xfs_inode.c 122 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_btree_trace.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_error.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_quota.h"
  46. #include "xfs_filestream.h"
  47. #include "xfs_vnodeops.h"
  48. #include "xfs_trace.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. #ifdef DEBUG
  61. /*
  62. * Make sure that the extents in the given memory buffer
  63. * are valid.
  64. */
  65. STATIC void
  66. xfs_validate_extents(
  67. xfs_ifork_t *ifp,
  68. int nrecs,
  69. xfs_exntfmt_t fmt)
  70. {
  71. xfs_bmbt_irec_t irec;
  72. xfs_bmbt_rec_host_t rec;
  73. int i;
  74. for (i = 0; i < nrecs; i++) {
  75. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  76. rec.l0 = get_unaligned(&ep->l0);
  77. rec.l1 = get_unaligned(&ep->l1);
  78. xfs_bmbt_get_all(&rec, &irec);
  79. if (fmt == XFS_EXTFMT_NOSTATE)
  80. ASSERT(irec.br_state == XFS_EXT_NORM);
  81. }
  82. }
  83. #else /* DEBUG */
  84. #define xfs_validate_extents(ifp, nrecs, fmt)
  85. #endif /* DEBUG */
  86. /*
  87. * Check that none of the inode's in the buffer have a next
  88. * unlinked field of 0.
  89. */
  90. #if defined(DEBUG)
  91. void
  92. xfs_inobp_check(
  93. xfs_mount_t *mp,
  94. xfs_buf_t *bp)
  95. {
  96. int i;
  97. int j;
  98. xfs_dinode_t *dip;
  99. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  100. for (i = 0; i < j; i++) {
  101. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  102. i * mp->m_sb.sb_inodesize);
  103. if (!dip->di_next_unlinked) {
  104. xfs_fs_cmn_err(CE_ALERT, mp,
  105. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  106. bp);
  107. ASSERT(dip->di_next_unlinked);
  108. }
  109. }
  110. }
  111. #endif
  112. /*
  113. * Find the buffer associated with the given inode map
  114. * We do basic validation checks on the buffer once it has been
  115. * retrieved from disk.
  116. */
  117. STATIC int
  118. xfs_imap_to_bp(
  119. xfs_mount_t *mp,
  120. xfs_trans_t *tp,
  121. struct xfs_imap *imap,
  122. xfs_buf_t **bpp,
  123. uint buf_flags,
  124. uint iget_flags)
  125. {
  126. int error;
  127. int i;
  128. int ni;
  129. xfs_buf_t *bp;
  130. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  131. (int)imap->im_len, buf_flags, &bp);
  132. if (error) {
  133. if (error != EAGAIN) {
  134. cmn_err(CE_WARN,
  135. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  136. "an error %d on %s. Returning error.",
  137. error, mp->m_fsname);
  138. } else {
  139. ASSERT(buf_flags & XBF_TRYLOCK);
  140. }
  141. return error;
  142. }
  143. /*
  144. * Validate the magic number and version of every inode in the buffer
  145. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  146. */
  147. #ifdef DEBUG
  148. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  149. #else /* usual case */
  150. ni = 1;
  151. #endif
  152. for (i = 0; i < ni; i++) {
  153. int di_ok;
  154. xfs_dinode_t *dip;
  155. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  156. (i << mp->m_sb.sb_inodelog));
  157. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  158. XFS_DINODE_GOOD_VERSION(dip->di_version);
  159. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  160. XFS_ERRTAG_ITOBP_INOTOBP,
  161. XFS_RANDOM_ITOBP_INOTOBP))) {
  162. if (iget_flags & XFS_IGET_UNTRUSTED) {
  163. xfs_trans_brelse(tp, bp);
  164. return XFS_ERROR(EINVAL);
  165. }
  166. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  167. XFS_ERRLEVEL_HIGH, mp, dip);
  168. #ifdef DEBUG
  169. cmn_err(CE_PANIC,
  170. "Device %s - bad inode magic/vsn "
  171. "daddr %lld #%d (magic=%x)",
  172. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  173. (unsigned long long)imap->im_blkno, i,
  174. be16_to_cpu(dip->di_magic));
  175. #endif
  176. xfs_trans_brelse(tp, bp);
  177. return XFS_ERROR(EFSCORRUPTED);
  178. }
  179. }
  180. xfs_inobp_check(mp, bp);
  181. /*
  182. * Mark the buffer as an inode buffer now that it looks good
  183. */
  184. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  185. *bpp = bp;
  186. return 0;
  187. }
  188. /*
  189. * This routine is called to map an inode number within a file
  190. * system to the buffer containing the on-disk version of the
  191. * inode. It returns a pointer to the buffer containing the
  192. * on-disk inode in the bpp parameter, and in the dip parameter
  193. * it returns a pointer to the on-disk inode within that buffer.
  194. *
  195. * If a non-zero error is returned, then the contents of bpp and
  196. * dipp are undefined.
  197. *
  198. * Use xfs_imap() to determine the size and location of the
  199. * buffer to read from disk.
  200. */
  201. int
  202. xfs_inotobp(
  203. xfs_mount_t *mp,
  204. xfs_trans_t *tp,
  205. xfs_ino_t ino,
  206. xfs_dinode_t **dipp,
  207. xfs_buf_t **bpp,
  208. int *offset,
  209. uint imap_flags)
  210. {
  211. struct xfs_imap imap;
  212. xfs_buf_t *bp;
  213. int error;
  214. imap.im_blkno = 0;
  215. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  216. if (error)
  217. return error;
  218. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  219. if (error)
  220. return error;
  221. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  222. *bpp = bp;
  223. *offset = imap.im_boffset;
  224. return 0;
  225. }
  226. /*
  227. * This routine is called to map an inode to the buffer containing
  228. * the on-disk version of the inode. It returns a pointer to the
  229. * buffer containing the on-disk inode in the bpp parameter, and in
  230. * the dip parameter it returns a pointer to the on-disk inode within
  231. * that buffer.
  232. *
  233. * If a non-zero error is returned, then the contents of bpp and
  234. * dipp are undefined.
  235. *
  236. * The inode is expected to already been mapped to its buffer and read
  237. * in once, thus we can use the mapping information stored in the inode
  238. * rather than calling xfs_imap(). This allows us to avoid the overhead
  239. * of looking at the inode btree for small block file systems
  240. * (see xfs_imap()).
  241. */
  242. int
  243. xfs_itobp(
  244. xfs_mount_t *mp,
  245. xfs_trans_t *tp,
  246. xfs_inode_t *ip,
  247. xfs_dinode_t **dipp,
  248. xfs_buf_t **bpp,
  249. uint buf_flags)
  250. {
  251. xfs_buf_t *bp;
  252. int error;
  253. ASSERT(ip->i_imap.im_blkno != 0);
  254. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  255. if (error)
  256. return error;
  257. if (!bp) {
  258. ASSERT(buf_flags & XBF_TRYLOCK);
  259. ASSERT(tp == NULL);
  260. *bpp = NULL;
  261. return EAGAIN;
  262. }
  263. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  264. *bpp = bp;
  265. return 0;
  266. }
  267. /*
  268. * Move inode type and inode format specific information from the
  269. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  270. * this means set if_rdev to the proper value. For files, directories,
  271. * and symlinks this means to bring in the in-line data or extent
  272. * pointers. For a file in B-tree format, only the root is immediately
  273. * brought in-core. The rest will be in-lined in if_extents when it
  274. * is first referenced (see xfs_iread_extents()).
  275. */
  276. STATIC int
  277. xfs_iformat(
  278. xfs_inode_t *ip,
  279. xfs_dinode_t *dip)
  280. {
  281. xfs_attr_shortform_t *atp;
  282. int size;
  283. int error;
  284. xfs_fsize_t di_size;
  285. ip->i_df.if_ext_max =
  286. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  287. error = 0;
  288. if (unlikely(be32_to_cpu(dip->di_nextents) +
  289. be16_to_cpu(dip->di_anextents) >
  290. be64_to_cpu(dip->di_nblocks))) {
  291. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  292. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  293. (unsigned long long)ip->i_ino,
  294. (int)(be32_to_cpu(dip->di_nextents) +
  295. be16_to_cpu(dip->di_anextents)),
  296. (unsigned long long)
  297. be64_to_cpu(dip->di_nblocks));
  298. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  299. ip->i_mount, dip);
  300. return XFS_ERROR(EFSCORRUPTED);
  301. }
  302. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  303. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  304. "corrupt dinode %Lu, forkoff = 0x%x.",
  305. (unsigned long long)ip->i_ino,
  306. dip->di_forkoff);
  307. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  308. ip->i_mount, dip);
  309. return XFS_ERROR(EFSCORRUPTED);
  310. }
  311. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  312. !ip->i_mount->m_rtdev_targp)) {
  313. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  314. "corrupt dinode %Lu, has realtime flag set.",
  315. ip->i_ino);
  316. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  317. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  318. return XFS_ERROR(EFSCORRUPTED);
  319. }
  320. switch (ip->i_d.di_mode & S_IFMT) {
  321. case S_IFIFO:
  322. case S_IFCHR:
  323. case S_IFBLK:
  324. case S_IFSOCK:
  325. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  326. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  327. ip->i_mount, dip);
  328. return XFS_ERROR(EFSCORRUPTED);
  329. }
  330. ip->i_d.di_size = 0;
  331. ip->i_size = 0;
  332. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  333. break;
  334. case S_IFREG:
  335. case S_IFLNK:
  336. case S_IFDIR:
  337. switch (dip->di_format) {
  338. case XFS_DINODE_FMT_LOCAL:
  339. /*
  340. * no local regular files yet
  341. */
  342. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  343. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  344. "corrupt inode %Lu "
  345. "(local format for regular file).",
  346. (unsigned long long) ip->i_ino);
  347. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  348. XFS_ERRLEVEL_LOW,
  349. ip->i_mount, dip);
  350. return XFS_ERROR(EFSCORRUPTED);
  351. }
  352. di_size = be64_to_cpu(dip->di_size);
  353. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  354. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  355. "corrupt inode %Lu "
  356. "(bad size %Ld for local inode).",
  357. (unsigned long long) ip->i_ino,
  358. (long long) di_size);
  359. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  360. XFS_ERRLEVEL_LOW,
  361. ip->i_mount, dip);
  362. return XFS_ERROR(EFSCORRUPTED);
  363. }
  364. size = (int)di_size;
  365. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  366. break;
  367. case XFS_DINODE_FMT_EXTENTS:
  368. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  369. break;
  370. case XFS_DINODE_FMT_BTREE:
  371. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  375. ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. break;
  379. default:
  380. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  381. return XFS_ERROR(EFSCORRUPTED);
  382. }
  383. if (error) {
  384. return error;
  385. }
  386. if (!XFS_DFORK_Q(dip))
  387. return 0;
  388. ASSERT(ip->i_afp == NULL);
  389. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  390. ip->i_afp->if_ext_max =
  391. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  392. switch (dip->di_aformat) {
  393. case XFS_DINODE_FMT_LOCAL:
  394. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  395. size = be16_to_cpu(atp->hdr.totsize);
  396. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  397. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  398. "corrupt inode %Lu "
  399. "(bad attr fork size %Ld).",
  400. (unsigned long long) ip->i_ino,
  401. (long long) size);
  402. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  403. XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  408. break;
  409. case XFS_DINODE_FMT_EXTENTS:
  410. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  411. break;
  412. case XFS_DINODE_FMT_BTREE:
  413. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  414. break;
  415. default:
  416. error = XFS_ERROR(EFSCORRUPTED);
  417. break;
  418. }
  419. if (error) {
  420. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  421. ip->i_afp = NULL;
  422. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  423. }
  424. return error;
  425. }
  426. /*
  427. * The file is in-lined in the on-disk inode.
