  2169. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2170. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2171. }
  2172. }
  2173. }
  2174. static int
  2175. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2176. {
  2177. u16 *good_mbuf;
  2178. u32 good_mbuf_cnt;
  2179. u32 val;
  2180. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2181. if (good_mbuf == NULL) {
  2182. pr_err("Failed to allocate memory in %s\n", __func__);
  2183. return -ENOMEM;
  2184. }
  2185. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2186. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2187. good_mbuf_cnt = 0;
  2188. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2189. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2190. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2191. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2192. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2193. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2194. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2195. /* The addresses with Bit 9 set are bad memory blocks. */
  2196. if (!(val & (1 << 9))) {
  2197. good_mbuf[good_mbuf_cnt] = (u16) val;
  2198. good_mbuf_cnt++;
  2199. }
  2200. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2201. }
  2202. /* Free the good ones back to the mbuf pool thus discarding
  2203. * all the bad ones. */
  2204. while (good_mbuf_cnt) {
  2205. good_mbuf_cnt--;
  2206. val = good_mbuf[good_mbuf_cnt];
  2207. val = (val << 9) | val | 1;
  2208. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2209. }
  2210. kfree(good_mbuf);
  2211. return 0;
  2212. }
  2213. static void
  2214. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2215. {
  2216. u32 val;
  2217. val = (mac_addr[0] << 8) | mac_addr[1];
  2218. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2219. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2220. (mac_addr[4] << 8) | mac_addr[5];
  2221. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2222. }
  2223. static inline int
  2224. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2225. {
  2226. dma_addr_t mapping;
  2227. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2228. struct rx_bd *rxbd =
  2229. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2230. struct page *page = alloc_page(GFP_ATOMIC);
  2231. if (!page)
  2232. return -ENOMEM;
  2233. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2234. PCI_DMA_FROMDEVICE);
  2235. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2236. __free_page(page);
  2237. return -EIO;
  2238. }
  2239. rx_pg->page = page;
  2240. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2241. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2242. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2243. return 0;
  2244. }
  2245. static void
  2246. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2247. {
  2248. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2249. struct page *page = rx_pg->page;
  2250. if (!page)
  2251. return;
  2252. pci_unmap_page(bp->pdev, dma_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2253. PCI_DMA_FROMDEVICE);
  2254. __free_page(page);
  2255. rx_pg->page = NULL;
  2256. }
  2257. static inline int
  2258. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2259. {
  2260. struct sk_buff *skb;
  2261. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2262. dma_addr_t mapping;
  2263. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2264. unsigned long align;
  2265. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2266. if (skb == NULL) {
  2267. return -ENOMEM;
  2268. }
  2269. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2270. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2271. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2272. PCI_DMA_FROMDEVICE);
  2273. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2274. dev_kfree_skb(skb);
  2275. return -EIO;
  2276. }
  2277. rx_buf->skb = skb;
  2278. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2279. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2280. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2281. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2282. return 0;
  2283. }
  2284. static int
  2285. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2286. {
  2287. struct status_block *sblk = bnapi->status_blk.msi;
  2288. u32 new_link_state, old_link_state;
  2289. int is_set = 1;
  2290. new_link_state = sblk->status_attn_bits & event;
  2291. old_link_state = sblk->status_attn_bits_ack & event;
  2292. if (new_link_state != old_link_state) {
  2293. if (new_link_state)
  2294. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2295. else
  2296. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2297. } else
  2298. is_set = 0;
  2299. return is_set;
  2300. }
  2301. static void
  2302. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2303. {
  2304. spin_lock(&bp->phy_lock);
  2305. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2306. bnx2_set_link(bp);
  2307. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2308. bnx2_set_remote_link(bp);
  2309. spin_unlock(&bp->phy_lock);
  2310. }
  2311. static inline u16
  2312. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2313. {
  2314. u16 cons;
  2315. /* Tell compiler that status block fields can change. */
  2316. barrier();
  2317. cons = *bnapi->hw_tx_cons_ptr;
  2318. barrier();
  2319. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2320. cons++;
  2321. return cons;
  2322. }
  2323. static int
  2324. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2325. {
  2326. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2327. u16 hw_cons, sw_cons, sw_ring_cons;
  2328. int tx_pkt = 0, index;
  2329. struct netdev_queue *txq;
  2330. index = (bnapi - bp->bnx2_napi);
  2331. txq = netdev_get_tx_queue(bp->dev, index);
  2332. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2333. sw_cons = txr->tx_cons;
  2334. while (sw_cons != hw_cons) {
  2335. struct sw_tx_bd *tx_buf;
  2336. struct sk_buff *skb;
  2337. int i, last;
  2338. sw_ring_cons = TX_RING_IDX(sw_cons);
  2339. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2340. skb = tx_buf->skb;
  2341. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2342. prefetch(&skb->end);
  2343. /* partial BD completions possible with TSO packets */
  2344. if (tx_buf->is_gso) {
  2345. u16 last_idx, last_ring_idx;
  2346. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2347. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2348. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2349. last_idx++;
  2350. }
  2351. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2352. break;
  2353. }
  2354. }
  2355. pci_unmap_single(bp->pdev, dma_unmap_addr(tx_buf, mapping),
  2356. skb_headlen(skb), PCI_DMA_TODEVICE);
  2357. tx_buf->skb = NULL;
  2358. last = tx_buf->nr_frags;
  2359. for (i = 0; i < last; i++) {
  2360. sw_cons = NEXT_TX_BD(sw_cons);
  2361. pci_unmap_page(bp->pdev,
  2362. dma_unmap_addr(
  2363. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2364. mapping),
  2365. skb_shinfo(skb)->frags[i].size,
  2366. PCI_DMA_TODEVICE);
  2367. }
  2368. sw_cons = NEXT_TX_BD(sw_cons);
  2369. dev_kfree_skb(skb);
  2370. tx_pkt++;
  2371. if (tx_pkt == budget)
  2372. break;
  2373. if (hw_cons == sw_cons)
  2374. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2375. }
  2376. txr->hw_tx_cons = hw_cons;
  2377. txr->tx_cons = sw_cons;
  2378. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2379. * before checking for netif_tx_queue_stopped(). Without the
  2380. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2381. * will miss it and cause the queue to be stopped forever.
  2382. */
  2383. smp_mb();
  2384. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2385. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2386. __netif_tx_lock(txq, smp_processor_id());
  2387. if ((netif_tx_queue_stopped(txq)) &&
  2388. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2389. netif_tx_wake_queue(txq);
  2390. __netif_tx_unlock(txq);
  2391. }
  2392. return tx_pkt;
  2393. }
  2394. static void
  2395. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2396. struct sk_buff *skb, int count)
  2397. {
  2398. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2399. struct rx_bd *cons_bd, *prod_bd;
  2400. int i;
  2401. u16 hw_prod, prod;
  2402. u16 cons = rxr->rx_pg_cons;
  2403. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2404. /* The caller was unable to allocate a new page to replace the
  2405. * last one in the frags array, so we need to recycle that page
  2406. * and then free the skb.
  2407. */
  2408. if (skb) {
  2409. struct page *page;
  2410. struct skb_shared_info *shinfo;
  2411. shinfo = skb_shinfo(skb);
  2412. shinfo->nr_frags--;
  2413. page = shinfo->frags[shinfo->nr_frags].page;
  2414. shinfo->frags[shinfo->nr_frags].page = NULL;
  2415. cons_rx_pg->page = page;
  2416. dev_kfree_skb(skb);
  2417. }
  2418. hw_prod = rxr->rx_pg_prod;
  2419. for (i = 0; i < count; i++) {
  2420. prod = RX_PG_RING_IDX(hw_prod);
  2421. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2422. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2423. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2424. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2425. if (prod != cons) {
  2426. prod_rx_pg->page = cons_rx_pg->page;
  2427. cons_rx_pg->page = NULL;
  2428. dma_unmap_addr_set(prod_rx_pg, mapping,
  2429. dma_unmap_addr(cons_rx_pg, mapping));
  2430. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2431. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2432. }
  2433. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2434. hw_prod = NEXT_RX_BD(hw_prod);
  2435. }
  2436. rxr->rx_pg_prod = hw_prod;
  2437. rxr->rx_pg_cons = cons;
  2438. }
  2439. static inline void
  2440. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2441. struct sk_buff *skb, u16 cons, u16 prod)
  2442. {
  2443. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2444. struct rx_bd *cons_bd, *prod_bd;
  2445. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2446. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2447. pci_dma_sync_single_for_device(bp->pdev,
  2448. dma_unmap_addr(cons_rx_buf, mapping),
  2449. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2450. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2451. prod_rx_buf->skb = skb;
  2452. if (cons == prod)
  2453. return;
  2454. dma_unmap_addr_set(prod_rx_buf, mapping,
  2455. dma_unmap_addr(cons_rx_buf, mapping));
  2456. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2457. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2458. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2459. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2460. }
  2461. static int
  2462. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2463. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2464. u32 ring_idx)
  2465. {
  2466. int err;
  2467. u16 prod = ring_idx & 0xffff;
  2468. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2469. if (unlikely(err)) {
  2470. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2471. if (hdr_len) {
  2472. unsigned int raw_len = len + 4;
  2473. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2474. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2475. }
  2476. return err;
  2477. }
  2478. skb_reserve(skb, BNX2_RX_OFFSET);
  2479. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2480. PCI_DMA_FROMDEVICE);
  2481. if (hdr_len == 0) {
  2482. skb_put(skb, len);
  2483. return 0;
  2484. } else {
  2485. unsigned int i, frag_len, frag_size, pages;
  2486. struct sw_pg *rx_pg;
  2487. u16 pg_cons = rxr->rx_pg_cons;
  2488. u16 pg_prod = rxr->rx_pg_prod;
  2489. frag_size = len + 4 - hdr_len;
  2490. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2491. skb_put(skb, hdr_len);
  2492. for (i = 0; i < pages; i++) {
  2493. dma_addr_t mapping_old;
  2494. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2495. if (unlikely(frag_len <= 4)) {
  2496. unsigned int tail = 4 - frag_len;
  2497. rxr->rx_pg_cons = pg_cons;
  2498. rxr->rx_pg_prod = pg_prod;
  2499. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2500. pages - i);
  2501. skb->len -= tail;
  2502. if (i == 0) {
  2503. skb->tail -= tail;
  2504. } else {
  2505. skb_frag_t *frag =
  2506. &skb_shinfo(skb)->frags[i - 1];
  2507. frag->size -= tail;
  2508. skb->data_len -= tail;
  2509. skb->truesize -= tail;
  2510. }
  2511. return 0;
  2512. }
  2513. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2514. /* Don't unmap yet. If we're unable to allocate a new
  2515. * page, we need to recycle the page and the DMA addr.
  2516. */
  2517. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2518. if (i == pages - 1)
  2519. frag_len -= 4;
  2520. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2521. rx_pg->page = NULL;
  2522. err = bnx2_alloc_rx_page(bp, rxr,
  2523. RX_PG_RING_IDX(pg_prod));
  2524. if (unlikely(err)) {
  2525. rxr->rx_pg_cons = pg_cons;
  2526. rxr->rx_pg_prod = pg_prod;
  2527. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2528. pages - i);
  2529. return err;
  2530. }
  2531. pci_unmap_page(bp->pdev, mapping_old,
  2532. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2533. frag_size -= frag_len;
  2534. skb->data_len += frag_len;
  2535. skb->truesize += frag_len;
  2536. skb->len += frag_len;
  2537. pg_prod = NEXT_RX_BD(pg_prod);
  2538. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2539. }
  2540. rxr->rx_pg_prod = pg_prod;
  2541. rxr->rx_pg_cons = pg_cons;
  2542. }
  2543. return 0;
  2544. }
  2545. static inline u16
  2546. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2547. {
  2548. u16 cons;
  2549. /* Tell compiler that status block fields can change. */
  2550. barrier();
  2551. cons = *bnapi->hw_rx_cons_ptr;
  2552. barrier();
  2553. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2554. cons++;
  2555. return cons;
  2556. }
  2557. static int
  2558. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2559. {
  2560. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2561. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2562. struct l2_fhdr *rx_hdr;
  2563. int rx_pkt = 0, pg_ring_used = 0;
  2564. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2565. sw_cons = rxr->rx_cons;
  2566. sw_prod = rxr->rx_prod;
  2567. /* Memory barrier necessary as speculative reads of the rx
  2568. * buffer can be ahead of the index in the status block
  2569. */
  2570. rmb();
  2571. while (sw_cons != hw_cons) {
  2572. unsigned int len, hdr_len;
  2573. u32 status;
  2574. struct sw_bd *rx_buf;
  2575. struct sk_buff *skb;
  2576. dma_addr_t dma_addr;
  2577. u16 vtag = 0;
  2578. int hw_vlan __maybe_unused = 0;
  2579. sw_ring_cons = RX_RING_IDX(sw_cons);
  2580. sw_ring_prod = RX_RING_IDX(sw_prod);
  2581. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2582. skb = rx_buf->skb;
  2583. rx_buf->skb = NULL;
  2584. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2585. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2586. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2587. PCI_DMA_FROMDEVICE);
  2588. rx_hdr = (struct l2_fhdr *) skb->data;
  2589. len = rx_hdr->l2_fhdr_pkt_len;
  2590. status = rx_hdr->l2_fhdr_status;
  2591. hdr_len = 0;
  2592. if (status & L2_FHDR_STATUS_SPLIT) {
  2593. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2594. pg_ring_used = 1;
  2595. } else if (len > bp->rx_jumbo_thresh) {
  2596. hdr_len = bp->rx_jumbo_thresh;
  2597. pg_ring_used = 1;
  2598. }
  2599. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2600. L2_FHDR_ERRORS_PHY_DECODE |
  2601. L2_FHDR_ERRORS_ALIGNMENT |
  2602. L2_FHDR_ERRORS_TOO_SHORT |
  2603. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2604. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2605. sw_ring_prod);
  2606. if (pg_ring_used) {
  2607. int pages;
  2608. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2609. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2610. }
  2611. goto next_rx;
  2612. }
  2613. len -= 4;
  2614. if (len <= bp->rx_copy_thresh) {
  2615. struct sk_buff *new_skb;
  2616. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2617. if (new_skb == NULL) {
  2618. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2619. sw_ring_prod);
  2620. goto next_rx;
  2621. }
  2622. /* aligned copy */
  2623. skb_copy_from_linear_data_offset(skb,
  2624. BNX2_RX_OFFSET - 6,
  2625. new_skb->data, len + 6);
  2626. skb_reserve(new_skb, 6);
  2627. skb_put(new_skb, len);
  2628. bnx2_reuse_rx_skb(bp, rxr, skb,
  2629. sw_ring_cons, sw_ring_prod);
  2630. skb = new_skb;
  2631. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2632. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2633. goto next_rx;
  2634. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2635. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2636. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2637. #ifdef BCM_VLAN
  2638. if (bp->vlgrp)
  2639. hw_vlan = 1;
  2640. else
  2641. #endif
  2642. {
  2643. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2644. __skb_push(skb, 4);
  2645. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2646. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2647. ve->h_vlan_TCI = htons(vtag);
  2648. len += 4;
  2649. }
  2650. }
  2651. skb->protocol = eth_type_trans(skb, bp->dev);
  2652. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2653. (ntohs(skb->protocol) != 0x8100)) {
  2654. dev_kfree_skb(skb);
  2655. goto next_rx;
  2656. }
  2657. skb->ip_summed = CHECKSUM_NONE;
  2658. if (bp->rx_csum &&
  2659. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2660. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2661. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2662. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2663. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2664. }
  2665. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2666. #ifdef BCM_VLAN
  2667. if (hw_vlan)
  2668. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2669. else
  2670. #endif
  2671. netif_receive_skb(skb);
  2672. rx_pkt++;
  2673. next_rx:
  2674. sw_cons = NEXT_RX_BD(sw_cons);
  2675. sw_prod = NEXT_RX_BD(sw_prod);
  2676. if ((rx_pkt == budget))
  2677. break;
  2678. /* Refresh hw_cons to see if there is new work */
  2679. if (sw_cons == hw_cons) {
  2680. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2681. rmb();
  2682. }
  2683. }
  2684. rxr->rx_cons = sw_cons;
  2685. rxr->rx_prod = sw_prod;
  2686. if (pg_ring_used)
  2687. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2688. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2689. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2690. mmiowb();
  2691. return rx_pkt;
  2692. }
  2693. /* MSI ISR - The only difference between this and the INTx ISR
  2694. * is that the MSI interrupt is always serviced.
  2695. */
  2696. static irqreturn_t
  2697. bnx2_msi(int irq, void *dev_instance)
  2698. {
  2699. struct bnx2_napi *bnapi = dev_instance;
  2700. struct bnx2 *bp = bnapi->bp;
  2701. prefetch(bnapi->status_blk.msi);
  2702. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2703. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2704. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2705. /* Return here if interrupt is disabled. */
  2706. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2707. return IRQ_HANDLED;
  2708. napi_schedule(&bnapi->napi);
  2709. return IRQ_HANDLED;
  2710. }
  2711. static irqreturn_t
  2712. bnx2_msi_1shot(int irq, void *dev_instance)
  2713. {
  2714. struct bnx2_napi *bnapi = dev_instance;
  2715. struct bnx2 *bp = bnapi->bp;
  2716. prefetch(bnapi->status_blk.msi);
  2717. /* Return here if interrupt is disabled. */
  2718. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2719. return IRQ_HANDLED;
  2720. napi_schedule(&bnapi->napi);
  2721. return IRQ_HANDLED;
  2722. }
  2723. static irqreturn_t
  2724. bnx2_interrupt(int irq, void *dev_instance)
  2725. {
  2726. struct bnx2_napi *bnapi = dev_instance;
  2727. struct bnx2 *bp = bnapi->bp;
  2728. struct status_block *sblk = bnapi->status_blk.msi;
  2729. /* When using INTx, it is possible for the interrupt to arrive
  2730. * at the CPU before the status block posted prior to the
  2731. * interrupt. Reading a register will flush the status block.
  2732. * When using MSI, the MSI message will always complete after
  2733. * the status block write.
  2734. */
  2735. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2736. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2737. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2738. return IRQ_NONE;
  2739. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2740. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2741. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2742. /* Read back to deassert IRQ immediately to avoid too many
  2743. * spurious interrupts.