  428. * If it fits into if_inline_data, then copy
  429. * it there, otherwise allocate a buffer for it
  430. * and copy the data there. Either way, set
  431. * if_data to point at the data.
  432. * If we allocate a buffer for the data, make
  433. * sure that its size is a multiple of 4 and
  434. * record the real size in i_real_bytes.
  435. */
  436. STATIC int
  437. xfs_iformat_local(
  438. xfs_inode_t *ip,
  439. xfs_dinode_t *dip,
  440. int whichfork,
  441. int size)
  442. {
  443. xfs_ifork_t *ifp;
  444. int real_size;
  445. /*
  446. * If the size is unreasonable, then something
  447. * is wrong and we just bail out rather than crash in
  448. * kmem_alloc() or memcpy() below.
  449. */
  450. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  451. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  452. "corrupt inode %Lu "
  453. "(bad size %d for local fork, size = %d).",
  454. (unsigned long long) ip->i_ino, size,
  455. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  456. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  457. ip->i_mount, dip);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. ifp = XFS_IFORK_PTR(ip, whichfork);
  461. real_size = 0;
  462. if (size == 0)
  463. ifp->if_u1.if_data = NULL;
  464. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  465. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  466. else {
  467. real_size = roundup(size, 4);
  468. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  469. }
  470. ifp->if_bytes = size;
  471. ifp->if_real_bytes = real_size;
  472. if (size)
  473. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  474. ifp->if_flags &= ~XFS_IFEXTENTS;
  475. ifp->if_flags |= XFS_IFINLINE;
  476. return 0;
  477. }
  478. /*
  479. * The file consists of a set of extents all
  480. * of which fit into the on-disk inode.
  481. * If there are few enough extents to fit into
  482. * the if_inline_ext, then copy them there.
  483. * Otherwise allocate a buffer for them and copy
  484. * them into it. Either way, set if_extents
  485. * to point at the extents.
  486. */
  487. STATIC int
  488. xfs_iformat_extents(
  489. xfs_inode_t *ip,
  490. xfs_dinode_t *dip,
  491. int whichfork)
  492. {
  493. xfs_bmbt_rec_t *dp;
  494. xfs_ifork_t *ifp;
  495. int nex;
  496. int size;
  497. int i;
  498. ifp = XFS_IFORK_PTR(ip, whichfork);
  499. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  500. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  501. /*
  502. * If the number of extents is unreasonable, then something
  503. * is wrong and we just bail out rather than crash in
  504. * kmem_alloc() or memcpy() below.
  505. */
  506. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  507. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  508. "corrupt inode %Lu ((a)extents = %d).",
  509. (unsigned long long) ip->i_ino, nex);
  510. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  511. ip->i_mount, dip);
  512. return XFS_ERROR(EFSCORRUPTED);
  513. }
  514. ifp->if_real_bytes = 0;
  515. if (nex == 0)
  516. ifp->if_u1.if_extents = NULL;
  517. else if (nex <= XFS_INLINE_EXTS)
  518. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  519. else
  520. xfs_iext_add(ifp, 0, nex);
  521. ifp->if_bytes = size;
  522. if (size) {
  523. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  524. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  525. for (i = 0; i < nex; i++, dp++) {
  526. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  527. ep->l0 = get_unaligned_be64(&dp->l0);
  528. ep->l1 = get_unaligned_be64(&dp->l1);
  529. }
  530. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  531. if (whichfork != XFS_DATA_FORK ||
  532. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  533. if (unlikely(xfs_check_nostate_extents(
  534. ifp, 0, nex))) {
  535. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  536. XFS_ERRLEVEL_LOW,
  537. ip->i_mount);
  538. return XFS_ERROR(EFSCORRUPTED);
  539. }
  540. }
  541. ifp->if_flags |= XFS_IFEXTENTS;
  542. return 0;
  543. }
  544. /*
  545. * The file has too many extents to fit into
  546. * the inode, so they are in B-tree format.
  547. * Allocate a buffer for the root of the B-tree
  548. * and copy the root into it. The i_extents
  549. * field will remain NULL until all of the
  550. * extents are read in (when they are needed).
  551. */
  552. STATIC int
  553. xfs_iformat_btree(
  554. xfs_inode_t *ip,
  555. xfs_dinode_t *dip,
  556. int whichfork)
  557. {
  558. xfs_bmdr_block_t *dfp;
  559. xfs_ifork_t *ifp;
  560. /* REFERENCED */
  561. int nrecs;
  562. int size;
  563. ifp = XFS_IFORK_PTR(ip, whichfork);
  564. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  565. size = XFS_BMAP_BROOT_SPACE(dfp);
  566. nrecs = be16_to_cpu(dfp->bb_numrecs);
  567. /*
  568. * blow out if -- fork has less extents than can fit in
  569. * fork (fork shouldn't be a btree format), root btree
  570. * block has more records than can fit into the fork,
  571. * or the number of extents is greater than the number of
  572. * blocks.
  573. */
  574. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  575. || XFS_BMDR_SPACE_CALC(nrecs) >
  576. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  577. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  578. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  579. "corrupt inode %Lu (btree).",
  580. (unsigned long long) ip->i_ino);
  581. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  582. ip->i_mount);
  583. return XFS_ERROR(EFSCORRUPTED);
  584. }
  585. ifp->if_broot_bytes = size;
  586. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  587. ASSERT(ifp->if_broot != NULL);
  588. /*
  589. * Copy and convert from the on-disk structure
  590. * to the in-memory structure.
  591. */
  592. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  593. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  594. ifp->if_broot, size);
  595. ifp->if_flags &= ~XFS_IFEXTENTS;
  596. ifp->if_flags |= XFS_IFBROOT;
  597. return 0;
  598. }
  599. STATIC void
  600. xfs_dinode_from_disk(
  601. xfs_icdinode_t *to,
  602. xfs_dinode_t *from)
  603. {
  604. to->di_magic = be16_to_cpu(from->di_magic);
  605. to->di_mode = be16_to_cpu(from->di_mode);
  606. to->di_version = from ->di_version;
  607. to->di_format = from->di_format;
  608. to->di_onlink = be16_to_cpu(from->di_onlink);
  609. to->di_uid = be32_to_cpu(from->di_uid);
  610. to->di_gid = be32_to_cpu(from->di_gid);
  611. to->di_nlink = be32_to_cpu(from->di_nlink);
  612. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  613. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  614. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  615. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  616. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  617. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  618. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  619. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  620. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  621. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  622. to->di_size = be64_to_cpu(from->di_size);
  623. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  624. to->di_extsize = be32_to_cpu(from->di_extsize);
  625. to->di_nextents = be32_to_cpu(from->di_nextents);
  626. to->di_anextents = be16_to_cpu(from->di_anextents);
  627. to->di_forkoff = from->di_forkoff;
  628. to->di_aformat = from->di_aformat;
  629. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  630. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  631. to->di_flags = be16_to_cpu(from->di_flags);
  632. to->di_gen = be32_to_cpu(from->di_gen);
  633. }
  634. void
  635. xfs_dinode_to_disk(
  636. xfs_dinode_t *to,
  637. xfs_icdinode_t *from)
  638. {
  639. to->di_magic = cpu_to_be16(from->di_magic);
  640. to->di_mode = cpu_to_be16(from->di_mode);
  641. to->di_version = from ->di_version;
  642. to->di_format = from->di_format;
  643. to->di_onlink = cpu_to_be16(from->di_onlink);
  644. to->di_uid = cpu_to_be32(from->di_uid);
  645. to->di_gid = cpu_to_be32(from->di_gid);
  646. to->di_nlink = cpu_to_be32(from->di_nlink);
  647. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  648. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  649. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  650. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  651. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  652. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  653. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  654. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  655. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  656. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  657. to->di_size = cpu_to_be64(from->di_size);
  658. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  659. to->di_extsize = cpu_to_be32(from->di_extsize);
  660. to->di_nextents = cpu_to_be32(from->di_nextents);
  661. to->di_anextents = cpu_to_be16(from->di_anextents);
  662. to->di_forkoff = from->di_forkoff;
  663. to->di_aformat = from->di_aformat;
  664. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  665. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  666. to->di_flags = cpu_to_be16(from->di_flags);
  667. to->di_gen = cpu_to_be32(from->di_gen);
  668. }
  669. STATIC uint
  670. _xfs_dic2xflags(
  671. __uint16_t di_flags)
  672. {
  673. uint flags = 0;
  674. if (di_flags & XFS_DIFLAG_ANY) {
  675. if (di_flags & XFS_DIFLAG_REALTIME)
  676. flags |= XFS_XFLAG_REALTIME;
  677. if (di_flags & XFS_DIFLAG_PREALLOC)
  678. flags |= XFS_XFLAG_PREALLOC;
  679. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  680. flags |= XFS_XFLAG_IMMUTABLE;
  681. if (di_flags & XFS_DIFLAG_APPEND)
  682. flags |= XFS_XFLAG_APPEND;
  683. if (di_flags & XFS_DIFLAG_SYNC)
  684. flags |= XFS_XFLAG_SYNC;
  685. if (di_flags & XFS_DIFLAG_NOATIME)
  686. flags |= XFS_XFLAG_NOATIME;
  687. if (di_flags & XFS_DIFLAG_NODUMP)
  688. flags |= XFS_XFLAG_NODUMP;
  689. if (di_flags & XFS_DIFLAG_RTINHERIT)
  690. flags |= XFS_XFLAG_RTINHERIT;
  691. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  692. flags |= XFS_XFLAG_PROJINHERIT;
  693. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  694. flags |= XFS_XFLAG_NOSYMLINKS;
  695. if (di_flags & XFS_DIFLAG_EXTSIZE)
  696. flags |= XFS_XFLAG_EXTSIZE;
  697. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  698. flags |= XFS_XFLAG_EXTSZINHERIT;
  699. if (di_flags & XFS_DIFLAG_NODEFRAG)
  700. flags |= XFS_XFLAG_NODEFRAG;
  701. if (di_flags & XFS_DIFLAG_FILESTREAM)
  702. flags |= XFS_XFLAG_FILESTREAM;
  703. }
  704. return flags;
  705. }
  706. uint
  707. xfs_ip2xflags(
  708. xfs_inode_t *ip)
  709. {
  710. xfs_icdinode_t *dic = &ip->i_d;
  711. return _xfs_dic2xflags(dic->di_flags) |
  712. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  713. }
  714. uint
  715. xfs_dic2xflags(
  716. xfs_dinode_t *dip)
  717. {
  718. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  719. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  720. }
  721. /*
  722. * Read the disk inode attributes into the in-core inode structure.