  2744. */
  2745. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2746. /* Return here if interrupt is shared and is disabled. */
  2747. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2748. return IRQ_HANDLED;
  2749. if (napi_schedule_prep(&bnapi->napi)) {
  2750. bnapi->last_status_idx = sblk->status_idx;
  2751. __napi_schedule(&bnapi->napi);
  2752. }
  2753. return IRQ_HANDLED;
  2754. }
  2755. static inline int
  2756. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2757. {
  2758. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2759. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2760. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2761. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2762. return 1;
  2763. return 0;
  2764. }
  2765. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2766. STATUS_ATTN_BITS_TIMER_ABORT)
  2767. static inline int
  2768. bnx2_has_work(struct bnx2_napi *bnapi)
  2769. {
  2770. struct status_block *sblk = bnapi->status_blk.msi;
  2771. if (bnx2_has_fast_work(bnapi))
  2772. return 1;
  2773. #ifdef BCM_CNIC
  2774. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2775. return 1;
  2776. #endif
  2777. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2778. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2779. return 1;
  2780. return 0;
  2781. }
  2782. static void
  2783. bnx2_chk_missed_msi(struct bnx2 *bp)
  2784. {
  2785. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2786. u32 msi_ctrl;
  2787. if (bnx2_has_work(bnapi)) {
  2788. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2789. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2790. return;
  2791. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2792. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2793. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2794. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2795. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2796. }
  2797. }
  2798. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2799. }
  2800. #ifdef BCM_CNIC
  2801. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2802. {
  2803. struct cnic_ops *c_ops;
  2804. if (!bnapi->cnic_present)
  2805. return;
  2806. rcu_read_lock();
  2807. c_ops = rcu_dereference(bp->cnic_ops);
  2808. if (c_ops)
  2809. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2810. bnapi->status_blk.msi);
  2811. rcu_read_unlock();
  2812. }
  2813. #endif
  2814. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2815. {
  2816. struct status_block *sblk = bnapi->status_blk.msi;
  2817. u32 status_attn_bits = sblk->status_attn_bits;
  2818. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2819. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2820. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2821. bnx2_phy_int(bp, bnapi);
  2822. /* This is needed to take care of transient status
  2823. * during link changes.
  2824. */
  2825. REG_WR(bp, BNX2_HC_COMMAND,
  2826. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2827. REG_RD(bp, BNX2_HC_COMMAND);
  2828. }
  2829. }
  2830. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2831. int work_done, int budget)
  2832. {
  2833. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2834. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2835. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2836. bnx2_tx_int(bp, bnapi, 0);
  2837. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2838. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2839. return work_done;
  2840. }
  2841. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2842. {
  2843. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2844. struct bnx2 *bp = bnapi->bp;
  2845. int work_done = 0;
  2846. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2847. while (1) {
  2848. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2849. if (unlikely(work_done >= budget))
  2850. break;
  2851. bnapi->last_status_idx = sblk->status_idx;
  2852. /* status idx must be read before checking for more work. */
  2853. rmb();
  2854. if (likely(!bnx2_has_fast_work(bnapi))) {
  2855. napi_complete(napi);
  2856. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2857. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2858. bnapi->last_status_idx);
  2859. break;
  2860. }
  2861. }
  2862. return work_done;
  2863. }
  2864. static int bnx2_poll(struct napi_struct *napi, int budget)
  2865. {
  2866. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2867. struct bnx2 *bp = bnapi->bp;
  2868. int work_done = 0;
  2869. struct status_block *sblk = bnapi->status_blk.msi;
  2870. while (1) {
  2871. bnx2_poll_link(bp, bnapi);
  2872. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2873. #ifdef BCM_CNIC
  2874. bnx2_poll_cnic(bp, bnapi);
  2875. #endif
  2876. /* bnapi->last_status_idx is used below to tell the hw how
  2877. * much work has been processed, so we must read it before
  2878. * checking for more work.
  2879. */
  2880. bnapi->last_status_idx = sblk->status_idx;
  2881. if (unlikely(work_done >= budget))
  2882. break;
  2883. rmb();
  2884. if (likely(!bnx2_has_work(bnapi))) {
  2885. napi_complete(napi);
  2886. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2887. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2888. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2889. bnapi->last_status_idx);
  2890. break;
  2891. }
  2892. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2893. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2894. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2895. bnapi->last_status_idx);
  2896. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2897. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2898. bnapi->last_status_idx);
  2899. break;
  2900. }
  2901. }
  2902. return work_done;
  2903. }
  2904. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2905. * from set_multicast.
  2906. */
  2907. static void
  2908. bnx2_set_rx_mode(struct net_device *dev)
  2909. {
  2910. struct bnx2 *bp = netdev_priv(dev);
  2911. u32 rx_mode, sort_mode;
  2912. struct netdev_hw_addr *ha;
  2913. int i;
  2914. if (!netif_running(dev))
  2915. return;
  2916. spin_lock_bh(&bp->phy_lock);
  2917. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2918. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2919. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2920. #ifdef BCM_VLAN
  2921. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2922. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2923. #else
  2924. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2925. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2926. #endif
  2927. if (dev->flags & IFF_PROMISC) {
  2928. /* Promiscuous mode. */
  2929. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2930. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2931. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2932. }
  2933. else if (dev->flags & IFF_ALLMULTI) {
  2934. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2935. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2936. 0xffffffff);
  2937. }
  2938. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2939. }
  2940. else {
  2941. /* Accept one or more multicast(s). */
  2942. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2943. u32 regidx;
  2944. u32 bit;
  2945. u32 crc;
  2946. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2947. netdev_for_each_mc_addr(ha, dev) {
  2948. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2949. bit = crc & 0xff;
  2950. regidx = (bit & 0xe0) >> 5;
  2951. bit &= 0x1f;
  2952. mc_filter[regidx] |= (1 << bit);
  2953. }
  2954. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2955. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2956. mc_filter[i]);
  2957. }
  2958. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2959. }
  2960. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2961. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2962. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2963. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2964. } else if (!(dev->flags & IFF_PROMISC)) {
  2965. /* Add all entries into to the match filter list */
  2966. i = 0;
  2967. netdev_for_each_uc_addr(ha, dev) {
  2968. bnx2_set_mac_addr(bp, ha->addr,
  2969. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2970. sort_mode |= (1 <<
  2971. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2972. i++;
  2973. }
  2974. }
  2975. if (rx_mode != bp->rx_mode) {
  2976. bp->rx_mode = rx_mode;
  2977. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2978. }
  2979. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2980. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2981. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2982. spin_unlock_bh(&bp->phy_lock);
  2983. }
  2984. static int __devinit
  2985. check_fw_section(const struct firmware *fw,
  2986. const struct bnx2_fw_file_section *section,
  2987. u32 alignment, bool non_empty)
  2988. {
  2989. u32 offset = be32_to_cpu(section->offset);
  2990. u32 len = be32_to_cpu(section->len);
  2991. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2992. return -EINVAL;
  2993. if ((non_empty && len == 0) || len > fw->size - offset ||
  2994. len & (alignment - 1))
  2995. return -EINVAL;
  2996. return 0;
  2997. }
  2998. static int __devinit
  2999. check_mips_fw_entry(const struct firmware *fw,
  3000. const struct bnx2_mips_fw_file_entry *entry)
  3001. {
  3002. if (check_fw_section(fw, &entry->text, 4, true) ||
  3003. check_fw_section(fw, &entry->data, 4, false) ||
  3004. check_fw_section(fw, &entry->rodata, 4, false))
  3005. return -EINVAL;
  3006. return 0;
  3007. }
  3008. static int __devinit
  3009. bnx2_request_firmware(struct bnx2 *bp)
  3010. {
  3011. const char *mips_fw_file, *rv2p_fw_file;
  3012. const struct bnx2_mips_fw_file *mips_fw;
  3013. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3014. int rc;
  3015. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3016. mips_fw_file = FW_MIPS_FILE_09;
  3017. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3018. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3019. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3020. else
  3021. rv2p_fw_file = FW_RV2P_FILE_09;
  3022. } else {
  3023. mips_fw_file = FW_MIPS_FILE_06;
  3024. rv2p_fw_file = FW_RV2P_FILE_06;
  3025. }
  3026. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3027. if (rc) {
  3028. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3029. return rc;
  3030. }
  3031. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3032. if (rc) {
  3033. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3034. return rc;
  3035. }
  3036. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3037. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3038. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3039. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3040. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3041. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3042. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3043. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3044. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3045. return -EINVAL;
  3046. }
  3047. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3048. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3049. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3050. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3051. return -EINVAL;
  3052. }
  3053. return 0;
  3054. }
  3055. static u32
  3056. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3057. {
  3058. switch (idx) {
  3059. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3060. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3061. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3062. break;
  3063. }
  3064. return rv2p_code;
  3065. }
  3066. static int
  3067. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3068. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3069. {
  3070. u32 rv2p_code_len, file_offset;
  3071. __be32 *rv2p_code;
  3072. int i;
  3073. u32 val, cmd, addr;
  3074. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3075. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3076. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3077. if (rv2p_proc == RV2P_PROC1) {
  3078. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3079. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3080. } else {
  3081. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3082. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3083. }
  3084. for (i = 0; i < rv2p_code_len; i += 8) {
  3085. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3086. rv2p_code++;
  3087. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3088. rv2p_code++;
  3089. val = (i / 8) | cmd;
  3090. REG_WR(bp, addr, val);
  3091. }
  3092. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3093. for (i = 0; i < 8; i++) {
  3094. u32 loc, code;
  3095. loc = be32_to_cpu(fw_entry->fixup[i]);
  3096. if (loc && ((loc * 4) < rv2p_code_len)) {
  3097. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3098. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3099. code = be32_to_cpu(*(rv2p_code + loc));
  3100. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3101. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3102. val = (loc / 2) | cmd;
  3103. REG_WR(bp, addr, val);
  3104. }
  3105. }
  3106. /* Reset the processor, un-stall is done later. */
  3107. if (rv2p_proc == RV2P_PROC1) {
  3108. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3109. }
  3110. else {
  3111. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3112. }
  3113. return 0;
  3114. }
  3115. static int
  3116. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3117. const struct bnx2_mips_fw_file_entry *fw_entry)
  3118. {
  3119. u32 addr, len, file_offset;
  3120. __be32 *data;
  3121. u32 offset;
  3122. u32 val;
  3123. /* Halt the CPU. */
  3124. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3125. val |= cpu_reg->mode_value_halt;
  3126. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3127. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3128. /* Load the Text area. */
  3129. addr = be32_to_cpu(fw_entry->text.addr);
  3130. len = be32_to_cpu(fw_entry->text.len);
  3131. file_offset = be32_to_cpu(fw_entry->text.offset);
  3132. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3133. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3134. if (len) {
  3135. int j;
  3136. for (j = 0; j < (len / 4); j++, offset += 4)
  3137. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3138. }
  3139. /* Load the Data area. */
  3140. addr = be32_to_cpu(fw_entry->data.addr);
  3141. len = be32_to_cpu(fw_entry->data.len);
  3142. file_offset = be32_to_cpu(fw_entry->data.offset);
  3143. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3144. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3145. if (len) {
  3146. int j;
  3147. for (j = 0; j < (len / 4); j++, offset += 4)
  3148. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3149. }
  3150. /* Load the Read-Only area. */
  3151. addr = be32_to_cpu(fw_entry->rodata.addr);
  3152. len = be32_to_cpu(fw_entry->rodata.len);
  3153. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3154. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3155. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3156. if (len) {
  3157. int j;
  3158. for (j = 0; j < (len / 4); j++, offset += 4)
  3159. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3160. }
  3161. /* Clear the pre-fetch instruction. */
  3162. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3163. val = be32_to_cpu(fw_entry->start_addr);
  3164. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3165. /* Start the CPU. */
  3166. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3167. val &= ~cpu_reg->mode_value_halt;
  3168. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3169. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3170. return 0;
  3171. }
  3172. static int
  3173. bnx2_init_cpus(struct bnx2 *bp)
  3174. {
  3175. const struct bnx2_mips_fw_file *mips_fw =
  3176. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3177. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3178. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3179. int rc;
  3180. /* Initialize the RV2P processor. */
  3181. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3182. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3183. /* Initialize the RX Processor. */
  3184. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3185. if (rc)
  3186. goto init_cpu_err;
  3187. /* Initialize the TX Processor. */
  3188. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3189. if (rc)
  3190. goto init_cpu_err;
  3191. /* Initialize the TX Patch-up Processor. */
  3192. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3193. if (rc)
  3194. goto init_cpu_err;
  3195. /* Initialize the Completion Processor. */
  3196. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3197. if (rc)
  3198. goto init_cpu_err;
  3199. /* Initialize the Command Processor. */
  3200. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3201. init_cpu_err:
  3202. return rc;
  3203. }
  3204. static int
  3205. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3206. {
  3207. u16 pmcsr;
  3208. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3209. switch (state) {
  3210. case PCI_D0: {
  3211. u32 val;
  3212. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3213. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3214. PCI_PM_CTRL_PME_STATUS);
  3215. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3216. /* delay required during transition out of D3hot */
  3217. msleep(20);
  3218. val = REG_RD(bp, BNX2_EMAC_MODE);
  3219. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3220. val &= ~BNX2_EMAC_MODE_MPKT;
  3221. REG_WR(bp, BNX2_EMAC_MODE, val);
  3222. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3223. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3224. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3225. break;
  3226. }
  3227. case PCI_D3hot: {
  3228. int i;
  3229. u32 val, wol_msg;
  3230. if (bp->wol) {
  3231. u32 advertising;
  3232. u8 autoneg;
  3233. autoneg = bp->autoneg;
  3234. advertising = bp->advertising;
  3235. if (bp->phy_port == PORT_TP) {
  3236. bp->autoneg = AUTONEG_SPEED;
  3237. bp->advertising = ADVERTISED_10baseT_Half |
  3238. ADVERTISED_10baseT_Full |
  3239. ADVERTISED_100baseT_Half |
  3240. ADVERTISED_100baseT_Full |
  3241. ADVERTISED_Autoneg;
  3242. }
  3243. spin_lock_bh(&bp->phy_lock);
  3244. bnx2_setup_phy(bp, bp->phy_port);
  3245. spin_unlock_bh(&bp->phy_lock);
  3246. bp->autoneg = autoneg;
  3247. bp->advertising = advertising;
  3248. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3249. val = REG_RD(bp, BNX2_EMAC_MODE);
  3250. /* Enable port mode. */
  3251. val &= ~BNX2_EMAC_MODE_PORT;
  3252. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3253. BNX2_EMAC_MODE_ACPI_RCVD |
  3254. BNX2_EMAC_MODE_MPKT;
  3255. if (bp->phy_port == PORT_TP)
  3256. val |= BNX2_EMAC_MODE_PORT_MII;
  3257. else {
  3258. val |= BNX2_EMAC_MODE_PORT_GMII;
  3259. if (bp->line_speed == SPEED_2500)
  3260. val |= BNX2_EMAC_MODE_25G_MODE;
  3261. }
  3262. REG_WR(bp, BNX2_EMAC_MODE, val);
  3263. /* receive all multicast */
  3264. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3265. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3266. 0xffffffff);
  3267. }
  3268. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3269. BNX2_EMAC_RX_MODE_SORT_MODE);
  3270. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3271. BNX2_RPM_SORT_USER0_MC_EN;
  3272. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3273. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3274. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3275. BNX2_RPM_SORT_USER0_ENA);
  3276. /* Need to enable EMAC and RPM for WOL. */
  3277. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3278. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3279. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3280. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3281. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3282. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3283. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3284. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3285. }
  3286. else {
  3287. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3288. }
  3289. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3290. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3291. 1, 0);
  3292. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3293. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3294. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3295. if (bp->wol)
  3296. pmcsr |= 3;
  3297. }
  3298. else {
  3299. pmcsr |= 3;
  3300. }
  3301. if (bp->wol) {
  3302. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3303. }
  3304. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3305. pmcsr);
  3306. /* No more memory access after this point until
  3307. * device is brought back to D0.
  3308. */
  3309. udelay(50);
  3310. break;
  3311. }
  3312. default:
  3313. return -EINVAL;
  3314. }
  3315. return 0;
  3316. }
  3317. static int
  3318. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3319. {
  3320. u32 val;
  3321. int j;
  3322. /* Request access to the flash interface. */
  3323. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3324. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3325. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3326. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3327. break;
  3328. udelay(5);
  3329. }
  3330. if (j >= NVRAM_TIMEOUT_COUNT)
  3331. return -EBUSY;
  3332. return 0;
  3333. }
  3334. static int
  3335. bnx2_release_nvram_lock(struct bnx2 *bp)
  3336. {
  3337. int j;
  3338. u32 val;
  3339. /* Relinquish nvram interface. */
  3340. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3341. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3342. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3343. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3344. break;
  3345. udelay(5);
  3346. }
  3347. if (j >= NVRAM_TIMEOUT_COUNT)
  3348. return -EBUSY;
  3349. return 0;
  3350. }
  3351. static int
  3352. bnx2_enable_nvram_write(struct bnx2 *bp)
  3353. {
  3354. u32 val;
  3355. val = REG_RD(bp, BNX2_MISC_CFG);
  3356. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3357. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3358. int j;
  3359. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3360. REG_WR(bp, BNX2_NVM_COMMAND,
  3361. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3362. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3363. udelay(5);
  3364. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3365. if (val & BNX2_NVM_COMMAND_DONE)
  3366. break;
  3367. }
  3368. if (j >= NVRAM_TIMEOUT_COUNT)
  3369. return -EBUSY;
  3370. }
  3371. return 0;
  3372. }
  3373. static void
  3374. bnx2_disable_nvram_write(struct bnx2 *bp)
  3375. {
  3376. u32 val;
  3377. val = REG_RD(bp, BNX2_MISC_CFG);
  3378. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3379. }
  3380. static void
  3381. bnx2_enable_nvram_access(struct bnx2 *bp)
  3382. {
  3383. u32 val;
  3384. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3385. /* Enable both bits, even on read. */
  3386. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3387. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3388. }
  3389. static void
  3390. bnx2_disable_nvram_access(struct bnx2 *bp)
  3391. {
  3392. u32 val;
  3393. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3394. /* Disable both bits, even after read. */
  3395. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3396. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3397. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3398. }
  3399. static int
  3400. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3401. {
  3402. u32 cmd;
  3403. int j;
  3404. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3405. /* Buffered flash, no erase needed */
  3406. return 0;
  3407. /* Build an erase command */
  3408. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3409. BNX2_NVM_COMMAND_DOIT;
  3410. /* Need to clear DONE bit separately. */
  3411. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3412. /* Address of the NVRAM to read from. */
  3413. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3414. /* Issue an erase command. */
  3415. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3416. /* Wait for completion. */
  3417. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3418. u32 val;
  3419. udelay(5);
  3420. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3421. if (val & BNX2_NVM_COMMAND_DONE)
  3422. break;
  3423. }
  3424. if (j >= NVRAM_TIMEOUT_COUNT)
  3425. return -EBUSY;
  3426. return 0;
  3427. }
  3428. static int
  3429. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3430. {
  3431. u32 cmd;
  3432. int j;
  3433. /* Build the command word. */
  3434. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3435. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3436. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3437. offset = ((offset / bp->flash_info->page_size) <<
  3438. bp->flash_info->page_bits) +
  3439. (offset % bp->flash_info->page_size);
  3440. }
  3441. /* Need to clear DONE bit separately. */
  3442. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3443. /* Address of the NVRAM to read from. */
  3444. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3445. /* Issue a read command. */
  3446. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3447. /* Wait for completion. */
  3448. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3449. u32 val;
  3450. udelay(5);
  3451. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3452. if (val & BNX2_NVM_COMMAND_DONE) {
  3453. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3454. memcpy(ret_val, &v, 4);
  3455. break;
  3456. }
  3457. }
  3458. if (j >= NVRAM_TIMEOUT_COUNT)
  3459. return -EBUSY;
  3460. return 0;
  3461. }
  3462. static int
  3463. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3464. {
  3465. u32 cmd;
  3466. __be32 val32;
  3467. int j;
  3468. /* Build the command word. */
  3469. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3470. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3471. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3472. offset = ((offset / bp->flash_info->page_size) <<
  3473. bp->flash_info->page_bits) +
  3474. (offset % bp->flash_info->page_size);
  3475. }
  3476. /* Need to clear DONE bit separately. */
  3477. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3478. memcpy(&val32, val, 4);
  3479. /* Write the data. */
  3480. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3481. /* Address of the NVRAM to write to. */
  3482. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3483. /* Issue the write command. */
  3484. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3485. /* Wait for completion. */
  3486. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3487. udelay(5);
  3488. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3489. break;
  3490. }
  3491. if (j >= NVRAM_TIMEOUT_COUNT)
  3492. return -EBUSY;
  3493. return 0;
  3494. }
  3495. static int
  3496. bnx2_init_nvram(struct bnx2 *bp)
  3497. {
  3498. u32 val;
  3499. int j, entry_count, rc = 0;
  3500. const struct flash_spec *flash;
  3501. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3502. bp->flash_info = &flash_5709;
  3503. goto get_flash_size;
  3504. }
  3505. /* Determine the selected interface. */
  3506. val = REG_RD(bp, BNX2_NVM_CFG1);
  3507. entry_count = ARRAY_SIZE(flash_table);
  3508. if (val & 0x40000000) {
  3509. /* Flash interface has been reconfigured */
  3510. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3511. j++, flash++) {
  3512. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3513. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3514. bp->flash_info = flash;
  3515. break;
  3516. }
  3517. }
  3518. }
  3519. else {
  3520. u32 mask;
  3521. /* Not yet been reconfigured */
  3522. if (val & (1 << 23))
  3523. mask = FLASH_BACKUP_STRAP_MASK;
  3524. else
  3525. mask = FLASH_STRAP_MASK;
  3526. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3527. j++, flash++) {
  3528. if ((val & mask) == (flash->strapping & mask)) {
  3529. bp->flash_info = flash;
  3530. /* Request access to the flash interface. */
  3531. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3532. return rc;
  3533. /* Enable access to flash interface */
  3534. bnx2_enable_nvram_access(bp);
  3535. /* Reconfigure the flash interface */
  3536. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3537. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3538. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3539. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3540. /* Disable access to flash interface */
  3541. bnx2_disable_nvram_access(bp);
  3542. bnx2_release_nvram_lock(bp);
  3543. break;
  3544. }
  3545. }
  3546. } /* if (val & 0x40000000) */
  3547. if (j == entry_count) {
  3548. bp->flash_info = NULL;
  3549. pr_alert("Unknown flash/EEPROM type\n");
  3550. return -ENODEV;
  3551. }
  3552. get_flash_size:
  3553. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3554. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3555. if (val)
  3556. bp->flash_size = val;
  3557. else
  3558. bp->flash_size = bp->flash_info->total_size;
  3559. return rc;
  3560. }
  3561. static int
  3562. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3563. int buf_size)
  3564. {
  3565. int rc = 0;
  3566. u32 cmd_flags, offset32, len32, extra;
  3567. if (buf_size == 0)
  3568. return 0;
  3569. /* Request access to the flash interface. */
  3570. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3571. return rc;
  3572. /* Enable access to flash interface */
  3573. bnx2_enable_nvram_access(bp);
  3574. len32 = buf_size;
  3575. offset32 = offset;
  3576. extra = 0;
  3577. cmd_flags = 0;
  3578. if (offset32 & 3) {
  3579. u8 buf[4];
  3580. u32 pre_len;
  3581. offset32 &= ~3;
  3582. pre_len = 4 - (offset & 3);
  3583. if (pre_len >= len32) {
  3584. pre_len = len32;
  3585. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3586. BNX2_NVM_COMMAND_LAST;
  3587. }
  3588. else {
  3589. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3590. }
  3591. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3592. if (rc)
  3593. return rc;
  3594. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3595. offset32 += 4;
  3596. ret_buf += pre_len;
  3597. len32 -= pre_len;
  3598. }
  3599. if (len32 & 3) {
  3600. extra = 4 - (len32 & 3);
  3601. len32 = (len32 + 4) & ~3;
  3602. }
  3603. if (len32 == 4) {
  3604. u8 buf[4];
  3605. if (cmd_flags)
  3606. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3607. else
  3608. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3609. BNX2_NVM_COMMAND_LAST;
  3610. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3611. memcpy(ret_buf, buf, 4 - extra);
  3612. }
  3613. else if (len32 > 0) {
  3614. u8 buf[4];
  3615. /* Read the first word. */
  3616. if (cmd_flags)
  3617. cmd_flags = 0;
  3618. else
  3619. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3620. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3621. /* Advance to the next dword. */
  3622. offset32 += 4;
  3623. ret_buf += 4;
  3624. len32 -= 4;
  3625. while (len32 > 4 && rc == 0) {
  3626. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3627. /* Advance to the next dword. */
  3628. offset32 += 4;
  3629. ret_buf += 4;
  3630. len32 -= 4;
  3631. }
  3632. if (rc)
  3633. return rc;
  3634. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3635. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3636. memcpy(ret_buf, buf, 4 - extra);
  3637. }
  3638. /* Disable access to flash interface */
  3639. bnx2_disable_nvram_access(bp);
  3640. bnx2_release_nvram_lock(bp);
  3641. return rc;
  3642. }
  3643. static int
  3644. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3645. int buf_size)
  3646. {
  3647. u32 written, offset32, len32;
  3648. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3649. int rc = 0;
  3650. int align_start, align_end;
  3651. buf = data_buf;
  3652. offset32 = offset;
  3653. len32 = buf_size;
  3654. align_start = align_end = 0;
  3655. if ((align_start = (offset32 & 3))) {
  3656. offset32 &= ~3;
  3657. len32 += align_start;
  3658. if (len32 < 4)
  3659. len32 = 4;
  3660. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3661. return rc;
  3662. }
  3663. if (len32 & 3) {
  3664. align_end = 4 - (len32 & 3);
  3665. len32 += align_end;
  3666. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3667. return rc;
  3668. }
  3669. if (align_start || align_end) {
  3670. align_buf = kmalloc(len32, GFP_KERNEL);
  3671. if (align_buf == NULL)
  3672. return -ENOMEM;
  3673. if (align_start) {
  3674. memcpy(align_buf, start, 4);
  3675. }
  3676. if (align_end) {
  3677. memcpy(align_buf + len32 - 4, end, 4);
  3678. }
  3679. memcpy(align_buf + align_start, data_buf, buf_size);
  3680. buf = align_buf;
  3681. }
  3682. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3683. flash_buffer = kmalloc(264, GFP_KERNEL);
  3684. if (flash_buffer == NULL) {
  3685. rc = -ENOMEM;
  3686. goto nvram_write_end;
  3687. }
  3688. }
  3689. written = 0;
  3690. while ((written < len32) && (rc == 0)) {
  3691. u32 page_start, page_end, data_start, data_end;
  3692. u32 addr, cmd_flags;
  3693. int i;
  3694. /* Find the page_start addr */
  3695. page_start = offset32 + written;
  3696. page_start -= (page_start % bp->flash_info->page_size);
  3697. /* Find the page_end addr */
  3698. page_end = page_start + bp->flash_info->page_size;
  3699. /* Find the data_start addr */
  3700. data_start = (written == 0) ? offset32 : page_start;
  3701. /* Find the data_end addr */
  3702. data_end = (page_end > offset32 + len32) ?
  3703. (offset32 + len32) : page_end;
  3704. /* Request access to the flash interface. */
  3705. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3706. goto nvram_write_end;
  3707. /* Enable access to flash interface */
  3708. bnx2_enable_nvram_access(bp);
  3709. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3710. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3711. int j;
  3712. /* Read the whole page into the buffer
  3713. * (non-buffer flash only) */
  3714. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3715. if (j == (bp->flash_info->page_size - 4)) {
  3716. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3717. }
  3718. rc = bnx2_nvram_read_dword(bp,
  3719. page_start + j,
  3720. &flash_buffer[j],
  3721. cmd_flags);
  3722. if (rc)
  3723. goto nvram_write_end;
  3724. cmd_flags = 0;
  3725. }
  3726. }
  3727. /* Enable writes to flash interface (unlock write-protect) */
  3728. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3729. goto nvram_write_end;
  3730. /* Loop to write back the buffer data from page_start to
  3731. * data_start */
  3732. i = 0;
  3733. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3734. /* Erase the page */
  3735. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3736. goto nvram_write_end;
  3737. /* Re-enable the write again for the actual write */
  3738. bnx2_enable_nvram_write(bp);
  3739. for (addr = page_start; addr < data_start;
  3740. addr += 4, i += 4) {
  3741. rc = bnx2_nvram_write_dword(bp, addr,
  3742. &flash_buffer[i], cmd_flags);
  3743. if (rc != 0)
  3744. goto nvram_write_end;
  3745. cmd_flags = 0;
  3746. }
  3747. }
  3748. /* Loop to write the new data from data_start to data_end */
  3749. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3750. if ((addr == page_end - 4) ||
  3751. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3752. (addr == data_end - 4))) {
  3753. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3754. }
  3755. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3756. cmd_flags);
  3757. if (rc != 0)
  3758. goto nvram_write_end;
  3759. cmd_flags = 0;
  3760. buf += 4;
  3761. }
  3762. /* Loop to write back the buffer data from data_end
  3763. * to page_end */
  3764. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3765. for (addr = data_end; addr < page_end;
  3766. addr += 4, i += 4) {
  3767. if (addr == page_end-4) {
  3768. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3769. }
  3770. rc = bnx2_nvram_write_dword(bp, addr,
  3771. &flash_buffer[i], cmd_flags);
  3772. if (rc != 0)
  3773. goto nvram_write_end;
  3774. cmd_flags = 0;
  3775. }
  3776. }
  3777. /* Disable writes to flash interface (lock write-protect) */
  3778. bnx2_disable_nvram_write(bp);
  3779. /* Disable access to flash interface */
  3780. bnx2_disable_nvram_access(bp);
  3781. bnx2_release_nvram_lock(bp);
  3782. /* Increment written */
  3783. written += data_end - data_start;
  3784. }
  3785. nvram_write_end:
  3786. kfree(flash_buffer);
  3787. kfree(align_buf);
  3788. return rc;
  3789. }
  3790. static void
  3791. bnx2_init_fw_cap(struct bnx2 *bp)
  3792. {
  3793. u32 val, sig = 0;
  3794. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3795. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3796. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3797. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3798. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3799. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3800. return;
  3801. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3802. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3803. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3804. }
  3805. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3806. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3807. u32 link;
  3808. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3809. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3810. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3811. bp->phy_port = PORT_FIBRE;
  3812. else
  3813. bp->phy_port = PORT_TP;
  3814. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3815. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3816. }
  3817. if (netif_running(bp->dev) && sig)
  3818. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3819. }
  3820. static void
  3821. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3822. {
  3823. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3824. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3825. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3826. }
  3827. static int
  3828. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3829. {
  3830. u32 val;
  3831. int i, rc = 0;
  3832. u8 old_port;
  3833. /* Wait for the current PCI transaction to complete before
  3834. * issuing a reset. */
  3835. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3836. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3837. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3838. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3839. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3840. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3841. udelay(5);
  3842. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3843. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3844. /* Deposit a driver reset signature so the firmware knows that
  3845. * this is a soft reset. */
  3846. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3847. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3848. /* Do a dummy read to force the chip to complete all current transaction
  3849. * before we issue a reset. */
  3850. val = REG_RD(bp, BNX2_MISC_ID);
  3851. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3852. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3853. REG_RD(bp, BNX2_MISC_COMMAND);
  3854. udelay(5);
  3855. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3856. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3857. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3858. } else {
  3859. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3860. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3861. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3862. /* Chip reset. */
  3863. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3864. /* Reading back any register after chip reset will hang the
  3865. * bus on 5706 A0 and A1. The msleep below provides plenty
  3866. * of margin for write posting.
  3867. */
  3868. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3869. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3870. msleep(20);
  3871. /* Reset takes approximate 30 usec */
  3872. for (i = 0; i < 10; i++) {
  3873. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3874. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3875. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3876. break;
  3877. udelay(10);
  3878. }
  3879. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3880. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3881. pr_err("Chip reset did not complete\n");
  3882. return -EBUSY;
  3883. }
  3884. }
  3885. /* Make sure byte swapping is properly configured. */
  3886. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3887. if (val != 0x01020304) {
  3888. pr_err("Chip not in correct endian mode\n");
  3889. return -ENODEV;
  3890. }
  3891. /* Wait for the firmware to finish its initialization. */
  3892. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3893. if (rc)
  3894. return rc;
  3895. spin_lock_bh(&bp->phy_lock);
  3896. old_port = bp->phy_port;
  3897. bnx2_init_fw_cap(bp);
  3898. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3899. old_port != bp->phy_port)
  3900. bnx2_set_default_remote_link(bp);
  3901. spin_unlock_bh(&bp->phy_lock);
  3902. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3903. /* Adjust the voltage regular to two steps lower. The default
  3904. * of this register is 0x0000000e. */
  3905. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3906. /* Remove bad rbuf memory from the free pool. */
  3907. rc = bnx2_alloc_bad_rbuf(bp);
  3908. }
  3909. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3910. bnx2_setup_msix_tbl(bp);
  3911. return rc;
  3912. }
  3913. static int
  3914. bnx2_init_chip(struct bnx2 *bp)
  3915. {
  3916. u32 val, mtu;
  3917. int rc, i;
  3918. /* Make sure the interrupt is not active. */
  3919. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3920. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3921. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3922. #ifdef __BIG_ENDIAN
  3923. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3924. #endif
  3925. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3926. DMA_READ_CHANS << 12 |
  3927. DMA_WRITE_CHANS << 16;
  3928. val |= (0x2 << 20) | (1 << 11);
  3929. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3930. val |= (1 << 23);
  3931. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3932. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3933. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3934. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3935. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3936. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3937. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3938. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3939. }
  3940. if (bp->flags & BNX2_FLAG_PCIX) {
  3941. u16 val16;
  3942. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3943. &val16);
  3944. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3945. val16 & ~PCI_X_CMD_ERO);
  3946. }
  3947. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3948. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3949. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3950. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3951. /* Initialize context mapping and zero out the quick contexts. The