  723. */
  724. int
  725. xfs_iread(
  726. xfs_mount_t *mp,
  727. xfs_trans_t *tp,
  728. xfs_inode_t *ip,
  729. uint iget_flags)
  730. {
  731. xfs_buf_t *bp;
  732. xfs_dinode_t *dip;
  733. int error;
  734. /*
  735. * Fill in the location information in the in-core inode.
  736. */
  737. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  738. if (error)
  739. return error;
  740. /*
  741. * Get pointers to the on-disk inode and the buffer containing it.
  742. */
  743. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  744. XBF_LOCK, iget_flags);
  745. if (error)
  746. return error;
  747. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  748. /*
  749. * If we got something that isn't an inode it means someone
  750. * (nfs or dmi) has a stale handle.
  751. */
  752. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  753. #ifdef DEBUG
  754. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  755. "dip->di_magic (0x%x) != "
  756. "XFS_DINODE_MAGIC (0x%x)",
  757. be16_to_cpu(dip->di_magic),
  758. XFS_DINODE_MAGIC);
  759. #endif /* DEBUG */
  760. error = XFS_ERROR(EINVAL);
  761. goto out_brelse;
  762. }
  763. /*
  764. * If the on-disk inode is already linked to a directory
  765. * entry, copy all of the inode into the in-core inode.
  766. * xfs_iformat() handles copying in the inode format
  767. * specific information.
  768. * Otherwise, just get the truly permanent information.
  769. */
  770. if (dip->di_mode) {
  771. xfs_dinode_from_disk(&ip->i_d, dip);
  772. error = xfs_iformat(ip, dip);
  773. if (error) {
  774. #ifdef DEBUG
  775. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  776. "xfs_iformat() returned error %d",
  777. error);
  778. #endif /* DEBUG */
  779. goto out_brelse;
  780. }
  781. } else {
  782. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  783. ip->i_d.di_version = dip->di_version;
  784. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  785. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  786. /*
  787. * Make sure to pull in the mode here as well in
  788. * case the inode is released without being used.
  789. * This ensures that xfs_inactive() will see that
  790. * the inode is already free and not try to mess
  791. * with the uninitialized part of it.
  792. */
  793. ip->i_d.di_mode = 0;
  794. /*
  795. * Initialize the per-fork minima and maxima for a new
  796. * inode here. xfs_iformat will do it for old inodes.
  797. */
  798. ip->i_df.if_ext_max =
  799. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  800. }
  801. /*
  802. * The inode format changed when we moved the link count and
  803. * made it 32 bits long. If this is an old format inode,
  804. * convert it in memory to look like a new one. If it gets
  805. * flushed to disk we will convert back before flushing or
  806. * logging it. We zero out the new projid field and the old link
  807. * count field. We'll handle clearing the pad field (the remains
  808. * of the old uuid field) when we actually convert the inode to
  809. * the new format. We don't change the version number so that we
  810. * can distinguish this from a real new format inode.
  811. */
  812. if (ip->i_d.di_version == 1) {
  813. ip->i_d.di_nlink = ip->i_d.di_onlink;
  814. ip->i_d.di_onlink = 0;
  815. xfs_set_projid(ip, 0);
  816. }
  817. ip->i_delayed_blks = 0;
  818. ip->i_size = ip->i_d.di_size;
  819. /*
  820. * Mark the buffer containing the inode as something to keep
  821. * around for a while. This helps to keep recently accessed
  822. * meta-data in-core longer.
  823. */
  824. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  825. /*
  826. * Use xfs_trans_brelse() to release the buffer containing the
  827. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  828. * in xfs_itobp() above. If tp is NULL, this is just a normal
  829. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  830. * will only release the buffer if it is not dirty within the
  831. * transaction. It will be OK to release the buffer in this case,
  832. * because inodes on disk are never destroyed and we will be
  833. * locking the new in-core inode before putting it in the hash
  834. * table where other processes can find it. Thus we don't have
  835. * to worry about the inode being changed just because we released
  836. * the buffer.
  837. */
  838. out_brelse:
  839. xfs_trans_brelse(tp, bp);
  840. return error;
  841. }
  842. /*
  843. * Read in extents from a btree-format inode.
  844. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  845. */
  846. int
  847. xfs_iread_extents(
  848. xfs_trans_t *tp,
  849. xfs_inode_t *ip,
  850. int whichfork)
  851. {
  852. int error;
  853. xfs_ifork_t *ifp;
  854. xfs_extnum_t nextents;
  855. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  856. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  857. ip->i_mount);
  858. return XFS_ERROR(EFSCORRUPTED);
  859. }
  860. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  861. ifp = XFS_IFORK_PTR(ip, whichfork);
  862. /*
  863. * We know that the size is valid (it's checked in iformat_btree)
  864. */
  865. ifp->if_lastex = NULLEXTNUM;
  866. ifp->if_bytes = ifp->if_real_bytes = 0;
  867. ifp->if_flags |= XFS_IFEXTENTS;
  868. xfs_iext_add(ifp, 0, nextents);
  869. error = xfs_bmap_read_extents(tp, ip, whichfork);
  870. if (error) {
  871. xfs_iext_destroy(ifp);
  872. ifp->if_flags &= ~XFS_IFEXTENTS;
  873. return error;
  874. }
  875. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  876. return 0;
  877. }
  878. /*
  879. * Allocate an inode on disk and return a copy of its in-core version.
  880. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  881. * appropriately within the inode. The uid and gid for the inode are
  882. * set according to the contents of the given cred structure.
  883. *
  884. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  885. * has a free inode available, call xfs_iget()
  886. * to obtain the in-core version of the allocated inode. Finally,
  887. * fill in the inode and log its initial contents. In this case,
  888. * ialloc_context would be set to NULL and call_again set to false.
  889. *
  890. * If xfs_dialloc() does not have an available inode,
  891. * it will replenish its supply by doing an allocation. Since we can
  892. * only do one allocation within a transaction without deadlocks, we
  893. * must commit the current transaction before returning the inode itself.
  894. * In this case, therefore, we will set call_again to true and return.
  895. * The caller should then commit the current transaction, start a new
  896. * transaction, and call xfs_ialloc() again to actually get the inode.
  897. *
  898. * To ensure that some other process does not grab the inode that
  899. * was allocated during the first call to xfs_ialloc(), this routine
  900. * also returns the [locked] bp pointing to the head of the freelist
  901. * as ialloc_context. The caller should hold this buffer across
  902. * the commit and pass it back into this routine on the second call.
  903. *
  904. * If we are allocating quota inodes, we do not have a parent inode
  905. * to attach to or associate with (i.e. pip == NULL) because they
  906. * are not linked into the directory structure - they are attached
  907. * directly to the superblock - and so have no parent.
  908. */
  909. int
  910. xfs_ialloc(
  911. xfs_trans_t *tp,
  912. xfs_inode_t *pip,
  913. mode_t mode,
  914. xfs_nlink_t nlink,
  915. xfs_dev_t rdev,
  916. prid_t prid,
  917. int okalloc,
  918. xfs_buf_t **ialloc_context,
  919. boolean_t *call_again,
  920. xfs_inode_t **ipp)
  921. {
  922. xfs_ino_t ino;
  923. xfs_inode_t *ip;
  924. uint flags;
  925. int error;
  926. timespec_t tv;
  927. int filestreams = 0;
  928. /*
  929. * Call the space management code to pick
  930. * the on-disk inode to be allocated.
  931. */
  932. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  933. ialloc_context, call_again, &ino);
  934. if (error)
  935. return error;
  936. if (*call_again || ino == NULLFSINO) {
  937. *ipp = NULL;
  938. return 0;
  939. }
  940. ASSERT(*ialloc_context == NULL);
  941. /*
  942. * Get the in-core inode with the lock held exclusively.
  943. * This is because we're setting fields here we need
  944. * to prevent others from looking at until we're done.
  945. */
  946. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  947. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  948. if (error)
  949. return error;
  950. ASSERT(ip != NULL);
  951. ip->i_d.di_mode = (__uint16_t)mode;
  952. ip->i_d.di_onlink = 0;
  953. ip->i_d.di_nlink = nlink;
  954. ASSERT(ip->i_d.di_nlink == nlink);
  955. ip->i_d.di_uid = current_fsuid();
  956. ip->i_d.di_gid = current_fsgid();
  957. xfs_set_projid(ip, prid);
  958. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  959. /*
  960. * If the superblock version is up to where we support new format
  961. * inodes and this is currently an old format inode, then change
  962. * the inode version number now. This way we only do the conversion
  963. * here rather than here and in the flush/logging code.
  964. */
  965. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  966. ip->i_d.di_version == 1) {
  967. ip->i_d.di_version = 2;
  968. /*
  969. * We've already zeroed the old link count, the projid field,
  970. * and the pad field.
  971. */
  972. }
  973. /*
  974. * Project ids won't be stored on disk if we are using a version 1 inode.
  975. */
  976. if ((prid != 0) && (ip->i_d.di_version == 1))
  977. xfs_bump_ino_vers2(tp, ip);
  978. if (pip && XFS_INHERIT_GID(pip)) {
  979. ip->i_d.di_gid = pip->i_d.di_gid;
  980. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  981. ip->i_d.di_mode |= S_ISGID;
  982. }
  983. }
  984. /*
  985. * If the group ID of the new file does not match the effective group
  986. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  987. * (and only if the irix_sgid_inherit compatibility variable is set).