  3952. * context block must have already been enabled. */
  3953. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3954. rc = bnx2_init_5709_context(bp);
  3955. if (rc)
  3956. return rc;
  3957. } else
  3958. bnx2_init_context(bp);
  3959. if ((rc = bnx2_init_cpus(bp)) != 0)
  3960. return rc;
  3961. bnx2_init_nvram(bp);
  3962. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3963. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3964. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3965. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3966. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3967. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3968. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3969. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3970. }
  3971. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3972. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3973. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3974. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3975. val = (BCM_PAGE_BITS - 8) << 24;
  3976. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3977. /* Configure page size. */
  3978. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3979. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3980. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3981. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3982. val = bp->mac_addr[0] +
  3983. (bp->mac_addr[1] << 8) +
  3984. (bp->mac_addr[2] << 16) +
  3985. bp->mac_addr[3] +
  3986. (bp->mac_addr[4] << 8) +
  3987. (bp->mac_addr[5] << 16);
  3988. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3989. /* Program the MTU. Also include 4 bytes for CRC32. */
  3990. mtu = bp->dev->mtu;
  3991. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3992. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3993. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3994. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3995. if (mtu < 1500)
  3996. mtu = 1500;
  3997. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3998. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3999. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4000. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4001. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4002. bp->bnx2_napi[i].last_status_idx = 0;
  4003. bp->idle_chk_status_idx = 0xffff;
  4004. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4005. /* Set up how to generate a link change interrupt. */
  4006. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4007. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4008. (u64) bp->status_blk_mapping & 0xffffffff);
  4009. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4010. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4011. (u64) bp->stats_blk_mapping & 0xffffffff);
  4012. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4013. (u64) bp->stats_blk_mapping >> 32);
  4014. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4015. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4016. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4017. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4018. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4019. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4020. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4021. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4022. REG_WR(bp, BNX2_HC_COM_TICKS,
  4023. (bp->com_ticks_int << 16) | bp->com_ticks);
  4024. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4025. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4026. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4027. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4028. else
  4029. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4030. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4031. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4032. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4033. else {
  4034. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4035. BNX2_HC_CONFIG_COLLECT_STATS;
  4036. }
  4037. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4038. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4039. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4040. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4041. }
  4042. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4043. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4044. REG_WR(bp, BNX2_HC_CONFIG, val);
  4045. for (i = 1; i < bp->irq_nvecs; i++) {
  4046. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4047. BNX2_HC_SB_CONFIG_1;
  4048. REG_WR(bp, base,
  4049. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4050. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4051. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4052. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4053. (bp->tx_quick_cons_trip_int << 16) |
  4054. bp->tx_quick_cons_trip);
  4055. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4056. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4057. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4058. (bp->rx_quick_cons_trip_int << 16) |
  4059. bp->rx_quick_cons_trip);
  4060. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4061. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4062. }
  4063. /* Clear internal stats counters. */
  4064. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4065. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4066. /* Initialize the receive filter. */
  4067. bnx2_set_rx_mode(bp->dev);
  4068. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4069. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4070. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4071. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4072. }
  4073. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4074. 1, 0);
  4075. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4076. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4077. udelay(20);
  4078. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4079. return rc;
  4080. }
  4081. static void
  4082. bnx2_clear_ring_states(struct bnx2 *bp)
  4083. {
  4084. struct bnx2_napi *bnapi;
  4085. struct bnx2_tx_ring_info *txr;
  4086. struct bnx2_rx_ring_info *rxr;
  4087. int i;
  4088. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4089. bnapi = &bp->bnx2_napi[i];
  4090. txr = &bnapi->tx_ring;
  4091. rxr = &bnapi->rx_ring;
  4092. txr->tx_cons = 0;
  4093. txr->hw_tx_cons = 0;
  4094. rxr->rx_prod_bseq = 0;
  4095. rxr->rx_prod = 0;
  4096. rxr->rx_cons = 0;
  4097. rxr->rx_pg_prod = 0;
  4098. rxr->rx_pg_cons = 0;
  4099. }
  4100. }
  4101. static void
  4102. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4103. {
  4104. u32 val, offset0, offset1, offset2, offset3;
  4105. u32 cid_addr = GET_CID_ADDR(cid);
  4106. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4107. offset0 = BNX2_L2CTX_TYPE_XI;
  4108. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4109. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4110. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4111. } else {
  4112. offset0 = BNX2_L2CTX_TYPE;
  4113. offset1 = BNX2_L2CTX_CMD_TYPE;
  4114. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4115. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4116. }
  4117. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4118. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4119. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4120. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4121. val = (u64) txr->tx_desc_mapping >> 32;
  4122. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4123. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4124. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4125. }
  4126. static void
  4127. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4128. {
  4129. struct tx_bd *txbd;
  4130. u32 cid = TX_CID;
  4131. struct bnx2_napi *bnapi;
  4132. struct bnx2_tx_ring_info *txr;
  4133. bnapi = &bp->bnx2_napi[ring_num];
  4134. txr = &bnapi->tx_ring;
  4135. if (ring_num == 0)
  4136. cid = TX_CID;
  4137. else
  4138. cid = TX_TSS_CID + ring_num - 1;
  4139. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4140. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4141. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4142. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4143. txr->tx_prod = 0;
  4144. txr->tx_prod_bseq = 0;
  4145. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4146. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4147. bnx2_init_tx_context(bp, cid, txr);
  4148. }
  4149. static void
  4150. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4151. int num_rings)
  4152. {
  4153. int i;
  4154. struct rx_bd *rxbd;
  4155. for (i = 0; i < num_rings; i++) {
  4156. int j;
  4157. rxbd = &rx_ring[i][0];
  4158. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4159. rxbd->rx_bd_len = buf_size;
  4160. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4161. }
  4162. if (i == (num_rings - 1))
  4163. j = 0;
  4164. else
  4165. j = i + 1;
  4166. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4167. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4168. }
  4169. }
  4170. static void
  4171. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4172. {
  4173. int i;
  4174. u16 prod, ring_prod;
  4175. u32 cid, rx_cid_addr, val;
  4176. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4177. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4178. if (ring_num == 0)
  4179. cid = RX_CID;
  4180. else
  4181. cid = RX_RSS_CID + ring_num - 1;
  4182. rx_cid_addr = GET_CID_ADDR(cid);
  4183. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4184. bp->rx_buf_use_size, bp->rx_max_ring);
  4185. bnx2_init_rx_context(bp, cid);
  4186. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4187. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4188. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4189. }
  4190. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4191. if (bp->rx_pg_ring_size) {
  4192. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4193. rxr->rx_pg_desc_mapping,
  4194. PAGE_SIZE, bp->rx_max_pg_ring);
  4195. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4196. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4197. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4198. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4199. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4200. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4201. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4202. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4203. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4204. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4205. }
  4206. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4207. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4208. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4209. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4210. ring_prod = prod = rxr->rx_pg_prod;
  4211. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4212. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4213. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4214. ring_num, i, bp->rx_pg_ring_size);
  4215. break;
  4216. }
  4217. prod = NEXT_RX_BD(prod);
  4218. ring_prod = RX_PG_RING_IDX(prod);
  4219. }
  4220. rxr->rx_pg_prod = prod;
  4221. ring_prod = prod = rxr->rx_prod;
  4222. for (i = 0; i < bp->rx_ring_size; i++) {
  4223. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4224. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4225. ring_num, i, bp->rx_ring_size);
  4226. break;
  4227. }
  4228. prod = NEXT_RX_BD(prod);
  4229. ring_prod = RX_RING_IDX(prod);
  4230. }
  4231. rxr->rx_prod = prod;
  4232. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4233. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4234. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4235. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4236. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4237. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4238. }
  4239. static void
  4240. bnx2_init_all_rings(struct bnx2 *bp)
  4241. {
  4242. int i;
  4243. u32 val;
  4244. bnx2_clear_ring_states(bp);
  4245. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4246. for (i = 0; i < bp->num_tx_rings; i++)
  4247. bnx2_init_tx_ring(bp, i);
  4248. if (bp->num_tx_rings > 1)
  4249. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4250. (TX_TSS_CID << 7));
  4251. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4252. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4253. for (i = 0; i < bp->num_rx_rings; i++)
  4254. bnx2_init_rx_ring(bp, i);
  4255. if (bp->num_rx_rings > 1) {
  4256. u32 tbl_32;
  4257. u8 *tbl = (u8 *) &tbl_32;
  4258. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4259. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4260. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4261. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4262. if ((i % 4) == 3)
  4263. bnx2_reg_wr_ind(bp,
  4264. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4265. cpu_to_be32(tbl_32));
  4266. }
  4267. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4268. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4269. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4270. }
  4271. }
  4272. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4273. {
  4274. u32 max, num_rings = 1;
  4275. while (ring_size > MAX_RX_DESC_CNT) {
  4276. ring_size -= MAX_RX_DESC_CNT;
  4277. num_rings++;
  4278. }
  4279. /* round to next power of 2 */
  4280. max = max_size;
  4281. while ((max & num_rings) == 0)
  4282. max >>= 1;
  4283. if (num_rings != max)
  4284. max <<= 1;
  4285. return max;
  4286. }
  4287. static void
  4288. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4289. {
  4290. u32 rx_size, rx_space, jumbo_size;
  4291. /* 8 for CRC and VLAN */
  4292. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4293. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4294. sizeof(struct skb_shared_info);
  4295. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4296. bp->rx_pg_ring_size = 0;
  4297. bp->rx_max_pg_ring = 0;
  4298. bp->rx_max_pg_ring_idx = 0;
  4299. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4300. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4301. jumbo_size = size * pages;
  4302. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4303. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4304. bp->rx_pg_ring_size = jumbo_size;
  4305. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4306. MAX_RX_PG_RINGS);
  4307. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4308. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4309. bp->rx_copy_thresh = 0;
  4310. }
  4311. bp->rx_buf_use_size = rx_size;
  4312. /* hw alignment */
  4313. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4314. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4315. bp->rx_ring_size = size;
  4316. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4317. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4318. }
  4319. static void
  4320. bnx2_free_tx_skbs(struct bnx2 *bp)
  4321. {
  4322. int i;
  4323. for (i = 0; i < bp->num_tx_rings; i++) {
  4324. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4325. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4326. int j;
  4327. if (txr->tx_buf_ring == NULL)
  4328. continue;
  4329. for (j = 0; j < TX_DESC_CNT; ) {
  4330. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4331. struct sk_buff *skb = tx_buf->skb;
  4332. int k, last;
  4333. if (skb == NULL) {
  4334. j++;
  4335. continue;
  4336. }
  4337. pci_unmap_single(bp->pdev,
  4338. dma_unmap_addr(tx_buf, mapping),
  4339. skb_headlen(skb),
  4340. PCI_DMA_TODEVICE);
  4341. tx_buf->skb = NULL;
  4342. last = tx_buf->nr_frags;
  4343. j++;
  4344. for (k = 0; k < last; k++, j++) {
  4345. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4346. pci_unmap_page(bp->pdev,
  4347. dma_unmap_addr(tx_buf, mapping),
  4348. skb_shinfo(skb)->frags[k].size,
  4349. PCI_DMA_TODEVICE);
  4350. }
  4351. dev_kfree_skb(skb);
  4352. }
  4353. }
  4354. }
  4355. static void
  4356. bnx2_free_rx_skbs(struct bnx2 *bp)
  4357. {
  4358. int i;
  4359. for (i = 0; i < bp->num_rx_rings; i++) {
  4360. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4361. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4362. int j;
  4363. if (rxr->rx_buf_ring == NULL)
  4364. return;
  4365. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4366. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4367. struct sk_buff *skb = rx_buf->skb;
  4368. if (skb == NULL)
  4369. continue;
  4370. pci_unmap_single(bp->pdev,
  4371. dma_unmap_addr(rx_buf, mapping),
  4372. bp->rx_buf_use_size,
  4373. PCI_DMA_FROMDEVICE);
  4374. rx_buf->skb = NULL;
  4375. dev_kfree_skb(skb);
  4376. }
  4377. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4378. bnx2_free_rx_page(bp, rxr, j);
  4379. }
  4380. }
  4381. static void
  4382. bnx2_free_skbs(struct bnx2 *bp)
  4383. {
  4384. bnx2_free_tx_skbs(bp);
  4385. bnx2_free_rx_skbs(bp);
  4386. }
  4387. static int
  4388. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4389. {
  4390. int rc;
  4391. rc = bnx2_reset_chip(bp, reset_code);
  4392. bnx2_free_skbs(bp);
  4393. if (rc)
  4394. return rc;
  4395. if ((rc = bnx2_init_chip(bp)) != 0)
  4396. return rc;
  4397. bnx2_init_all_rings(bp);
  4398. return 0;
  4399. }
  4400. static int
  4401. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4402. {
  4403. int rc;
  4404. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4405. return rc;
  4406. spin_lock_bh(&bp->phy_lock);
  4407. bnx2_init_phy(bp, reset_phy);
  4408. bnx2_set_link(bp);
  4409. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4410. bnx2_remote_phy_event(bp);
  4411. spin_unlock_bh(&bp->phy_lock);
  4412. return 0;
  4413. }
  4414. static int
  4415. bnx2_shutdown_chip(struct bnx2 *bp)
  4416. {
  4417. u32 reset_code;
  4418. if (bp->flags & BNX2_FLAG_NO_WOL)
  4419. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4420. else if (bp->wol)
  4421. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4422. else
  4423. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4424. return bnx2_reset_chip(bp, reset_code);
  4425. }
  4426. static int
  4427. bnx2_test_registers(struct bnx2 *bp)
  4428. {
  4429. int ret;
  4430. int i, is_5709;
  4431. static const struct {
  4432. u16 offset;
  4433. u16 flags;
  4434. #define BNX2_FL_NOT_5709 1
  4435. u32 rw_mask;
  4436. u32 ro_mask;
  4437. } reg_tbl[] = {
  4438. { 0x006c, 0, 0x00000000, 0x0000003f },
  4439. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4440. { 0x0094, 0, 0x00000000, 0x00000000 },
  4441. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4442. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4443. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4444. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4445. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4446. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4447. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4448. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4449. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4450. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4451. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4452. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4453. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4454. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4455. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4456. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4457. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4458. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4459. { 0x1000, 0, 0x00000000, 0x00000001 },
  4460. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4461. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4462. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4463. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4464. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4465. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4466. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4467. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4468. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4469. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4470. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4471. { 0x1800, 0, 0x00000000, 0x00000001 },
  4472. { 0x1804, 0, 0x00000000, 0x00000003 },
  4473. { 0x2800, 0, 0x00000000, 0x00000001 },
  4474. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4475. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4476. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4477. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4478. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4479. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4480. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4481. { 0x2840, 0, 0x00000000, 0xffffffff },
  4482. { 0x2844, 0, 0x00000000, 0xffffffff },
  4483. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4484. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4485. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4486. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4487. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4488. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4489. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4490. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4491. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4492. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4493. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4494. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4495. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4496. { 0x5004, 0, 0x00000000, 0x0000007f },
  4497. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4498. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4499. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4500. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4501. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4502. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4503. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4504. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4505. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4506. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4507. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4508. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4509. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4510. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4511. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4512. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4513. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4514. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4515. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4516. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4517. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4518. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4519. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4520. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4521. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4522. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4523. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4524. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4525. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4526. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4527. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4528. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4529. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4530. { 0xffff, 0, 0x00000000, 0x00000000 },
  4531. };
  4532. ret = 0;
  4533. is_5709 = 0;
  4534. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4535. is_5709 = 1;
  4536. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4537. u32 offset, rw_mask, ro_mask, save_val, val;
  4538. u16 flags = reg_tbl[i].flags;
  4539. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4540. continue;
  4541. offset = (u32) reg_tbl[i].offset;
  4542. rw_mask = reg_tbl[i].rw_mask;
  4543. ro_mask = reg_tbl[i].ro_mask;
  4544. save_val = readl(bp->regview + offset);
  4545. writel(0, bp->regview + offset);
  4546. val = readl(bp->regview + offset);
  4547. if ((val & rw_mask) != 0) {
  4548. goto reg_test_err;
  4549. }
  4550. if ((val & ro_mask) != (save_val & ro_mask)) {
  4551. goto reg_test_err;
  4552. }
  4553. writel(0xffffffff, bp->regview + offset);
  4554. val = readl(bp->regview + offset);
  4555. if ((val & rw_mask) != rw_mask) {
  4556. goto reg_test_err;
  4557. }
  4558. if ((val & ro_mask) != (save_val & ro_mask)) {
  4559. goto reg_test_err;
  4560. }
  4561. writel(save_val, bp->regview + offset);
  4562. continue;
  4563. reg_test_err:
  4564. writel(save_val, bp->regview + offset);
  4565. ret = -ENODEV;
  4566. break;
  4567. }
  4568. return ret;
  4569. }
  4570. static int
  4571. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4572. {
  4573. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4574. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4575. int i;
  4576. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4577. u32 offset;
  4578. for (offset = 0; offset < size; offset += 4) {
  4579. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4580. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4581. test_pattern[i]) {
  4582. return -ENODEV;
  4583. }
  4584. }
  4585. }
  4586. return 0;
  4587. }
  4588. static int
  4589. bnx2_test_memory(struct bnx2 *bp)
  4590. {
  4591. int ret = 0;
  4592. int i;
  4593. static struct mem_entry {
  4594. u32 offset;
  4595. u32 len;
  4596. } mem_tbl_5706[] = {
  4597. { 0x60000, 0x4000 },
  4598. { 0xa0000, 0x3000 },
  4599. { 0xe0000, 0x4000 },
  4600. { 0x120000, 0x4000 },
  4601. { 0x1a0000, 0x4000 },
  4602. { 0x160000, 0x4000 },
  4603. { 0xffffffff, 0 },
  4604. },
  4605. mem_tbl_5709[] = {
  4606. { 0x60000, 0x4000 },
  4607. { 0xa0000, 0x3000 },
  4608. { 0xe0000, 0x4000 },
  4609. { 0x120000, 0x4000 },
  4610. { 0x1a0000, 0x4000 },
  4611. { 0xffffffff, 0 },
  4612. };
  4613. struct mem_entry *mem_tbl;
  4614. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4615. mem_tbl = mem_tbl_5709;
  4616. else
  4617. mem_tbl = mem_tbl_5706;
  4618. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4619. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4620. mem_tbl[i].len)) != 0) {
  4621. return ret;
  4622. }
  4623. }
  4624. return ret;
  4625. }
  4626. #define BNX2_MAC_LOOPBACK 0
  4627. #define BNX2_PHY_LOOPBACK 1
  4628. static int
  4629. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4630. {
  4631. unsigned int pkt_size, num_pkts, i;
  4632. struct sk_buff *skb, *rx_skb;
  4633. unsigned char *packet;
  4634. u16 rx_start_idx, rx_idx;
  4635. dma_addr_t map;
  4636. struct tx_bd *txbd;
  4637. struct sw_bd *rx_buf;
  4638. struct l2_fhdr *rx_hdr;
  4639. int ret = -ENODEV;
  4640. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4641. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4642. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4643. tx_napi = bnapi;
  4644. txr = &tx_napi->tx_ring;
  4645. rxr = &bnapi->rx_ring;
  4646. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4647. bp->loopback = MAC_LOOPBACK;
  4648. bnx2_set_mac_loopback(bp);
  4649. }
  4650. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4651. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4652. return 0;
  4653. bp->loopback = PHY_LOOPBACK;
  4654. bnx2_set_phy_loopback(bp);
  4655. }
  4656. else
  4657. return -EINVAL;
  4658. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4659. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4660. if (!skb)
  4661. return -ENOMEM;
  4662. packet = skb_put(skb, pkt_size);
  4663. memcpy(packet, bp->dev->dev_addr, 6);
  4664. memset(packet + 6, 0x0, 8);
  4665. for (i = 14; i < pkt_size; i++)
  4666. packet[i] = (unsigned char) (i & 0xff);
  4667. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4668. PCI_DMA_TODEVICE);
  4669. if (pci_dma_mapping_error(bp->pdev, map)) {
  4670. dev_kfree_skb(skb);
  4671. return -EIO;
  4672. }
  4673. REG_WR(bp, BNX2_HC_COMMAND,
  4674. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4675. REG_RD(bp, BNX2_HC_COMMAND);
  4676. udelay(5);
  4677. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4678. num_pkts = 0;
  4679. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4680. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4681. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4682. txbd->tx_bd_mss_nbytes = pkt_size;
  4683. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4684. num_pkts++;
  4685. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4686. txr->tx_prod_bseq += pkt_size;
  4687. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4688. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4689. udelay(100);
  4690. REG_WR(bp, BNX2_HC_COMMAND,
  4691. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4692. REG_RD(bp, BNX2_HC_COMMAND);
  4693. udelay(5);
  4694. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4695. dev_kfree_skb(skb);
  4696. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4697. goto loopback_test_done;
  4698. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4699. if (rx_idx != rx_start_idx + num_pkts) {
  4700. goto loopback_test_done;
  4701. }
  4702. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4703. rx_skb = rx_buf->skb;
  4704. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4705. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4706. pci_dma_sync_single_for_cpu(bp->pdev,
  4707. dma_unmap_addr(rx_buf, mapping),
  4708. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4709. if (rx_hdr->l2_fhdr_status &
  4710. (L2_FHDR_ERRORS_BAD_CRC |
  4711. L2_FHDR_ERRORS_PHY_DECODE |
  4712. L2_FHDR_ERRORS_ALIGNMENT |
  4713. L2_FHDR_ERRORS_TOO_SHORT |
  4714. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4715. goto loopback_test_done;
  4716. }
  4717. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4718. goto loopback_test_done;
  4719. }
  4720. for (i = 14; i < pkt_size; i++) {
  4721. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4722. goto loopback_test_done;
  4723. }
  4724. }
  4725. ret = 0;
  4726. loopback_test_done:
  4727. bp->loopback = 0;
  4728. return ret;
  4729. }
  4730. #define BNX2_MAC_LOOPBACK_FAILED 1
  4731. #define BNX2_PHY_LOOPBACK_FAILED 2
  4732. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4733. BNX2_PHY_LOOPBACK_FAILED)
  4734. static int
  4735. bnx2_test_loopback(struct bnx2 *bp)
  4736. {
  4737. int rc = 0;
  4738. if (!netif_running(bp->dev))
  4739. return BNX2_LOOPBACK_FAILED;
  4740. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4741. spin_lock_bh(&bp->phy_lock);
  4742. bnx2_init_phy(bp, 1);
  4743. spin_unlock_bh(&bp->phy_lock);
  4744. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4745. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4746. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4747. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4748. return rc;
  4749. }
  4750. #define NVRAM_SIZE 0x200
  4751. #define CRC32_RESIDUAL 0xdebb20e3
  4752. static int
  4753. bnx2_test_nvram(struct bnx2 *bp)
  4754. {
  4755. __be32 buf[NVRAM_SIZE / 4];
  4756. u8 *data = (u8 *) buf;
  4757. int rc = 0;
  4758. u32 magic, csum;
  4759. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4760. goto test_nvram_done;
  4761. magic = be32_to_cpu(buf[0]);
  4762. if (magic != 0x669955aa) {
  4763. rc = -ENODEV;
  4764. goto test_nvram_done;
  4765. }
  4766. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4767. goto test_nvram_done;
  4768. csum = ether_crc_le(0x100, data);
  4769. if (csum != CRC32_RESIDUAL) {
  4770. rc = -ENODEV;
  4771. goto test_nvram_done;
  4772. }
  4773. csum = ether_crc_le(0x100, data + 0x100);
  4774. if (csum != CRC32_RESIDUAL) {
  4775. rc = -ENODEV;
  4776. }
  4777. test_nvram_done:
  4778. return rc;
  4779. }
  4780. static int
  4781. bnx2_test_link(struct bnx2 *bp)
  4782. {
  4783. u32 bmsr;
  4784. if (!netif_running(bp->dev))
  4785. return -ENODEV;
  4786. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4787. if (bp->link_up)
  4788. return 0;
  4789. return -ENODEV;
  4790. }
  4791. spin_lock_bh(&bp->phy_lock);
  4792. bnx2_enable_bmsr1(bp);
  4793. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4794. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4795. bnx2_disable_bmsr1(bp);
  4796. spin_unlock_bh(&bp->phy_lock);
  4797. if (bmsr & BMSR_LSTATUS) {
  4798. return 0;
  4799. }
  4800. return -ENODEV;
  4801. }
  4802. static int
  4803. bnx2_test_intr(struct bnx2 *bp)
  4804. {
  4805. int i;
  4806. u16 status_idx;
  4807. if (!netif_running(bp->dev))
  4808. return -ENODEV;
  4809. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4810. /* This register is not touched during run-time. */
  4811. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4812. REG_RD(bp, BNX2_HC_COMMAND);
  4813. for (i = 0; i < 10; i++) {
  4814. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4815. status_idx) {
  4816. break;
  4817. }
  4818. msleep_interruptible(10);
  4819. }
  4820. if (i < 10)
  4821. return 0;
  4822. return -ENODEV;
  4823. }
  4824. /* Determining link for parallel detection. */
  4825. static int
  4826. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4827. {
  4828. u32 mode_ctl, an_dbg, exp;
  4829. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4830. return 0;
  4831. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4832. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4833. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4834. return 0;
  4835. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4836. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4837. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4838. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4839. return 0;
  4840. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4841. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4842. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4843. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4844. return 0;
  4845. return 1;
  4846. }
  4847. static void
  4848. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4849. {
  4850. int check_link = 1;
  4851. spin_lock(&bp->phy_lock);
  4852. if (bp->serdes_an_pending) {
  4853. bp->serdes_an_pending--;
  4854. check_link = 0;
  4855. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4856. u32 bmcr;
  4857. bp->current_interval = BNX2_TIMER_INTERVAL;
  4858. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4859. if (bmcr & BMCR_ANENABLE) {
  4860. if (bnx2_5706_serdes_has_link(bp)) {
  4861. bmcr &= ~BMCR_ANENABLE;
  4862. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4863. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4864. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4865. }
  4866. }
  4867. }
  4868. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4869. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4870. u32 phy2;
  4871. bnx2_write_phy(bp, 0x17, 0x0f01);
  4872. bnx2_read_phy(bp, 0x15, &phy2);
  4873. if (phy2 & 0x20) {
  4874. u32 bmcr;
  4875. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4876. bmcr |= BMCR_ANENABLE;
  4877. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4878. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4879. }
  4880. } else
  4881. bp->current_interval = BNX2_TIMER_INTERVAL;
  4882. if (check_link) {
  4883. u32 val;
  4884. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4885. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4886. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4887. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4888. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4889. bnx2_5706s_force_link_dn(bp, 1);
  4890. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4891. } else
  4892. bnx2_set_link(bp);
  4893. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4894. bnx2_set_link(bp);
  4895. }
  4896. spin_unlock(&bp->phy_lock);
  4897. }
  4898. static void
  4899. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4900. {
  4901. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4902. return;
  4903. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4904. bp->serdes_an_pending = 0;
  4905. return;
  4906. }
  4907. spin_lock(&bp->phy_lock);
  4908. if (bp->serdes_an_pending)
  4909. bp->serdes_an_pending--;
  4910. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4911. u32 bmcr;
  4912. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4913. if (bmcr & BMCR_ANENABLE) {
  4914. bnx2_enable_forced_2g5(bp);
  4915. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4916. } else {
  4917. bnx2_disable_forced_2g5(bp);
  4918. bp->serdes_an_pending = 2;
  4919. bp->current_interval = BNX2_TIMER_INTERVAL;
  4920. }
  4921. } else
  4922. bp->current_interval = BNX2_TIMER_INTERVAL;
  4923. spin_unlock(&bp->phy_lock);
  4924. }
  4925. static void
  4926. bnx2_timer(unsigned long data)
  4927. {
  4928. struct bnx2 *bp = (struct bnx2 *) data;
  4929. if (!netif_running(bp->dev))
  4930. return;
  4931. if (atomic_read(&bp->intr_sem) != 0)
  4932. goto bnx2_restart_timer;
  4933. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4934. BNX2_FLAG_USING_MSI)
  4935. bnx2_chk_missed_msi(bp);
  4936. bnx2_send_heart_beat(bp);
  4937. bp->stats_blk->stat_FwRxDrop =
  4938. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4939. /* workaround occasional corrupted counters */
  4940. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4941. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4942. BNX2_HC_COMMAND_STATS_NOW);
  4943. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4944. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4945. bnx2_5706_serdes_timer(bp);
  4946. else
  4947. bnx2_5708_serdes_timer(bp);
  4948. }
  4949. bnx2_restart_timer:
  4950. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4951. }
  4952. static int
  4953. bnx2_request_irq(struct bnx2 *bp)
  4954. {
  4955. unsigned long flags;
  4956. struct bnx2_irq *irq;
  4957. int rc = 0, i;
  4958. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4959. flags = 0;
  4960. else
  4961. flags = IRQF_SHARED;
  4962. for (i = 0; i < bp->irq_nvecs; i++) {
  4963. irq = &bp->irq_tbl[i];
  4964. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4965. &bp->bnx2_napi[i]);
  4966. if (rc)
  4967. break;
  4968. irq->requested = 1;
  4969. }
  4970. return rc;
  4971. }
  4972. static void
  4973. bnx2_free_irq(struct bnx2 *bp)
  4974. {
  4975. struct bnx2_irq *irq;
  4976. int i;
  4977. for (i = 0; i < bp->irq_nvecs; i++) {
  4978. irq = &bp->irq_tbl[i];
  4979. if (irq->requested)
  4980. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4981. irq->requested = 0;
  4982. }
  4983. if (bp->flags & BNX2_FLAG_USING_MSI)
  4984. pci_disable_msi(bp->pdev);
  4985. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4986. pci_disable_msix(bp->pdev);
  4987. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4988. }
  4989. static void
  4990. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4991. {
  4992. int i, rc;
  4993. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4994. struct net_device *dev = bp->dev;
  4995. const int len = sizeof(bp->irq_tbl[0].name);
  4996. bnx2_setup_msix_tbl(bp);
  4997. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4998. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4999. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5000. /* Need to flush the previous three writes to ensure MSI-X
  5001. * is setup properly */
  5002. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5003. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5004. msix_ent[i].entry = i;
  5005. msix_ent[i].vector = 0;
  5006. }
  5007. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5008. if (rc != 0)
  5009. return;
  5010. bp->irq_nvecs = msix_vecs;
  5011. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5012. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5013. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5014. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5015. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5016. }
  5017. }
  5018. static void
  5019. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5020. {
  5021. int cpus = num_online_cpus();
  5022. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5023. bp->irq_tbl[0].handler = bnx2_interrupt;
  5024. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5025. bp->irq_nvecs = 1;
  5026. bp->irq_tbl[0].vector = bp->pdev->irq;
  5027. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5028. bnx2_enable_msix(bp, msix_vecs);
  5029. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5030. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5031. if (pci_enable_msi(bp->pdev) == 0) {
  5032. bp->flags |= BNX2_FLAG_USING_MSI;
  5033. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5034. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5035. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5036. } else
  5037. bp->irq_tbl[0].handler = bnx2_msi;
  5038. bp->irq_tbl[0].vector = bp->pdev->irq;
  5039. }
  5040. }
  5041. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5042. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5043. bp->num_rx_rings = bp->irq_nvecs;
  5044. }
  5045. /* Called with rtnl_lock */
  5046. static int
  5047. bnx2_open(struct net_device *dev)
  5048. {
  5049. struct bnx2 *bp = netdev_priv(dev);
  5050. int rc;
  5051. netif_carrier_off(dev);
  5052. bnx2_set_power_state(bp, PCI_D0);
  5053. bnx2_disable_int(bp);
  5054. bnx2_setup_int_mode(bp, disable_msi);
  5055. bnx2_init_napi(bp);
  5056. bnx2_napi_enable(bp);
  5057. rc = bnx2_alloc_mem(bp);
  5058. if (rc)
  5059. goto open_err;
  5060. rc = bnx2_request_irq(bp);
  5061. if (rc)
  5062. goto open_err;
  5063. rc = bnx2_init_nic(bp, 1);
  5064. if (rc)
  5065. goto open_err;
  5066. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5067. atomic_set(&bp->intr_sem, 0);
  5068. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5069. bnx2_enable_int(bp);
  5070. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5071. /* Test MSI to make sure it is working
  5072. * If MSI test fails, go back to INTx mode
  5073. */
  5074. if (bnx2_test_intr(bp) != 0) {
  5075. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5076. bnx2_disable_int(bp);
  5077. bnx2_free_irq(bp);
  5078. bnx2_setup_int_mode(bp, 1);
  5079. rc = bnx2_init_nic(bp, 0);
  5080. if (!rc)
  5081. rc = bnx2_request_irq(bp);
  5082. if (rc) {
  5083. del_timer_sync(&bp->timer);
  5084. goto open_err;
  5085. }
  5086. bnx2_enable_int(bp);
  5087. }
  5088. }
  5089. if (bp->flags & BNX2_FLAG_USING_MSI)
  5090. netdev_info(dev, "using MSI\n");
  5091. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5092. netdev_info(dev, "using MSIX\n");
  5093. netif_tx_start_all_queues(dev);
  5094. return 0;
  5095. open_err:
  5096. bnx2_napi_disable(bp);
  5097. bnx2_free_skbs(bp);
  5098. bnx2_free_irq(bp);
  5099. bnx2_free_mem(bp);
  5100. return rc;
  5101. }
  5102. static void
  5103. bnx2_reset_task(struct work_struct *work)
  5104. {
  5105. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5106. rtnl_lock();
  5107. if (!netif_running(bp->dev)) {
  5108. rtnl_unlock();
  5109. return;
  5110. }
  5111. bnx2_netif_stop(bp);
  5112. bnx2_init_nic(bp, 1);
  5113. atomic_set(&bp->intr_sem, 1);
  5114. bnx2_netif_start(bp);
  5115. rtnl_unlock();
  5116. }
  5117. static void
  5118. bnx2_dump_state(struct bnx2 *bp)
  5119. {
  5120. struct net_device *dev = bp->dev;
  5121. netdev_err(dev, "DEBUG: intr_sem[%x]\n", atomic_read(&bp->intr_sem));
  5122. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] RPM_MGMT_PKT_CTRL[%08x]\n",
  5123. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5124. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5125. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5126. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
  5127. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
  5128. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5129. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5130. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5131. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5132. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5133. }
  5134. static void
  5135. bnx2_tx_timeout(struct net_device *dev)
  5136. {
  5137. struct bnx2 *bp = netdev_priv(dev);
  5138. bnx2_dump_state(bp);
  5139. /* This allows the netif to be shutdown gracefully before resetting */
  5140. schedule_work(&bp->reset_task);
  5141. }
  5142. #ifdef BCM_VLAN
  5143. /* Called with rtnl_lock */
  5144. static void
  5145. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5146. {
  5147. struct bnx2 *bp = netdev_priv(dev);
  5148. if (netif_running(dev))
  5149. bnx2_netif_stop(bp);
  5150. bp->vlgrp = vlgrp;
  5151. if (!netif_running(dev))
  5152. return;
  5153. bnx2_set_rx_mode(dev);
  5154. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5155. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5156. bnx2_netif_start(bp);
  5157. }
  5158. #endif
  5159. /* Called with netif_tx_lock.
  5160. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5161. * netif_wake_queue().