  988. */
  989. if ((irix_sgid_inherit) &&
  990. (ip->i_d.di_mode & S_ISGID) &&
  991. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  992. ip->i_d.di_mode &= ~S_ISGID;
  993. }
  994. ip->i_d.di_size = 0;
  995. ip->i_size = 0;
  996. ip->i_d.di_nextents = 0;
  997. ASSERT(ip->i_d.di_nblocks == 0);
  998. nanotime(&tv);
  999. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1000. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1001. ip->i_d.di_atime = ip->i_d.di_mtime;
  1002. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1003. /*
  1004. * di_gen will have been taken care of in xfs_iread.
  1005. */
  1006. ip->i_d.di_extsize = 0;
  1007. ip->i_d.di_dmevmask = 0;
  1008. ip->i_d.di_dmstate = 0;
  1009. ip->i_d.di_flags = 0;
  1010. flags = XFS_ILOG_CORE;
  1011. switch (mode & S_IFMT) {
  1012. case S_IFIFO:
  1013. case S_IFCHR:
  1014. case S_IFBLK:
  1015. case S_IFSOCK:
  1016. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1017. ip->i_df.if_u2.if_rdev = rdev;
  1018. ip->i_df.if_flags = 0;
  1019. flags |= XFS_ILOG_DEV;
  1020. break;
  1021. case S_IFREG:
  1022. /*
  1023. * we can't set up filestreams until after the VFS inode
  1024. * is set up properly.
  1025. */
  1026. if (pip && xfs_inode_is_filestream(pip))
  1027. filestreams = 1;
  1028. /* fall through */
  1029. case S_IFDIR:
  1030. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1031. uint di_flags = 0;
  1032. if ((mode & S_IFMT) == S_IFDIR) {
  1033. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1034. di_flags |= XFS_DIFLAG_RTINHERIT;
  1035. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1036. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1037. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1038. }
  1039. } else if ((mode & S_IFMT) == S_IFREG) {
  1040. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1041. di_flags |= XFS_DIFLAG_REALTIME;
  1042. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1043. di_flags |= XFS_DIFLAG_EXTSIZE;
  1044. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1045. }
  1046. }
  1047. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1048. xfs_inherit_noatime)
  1049. di_flags |= XFS_DIFLAG_NOATIME;
  1050. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1051. xfs_inherit_nodump)
  1052. di_flags |= XFS_DIFLAG_NODUMP;
  1053. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1054. xfs_inherit_sync)
  1055. di_flags |= XFS_DIFLAG_SYNC;
  1056. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1057. xfs_inherit_nosymlinks)
  1058. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1059. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1060. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1061. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1062. xfs_inherit_nodefrag)
  1063. di_flags |= XFS_DIFLAG_NODEFRAG;
  1064. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1065. di_flags |= XFS_DIFLAG_FILESTREAM;
  1066. ip->i_d.di_flags |= di_flags;
  1067. }
  1068. /* FALLTHROUGH */
  1069. case S_IFLNK:
  1070. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1071. ip->i_df.if_flags = XFS_IFEXTENTS;
  1072. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1073. ip->i_df.if_u1.if_extents = NULL;
  1074. break;
  1075. default:
  1076. ASSERT(0);
  1077. }
  1078. /*
  1079. * Attribute fork settings for new inode.
  1080. */
  1081. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1082. ip->i_d.di_anextents = 0;
  1083. /*
  1084. * Log the new values stuffed into the inode.
  1085. */
  1086. xfs_trans_log_inode(tp, ip, flags);
  1087. /* now that we have an i_mode we can setup inode ops and unlock */
  1088. xfs_setup_inode(ip);
  1089. /* now we have set up the vfs inode we can associate the filestream */
  1090. if (filestreams) {
  1091. error = xfs_filestream_associate(pip, ip);
  1092. if (error < 0)
  1093. return -error;
  1094. if (!error)
  1095. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1096. }
  1097. *ipp = ip;
  1098. return 0;
  1099. }
  1100. /*
  1101. * Check to make sure that there are no blocks allocated to the
  1102. * file beyond the size of the file. We don't check this for
  1103. * files with fixed size extents or real time extents, but we
  1104. * at least do it for regular files.
  1105. */
  1106. #ifdef DEBUG
  1107. void
  1108. xfs_isize_check(
  1109. xfs_mount_t *mp,
  1110. xfs_inode_t *ip,
  1111. xfs_fsize_t isize)
  1112. {
  1113. xfs_fileoff_t map_first;
  1114. int nimaps;
  1115. xfs_bmbt_irec_t imaps[2];
  1116. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1117. return;
  1118. if (XFS_IS_REALTIME_INODE(ip))
  1119. return;
  1120. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1121. return;
  1122. nimaps = 2;
  1123. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1124. /*
  1125. * The filesystem could be shutting down, so bmapi may return
  1126. * an error.
  1127. */
  1128. if (xfs_bmapi(NULL, ip, map_first,
  1129. (XFS_B_TO_FSB(mp,
  1130. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1131. map_first),
  1132. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1133. NULL))
  1134. return;
  1135. ASSERT(nimaps == 1);
  1136. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1137. }
  1138. #endif /* DEBUG */
  1139. /*
  1140. * Calculate the last possible buffered byte in a file. This must
  1141. * include data that was buffered beyond the EOF by the write code.
  1142. * This also needs to deal with overflowing the xfs_fsize_t type
  1143. * which can happen for sizes near the limit.
  1144. *
  1145. * We also need to take into account any blocks beyond the EOF. It
  1146. * may be the case that they were buffered by a write which failed.
  1147. * In that case the pages will still be in memory, but the inode size
  1148. * will never have been updated.
  1149. */
  1150. STATIC xfs_fsize_t
  1151. xfs_file_last_byte(
  1152. xfs_inode_t *ip)
  1153. {
  1154. xfs_mount_t *mp;
  1155. xfs_fsize_t last_byte;
  1156. xfs_fileoff_t last_block;
  1157. xfs_fileoff_t size_last_block;
  1158. int error;
  1159. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1160. mp = ip->i_mount;
  1161. /*
  1162. * Only check for blocks beyond the EOF if the extents have
  1163. * been read in. This eliminates the need for the inode lock,
  1164. * and it also saves us from looking when it really isn't
  1165. * necessary.
  1166. */
  1167. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1168. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1169. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1170. XFS_DATA_FORK);
  1171. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1172. if (error) {
  1173. last_block = 0;
  1174. }
  1175. } else {
  1176. last_block = 0;
  1177. }
  1178. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1179. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1180. last_byte = XFS_FSB_TO_B(mp, last_block);
  1181. if (last_byte < 0) {
  1182. return XFS_MAXIOFFSET(mp);
  1183. }
  1184. last_byte += (1 << mp->m_writeio_log);
  1185. if (last_byte < 0) {
  1186. return XFS_MAXIOFFSET(mp);
  1187. }
  1188. return last_byte;
  1189. }
  1190. /*
  1191. * Start the truncation of the file to new_size. The new size
  1192. * must be smaller than the current size. This routine will
  1193. * clear the buffer and page caches of file data in the removed
  1194. * range, and xfs_itruncate_finish() will remove the underlying
  1195. * disk blocks.
  1196. *
  1197. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1198. * must NOT have the inode lock held at all. This is because we're
  1199. * calling into the buffer/page cache code and we can't hold the
  1200. * inode lock when we do so.
  1201. *
  1202. * We need to wait for any direct I/Os in flight to complete before we
  1203. * proceed with the truncate. This is needed to prevent the extents
  1204. * being read or written by the direct I/Os from being removed while the
  1205. * I/O is in flight as there is no other method of synchronising
  1206. * direct I/O with the truncate operation. Also, because we hold
  1207. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1208. * started until the truncate completes and drops the lock. Essentially,
  1209. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1210. * ordering between direct I/Os and the truncate operation.
  1211. *
  1212. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1213. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1214. * in the case that the caller is locking things out of order and
  1215. * may not be able to call xfs_itruncate_finish() with the inode lock
  1216. * held without dropping the I/O lock. If the caller must drop the
  1217. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1218. * must be called again with all the same restrictions as the initial
  1219. * call.
  1220. */
  1221. int
  1222. xfs_itruncate_start(
  1223. xfs_inode_t *ip,
  1224. uint flags,
  1225. xfs_fsize_t new_size)
  1226. {
  1227. xfs_fsize_t last_byte;
  1228. xfs_off_t toss_start;
  1229. xfs_mount_t *mp;
  1230. int error = 0;
  1231. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1232. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1233. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1234. (flags == XFS_ITRUNC_MAYBE));
  1235. mp = ip->i_mount;
  1236. /* wait for the completion of any pending DIOs */
  1237. if (new_size == 0 || new_size < ip->i_size)
  1238. xfs_ioend_wait(ip);
  1239. /*
  1240. * Call toss_pages or flushinval_pages to get rid of pages
  1241. * overlapping the region being removed. We have to use
  1242. * the less efficient flushinval_pages in the case that the
  1243. * caller may not be able to finish the truncate without
  1244. * dropping the inode's I/O lock. Make sure
  1245. * to catch any pages brought in by buffers overlapping
  1246. * the EOF by searching out beyond the isize by our
  1247. * block size. We round new_size up to a block boundary
  1248. * so that we don't toss things on the same block as
  1249. * new_size but before it.
  1250. *
  1251. * Before calling toss_page or flushinval_pages, make sure to
  1252. * call remapf() over the same region if the file is mapped.
  1253. * This frees up mapped file references to the pages in the
  1254. * given range and for the flushinval_pages case it ensures
  1255. * that we get the latest mapped changes flushed out.
  1256. */
  1257. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1258. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1259. if (toss_start < 0) {
  1260. /*
  1261. * The place to start tossing is beyond our maximum
  1262. * file size, so there is no way that the data extended
  1263. * out there.