  5162. */
  5163. static netdev_tx_t
  5164. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5165. {
  5166. struct bnx2 *bp = netdev_priv(dev);
  5167. dma_addr_t mapping;
  5168. struct tx_bd *txbd;
  5169. struct sw_tx_bd *tx_buf;
  5170. u32 len, vlan_tag_flags, last_frag, mss;
  5171. u16 prod, ring_prod;
  5172. int i;
  5173. struct bnx2_napi *bnapi;
  5174. struct bnx2_tx_ring_info *txr;
  5175. struct netdev_queue *txq;
  5176. /* Determine which tx ring we will be placed on */
  5177. i = skb_get_queue_mapping(skb);
  5178. bnapi = &bp->bnx2_napi[i];
  5179. txr = &bnapi->tx_ring;
  5180. txq = netdev_get_tx_queue(dev, i);
  5181. if (unlikely(bnx2_tx_avail(bp, txr) <
  5182. (skb_shinfo(skb)->nr_frags + 1))) {
  5183. netif_tx_stop_queue(txq);
  5184. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5185. return NETDEV_TX_BUSY;
  5186. }
  5187. len = skb_headlen(skb);
  5188. prod = txr->tx_prod;
  5189. ring_prod = TX_RING_IDX(prod);
  5190. vlan_tag_flags = 0;
  5191. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5192. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5193. }
  5194. #ifdef BCM_VLAN
  5195. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5196. vlan_tag_flags |=
  5197. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5198. }
  5199. #endif
  5200. if ((mss = skb_shinfo(skb)->gso_size)) {
  5201. u32 tcp_opt_len;
  5202. struct iphdr *iph;
  5203. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5204. tcp_opt_len = tcp_optlen(skb);
  5205. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5206. u32 tcp_off = skb_transport_offset(skb) -
  5207. sizeof(struct ipv6hdr) - ETH_HLEN;
  5208. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5209. TX_BD_FLAGS_SW_FLAGS;
  5210. if (likely(tcp_off == 0))
  5211. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5212. else {
  5213. tcp_off >>= 3;
  5214. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5215. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5216. ((tcp_off & 0x10) <<
  5217. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5218. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5219. }
  5220. } else {
  5221. iph = ip_hdr(skb);
  5222. if (tcp_opt_len || (iph->ihl > 5)) {
  5223. vlan_tag_flags |= ((iph->ihl - 5) +
  5224. (tcp_opt_len >> 2)) << 8;
  5225. }
  5226. }
  5227. } else
  5228. mss = 0;
  5229. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5230. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5231. dev_kfree_skb(skb);
  5232. return NETDEV_TX_OK;
  5233. }
  5234. tx_buf = &txr->tx_buf_ring[ring_prod];
  5235. tx_buf->skb = skb;
  5236. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5237. txbd = &txr->tx_desc_ring[ring_prod];
  5238. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5239. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5240. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5241. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5242. last_frag = skb_shinfo(skb)->nr_frags;
  5243. tx_buf->nr_frags = last_frag;
  5244. tx_buf->is_gso = skb_is_gso(skb);
  5245. for (i = 0; i < last_frag; i++) {
  5246. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5247. prod = NEXT_TX_BD(prod);
  5248. ring_prod = TX_RING_IDX(prod);
  5249. txbd = &txr->tx_desc_ring[ring_prod];
  5250. len = frag->size;
  5251. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5252. len, PCI_DMA_TODEVICE);
  5253. if (pci_dma_mapping_error(bp->pdev, mapping))
  5254. goto dma_error;
  5255. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5256. mapping);
  5257. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5258. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5259. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5260. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5261. }
  5262. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5263. prod = NEXT_TX_BD(prod);
  5264. txr->tx_prod_bseq += skb->len;
  5265. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5266. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5267. mmiowb();
  5268. txr->tx_prod = prod;
  5269. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5270. netif_tx_stop_queue(txq);
  5271. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5272. netif_tx_wake_queue(txq);
  5273. }
  5274. return NETDEV_TX_OK;
  5275. dma_error:
  5276. /* save value of frag that failed */
  5277. last_frag = i;
  5278. /* start back at beginning and unmap skb */
  5279. prod = txr->tx_prod;
  5280. ring_prod = TX_RING_IDX(prod);
  5281. tx_buf = &txr->tx_buf_ring[ring_prod];
  5282. tx_buf->skb = NULL;
  5283. pci_unmap_single(bp->pdev, dma_unmap_addr(tx_buf, mapping),
  5284. skb_headlen(skb), PCI_DMA_TODEVICE);
  5285. /* unmap remaining mapped pages */
  5286. for (i = 0; i < last_frag; i++) {
  5287. prod = NEXT_TX_BD(prod);
  5288. ring_prod = TX_RING_IDX(prod);
  5289. tx_buf = &txr->tx_buf_ring[ring_prod];
  5290. pci_unmap_page(bp->pdev, dma_unmap_addr(tx_buf, mapping),
  5291. skb_shinfo(skb)->frags[i].size,
  5292. PCI_DMA_TODEVICE);
  5293. }
  5294. dev_kfree_skb(skb);
  5295. return NETDEV_TX_OK;
  5296. }
  5297. /* Called with rtnl_lock */
  5298. static int
  5299. bnx2_close(struct net_device *dev)
  5300. {
  5301. struct bnx2 *bp = netdev_priv(dev);
  5302. cancel_work_sync(&bp->reset_task);
  5303. bnx2_disable_int_sync(bp);
  5304. bnx2_napi_disable(bp);
  5305. del_timer_sync(&bp->timer);
  5306. bnx2_shutdown_chip(bp);
  5307. bnx2_free_irq(bp);
  5308. bnx2_free_skbs(bp);
  5309. bnx2_free_mem(bp);
  5310. bp->link_up = 0;
  5311. netif_carrier_off(bp->dev);
  5312. bnx2_set_power_state(bp, PCI_D3hot);
  5313. return 0;
  5314. }
  5315. static void
  5316. bnx2_save_stats(struct bnx2 *bp)
  5317. {
  5318. u32 *hw_stats = (u32 *) bp->stats_blk;
  5319. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5320. int i;
  5321. /* The 1st 10 counters are 64-bit counters */
  5322. for (i = 0; i < 20; i += 2) {
  5323. u32 hi;
  5324. u64 lo;
  5325. hi = temp_stats[i] + hw_stats[i];
  5326. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5327. if (lo > 0xffffffff)
  5328. hi++;
  5329. temp_stats[i] = hi;
  5330. temp_stats[i + 1] = lo & 0xffffffff;
  5331. }
  5332. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5333. temp_stats[i] += hw_stats[i];
  5334. }
  5335. #define GET_64BIT_NET_STATS64(ctr) \
  5336. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5337. (unsigned long) (ctr##_lo)
  5338. #define GET_64BIT_NET_STATS32(ctr) \
  5339. (ctr##_lo)
  5340. #if (BITS_PER_LONG == 64)
  5341. #define GET_64BIT_NET_STATS(ctr) \
  5342. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5343. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5344. #else
  5345. #define GET_64BIT_NET_STATS(ctr) \
  5346. GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
  5347. GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
  5348. #endif
  5349. #define GET_32BIT_NET_STATS(ctr) \
  5350. (unsigned long) (bp->stats_blk->ctr + \
  5351. bp->temp_stats_blk->ctr)
  5352. static struct net_device_stats *
  5353. bnx2_get_stats(struct net_device *dev)
  5354. {
  5355. struct bnx2 *bp = netdev_priv(dev);
  5356. struct net_device_stats *net_stats = &dev->stats;
  5357. if (bp->stats_blk == NULL) {
  5358. return net_stats;
  5359. }
  5360. net_stats->rx_packets =
  5361. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5362. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5363. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5364. net_stats->tx_packets =
  5365. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5366. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5367. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5368. net_stats->rx_bytes =
  5369. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5370. net_stats->tx_bytes =
  5371. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5372. net_stats->multicast =
  5373. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
  5374. net_stats->collisions =
  5375. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5376. net_stats->rx_length_errors =
  5377. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5378. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5379. net_stats->rx_over_errors =
  5380. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5381. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5382. net_stats->rx_frame_errors =
  5383. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5384. net_stats->rx_crc_errors =
  5385. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5386. net_stats->rx_errors = net_stats->rx_length_errors +
  5387. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5388. net_stats->rx_crc_errors;
  5389. net_stats->tx_aborted_errors =
  5390. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5391. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5392. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5393. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5394. net_stats->tx_carrier_errors = 0;
  5395. else {
  5396. net_stats->tx_carrier_errors =
  5397. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5398. }
  5399. net_stats->tx_errors =
  5400. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5401. net_stats->tx_aborted_errors +
  5402. net_stats->tx_carrier_errors;
  5403. net_stats->rx_missed_errors =
  5404. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5405. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5406. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5407. return net_stats;
  5408. }
  5409. /* All ethtool functions called with rtnl_lock */
  5410. static int
  5411. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5412. {
  5413. struct bnx2 *bp = netdev_priv(dev);
  5414. int support_serdes = 0, support_copper = 0;
  5415. cmd->supported = SUPPORTED_Autoneg;
  5416. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5417. support_serdes = 1;
  5418. support_copper = 1;
  5419. } else if (bp->phy_port == PORT_FIBRE)
  5420. support_serdes = 1;
  5421. else
  5422. support_copper = 1;
  5423. if (support_serdes) {
  5424. cmd->supported |= SUPPORTED_1000baseT_Full |
  5425. SUPPORTED_FIBRE;
  5426. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5427. cmd->supported |= SUPPORTED_2500baseX_Full;
  5428. }
  5429. if (support_copper) {
  5430. cmd->supported |= SUPPORTED_10baseT_Half |
  5431. SUPPORTED_10baseT_Full |
  5432. SUPPORTED_100baseT_Half |
  5433. SUPPORTED_100baseT_Full |
  5434. SUPPORTED_1000baseT_Full |
  5435. SUPPORTED_TP;
  5436. }
  5437. spin_lock_bh(&bp->phy_lock);
  5438. cmd->port = bp->phy_port;
  5439. cmd->advertising = bp->advertising;
  5440. if (bp->autoneg & AUTONEG_SPEED) {
  5441. cmd->autoneg = AUTONEG_ENABLE;
  5442. }
  5443. else {
  5444. cmd->autoneg = AUTONEG_DISABLE;
  5445. }
  5446. if (netif_carrier_ok(dev)) {
  5447. cmd->speed = bp->line_speed;
  5448. cmd->duplex = bp->duplex;
  5449. }
  5450. else {
  5451. cmd->speed = -1;
  5452. cmd->duplex = -1;
  5453. }
  5454. spin_unlock_bh(&bp->phy_lock);
  5455. cmd->transceiver = XCVR_INTERNAL;
  5456. cmd->phy_address = bp->phy_addr;
  5457. return 0;
  5458. }
  5459. static int
  5460. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5461. {
  5462. struct bnx2 *bp = netdev_priv(dev);
  5463. u8 autoneg = bp->autoneg;
  5464. u8 req_duplex = bp->req_duplex;
  5465. u16 req_line_speed = bp->req_line_speed;
  5466. u32 advertising = bp->advertising;
  5467. int err = -EINVAL;
  5468. spin_lock_bh(&bp->phy_lock);
  5469. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5470. goto err_out_unlock;
  5471. if (cmd->port != bp->phy_port &&
  5472. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5473. goto err_out_unlock;
  5474. /* If device is down, we can store the settings only if the user
  5475. * is setting the currently active port.
  5476. */
  5477. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5478. goto err_out_unlock;
  5479. if (cmd->autoneg == AUTONEG_ENABLE) {
  5480. autoneg |= AUTONEG_SPEED;
  5481. advertising = cmd->advertising;
  5482. if (cmd->port == PORT_TP) {
  5483. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5484. if (!advertising)
  5485. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5486. } else {
  5487. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5488. if (!advertising)
  5489. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5490. }
  5491. advertising |= ADVERTISED_Autoneg;
  5492. }
  5493. else {
  5494. if (cmd->port == PORT_FIBRE) {
  5495. if ((cmd->speed != SPEED_1000 &&
  5496. cmd->speed != SPEED_2500) ||
  5497. (cmd->duplex != DUPLEX_FULL))
  5498. goto err_out_unlock;
  5499. if (cmd->speed == SPEED_2500 &&
  5500. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5501. goto err_out_unlock;
  5502. }
  5503. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5504. goto err_out_unlock;
  5505. autoneg &= ~AUTONEG_SPEED;
  5506. req_line_speed = cmd->speed;
  5507. req_duplex = cmd->duplex;
  5508. advertising = 0;
  5509. }
  5510. bp->autoneg = autoneg;
  5511. bp->advertising = advertising;
  5512. bp->req_line_speed = req_line_speed;
  5513. bp->req_duplex = req_duplex;
  5514. err = 0;
  5515. /* If device is down, the new settings will be picked up when it is
  5516. * brought up.
  5517. */
  5518. if (netif_running(dev))
  5519. err = bnx2_setup_phy(bp, cmd->port);
  5520. err_out_unlock:
  5521. spin_unlock_bh(&bp->phy_lock);
  5522. return err;
  5523. }
  5524. static void
  5525. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5526. {
  5527. struct bnx2 *bp = netdev_priv(dev);
  5528. strcpy(info->driver, DRV_MODULE_NAME);
  5529. strcpy(info->version, DRV_MODULE_VERSION);
  5530. strcpy(info->bus_info, pci_name(bp->pdev));
  5531. strcpy(info->fw_version, bp->fw_version);
  5532. }
  5533. #define BNX2_REGDUMP_LEN (32 * 1024)
  5534. static int
  5535. bnx2_get_regs_len(struct net_device *dev)
  5536. {
  5537. return BNX2_REGDUMP_LEN;
  5538. }
  5539. static void
  5540. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5541. {
  5542. u32 *p = _p, i, offset;
  5543. u8 *orig_p = _p;
  5544. struct bnx2 *bp = netdev_priv(dev);
  5545. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5546. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5547. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5548. 0x1040, 0x1048, 0x1080, 0x10a4,
  5549. 0x1400, 0x1490, 0x1498, 0x14f0,
  5550. 0x1500, 0x155c, 0x1580, 0x15dc,
  5551. 0x1600, 0x1658, 0x1680, 0x16d8,
  5552. 0x1800, 0x1820, 0x1840, 0x1854,
  5553. 0x1880, 0x1894, 0x1900, 0x1984,
  5554. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5555. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5556. 0x2000, 0x2030, 0x23c0, 0x2400,
  5557. 0x2800, 0x2820, 0x2830, 0x2850,
  5558. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5559. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5560. 0x4080, 0x4090, 0x43c0, 0x4458,
  5561. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5562. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5563. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5564. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5565. 0x6800, 0x6848, 0x684c, 0x6860,
  5566. 0x6888, 0x6910, 0x8000 };
  5567. regs->version = 0;
  5568. memset(p, 0, BNX2_REGDUMP_LEN);
  5569. if (!netif_running(bp->dev))
  5570. return;
  5571. i = 0;
  5572. offset = reg_boundaries[0];
  5573. p += offset;
  5574. while (offset < BNX2_REGDUMP_LEN) {
  5575. *p++ = REG_RD(bp, offset);
  5576. offset += 4;
  5577. if (offset == reg_boundaries[i + 1]) {
  5578. offset = reg_boundaries[i + 2];
  5579. p = (u32 *) (orig_p + offset);
  5580. i += 2;
  5581. }
  5582. }
  5583. }
  5584. static void
  5585. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5586. {
  5587. struct bnx2 *bp = netdev_priv(dev);
  5588. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5589. wol->supported = 0;
  5590. wol->wolopts = 0;
  5591. }
  5592. else {
  5593. wol->supported = WAKE_MAGIC;
  5594. if (bp->wol)
  5595. wol->wolopts = WAKE_MAGIC;
  5596. else
  5597. wol->wolopts = 0;
  5598. }
  5599. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5600. }
  5601. static int
  5602. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5603. {
  5604. struct bnx2 *bp = netdev_priv(dev);
  5605. if (wol->wolopts & ~WAKE_MAGIC)
  5606. return -EINVAL;
  5607. if (wol->wolopts & WAKE_MAGIC) {
  5608. if (bp->flags & BNX2_FLAG_NO_WOL)
  5609. return -EINVAL;
  5610. bp->wol = 1;
  5611. }
  5612. else {
  5613. bp->wol = 0;
  5614. }
  5615. return 0;
  5616. }
  5617. static int
  5618. bnx2_nway_reset(struct net_device *dev)
  5619. {
  5620. struct bnx2 *bp = netdev_priv(dev);
  5621. u32 bmcr;
  5622. if (!netif_running(dev))
  5623. return -EAGAIN;
  5624. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5625. return -EINVAL;
  5626. }
  5627. spin_lock_bh(&bp->phy_lock);
  5628. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5629. int rc;
  5630. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5631. spin_unlock_bh(&bp->phy_lock);
  5632. return rc;
  5633. }
  5634. /* Force a link down visible on the other side */
  5635. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5636. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5637. spin_unlock_bh(&bp->phy_lock);
  5638. msleep(20);
  5639. spin_lock_bh(&bp->phy_lock);
  5640. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5641. bp->serdes_an_pending = 1;
  5642. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5643. }
  5644. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5645. bmcr &= ~BMCR_LOOPBACK;
  5646. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5647. spin_unlock_bh(&bp->phy_lock);
  5648. return 0;
  5649. }
  5650. static u32
  5651. bnx2_get_link(struct net_device *dev)
  5652. {
  5653. struct bnx2 *bp = netdev_priv(dev);
  5654. return bp->link_up;
  5655. }
  5656. static int
  5657. bnx2_get_eeprom_len(struct net_device *dev)
  5658. {
  5659. struct bnx2 *bp = netdev_priv(dev);
  5660. if (bp->flash_info == NULL)
  5661. return 0;
  5662. return (int) bp->flash_size;
  5663. }
  5664. static int
  5665. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5666. u8 *eebuf)
  5667. {
  5668. struct bnx2 *bp = netdev_priv(dev);
  5669. int rc;
  5670. if (!netif_running(dev))
  5671. return -EAGAIN;
  5672. /* parameters already validated in ethtool_get_eeprom */
  5673. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5674. return rc;
  5675. }
  5676. static int
  5677. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5678. u8 *eebuf)
  5679. {
  5680. struct bnx2 *bp = netdev_priv(dev);
  5681. int rc;
  5682. if (!netif_running(dev))
  5683. return -EAGAIN;
  5684. /* parameters already validated in ethtool_set_eeprom */
  5685. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5686. return rc;
  5687. }
  5688. static int
  5689. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5690. {
  5691. struct bnx2 *bp = netdev_priv(dev);
  5692. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5693. coal->rx_coalesce_usecs = bp->rx_ticks;
  5694. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5695. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5696. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5697. coal->tx_coalesce_usecs = bp->tx_ticks;
  5698. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5699. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5700. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5701. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5702. return 0;
  5703. }
  5704. static int
  5705. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5706. {
  5707. struct bnx2 *bp = netdev_priv(dev);
  5708. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5709. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5710. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5711. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5712. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5713. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5714. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5715. if (bp->rx_quick_cons_trip_int > 0xff)
  5716. bp->rx_quick_cons_trip_int = 0xff;
  5717. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5718. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5719. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5720. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5721. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5722. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5723. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5724. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5725. 0xff;
  5726. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5727. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5728. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5729. bp->stats_ticks = USEC_PER_SEC;
  5730. }
  5731. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5732. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5733. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5734. if (netif_running(bp->dev)) {
  5735. bnx2_netif_stop(bp);
  5736. bnx2_init_nic(bp, 0);
  5737. bnx2_netif_start(bp);
  5738. }
  5739. return 0;
  5740. }
  5741. static void
  5742. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5743. {
  5744. struct bnx2 *bp = netdev_priv(dev);
  5745. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5746. ering->rx_mini_max_pending = 0;
  5747. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5748. ering->rx_pending = bp->rx_ring_size;
  5749. ering->rx_mini_pending = 0;
  5750. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5751. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5752. ering->tx_pending = bp->tx_ring_size;
  5753. }
  5754. static int
  5755. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5756. {
  5757. if (netif_running(bp->dev)) {
  5758. /* Reset will erase chipset stats; save them */
  5759. bnx2_save_stats(bp);
  5760. bnx2_netif_stop(bp);
  5761. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5762. bnx2_free_skbs(bp);
  5763. bnx2_free_mem(bp);
  5764. }
  5765. bnx2_set_rx_ring_size(bp, rx);
  5766. bp->tx_ring_size = tx;
  5767. if (netif_running(bp->dev)) {
  5768. int rc;
  5769. rc = bnx2_alloc_mem(bp);
  5770. if (!rc)
  5771. rc = bnx2_init_nic(bp, 0);
  5772. if (rc) {
  5773. bnx2_napi_enable(bp);
  5774. dev_close(bp->dev);
  5775. return rc;
  5776. }
  5777. #ifdef BCM_CNIC
  5778. mutex_lock(&bp->cnic_lock);
  5779. /* Let cnic know about the new status block. */
  5780. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5781. bnx2_setup_cnic_irq_info(bp);
  5782. mutex_unlock(&bp->cnic_lock);
  5783. #endif
  5784. bnx2_netif_start(bp);
  5785. }
  5786. return 0;
  5787. }
  5788. static int
  5789. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5790. {
  5791. struct bnx2 *bp = netdev_priv(dev);
  5792. int rc;
  5793. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5794. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5795. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5796. return -EINVAL;
  5797. }
  5798. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5799. return rc;
  5800. }
  5801. static void
  5802. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5803. {
  5804. struct bnx2 *bp = netdev_priv(dev);
  5805. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5806. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5807. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5808. }
  5809. static int
  5810. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5811. {
  5812. struct bnx2 *bp = netdev_priv(dev);
  5813. bp->req_flow_ctrl = 0;
  5814. if (epause->rx_pause)
  5815. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5816. if (epause->tx_pause)
  5817. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5818. if (epause->autoneg) {
  5819. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5820. }
  5821. else {
  5822. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5823. }
  5824. if (netif_running(dev)) {
  5825. spin_lock_bh(&bp->phy_lock);
  5826. bnx2_setup_phy(bp, bp->phy_port);
  5827. spin_unlock_bh(&bp->phy_lock);
  5828. }
  5829. return 0;
  5830. }
  5831. static u32
  5832. bnx2_get_rx_csum(struct net_device *dev)
  5833. {
  5834. struct bnx2 *bp = netdev_priv(dev);
  5835. return bp->rx_csum;
  5836. }
  5837. static int
  5838. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5839. {
  5840. struct bnx2 *bp = netdev_priv(dev);
  5841. bp->rx_csum = data;
  5842. return 0;
  5843. }
  5844. static int
  5845. bnx2_set_tso(struct net_device *dev, u32 data)
  5846. {
  5847. struct bnx2 *bp = netdev_priv(dev);
  5848. if (data) {
  5849. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5850. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5851. dev->features |= NETIF_F_TSO6;
  5852. } else
  5853. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5854. NETIF_F_TSO_ECN);
  5855. return 0;
  5856. }
  5857. static struct {
  5858. char string[ETH_GSTRING_LEN];
  5859. } bnx2_stats_str_arr[] = {
  5860. { "rx_bytes" },
  5861. { "rx_error_bytes" },
  5862. { "tx_bytes" },
  5863. { "tx_error_bytes" },
  5864. { "rx_ucast_packets" },
  5865. { "rx_mcast_packets" },
  5866. { "rx_bcast_packets" },
  5867. { "tx_ucast_packets" },
  5868. { "tx_mcast_packets" },
  5869. { "tx_bcast_packets" },
  5870. { "tx_mac_errors" },
  5871. { "tx_carrier_errors" },
  5872. { "rx_crc_errors" },
  5873. { "rx_align_errors" },
  5874. { "tx_single_collisions" },
  5875. { "tx_multi_collisions" },
  5876. { "tx_deferred" },
  5877. { "tx_excess_collisions" },
  5878. { "tx_late_collisions" },
  5879. { "tx_total_collisions" },
  5880. { "rx_fragments" },
  5881. { "rx_jabbers" },
  5882. { "rx_undersize_packets" },
  5883. { "rx_oversize_packets" },
  5884. { "rx_64_byte_packets" },
  5885. { "rx_65_to_127_byte_packets" },
  5886. { "rx_128_to_255_byte_packets" },
  5887. { "rx_256_to_511_byte_packets" },
  5888. { "rx_512_to_1023_byte_packets" },
  5889. { "rx_1024_to_1522_byte_packets" },
  5890. { "rx_1523_to_9022_byte_packets" },
  5891. { "tx_64_byte_packets" },
  5892. { "tx_65_to_127_byte_packets" },
  5893. { "tx_128_to_255_byte_packets" },
  5894. { "tx_256_to_511_byte_packets" },
  5895. { "tx_512_to_1023_byte_packets" },
  5896. { "tx_1024_to_1522_byte_packets" },
  5897. { "tx_1523_to_9022_byte_packets" },
  5898. { "rx_xon_frames" },
  5899. { "rx_xoff_frames" },
  5900. { "tx_xon_frames" },
  5901. { "tx_xoff_frames" },
  5902. { "rx_mac_ctrl_frames" },
  5903. { "rx_filtered_packets" },
  5904. { "rx_ftq_discards" },
  5905. { "rx_discards" },
  5906. { "rx_fw_discards" },
  5907. };
  5908. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5909. sizeof(bnx2_stats_str_arr[0]))
  5910. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5911. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5912. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5913. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5914. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5915. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5916. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5917. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5918. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5919. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5920. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5921. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5922. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5923. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5924. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5925. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5926. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5927. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5928. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5929. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5930. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5931. STATS_OFFSET32(stat_EtherStatsCollisions),
  5932. STATS_OFFSET32(stat_EtherStatsFragments),
  5933. STATS_OFFSET32(stat_EtherStatsJabbers),
  5934. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5935. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5936. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5937. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5938. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5939. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5940. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5941. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5942. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5943. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5944. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5945. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5946. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5947. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5948. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5949. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5950. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5951. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5952. STATS_OFFSET32(stat_OutXonSent),
  5953. STATS_OFFSET32(stat_OutXoffSent),
  5954. STATS_OFFSET32(stat_MacControlFramesReceived),
  5955. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5956. STATS_OFFSET32(stat_IfInFTQDiscards),
  5957. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5958. STATS_OFFSET32(stat_FwRxDrop),
  5959. };
  5960. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5961. * skipped because of errata.
  5962. */
  5963. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5964. 8,0,8,8,8,8,8,8,8,8,
  5965. 4,0,4,4,4,4,4,4,4,4,
  5966. 4,4,4,4,4,4,4,4,4,4,
  5967. 4,4,4,4,4,4,4,4,4,4,
  5968. 4,4,4,4,4,4,4,
  5969. };
  5970. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5971. 8,0,8,8,8,8,8,8,8,8,
  5972. 4,4,4,4,4,4,4,4,4,4,
  5973. 4,4,4,4,4,4,4,4,4,4,
  5974. 4,4,4,4,4,4,4,4,4,4,
  5975. 4,4,4,4,4,4,4,
  5976. };
  5977. #define BNX2_NUM_TESTS 6
  5978. static struct {
  5979. char string[ETH_GSTRING_LEN];
  5980. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5981. { "register_test (offline)" },
  5982. { "memory_test (offline)" },
  5983. { "loopback_test (offline)" },
  5984. { "nvram_test (online)" },
  5985. { "interrupt_test (online)" },
  5986. { "link_test (online)" },
  5987. };
  5988. static int
  5989. bnx2_get_sset_count(struct net_device *dev, int sset)
  5990. {
  5991. switch (sset) {
  5992. case ETH_SS_TEST:
  5993. return BNX2_NUM_TESTS;
  5994. case ETH_SS_STATS:
  5995. return BNX2_NUM_STATS;
  5996. default:
  5997. return -EOPNOTSUPP;
  5998. }
  5999. }
  6000. static void
  6001. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6002. {
  6003. struct bnx2 *bp = netdev_priv(dev);
  6004. bnx2_set_power_state(bp, PCI_D0);
  6005. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6006. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6007. int i;
  6008. bnx2_netif_stop(bp);
  6009. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6010. bnx2_free_skbs(bp);
  6011. if (bnx2_test_registers(bp) != 0) {
  6012. buf[0] = 1;
  6013. etest->flags |= ETH_TEST_FL_FAILED;
  6014. }
  6015. if (bnx2_test_memory(bp) != 0) {
  6016. buf[1] = 1;
  6017. etest->flags |= ETH_TEST_FL_FAILED;
  6018. }
  6019. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6020. etest->flags |= ETH_TEST_FL_FAILED;
  6021. if (!netif_running(bp->dev))
  6022. bnx2_shutdown_chip(bp);
  6023. else {
  6024. bnx2_init_nic(bp, 1);
  6025. bnx2_netif_start(bp);
  6026. }
  6027. /* wait for link up */
  6028. for (i = 0; i < 7; i++) {
  6029. if (bp->link_up)
  6030. break;
  6031. msleep_interruptible(1000);
  6032. }
  6033. }
  6034. if (bnx2_test_nvram(bp) != 0) {
  6035. buf[3] = 1;
  6036. etest->flags |= ETH_TEST_FL_FAILED;
  6037. }
  6038. if (bnx2_test_intr(bp) != 0) {
  6039. buf[4] = 1;
  6040. etest->flags |= ETH_TEST_FL_FAILED;
  6041. }
  6042. if (bnx2_test_link(bp) != 0) {
  6043. buf[5] = 1;
  6044. etest->flags |= ETH_TEST_FL_FAILED;
  6045. }
  6046. if (!netif_running(bp->dev))
  6047. bnx2_set_power_state(bp, PCI_D3hot);
  6048. }
  6049. static void
  6050. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6051. {
  6052. switch (stringset) {
  6053. case ETH_SS_STATS:
  6054. memcpy(buf, bnx2_stats_str_arr,
  6055. sizeof(bnx2_stats_str_arr));
  6056. break;
  6057. case ETH_SS_TEST:
  6058. memcpy(buf, bnx2_tests_str_arr,
  6059. sizeof(bnx2_tests_str_arr));
  6060. break;
  6061. }
  6062. }
  6063. static void
  6064. bnx2_get_ethtool_stats(struct net_device *dev,
  6065. struct ethtool_stats *stats, u64 *buf)
  6066. {
  6067. struct bnx2 *bp = netdev_priv(dev);
  6068. int i;
  6069. u32 *hw_stats = (u32 *) bp->stats_blk;
  6070. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6071. u8 *stats_len_arr = NULL;
  6072. if (hw_stats == NULL) {
  6073. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6074. return;
  6075. }
  6076. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6077. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6078. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6079. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6080. stats_len_arr = bnx2_5706_stats_len_arr;
  6081. else
  6082. stats_len_arr = bnx2_5708_stats_len_arr;
  6083. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6084. unsigned long offset;
  6085. if (stats_len_arr[i] == 0) {
  6086. /* skip this counter */
  6087. buf[i] = 0;
  6088. continue;
  6089. }
  6090. offset = bnx2_stats_offset_arr[i];
  6091. if (stats_len_arr[i] == 4) {
  6092. /* 4-byte counter */
  6093. buf[i] = (u64) *(hw_stats + offset) +
  6094. *(temp_stats + offset);
  6095. continue;
  6096. }
  6097. /* 8-byte counter */
  6098. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6099. *(hw_stats + offset + 1) +
  6100. (((u64) *(temp_stats + offset)) << 32) +
  6101. *(temp_stats + offset + 1);
  6102. }
  6103. }
  6104. static int
  6105. bnx2_phys_id(struct net_device *dev, u32 data)
  6106. {
  6107. struct bnx2 *bp = netdev_priv(dev);
  6108. int i;
  6109. u32 save;
  6110. bnx2_set_power_state(bp, PCI_D0);
  6111. if (data == 0)
  6112. data = 2;
  6113. save = REG_RD(bp, BNX2_MISC_CFG);
  6114. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6115. for (i = 0; i < (data * 2); i++) {
  6116. if ((i % 2) == 0) {
  6117. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6118. }
  6119. else {
  6120. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6121. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6122. BNX2_EMAC_LED_100MB_OVERRIDE |
  6123. BNX2_EMAC_LED_10MB_OVERRIDE |
  6124. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6125. BNX2_EMAC_LED_TRAFFIC);
  6126. }
  6127. msleep_interruptible(500);
  6128. if (signal_pending(current))
  6129. break;
  6130. }
  6131. REG_WR(bp, BNX2_EMAC_LED, 0);
  6132. REG_WR(bp, BNX2_MISC_CFG, save);
  6133. if (!netif_running(dev))
  6134. bnx2_set_power_state(bp, PCI_D3hot);
  6135. return 0;
  6136. }
  6137. static int
  6138. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6139. {
  6140. struct bnx2 *bp = netdev_priv(dev);
  6141. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6142. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6143. else
  6144. return (ethtool_op_set_tx_csum(dev, data));
  6145. }
  6146. static const struct ethtool_ops bnx2_ethtool_ops = {
  6147. .get_settings = bnx2_get_settings,
  6148. .set_settings = bnx2_set_settings,
  6149. .get_drvinfo = bnx2_get_drvinfo,
  6150. .get_regs_len = bnx2_get_regs_len,
  6151. .get_regs = bnx2_get_regs,
  6152. .get_wol = bnx2_get_wol,
  6153. .set_wol = bnx2_set_wol,
  6154. .nway_reset = bnx2_nway_reset,
  6155. .get_link = bnx2_get_link,
  6156. .get_eeprom_len = bnx2_get_eeprom_len,
  6157. .get_eeprom = bnx2_get_eeprom,
  6158. .set_eeprom = bnx2_set_eeprom,
  6159. .get_coalesce = bnx2_get_coalesce,
  6160. .set_coalesce = bnx2_set_coalesce,
  6161. .get_ringparam = bnx2_get_ringparam,
  6162. .set_ringparam = bnx2_set_ringparam,
  6163. .get_pauseparam = bnx2_get_pauseparam,
  6164. .set_pauseparam = bnx2_set_pauseparam,
  6165. .get_rx_csum = bnx2_get_rx_csum,
  6166. .set_rx_csum = bnx2_set_rx_csum,
  6167. .set_tx_csum = bnx2_set_tx_csum,
  6168. .set_sg = ethtool_op_set_sg,
  6169. .set_tso = bnx2_set_tso,
  6170. .self_test = bnx2_self_test,
  6171. .get_strings = bnx2_get_strings,
  6172. .phys_id = bnx2_phys_id,
  6173. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6174. .get_sset_count = bnx2_get_sset_count,
  6175. };
  6176. /* Called with rtnl_lock */
  6177. static int
  6178. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6179. {
  6180. struct mii_ioctl_data *data = if_mii(ifr);
  6181. struct bnx2 *bp = netdev_priv(dev);
  6182. int err;
  6183. switch(cmd) {
  6184. case SIOCGMIIPHY:
  6185. data->phy_id = bp->phy_addr;
  6186. /* fallthru */
  6187. case SIOCGMIIREG: {
  6188. u32 mii_regval;
  6189. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6190. return -EOPNOTSUPP;
  6191. if (!netif_running(dev))
  6192. return -EAGAIN;
  6193. spin_lock_bh(&bp->phy_lock);
  6194. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6195. spin_unlock_bh(&bp->phy_lock);
  6196. data->val_out = mii_regval;
  6197. return err;
  6198. }
  6199. case SIOCSMIIREG:
  6200. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6201. return -EOPNOTSUPP;
  6202. if (!netif_running(dev))
  6203. return -EAGAIN;
  6204. spin_lock_bh(&bp->phy_lock);
  6205. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6206. spin_unlock_bh(&bp->phy_lock);
  6207. return err;
  6208. default:
  6209. /* do nothing */
  6210. break;
  6211. }
  6212. return -EOPNOTSUPP;
  6213. }
  6214. /* Called with rtnl_lock */
  6215. static int
  6216. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6217. {
  6218. struct sockaddr *addr = p;
  6219. struct bnx2 *bp = netdev_priv(dev);
  6220. if (!is_valid_ether_addr(addr->sa_data))
  6221. return -EINVAL;
  6222. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6223. if (netif_running(dev))
  6224. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6225. return 0;
  6226. }
  6227. /* Called with rtnl_lock */
  6228. static int
  6229. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6230. {
  6231. struct bnx2 *bp = netdev_priv(dev);
  6232. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6233. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6234. return -EINVAL;
  6235. dev->mtu = new_mtu;
  6236. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6237. }
  6238. #ifdef CONFIG_NET_POLL_CONTROLLER
  6239. static void
  6240. poll_bnx2(struct net_device *dev)
  6241. {
  6242. struct bnx2 *bp = netdev_priv(dev);
  6243. int i;
  6244. for (i = 0; i < bp->irq_nvecs; i++) {
  6245. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6246. disable_irq(irq->vector);
  6247. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6248. enable_irq(irq->vector);
  6249. }
  6250. }
  6251. #endif
  6252. static void __devinit
  6253. bnx2_get_5709_media(struct bnx2 *bp)
  6254. {
  6255. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6256. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6257. u32 strap;
  6258. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6259. return;
  6260. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6261. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6262. return;
  6263. }
  6264. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6265. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6266. else
  6267. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6268. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6269. switch (strap) {
  6270. case 0x4:
  6271. case 0x5:
  6272. case 0x6:
  6273. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6274. return;
  6275. }
  6276. } else {
  6277. switch (strap) {
  6278. case 0x1:
  6279. case 0x2:
  6280. case 0x4:
  6281. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6282. return;
  6283. }
  6284. }
  6285. }
  6286. static void __devinit
  6287. bnx2_get_pci_speed(struct bnx2 *bp)
  6288. {
  6289. u32 reg;
  6290. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6291. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6292. u32 clkreg;
  6293. bp->flags |= BNX2_FLAG_PCIX;
  6294. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6295. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6296. switch (clkreg) {
  6297. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6298. bp->bus_speed_mhz = 133;
  6299. break;
  6300. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6301. bp->bus_speed_mhz = 100;
  6302. break;
  6303. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6304. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6305. bp->bus_speed_mhz = 66;
  6306. break;
  6307. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6308. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6309. bp->bus_speed_mhz = 50;
  6310. break;
  6311. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6312. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6313. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6314. bp->bus_speed_mhz = 33;
  6315. break;
  6316. }
  6317. }
  6318. else {
  6319. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6320. bp->bus_speed_mhz = 66;
  6321. else
  6322. bp->bus_speed_mhz = 33;
  6323. }
  6324. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6325. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6326. }
  6327. static void __devinit
  6328. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6329. {
  6330. int rc, i, j;
  6331. u8 *data;
  6332. unsigned int block_end, rosize, len;
  6333. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6334. #define BNX2_VPD_LEN 128
  6335. #define BNX2_MAX_VER_SLEN 30
  6336. data = kmalloc(256, GFP_KERNEL);
  6337. if (!data)
  6338. return;
  6339. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6340. BNX2_VPD_LEN);
  6341. if (rc)
  6342. goto vpd_done;
  6343. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6344. data[i] = data[i + BNX2_VPD_LEN + 3];
  6345. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6346. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6347. data[i + 3] = data[i + BNX2_VPD_LEN];
  6348. }
  6349. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6350. if (i < 0)
  6351. goto vpd_done;
  6352. rosize = pci_vpd_lrdt_size(&data[i]);
  6353. i += PCI_VPD_LRDT_TAG_SIZE;
  6354. block_end = i + rosize;
  6355. if (block_end > BNX2_VPD_LEN)
  6356. goto vpd_done;
  6357. j = pci_vpd_find_info_keyword(data, i, rosize,
  6358. PCI_VPD_RO_KEYWORD_MFR_ID);
  6359. if (j < 0)
  6360. goto vpd_done;
  6361. len = pci_vpd_info_field_size(&data[j]);
  6362. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6363. if (j + len > block_end || len != 4 ||
  6364. memcmp(&data[j], "1028", 4))
  6365. goto vpd_done;
  6366. j = pci_vpd_find_info_keyword(data, i, rosize,
  6367. PCI_VPD_RO_KEYWORD_VENDOR0);
  6368. if (j < 0)
  6369. goto vpd_done;
  6370. len = pci_vpd_info_field_size(&data[j]);
  6371. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6372. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6373. goto vpd_done;
  6374. memcpy(bp->fw_version, &data[j], len);
  6375. bp->fw_version[len] = ' ';
  6376. vpd_done:
  6377. kfree(data);
  6378. }
  6379. static int __devinit
  6380. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6381. {
  6382. struct bnx2 *bp;
  6383. unsigned long mem_len;
  6384. int rc, i, j;
  6385. u32 reg;
  6386. u64 dma_mask, persist_dma_mask;
  6387. SET_NETDEV_DEV(dev, &pdev->dev);
  6388. bp = netdev_priv(dev);
  6389. bp->flags = 0;
  6390. bp->phy_flags = 0;
  6391. bp->temp_stats_blk =
  6392. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6393. if (bp->temp_stats_blk == NULL) {
  6394. rc = -ENOMEM;
  6395. goto err_out;
  6396. }
  6397. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6398. rc = pci_enable_device(pdev);
  6399. if (rc) {
  6400. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6401. goto err_out;
  6402. }
  6403. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6404. dev_err(&pdev->dev,
  6405. "Cannot find PCI device base address, aborting\n");
  6406. rc = -ENODEV;
  6407. goto err_out_disable;
  6408. }
  6409. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6410. if (rc) {
  6411. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6412. goto err_out_disable;
  6413. }
  6414. pci_set_master(pdev);
  6415. pci_save_state(pdev);
  6416. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6417. if (bp->pm_cap == 0) {
  6418. dev_err(&pdev->dev,
  6419. "Cannot find power management capability, aborting\n");
  6420. rc = -EIO;
  6421. goto err_out_release;
  6422. }
  6423. bp->dev = dev;
  6424. bp->pdev = pdev;
  6425. spin_lock_init(&bp->phy_lock);
  6426. spin_lock_init(&bp->indirect_lock);
  6427. #ifdef BCM_CNIC
  6428. mutex_init(&bp->cnic_lock);
  6429. #endif
  6430. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6431. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6432. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6433. dev->mem_end = dev->mem_start + mem_len;
  6434. dev->irq = pdev->irq;
  6435. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6436. if (!bp->regview) {
  6437. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6438. rc = -ENOMEM;
  6439. goto err_out_release;
  6440. }
  6441. /* Configure byte swap and enable write to the reg_window registers.