  1264. */
  1265. return 0;
  1266. }
  1267. last_byte = xfs_file_last_byte(ip);
  1268. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1269. if (last_byte > toss_start) {
  1270. if (flags & XFS_ITRUNC_DEFINITE) {
  1271. xfs_tosspages(ip, toss_start,
  1272. -1, FI_REMAPF_LOCKED);
  1273. } else {
  1274. error = xfs_flushinval_pages(ip, toss_start,
  1275. -1, FI_REMAPF_LOCKED);
  1276. }
  1277. }
  1278. #ifdef DEBUG
  1279. if (new_size == 0) {
  1280. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1281. }
  1282. #endif
  1283. return error;
  1284. }
  1285. /*
  1286. * Shrink the file to the given new_size. The new size must be smaller than
  1287. * the current size. This will free up the underlying blocks in the removed
  1288. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1289. *
  1290. * The transaction passed to this routine must have made a permanent log
  1291. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1292. * given transaction and start new ones, so make sure everything involved in
  1293. * the transaction is tidy before calling here. Some transaction will be
  1294. * returned to the caller to be committed. The incoming transaction must
  1295. * already include the inode, and both inode locks must be held exclusively.
  1296. * The inode must also be "held" within the transaction. On return the inode
  1297. * will be "held" within the returned transaction. This routine does NOT
  1298. * require any disk space to be reserved for it within the transaction.
  1299. *
  1300. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1301. * indicates the fork which is to be truncated. For the attribute fork we only
  1302. * support truncation to size 0.
  1303. *
  1304. * We use the sync parameter to indicate whether or not the first transaction
  1305. * we perform might have to be synchronous. For the attr fork, it needs to be
  1306. * so if the unlink of the inode is not yet known to be permanent in the log.
  1307. * This keeps us from freeing and reusing the blocks of the attribute fork
  1308. * before the unlink of the inode becomes permanent.
  1309. *
  1310. * For the data fork, we normally have to run synchronously if we're being
  1311. * called out of the inactive path or we're being called out of the create path
  1312. * where we're truncating an existing file. Either way, the truncate needs to
  1313. * be sync so blocks don't reappear in the file with altered data in case of a
  1314. * crash. wsync filesystems can run the first case async because anything that
  1315. * shrinks the inode has to run sync so by the time we're called here from
  1316. * inactive, the inode size is permanently set to 0.
  1317. *
  1318. * Calls from the truncate path always need to be sync unless we're in a wsync
  1319. * filesystem and the file has already been unlinked.
  1320. *
  1321. * The caller is responsible for correctly setting the sync parameter. It gets
  1322. * too hard for us to guess here which path we're being called out of just
  1323. * based on inode state.
  1324. *
  1325. * If we get an error, we must return with the inode locked and linked into the
  1326. * current transaction. This keeps things simple for the higher level code,
  1327. * because it always knows that the inode is locked and held in the transaction
  1328. * that returns to it whether errors occur or not. We don't mark the inode
  1329. * dirty on error so that transactions can be easily aborted if possible.
  1330. */
  1331. int
  1332. xfs_itruncate_finish(
  1333. xfs_trans_t **tp,
  1334. xfs_inode_t *ip,
  1335. xfs_fsize_t new_size,
  1336. int fork,
  1337. int sync)
  1338. {
  1339. xfs_fsblock_t first_block;
  1340. xfs_fileoff_t first_unmap_block;
  1341. xfs_fileoff_t last_block;
  1342. xfs_filblks_t unmap_len=0;
  1343. xfs_mount_t *mp;
  1344. xfs_trans_t *ntp;
  1345. int done;
  1346. int committed;
  1347. xfs_bmap_free_t free_list;
  1348. int error;
  1349. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1350. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1351. ASSERT(*tp != NULL);
  1352. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1353. ASSERT(ip->i_transp == *tp);
  1354. ASSERT(ip->i_itemp != NULL);
  1355. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1356. ntp = *tp;
  1357. mp = (ntp)->t_mountp;
  1358. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1359. /*
  1360. * We only support truncating the entire attribute fork.
  1361. */
  1362. if (fork == XFS_ATTR_FORK) {
  1363. new_size = 0LL;
  1364. }
  1365. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1366. trace_xfs_itruncate_finish_start(ip, new_size);
  1367. /*
  1368. * The first thing we do is set the size to new_size permanently
  1369. * on disk. This way we don't have to worry about anyone ever
  1370. * being able to look at the data being freed even in the face
  1371. * of a crash. What we're getting around here is the case where
  1372. * we free a block, it is allocated to another file, it is written
  1373. * to, and then we crash. If the new data gets written to the
  1374. * file but the log buffers containing the free and reallocation
  1375. * don't, then we'd end up with garbage in the blocks being freed.
  1376. * As long as we make the new_size permanent before actually
  1377. * freeing any blocks it doesn't matter if they get writtten to.
  1378. *
  1379. * The callers must signal into us whether or not the size
  1380. * setting here must be synchronous. There are a few cases
  1381. * where it doesn't have to be synchronous. Those cases
  1382. * occur if the file is unlinked and we know the unlink is
  1383. * permanent or if the blocks being truncated are guaranteed
  1384. * to be beyond the inode eof (regardless of the link count)
  1385. * and the eof value is permanent. Both of these cases occur
  1386. * only on wsync-mounted filesystems. In those cases, we're
  1387. * guaranteed that no user will ever see the data in the blocks
  1388. * that are being truncated so the truncate can run async.
  1389. * In the free beyond eof case, the file may wind up with
  1390. * more blocks allocated to it than it needs if we crash
  1391. * and that won't get fixed until the next time the file
  1392. * is re-opened and closed but that's ok as that shouldn't
  1393. * be too many blocks.
  1394. *
  1395. * However, we can't just make all wsync xactions run async
  1396. * because there's one call out of the create path that needs
  1397. * to run sync where it's truncating an existing file to size
  1398. * 0 whose size is > 0.
  1399. *
  1400. * It's probably possible to come up with a test in this
  1401. * routine that would correctly distinguish all the above
  1402. * cases from the values of the function parameters and the
  1403. * inode state but for sanity's sake, I've decided to let the
  1404. * layers above just tell us. It's simpler to correctly figure
  1405. * out in the layer above exactly under what conditions we
  1406. * can run async and I think it's easier for others read and
  1407. * follow the logic in case something has to be changed.
  1408. * cscope is your friend -- rcc.
  1409. *
  1410. * The attribute fork is much simpler.
  1411. *
  1412. * For the attribute fork we allow the caller to tell us whether
  1413. * the unlink of the inode that led to this call is yet permanent
  1414. * in the on disk log. If it is not and we will be freeing extents
  1415. * in this inode then we make the first transaction synchronous
  1416. * to make sure that the unlink is permanent by the time we free
  1417. * the blocks.
  1418. */
  1419. if (fork == XFS_DATA_FORK) {
  1420. if (ip->i_d.di_nextents > 0) {
  1421. /*
  1422. * If we are not changing the file size then do
  1423. * not update the on-disk file size - we may be
  1424. * called from xfs_inactive_free_eofblocks(). If we
  1425. * update the on-disk file size and then the system
  1426. * crashes before the contents of the file are
  1427. * flushed to disk then the files may be full of
  1428. * holes (ie NULL files bug).
  1429. */
  1430. if (ip->i_size != new_size) {
  1431. ip->i_d.di_size = new_size;
  1432. ip->i_size = new_size;
  1433. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1434. }
  1435. }
  1436. } else if (sync) {
  1437. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1438. if (ip->i_d.di_anextents > 0)
  1439. xfs_trans_set_sync(ntp);
  1440. }
  1441. ASSERT(fork == XFS_DATA_FORK ||
  1442. (fork == XFS_ATTR_FORK &&
  1443. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1444. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1445. /*
  1446. * Since it is possible for space to become allocated beyond
  1447. * the end of the file (in a crash where the space is allocated
  1448. * but the inode size is not yet updated), simply remove any
  1449. * blocks which show up between the new EOF and the maximum
  1450. * possible file size. If the first block to be removed is
  1451. * beyond the maximum file size (ie it is the same as last_block),
  1452. * then there is nothing to do.
  1453. */
  1454. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1455. ASSERT(first_unmap_block <= last_block);
  1456. done = 0;
  1457. if (last_block == first_unmap_block) {
  1458. done = 1;
  1459. } else {
  1460. unmap_len = last_block - first_unmap_block + 1;
  1461. }
  1462. while (!done) {
  1463. /*
  1464. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1465. * will tell us whether it freed the entire range or
  1466. * not. If this is a synchronous mount (wsync),
  1467. * then we can tell bunmapi to keep all the
  1468. * transactions asynchronous since the unlink
  1469. * transaction that made this inode inactive has
  1470. * already hit the disk. There's no danger of
  1471. * the freed blocks being reused, there being a
  1472. * crash, and the reused blocks suddenly reappearing
  1473. * in this file with garbage in them once recovery
  1474. * runs.
  1475. */
  1476. xfs_bmap_init(&free_list, &first_block);
  1477. error = xfs_bunmapi(ntp, ip,
  1478. first_unmap_block, unmap_len,
  1479. xfs_bmapi_aflag(fork),
  1480. XFS_ITRUNC_MAX_EXTENTS,
  1481. &first_block, &free_list,
  1482. &done);
  1483. if (error) {
  1484. /*
  1485. * If the bunmapi call encounters an error,
  1486. * return to the caller where the transaction
  1487. * can be properly aborted. We just need to
  1488. * make sure we're not holding any resources
  1489. * that we were not when we came in.
  1490. */
  1491. xfs_bmap_cancel(&free_list);
  1492. return error;
  1493. }
  1494. /*
  1495. * Duplicate the transaction that has the permanent
  1496. * reservation and commit the old transaction.
  1497. */
  1498. error = xfs_bmap_finish(tp, &free_list, &committed);
  1499. ntp = *tp;
  1500. if (committed)
  1501. xfs_trans_ijoin(ntp, ip);
  1502. if (error) {
  1503. /*
  1504. * If the bmap finish call encounters an error, return
  1505. * to the caller where the transaction can be properly
  1506. * aborted. We just need to make sure we're not
  1507. * holding any resources that we were not when we came
  1508. * in.
  1509. *
  1510. * Aborting from this point might lose some blocks in
  1511. * the file system, but oh well.
  1512. */
  1513. xfs_bmap_cancel(&free_list);
  1514. return error;
  1515. }
  1516. if (committed) {
  1517. /*
  1518. * Mark the inode dirty so it will be logged and
  1519. * moved forward in the log as part of every commit.
  1520. */
  1521. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1522. }
  1523. ntp = xfs_trans_dup(ntp);
  1524. error = xfs_trans_commit(*tp, 0);
  1525. *tp = ntp;
  1526. xfs_trans_ijoin(ntp, ip);
  1527. if (error)
  1528. return error;
  1529. /*
  1530. * transaction commit worked ok so we can drop the extra ticket
  1531. * reference that we gained in xfs_trans_dup()
  1532. */
  1533. xfs_log_ticket_put(ntp->t_ticket);
  1534. error = xfs_trans_reserve(ntp, 0,
  1535. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1536. XFS_TRANS_PERM_LOG_RES,
  1537. XFS_ITRUNCATE_LOG_COUNT);
  1538. if (error)
  1539. return error;
  1540. }
  1541. /*
  1542. * Only update the size in the case of the data fork, but
  1543. * always re-log the inode so that our permanent transaction
  1544. * can keep on rolling it forward in the log.
  1545. */
  1546. if (fork == XFS_DATA_FORK) {
  1547. xfs_isize_check(mp, ip, new_size);
  1548. /*
  1549. * If we are not changing the file size then do
  1550. * not update the on-disk file size - we may be
  1551. * called from xfs_inactive_free_eofblocks(). If we
  1552. * update the on-disk file size and then the system
  1553. * crashes before the contents of the file are
  1554. * flushed to disk then the files may be full of
  1555. * holes (ie NULL files bug).
  1556. */
  1557. if (ip->i_size != new_size) {
  1558. ip->i_d.di_size = new_size;
  1559. ip->i_size = new_size;
  1560. }
  1561. }
  1562. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1563. ASSERT((new_size != 0) ||
  1564. (fork == XFS_ATTR_FORK) ||
  1565. (ip->i_delayed_blks == 0));
  1566. ASSERT((new_size != 0) ||
  1567. (fork == XFS_ATTR_FORK) ||
  1568. (ip->i_d.di_nextents == 0));
  1569. trace_xfs_itruncate_finish_end(ip, new_size);
  1570. return 0;
  1571. }
  1572. /*
  1573. * This is called when the inode's link count goes to 0.
  1574. * We place the on-disk inode on a list in the AGI. It
  1575. * will be pulled from this list when the inode is freed.
  1576. */
  1577. int
  1578. xfs_iunlink(
  1579. xfs_trans_t *tp,
  1580. xfs_inode_t *ip)
  1581. {
  1582. xfs_mount_t *mp;
  1583. xfs_agi_t *agi;
  1584. xfs_dinode_t *dip;
  1585. xfs_buf_t *agibp;
  1586. xfs_buf_t *ibp;
  1587. xfs_agino_t agino;
  1588. short bucket_index;
  1589. int offset;
  1590. int error;
  1591. ASSERT(ip->i_d.di_nlink == 0);
  1592. ASSERT(ip->i_d.di_mode != 0);
  1593. ASSERT(ip->i_transp == tp);
  1594. mp = tp->t_mountp;
  1595. /*
  1596. * Get the agi buffer first. It ensures lock ordering
  1597. * on the list.
  1598. */
  1599. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1600. if (error)
  1601. return error;
  1602. agi = XFS_BUF_TO_AGI(agibp);
  1603. /*
  1604. * Get the index into the agi hash table for the
  1605. * list this inode will go on.
  1606. */
  1607. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1608. ASSERT(agino != 0);
  1609. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1610. ASSERT(agi->agi_unlinked[bucket_index]);
  1611. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1612. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1613. /*
  1614. * There is already another inode in the bucket we need
  1615. * to add ourselves to. Add us at the front of the list.
  1616. * Here we put the head pointer into our next pointer,
  1617. * and then we fall through to point the head at us.
  1618. */
  1619. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1620. if (error)
  1621. return error;
  1622. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1623. /* both on-disk, don't endian flip twice */
  1624. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1625. offset = ip->i_imap.im_boffset +
  1626. offsetof(xfs_dinode_t, di_next_unlinked);
  1627. xfs_trans_inode_buf(tp, ibp);
  1628. xfs_trans_log_buf(tp, ibp, offset,
  1629. (offset + sizeof(xfs_agino_t) - 1));
  1630. xfs_inobp_check(mp, ibp);
  1631. }
  1632. /*
  1633. * Point the bucket head pointer at the inode being inserted.
  1634. */
  1635. ASSERT(agino != 0);
  1636. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1637. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1638. (sizeof(xfs_agino_t) * bucket_index);
  1639. xfs_trans_log_buf(tp, agibp, offset,
  1640. (offset + sizeof(xfs_agino_t) - 1));
  1641. return 0;
  1642. }
  1643. /*
  1644. * Pull the on-disk inode from the AGI unlinked list.
  1645. */
  1646. STATIC int
  1647. xfs_iunlink_remove(
  1648. xfs_trans_t *tp,
  1649. xfs_inode_t *ip)
  1650. {
  1651. xfs_ino_t next_ino;
  1652. xfs_mount_t *mp;
  1653. xfs_agi_t *agi;
  1654. xfs_dinode_t *dip;
  1655. xfs_buf_t *agibp;
  1656. xfs_buf_t *ibp;
  1657. xfs_agnumber_t agno;
  1658. xfs_agino_t agino;
  1659. xfs_agino_t next_agino;
  1660. xfs_buf_t *last_ibp;
  1661. xfs_dinode_t *last_dip = NULL;
  1662. short bucket_index;
  1663. int offset, last_offset = 0;
  1664. int error;
  1665. mp = tp->t_mountp;
  1666. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1667. /*
  1668. * Get the agi buffer first. It ensures lock ordering
  1669. * on the list.
  1670. */
  1671. error = xfs_read_agi(mp, tp, agno, &agibp);
  1672. if (error)
  1673. return error;
  1674. agi = XFS_BUF_TO_AGI(agibp);
  1675. /*
  1676. * Get the index into the agi hash table for the
  1677. * list this inode will go on.
  1678. */
  1679. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1680. ASSERT(agino != 0);
  1681. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1682. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1683. ASSERT(agi->agi_unlinked[bucket_index]);
  1684. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1685. /*
  1686. * We're at the head of the list. Get the inode's
  1687. * on-disk buffer to see if there is anyone after us
  1688. * on the list. Only modify our next pointer if it
  1689. * is not already NULLAGINO. This saves us the overhead
  1690. * of dealing with the buffer when there is no need to
  1691. * change it.
  1692. */
  1693. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1694. if (error) {
  1695. cmn_err(CE_WARN,
  1696. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1697. error, mp->m_fsname);
  1698. return error;
  1699. }
  1700. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1701. ASSERT(next_agino != 0);
  1702. if (next_agino != NULLAGINO) {
  1703. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1704. offset = ip->i_imap.im_boffset +
  1705. offsetof(xfs_dinode_t, di_next_unlinked);
  1706. xfs_trans_inode_buf(tp, ibp);
  1707. xfs_trans_log_buf(tp, ibp, offset,
  1708. (offset + sizeof(xfs_agino_t) - 1));
  1709. xfs_inobp_check(mp, ibp);
  1710. } else {
  1711. xfs_trans_brelse(tp, ibp);
  1712. }
  1713. /*
  1714. * Point the bucket head pointer at the next inode.
  1715. */
  1716. ASSERT(next_agino != 0);
  1717. ASSERT(next_agino != agino);
  1718. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1719. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1720. (sizeof(xfs_agino_t) * bucket_index);
  1721. xfs_trans_log_buf(tp, agibp, offset,
  1722. (offset + sizeof(xfs_agino_t) - 1));
  1723. } else {
  1724. /*
  1725. * We need to search the list for the inode being freed.
  1726. */
  1727. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1728. last_ibp = NULL;
  1729. while (next_agino != agino) {
  1730. /*
  1731. * If the last inode wasn't the one pointing to
  1732. * us, then release its buffer since we're not
  1733. * going to do anything with it.
  1734. */
  1735. if (last_ibp != NULL) {
  1736. xfs_trans_brelse(tp, last_ibp);
  1737. }
  1738. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1739. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1740. &last_ibp, &last_offset, 0);
  1741. if (error) {
  1742. cmn_err(CE_WARN,
  1743. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1744. error, mp->m_fsname);
  1745. return error;
  1746. }
  1747. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1748. ASSERT(next_agino != NULLAGINO);
  1749. ASSERT(next_agino != 0);
  1750. }
  1751. /*
  1752. * Now last_ibp points to the buffer previous to us on
  1753. * the unlinked list. Pull us from the list.
  1754. */
  1755. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1756. if (error) {
  1757. cmn_err(CE_WARN,
  1758. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1759. error, mp->m_fsname);
  1760. return error;
  1761. }
  1762. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1763. ASSERT(next_agino != 0);
  1764. ASSERT(next_agino != agino);
  1765. if (next_agino != NULLAGINO) {
  1766. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1767. offset = ip->i_imap.im_boffset +
  1768. offsetof(xfs_dinode_t, di_next_unlinked);
  1769. xfs_trans_inode_buf(tp, ibp);
  1770. xfs_trans_log_buf(tp, ibp, offset,
  1771. (offset + sizeof(xfs_agino_t) - 1));
  1772. xfs_inobp_check(mp, ibp);
  1773. } else {
  1774. xfs_trans_brelse(tp, ibp);
  1775. }
  1776. /*
  1777. * Point the previous inode on the list to the next inode.
  1778. */
  1779. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1780. ASSERT(next_agino != 0);
  1781. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1782. xfs_trans_inode_buf(tp, last_ibp);
  1783. xfs_trans_log_buf(tp, last_ibp, offset,
  1784. (offset + sizeof(xfs_agino_t) - 1));
  1785. xfs_inobp_check(mp, last_ibp);
  1786. }
  1787. return 0;
  1788. }
  1789. /*
  1790. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1791. * inodes that are in memory - they all must be marked stale and attached to
  1792. * the cluster buffer.
  1793. */
  1794. STATIC void
  1795. xfs_ifree_cluster(
  1796. xfs_inode_t *free_ip,
  1797. xfs_trans_t *tp,
  1798. xfs_ino_t inum)
  1799. {
  1800. xfs_mount_t *mp = free_ip->i_mount;
  1801. int blks_per_cluster;
  1802. int nbufs;
  1803. int ninodes;
  1804. int i, j;
  1805. xfs_daddr_t blkno;
  1806. xfs_buf_t *bp;
  1807. xfs_inode_t *ip;
  1808. xfs_inode_log_item_t *iip;
  1809. xfs_log_item_t *lip;
  1810. struct xfs_perag *pag;
  1811. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1812. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1813. blks_per_cluster = 1;
  1814. ninodes = mp->m_sb.sb_inopblock;
  1815. nbufs = XFS_IALLOC_BLOCKS(mp);
  1816. } else {
  1817. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1818. mp->m_sb.sb_blocksize;
  1819. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1820. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1821. }
  1822. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1823. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1824. XFS_INO_TO_AGBNO(mp, inum));
  1825. /*
  1826. * We obtain and lock the backing buffer first in the process
  1827. * here, as we have to ensure that any dirty inode that we
  1828. * can't get the flush lock on is attached to the buffer.