  6442. * Rely on CPU to do target byte swapping on big endian systems
  6443. * The chip's target access swapping will not swap all accesses
  6444. */
  6445. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6446. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6447. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6448. bnx2_set_power_state(bp, PCI_D0);
  6449. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6450. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6451. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6452. dev_err(&pdev->dev,
  6453. "Cannot find PCIE capability, aborting\n");
  6454. rc = -EIO;
  6455. goto err_out_unmap;
  6456. }
  6457. bp->flags |= BNX2_FLAG_PCIE;
  6458. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6459. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6460. } else {
  6461. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6462. if (bp->pcix_cap == 0) {
  6463. dev_err(&pdev->dev,
  6464. "Cannot find PCIX capability, aborting\n");
  6465. rc = -EIO;
  6466. goto err_out_unmap;
  6467. }
  6468. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6469. }
  6470. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6471. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6472. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6473. }
  6474. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6475. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6476. bp->flags |= BNX2_FLAG_MSI_CAP;
  6477. }
  6478. /* 5708 cannot support DMA addresses > 40-bit. */
  6479. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6480. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6481. else
  6482. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6483. /* Configure DMA attributes. */
  6484. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6485. dev->features |= NETIF_F_HIGHDMA;
  6486. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6487. if (rc) {
  6488. dev_err(&pdev->dev,
  6489. "pci_set_consistent_dma_mask failed, aborting\n");
  6490. goto err_out_unmap;
  6491. }
  6492. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6493. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6494. goto err_out_unmap;
  6495. }
  6496. if (!(bp->flags & BNX2_FLAG_PCIE))
  6497. bnx2_get_pci_speed(bp);
  6498. /* 5706A0 may falsely detect SERR and PERR. */
  6499. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6500. reg = REG_RD(bp, PCI_COMMAND);
  6501. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6502. REG_WR(bp, PCI_COMMAND, reg);
  6503. }
  6504. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6505. !(bp->flags & BNX2_FLAG_PCIX)) {
  6506. dev_err(&pdev->dev,
  6507. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6508. goto err_out_unmap;
  6509. }
  6510. bnx2_init_nvram(bp);
  6511. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6512. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6513. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6514. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6515. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6516. } else
  6517. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6518. /* Get the permanent MAC address. First we need to make sure the
  6519. * firmware is actually running.
  6520. */
  6521. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6522. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6523. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6524. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6525. rc = -ENODEV;
  6526. goto err_out_unmap;
  6527. }
  6528. bnx2_read_vpd_fw_ver(bp);
  6529. j = strlen(bp->fw_version);
  6530. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6531. for (i = 0; i < 3 && j < 24; i++) {
  6532. u8 num, k, skip0;
  6533. if (i == 0) {
  6534. bp->fw_version[j++] = 'b';
  6535. bp->fw_version[j++] = 'c';
  6536. bp->fw_version[j++] = ' ';
  6537. }
  6538. num = (u8) (reg >> (24 - (i * 8)));
  6539. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6540. if (num >= k || !skip0 || k == 1) {
  6541. bp->fw_version[j++] = (num / k) + '0';
  6542. skip0 = 0;
  6543. }
  6544. }
  6545. if (i != 2)
  6546. bp->fw_version[j++] = '.';
  6547. }
  6548. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6549. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6550. bp->wol = 1;
  6551. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6552. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6553. for (i = 0; i < 30; i++) {
  6554. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6555. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6556. break;
  6557. msleep(10);
  6558. }
  6559. }
  6560. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6561. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6562. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6563. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6564. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6565. if (j < 32)
  6566. bp->fw_version[j++] = ' ';
  6567. for (i = 0; i < 3 && j < 28; i++) {
  6568. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6569. reg = swab32(reg);
  6570. memcpy(&bp->fw_version[j], &reg, 4);
  6571. j += 4;
  6572. }
  6573. }
  6574. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6575. bp->mac_addr[0] = (u8) (reg >> 8);
  6576. bp->mac_addr[1] = (u8) reg;
  6577. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6578. bp->mac_addr[2] = (u8) (reg >> 24);
  6579. bp->mac_addr[3] = (u8) (reg >> 16);
  6580. bp->mac_addr[4] = (u8) (reg >> 8);
  6581. bp->mac_addr[5] = (u8) reg;
  6582. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6583. bnx2_set_rx_ring_size(bp, 255);
  6584. bp->rx_csum = 1;
  6585. bp->tx_quick_cons_trip_int = 2;
  6586. bp->tx_quick_cons_trip = 20;
  6587. bp->tx_ticks_int = 18;
  6588. bp->tx_ticks = 80;
  6589. bp->rx_quick_cons_trip_int = 2;
  6590. bp->rx_quick_cons_trip = 12;
  6591. bp->rx_ticks_int = 18;
  6592. bp->rx_ticks = 18;
  6593. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6594. bp->current_interval = BNX2_TIMER_INTERVAL;
  6595. bp->phy_addr = 1;
  6596. /* Disable WOL support if we are running on a SERDES chip. */
  6597. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6598. bnx2_get_5709_media(bp);
  6599. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6600. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6601. bp->phy_port = PORT_TP;
  6602. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6603. bp->phy_port = PORT_FIBRE;
  6604. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6605. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6606. bp->flags |= BNX2_FLAG_NO_WOL;
  6607. bp->wol = 0;
  6608. }
  6609. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6610. /* Don't do parallel detect on this board because of
  6611. * some board problems. The link will not go down
  6612. * if we do parallel detect.
  6613. */
  6614. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6615. pdev->subsystem_device == 0x310c)
  6616. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6617. } else {
  6618. bp->phy_addr = 2;
  6619. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6620. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6621. }
  6622. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6623. CHIP_NUM(bp) == CHIP_NUM_5708)
  6624. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6625. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6626. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6627. CHIP_REV(bp) == CHIP_REV_Bx))
  6628. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6629. bnx2_init_fw_cap(bp);
  6630. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6631. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6632. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6633. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6634. bp->flags |= BNX2_FLAG_NO_WOL;
  6635. bp->wol = 0;
  6636. }
  6637. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6638. bp->tx_quick_cons_trip_int =
  6639. bp->tx_quick_cons_trip;
  6640. bp->tx_ticks_int = bp->tx_ticks;
  6641. bp->rx_quick_cons_trip_int =
  6642. bp->rx_quick_cons_trip;
  6643. bp->rx_ticks_int = bp->rx_ticks;
  6644. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6645. bp->com_ticks_int = bp->com_ticks;
  6646. bp->cmd_ticks_int = bp->cmd_ticks;
  6647. }
  6648. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6649. *
  6650. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6651. * with byte enables disabled on the unused 32-bit word. This is legal
  6652. * but causes problems on the AMD 8132 which will eventually stop
  6653. * responding after a while.
  6654. *
  6655. * AMD believes this incompatibility is unique to the 5706, and
  6656. * prefers to locally disable MSI rather than globally disabling it.
  6657. */
  6658. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6659. struct pci_dev *amd_8132 = NULL;
  6660. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6661. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6662. amd_8132))) {
  6663. if (amd_8132->revision >= 0x10 &&
  6664. amd_8132->revision <= 0x13) {
  6665. disable_msi = 1;
  6666. pci_dev_put(amd_8132);
  6667. break;
  6668. }
  6669. }
  6670. }
  6671. bnx2_set_default_link(bp);
  6672. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6673. init_timer(&bp->timer);
  6674. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6675. bp->timer.data = (unsigned long) bp;
  6676. bp->timer.function = bnx2_timer;
  6677. return 0;
  6678. err_out_unmap:
  6679. if (bp->regview) {
  6680. iounmap(bp->regview);
  6681. bp->regview = NULL;
  6682. }
  6683. err_out_release:
  6684. pci_release_regions(pdev);
  6685. err_out_disable:
  6686. pci_disable_device(pdev);
  6687. pci_set_drvdata(pdev, NULL);
  6688. err_out:
  6689. return rc;
  6690. }
  6691. static char * __devinit
  6692. bnx2_bus_string(struct bnx2 *bp, char *str)
  6693. {
  6694. char *s = str;
  6695. if (bp->flags & BNX2_FLAG_PCIE) {
  6696. s += sprintf(s, "PCI Express");
  6697. } else {
  6698. s += sprintf(s, "PCI");
  6699. if (bp->flags & BNX2_FLAG_PCIX)
  6700. s += sprintf(s, "-X");
  6701. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6702. s += sprintf(s, " 32-bit");
  6703. else
  6704. s += sprintf(s, " 64-bit");
  6705. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6706. }
  6707. return str;
  6708. }
  6709. static void __devinit
  6710. bnx2_init_napi(struct bnx2 *bp)
  6711. {
  6712. int i;
  6713. for (i = 0; i < bp->irq_nvecs; i++) {
  6714. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6715. int (*poll)(struct napi_struct *, int);
  6716. if (i == 0)
  6717. poll = bnx2_poll;
  6718. else
  6719. poll = bnx2_poll_msix;
  6720. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6721. bnapi->bp = bp;
  6722. }
  6723. }
  6724. static const struct net_device_ops bnx2_netdev_ops = {
  6725. .ndo_open = bnx2_open,
  6726. .ndo_start_xmit = bnx2_start_xmit,
  6727. .ndo_stop = bnx2_close,
  6728. .ndo_get_stats = bnx2_get_stats,
  6729. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6730. .ndo_do_ioctl = bnx2_ioctl,
  6731. .ndo_validate_addr = eth_validate_addr,
  6732. .ndo_set_mac_address = bnx2_change_mac_addr,
  6733. .ndo_change_mtu = bnx2_change_mtu,
  6734. .ndo_tx_timeout = bnx2_tx_timeout,
  6735. #ifdef BCM_VLAN
  6736. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6737. #endif
  6738. #ifdef CONFIG_NET_POLL_CONTROLLER
  6739. .ndo_poll_controller = poll_bnx2,
  6740. #endif
  6741. };
  6742. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6743. {
  6744. #ifdef BCM_VLAN
  6745. dev->vlan_features |= flags;
  6746. #endif
  6747. }
  6748. static int __devinit
  6749. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6750. {
  6751. static int version_printed = 0;
  6752. struct net_device *dev = NULL;
  6753. struct bnx2 *bp;
  6754. int rc;
  6755. char str[40];
  6756. if (version_printed++ == 0)
  6757. pr_info("%s", version);
  6758. /* dev zeroed in init_etherdev */
  6759. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6760. if (!dev)
  6761. return -ENOMEM;
  6762. rc = bnx2_init_board(pdev, dev);
  6763. if (rc < 0) {
  6764. free_netdev(dev);
  6765. return rc;
  6766. }
  6767. dev->netdev_ops = &bnx2_netdev_ops;
  6768. dev->watchdog_timeo = TX_TIMEOUT;
  6769. dev->ethtool_ops = &bnx2_ethtool_ops;
  6770. bp = netdev_priv(dev);
  6771. pci_set_drvdata(pdev, dev);
  6772. rc = bnx2_request_firmware(bp);
  6773. if (rc)
  6774. goto error;
  6775. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6776. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6777. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6778. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6779. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6780. dev->features |= NETIF_F_IPV6_CSUM;
  6781. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6782. }
  6783. #ifdef BCM_VLAN
  6784. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6785. #endif
  6786. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6787. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6788. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6789. dev->features |= NETIF_F_TSO6;
  6790. vlan_features_add(dev, NETIF_F_TSO6);
  6791. }
  6792. if ((rc = register_netdev(dev))) {
  6793. dev_err(&pdev->dev, "Cannot register net device\n");
  6794. goto error;
  6795. }
  6796. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6797. board_info[ent->driver_data].name,
  6798. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6799. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6800. bnx2_bus_string(bp, str),
  6801. dev->base_addr,
  6802. bp->pdev->irq, dev->dev_addr);
  6803. return 0;
  6804. error:
  6805. if (bp->mips_firmware)
  6806. release_firmware(bp->mips_firmware);
  6807. if (bp->rv2p_firmware)
  6808. release_firmware(bp->rv2p_firmware);
  6809. if (bp->regview)
  6810. iounmap(bp->regview);
  6811. pci_release_regions(pdev);
  6812. pci_disable_device(pdev);
  6813. pci_set_drvdata(pdev, NULL);
  6814. free_netdev(dev);
  6815. return rc;
  6816. }
  6817. static void __devexit
  6818. bnx2_remove_one(struct pci_dev *pdev)
  6819. {
  6820. struct net_device *dev = pci_get_drvdata(pdev);
  6821. struct bnx2 *bp = netdev_priv(dev);
  6822. flush_scheduled_work();
  6823. unregister_netdev(dev);
  6824. if (bp->mips_firmware)
  6825. release_firmware(bp->mips_firmware);
  6826. if (bp->rv2p_firmware)
  6827. release_firmware(bp->rv2p_firmware);
  6828. if (bp->regview)
  6829. iounmap(bp->regview);
  6830. kfree(bp->temp_stats_blk);
  6831. free_netdev(dev);
  6832. pci_release_regions(pdev);
  6833. pci_disable_device(pdev);
  6834. pci_set_drvdata(pdev, NULL);
  6835. }
  6836. static int
  6837. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6838. {
  6839. struct net_device *dev = pci_get_drvdata(pdev);
  6840. struct bnx2 *bp = netdev_priv(dev);
  6841. /* PCI register 4 needs to be saved whether netif_running() or not.
  6842. * MSI address and data need to be saved if using MSI and
  6843. * netif_running().
  6844. */
  6845. pci_save_state(pdev);
  6846. if (!netif_running(dev))
  6847. return 0;
  6848. flush_scheduled_work();
  6849. bnx2_netif_stop(bp);
  6850. netif_device_detach(dev);
  6851. del_timer_sync(&bp->timer);
  6852. bnx2_shutdown_chip(bp);
  6853. bnx2_free_skbs(bp);
  6854. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6855. return 0;
  6856. }
  6857. static int
  6858. bnx2_resume(struct pci_dev *pdev)
  6859. {
  6860. struct net_device *dev = pci_get_drvdata(pdev);
  6861. struct bnx2 *bp = netdev_priv(dev);
  6862. pci_restore_state(pdev);
  6863. if (!netif_running(dev))
  6864. return 0;
  6865. bnx2_set_power_state(bp, PCI_D0);
  6866. netif_device_attach(dev);
  6867. bnx2_init_nic(bp, 1);
  6868. bnx2_netif_start(bp);
  6869. return 0;
  6870. }
  6871. /**
  6872. * bnx2_io_error_detected - called when PCI error is detected
  6873. * @pdev: Pointer to PCI device
  6874. * @state: The current pci connection state
  6875. *
  6876. * This function is called after a PCI bus error affecting
  6877. * this device has been detected.
  6878. */
  6879. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6880. pci_channel_state_t state)
  6881. {
  6882. struct net_device *dev = pci_get_drvdata(pdev);
  6883. struct bnx2 *bp = netdev_priv(dev);
  6884. rtnl_lock();
  6885. netif_device_detach(dev);
  6886. if (state == pci_channel_io_perm_failure) {
  6887. rtnl_unlock();
  6888. return PCI_ERS_RESULT_DISCONNECT;
  6889. }
  6890. if (netif_running(dev)) {
  6891. bnx2_netif_stop(bp);
  6892. del_timer_sync(&bp->timer);
  6893. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6894. }
  6895. pci_disable_device(pdev);
  6896. rtnl_unlock();
  6897. /* Request a slot slot reset. */
  6898. return PCI_ERS_RESULT_NEED_RESET;
  6899. }
  6900. /**
  6901. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6902. * @pdev: Pointer to PCI device
  6903. *
  6904. * Restart the card from scratch, as if from a cold-boot.
  6905. */
  6906. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6907. {
  6908. struct net_device *dev = pci_get_drvdata(pdev);
  6909. struct bnx2 *bp = netdev_priv(dev);
  6910. rtnl_lock();
  6911. if (pci_enable_device(pdev)) {
  6912. dev_err(&pdev->dev,
  6913. "Cannot re-enable PCI device after reset\n");
  6914. rtnl_unlock();
  6915. return PCI_ERS_RESULT_DISCONNECT;
  6916. }
  6917. pci_set_master(pdev);
  6918. pci_restore_state(pdev);
  6919. pci_save_state(pdev);
  6920. if (netif_running(dev)) {
  6921. bnx2_set_power_state(bp, PCI_D0);
  6922. bnx2_init_nic(bp, 1);
  6923. }
  6924. rtnl_unlock();
  6925. return PCI_ERS_RESULT_RECOVERED;
  6926. }
  6927. /**
  6928. * bnx2_io_resume - called when traffic can start flowing again.
  6929. * @pdev: Pointer to PCI device
  6930. *
  6931. * This callback is called when the error recovery driver tells us that
  6932. * its OK to resume normal operation.
  6933. */
  6934. static void bnx2_io_resume(struct pci_dev *pdev)
  6935. {
  6936. struct net_device *dev = pci_get_drvdata(pdev);
  6937. struct bnx2 *bp = netdev_priv(dev);
  6938. rtnl_lock();
  6939. if (netif_running(dev))
  6940. bnx2_netif_start(bp);
  6941. netif_device_attach(dev);
  6942. rtnl_unlock();
  6943. }
  6944. static struct pci_error_handlers bnx2_err_handler = {
  6945. .error_detected = bnx2_io_error_detected,
  6946. .slot_reset = bnx2_io_slot_reset,
  6947. .resume = bnx2_io_resume,
  6948. };
  6949. static struct pci_driver bnx2_pci_driver = {
  6950. .name = DRV_MODULE_NAME,
  6951. .id_table = bnx2_pci_tbl,
  6952. .probe = bnx2_init_one,
  6953. .remove = __devexit_p(bnx2_remove_one),
  6954. .suspend = bnx2_suspend,
  6955. .resume = bnx2_resume,
  6956. .err_handler = &bnx2_err_handler,
  6957. };
  6958. static int __init bnx2_init(void)
  6959. {
  6960. return pci_register_driver(&bnx2_pci_driver);
  6961. }
  6962. static void __exit bnx2_cleanup(void)
  6963. {
  6964. pci_unregister_driver(&bnx2_pci_driver);
  6965. }
  6966. module_init(bnx2_init);
  6967. module_exit(bnx2_cleanup);