  1829. * If we scan the in-memory inodes first, then buffer IO can
  1830. * complete before we get a lock on it, and hence we may fail
  1831. * to mark all the active inodes on the buffer stale.
  1832. */
  1833. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1834. mp->m_bsize * blks_per_cluster,
  1835. XBF_LOCK);
  1836. /*
  1837. * Walk the inodes already attached to the buffer and mark them
  1838. * stale. These will all have the flush locks held, so an
  1839. * in-memory inode walk can't lock them. By marking them all
  1840. * stale first, we will not attempt to lock them in the loop
  1841. * below as the XFS_ISTALE flag will be set.
  1842. */
  1843. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1844. while (lip) {
  1845. if (lip->li_type == XFS_LI_INODE) {
  1846. iip = (xfs_inode_log_item_t *)lip;
  1847. ASSERT(iip->ili_logged == 1);
  1848. lip->li_cb = xfs_istale_done;
  1849. xfs_trans_ail_copy_lsn(mp->m_ail,
  1850. &iip->ili_flush_lsn,
  1851. &iip->ili_item.li_lsn);
  1852. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1853. }
  1854. lip = lip->li_bio_list;
  1855. }
  1856. /*
  1857. * For each inode in memory attempt to add it to the inode
  1858. * buffer and set it up for being staled on buffer IO
  1859. * completion. This is safe as we've locked out tail pushing
  1860. * and flushing by locking the buffer.
  1861. *
  1862. * We have already marked every inode that was part of a
  1863. * transaction stale above, which means there is no point in
  1864. * even trying to lock them.
  1865. */
  1866. for (i = 0; i < ninodes; i++) {
  1867. retry:
  1868. rcu_read_lock();
  1869. ip = radix_tree_lookup(&pag->pag_ici_root,
  1870. XFS_INO_TO_AGINO(mp, (inum + i)));
  1871. /* Inode not in memory, nothing to do */
  1872. if (!ip) {
  1873. rcu_read_unlock();
  1874. continue;
  1875. }
  1876. /*
  1877. * because this is an RCU protected lookup, we could
  1878. * find a recently freed or even reallocated inode
  1879. * during the lookup. We need to check under the
  1880. * i_flags_lock for a valid inode here. Skip it if it
  1881. * is not valid, the wrong inode or stale.
  1882. */
  1883. spin_lock(&ip->i_flags_lock);
  1884. if (ip->i_ino != inum + i ||
  1885. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1886. spin_unlock(&ip->i_flags_lock);
  1887. rcu_read_unlock();
  1888. continue;
  1889. }
  1890. spin_unlock(&ip->i_flags_lock);
  1891. /*
  1892. * Don't try to lock/unlock the current inode, but we
  1893. * _cannot_ skip the other inodes that we did not find
  1894. * in the list attached to the buffer and are not
  1895. * already marked stale. If we can't lock it, back off
  1896. * and retry.
  1897. */
  1898. if (ip != free_ip &&
  1899. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1900. rcu_read_unlock();
  1901. delay(1);
  1902. goto retry;
  1903. }
  1904. rcu_read_unlock();
  1905. xfs_iflock(ip);
  1906. xfs_iflags_set(ip, XFS_ISTALE);
  1907. /*
  1908. * we don't need to attach clean inodes or those only
  1909. * with unlogged changes (which we throw away, anyway).
  1910. */
  1911. iip = ip->i_itemp;
  1912. if (!iip || xfs_inode_clean(ip)) {
  1913. ASSERT(ip != free_ip);
  1914. ip->i_update_core = 0;
  1915. xfs_ifunlock(ip);
  1916. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1917. continue;
  1918. }
  1919. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1920. iip->ili_format.ilf_fields = 0;
  1921. iip->ili_logged = 1;
  1922. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1923. &iip->ili_item.li_lsn);
  1924. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1925. &iip->ili_item);
  1926. if (ip != free_ip)
  1927. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1928. }
  1929. xfs_trans_stale_inode_buf(tp, bp);
  1930. xfs_trans_binval(tp, bp);
  1931. }
  1932. xfs_perag_put(pag);
  1933. }
  1934. /*
  1935. * This is called to return an inode to the inode free list.
  1936. * The inode should already be truncated to 0 length and have
  1937. * no pages associated with it. This routine also assumes that
  1938. * the inode is already a part of the transaction.
  1939. *
  1940. * The on-disk copy of the inode will have been added to the list
  1941. * of unlinked inodes in the AGI. We need to remove the inode from
  1942. * that list atomically with respect to freeing it here.
  1943. */
  1944. int
  1945. xfs_ifree(
  1946. xfs_trans_t *tp,
  1947. xfs_inode_t *ip,
  1948. xfs_bmap_free_t *flist)
  1949. {
  1950. int error;
  1951. int delete;
  1952. xfs_ino_t first_ino;
  1953. xfs_dinode_t *dip;
  1954. xfs_buf_t *ibp;
  1955. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1956. ASSERT(ip->i_transp == tp);
  1957. ASSERT(ip->i_d.di_nlink == 0);
  1958. ASSERT(ip->i_d.di_nextents == 0);
  1959. ASSERT(ip->i_d.di_anextents == 0);
  1960. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1961. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1962. ASSERT(ip->i_d.di_nblocks == 0);
  1963. /*
  1964. * Pull the on-disk inode from the AGI unlinked list.
  1965. */
  1966. error = xfs_iunlink_remove(tp, ip);
  1967. if (error != 0) {
  1968. return error;
  1969. }
  1970. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1971. if (error != 0) {
  1972. return error;
  1973. }
  1974. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1975. ip->i_d.di_flags = 0;
  1976. ip->i_d.di_dmevmask = 0;
  1977. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1978. ip->i_df.if_ext_max =
  1979. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1980. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1981. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1982. /*
  1983. * Bump the generation count so no one will be confused
  1984. * by reincarnations of this inode.
  1985. */
  1986. ip->i_d.di_gen++;
  1987. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1988. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1989. if (error)
  1990. return error;
  1991. /*
  1992. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1993. * from picking up this inode when it is reclaimed (its incore state
  1994. * initialzed but not flushed to disk yet). The in-core di_mode is
  1995. * already cleared and a corresponding transaction logged.
  1996. * The hack here just synchronizes the in-core to on-disk
  1997. * di_mode value in advance before the actual inode sync to disk.
  1998. * This is OK because the inode is already unlinked and would never
  1999. * change its di_mode again for this inode generation.
  2000. * This is a temporary hack that would require a proper fix
  2001. * in the future.
  2002. */
  2003. dip->di_mode = 0;
  2004. if (delete) {
  2005. xfs_ifree_cluster(ip, tp, first_ino);
  2006. }
  2007. return 0;
  2008. }
  2009. /*
  2010. * Reallocate the space for if_broot based on the number of records
  2011. * being added or deleted as indicated in rec_diff. Move the records
  2012. * and pointers in if_broot to fit the new size. When shrinking this
  2013. * will eliminate holes between the records and pointers created by
  2014. * the caller. When growing this will create holes to be filled in
  2015. * by the caller.
  2016. *
  2017. * The caller must not request to add more records than would fit in
  2018. * the on-disk inode root. If the if_broot is currently NULL, then
  2019. * if we adding records one will be allocated. The caller must also
  2020. * not request that the number of records go below zero, although
  2021. * it can go to zero.
  2022. *
  2023. * ip -- the inode whose if_broot area is changing
  2024. * ext_diff -- the change in the number of records, positive or negative,
  2025. * requested for the if_broot array.
  2026. */
  2027. void
  2028. xfs_iroot_realloc(
  2029. xfs_inode_t *ip,
  2030. int rec_diff,
  2031. int whichfork)
  2032. {
  2033. struct xfs_mount *mp = ip->i_mount;
  2034. int cur_max;
  2035. xfs_ifork_t *ifp;
  2036. struct xfs_btree_block *new_broot;
  2037. int new_max;
  2038. size_t new_size;
  2039. char *np;
  2040. char *op;
  2041. /*
  2042. * Handle the degenerate case quietly.
  2043. */
  2044. if (rec_diff == 0) {
  2045. return;
  2046. }
  2047. ifp = XFS_IFORK_PTR(ip, whichfork);
  2048. if (rec_diff > 0) {
  2049. /*
  2050. * If there wasn't any memory allocated before, just
  2051. * allocate it now and get out.
  2052. */
  2053. if (ifp->if_broot_bytes == 0) {
  2054. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2055. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2056. ifp->if_broot_bytes = (int)new_size;
  2057. return;
  2058. }
  2059. /*
  2060. * If there is already an existing if_broot, then we need
  2061. * to realloc() it and shift the pointers to their new
  2062. * location. The records don't change location because
  2063. * they are kept butted up against the btree block header.
  2064. */
  2065. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2066. new_max = cur_max + rec_diff;
  2067. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2068. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2069. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2070. KM_SLEEP | KM_NOFS);
  2071. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2072. ifp->if_broot_bytes);
  2073. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2074. (int)new_size);
  2075. ifp->if_broot_bytes = (int)new_size;
  2076. ASSERT(ifp->if_broot_bytes <=
  2077. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2078. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2079. return;
  2080. }
  2081. /*
  2082. * rec_diff is less than 0. In this case, we are shrinking the
  2083. * if_broot buffer. It must already exist. If we go to zero
  2084. * records, just get rid of the root and clear the status bit.
  2085. */
  2086. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2087. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2088. new_max = cur_max + rec_diff;
  2089. ASSERT(new_max >= 0);
  2090. if (new_max > 0)
  2091. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2092. else
  2093. new_size = 0;
  2094. if (new_size > 0) {
  2095. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2096. /*
  2097. * First copy over the btree block header.
  2098. */
  2099. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2100. } else {
  2101. new_broot = NULL;
  2102. ifp->if_flags &= ~XFS_IFBROOT;
  2103. }
  2104. /*
  2105. * Only copy the records and pointers if there are any.
  2106. */
  2107. if (new_max > 0) {
  2108. /*
  2109. * First copy the records.
  2110. */
  2111. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2112. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2113. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2114. /*
  2115. * Then copy the pointers.
  2116. */
  2117. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2118. ifp->if_broot_bytes);
  2119. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2120. (int)new_size);
  2121. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2122. }
  2123. kmem_free(ifp->if_broot);
  2124. ifp->if_broot = new_broot;
  2125. ifp->if_broot_bytes = (int)new_size;
  2126. ASSERT(ifp->if_broot_bytes <=
  2127. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2128. return;
  2129. }
  2130. /*
  2131. * This is called when the amount of space needed for if_data
  2132. * is increased or decreased. The change in size is indicated by
  2133. * the number of bytes that need to be added or deleted in the
  2134. * byte_diff parameter.
  2135. *
  2136. * If the amount of space needed has decreased below the size of the
  2137. * inline buffer, then switch to using the inline buffer. Otherwise,
  2138. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2139. * to what is needed.
  2140. *
  2141. * ip -- the inode whose if_data area is changing
  2142. * byte_diff -- the change in the number of bytes, positive or negative,
  2143. * requested for the if_data array.
  2144. */
  2145. void
  2146. xfs_idata_realloc(
  2147. xfs_inode_t *ip,
  2148. int byte_diff,
  2149. int whichfork)
  2150. {
  2151. xfs_ifork_t *ifp;
  2152. int new_size;
  2153. int real_size;
  2154. if (byte_diff == 0) {
  2155. return;
  2156. }
  2157. ifp = XFS_IFORK_PTR(ip, whichfork);
  2158. new_size = (int)ifp->if_bytes + byte_diff;
  2159. ASSERT(new_size >= 0);
  2160. if (new_size == 0) {
  2161. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2162. kmem_free(ifp->if_u1.if_data);
  2163. }
  2164. ifp->if_u1.if_data = NULL;
  2165. real_size = 0;
  2166. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2167. /*
  2168. * If the valid extents/data can fit in if_inline_ext/data,
  2169. * copy them from the malloc'd vector and free it.
  2170. */
  2171. if (ifp->if_u1.if_data == NULL) {
  2172. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2173. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2174. ASSERT(ifp->if_real_bytes != 0);
  2175. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2176. new_size);
  2177. kmem_free(ifp->if_u1.if_data);
  2178. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2179. }
  2180. real_size = 0;
  2181. } else {
  2182. /*
  2183. * Stuck with malloc/realloc.
  2184. * For inline data, the underlying buffer must be
  2185. * a multiple of 4 bytes in size so that it can be
  2186. * logged and stay on word boundaries. We enforce
  2187. * that here.
  2188. */
  2189. real_size = roundup(new_size, 4);
  2190. if (ifp->if_u1.if_data == NULL) {
  2191. ASSERT(ifp->if_real_bytes == 0);
  2192. ifp->if_u1.if_data = kmem_alloc(real_size,
  2193. KM_SLEEP | KM_NOFS);
  2194. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2195. /*
  2196. * Only do the realloc if the underlying size
  2197. * is really changing.
  2198. */
  2199. if (ifp->if_real_bytes != real_size) {
  2200. ifp->if_u1.if_data =
  2201. kmem_realloc(ifp->if_u1.if_data,
  2202. real_size,
  2203. ifp->if_real_bytes,
  2204. KM_SLEEP | KM_NOFS);
  2205. }
  2206. } else {
  2207. ASSERT(ifp->if_real_bytes == 0);
  2208. ifp->if_u1.if_data = kmem_alloc(real_size,
  2209. KM_SLEEP | KM_NOFS);
  2210. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2211. ifp->if_bytes);
  2212. }
  2213. }
  2214. ifp->if_real_bytes = real_size;
  2215. ifp->if_bytes = new_size;
  2216. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2217. }
  2218. void
  2219. xfs_idestroy_fork(
  2220. xfs_inode_t *ip,
  2221. int whichfork)
  2222. {
  2223. xfs_ifork_t *ifp;
  2224. ifp = XFS_IFORK_PTR(ip, whichfork);
  2225. if (ifp->if_broot != NULL) {
  2226. kmem_free(ifp->if_broot);
  2227. ifp->if_broot = NULL;
  2228. }
  2229. /*
  2230. * If the format is local, then we can't have an extents
  2231. * array so just look for an inline data array. If we're
  2232. * not local then we may or may not have an extents list,
  2233. * so check and free it up if we do.
  2234. */
  2235. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2236. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2237. (ifp->if_u1.if_data != NULL)) {
  2238. ASSERT(ifp->if_real_bytes != 0);
  2239. kmem_free(ifp->if_u1.if_data);
  2240. ifp->if_u1.if_data = NULL;
  2241. ifp->if_real_bytes = 0;
  2242. }
  2243. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2244. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2245. ((ifp->if_u1.if_extents != NULL) &&
  2246. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2247. ASSERT(ifp->if_real_bytes != 0);
  2248. xfs_iext_destroy(ifp);
  2249. }
  2250. ASSERT(ifp->if_u1.if_extents == NULL ||
  2251. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2252. ASSERT(ifp->if_real_bytes == 0);
  2253. if (whichfork == XFS_ATTR_FORK) {
  2254. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2255. ip->i_afp = NULL;
  2256. }
  2257. }
  2258. /*
  2259. * This is called to unpin an inode. The caller must have the inode locked
  2260. * in at least shared mode so that the buffer cannot be subsequently pinned
  2261. * once someone is waiting for it to be unpinned.
  2262. */
  2263. static void
  2264. xfs_iunpin_nowait(
  2265. struct xfs_inode *ip)
  2266. {
  2267. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2268. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2269. /* Give the log a push to start the unpinning I/O */
  2270. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2271. }
  2272. void
  2273. xfs_iunpin_wait(
  2274. struct xfs_inode *ip)
  2275. {
  2276. if (xfs_ipincount(ip)) {
  2277. xfs_iunpin_nowait(ip);
  2278. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2279. }
  2280. }
  2281. /*
  2282. * xfs_iextents_copy()
  2283. *
  2284. * This is called to copy the REAL extents (as opposed to the delayed
  2285. * allocation extents) from the inode into the given buffer. It
  2286. * returns the number of bytes copied into the buffer.
  2287. *
  2288. * If there are no delayed allocation extents, then we can just
  2289. * memcpy() the extents into the buffer. Otherwise, we need to
  2290. * examine each extent in turn and skip those which are delayed.
  2291. */
  2292. int
  2293. xfs_iextents_copy(
  2294. xfs_inode_t *ip,
  2295. xfs_bmbt_rec_t *dp,
  2296. int whichfork)
  2297. {
  2298. int copied;
  2299. int i;
  2300. xfs_ifork_t *ifp;
  2301. int nrecs;
  2302. xfs_fsblock_t start_block;
  2303. ifp = XFS_IFORK_PTR(ip, whichfork);
  2304. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2305. ASSERT(ifp->if_bytes > 0);
  2306. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2307. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2308. ASSERT(nrecs > 0);
  2309. /*
  2310. * There are some delayed allocation extents in the
  2311. * inode, so copy the extents one at a time and skip
  2312. * the delayed ones. There must be at least one
  2313. * non-delayed extent.
  2314. */
  2315. copied = 0;
  2316. for (i = 0; i < nrecs; i++) {
  2317. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2318. start_block = xfs_bmbt_get_startblock(ep);
  2319. if (isnullstartblock(start_block)) {
  2320. /*
  2321. * It's a delayed allocation extent, so skip it.
  2322. */
  2323. continue;
  2324. }
  2325. /* Translate to on disk format */
  2326. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2327. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2328. dp++;
  2329. copied++;
  2330. }
  2331. ASSERT(copied != 0);
  2332. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2333. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2334. }
  2335. /*
  2336. * Each of the following cases stores data into the same region
  2337. * of the on-disk inode, so only one of them can be valid at
  2338. * any given time. While it is possible to have conflicting formats
  2339. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2340. * in EXTENTS format, this can only happen when the fork has
  2341. * changed formats after being modified but before being flushed.
  2342. * In these cases, the format always takes precedence, because the
  2343. * format indicates the current state of the fork.
  2344. */
  2345. /*ARGSUSED*/
  2346. STATIC void
  2347. xfs_iflush_fork(
  2348. xfs_inode_t *ip,
  2349. xfs_dinode_t *dip,
  2350. xfs_inode_log_item_t *iip,
  2351. int whichfork,
  2352. xfs_buf_t *bp)
  2353. {
  2354. char *cp;
  2355. xfs_ifork_t *ifp;
  2356. xfs_mount_t *mp;
  2357. #ifdef XFS_TRANS_DEBUG
  2358. int first;
  2359. #endif
  2360. static const short brootflag[2] =
  2361. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2362. static const short dataflag[2] =
  2363. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2364. static const short extflag[2] =
  2365. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2366. if (!iip)
  2367. return;
  2368. ifp = XFS_IFORK_PTR(ip, whichfork);
  2369. /*
  2370. * This can happen if we gave up in iformat in an error path,
  2371. * for the attribute fork.
  2372. */
  2373. if (!ifp) {
  2374. ASSERT(whichfork == XFS_ATTR_FORK);
  2375. return;
  2376. }
  2377. cp = XFS_DFORK_PTR(dip, whichfork);
  2378. mp = ip->i_mount;
  2379. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2380. case XFS_DINODE_FMT_LOCAL:
  2381. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2382. (ifp->if_bytes > 0)) {
  2383. ASSERT(ifp->if_u1.if_data != NULL);
  2384. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2385. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2386. }
  2387. break;
  2388. case XFS_DINODE_FMT_EXTENTS:
  2389. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2390. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2391. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2392. (ifp->if_bytes == 0));
  2393. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2394. (ifp->if_bytes > 0));
  2395. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2396. (ifp->if_bytes > 0)) {
  2397. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2398. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2399. whichfork);
  2400. }
  2401. break;
  2402. case XFS_DINODE_FMT_BTREE:
  2403. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2404. (ifp->if_broot_bytes > 0)) {
  2405. ASSERT(ifp->if_broot != NULL);
  2406. ASSERT(ifp->if_broot_bytes <=
  2407. (XFS_IFORK_SIZE(ip, whichfork) +
  2408. XFS_BROOT_SIZE_ADJ));
  2409. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2410. (xfs_bmdr_block_t *)cp,
  2411. XFS_DFORK_SIZE(dip, mp, whichfork));
  2412. }
  2413. break;
  2414. case XFS_DINODE_FMT_DEV:
  2415. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2416. ASSERT(whichfork == XFS_DATA_FORK);
  2417. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2418. }
  2419. break;
  2420. case XFS_DINODE_FMT_UUID:
  2421. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2422. ASSERT(whichfork == XFS_DATA_FORK);
  2423. memcpy(XFS_DFORK_DPTR(dip),
  2424. &ip->i_df.if_u2.if_uuid,
  2425. sizeof(uuid_t));
  2426. }
  2427. break;
  2428. default:
  2429. ASSERT(0);
  2430. break;
  2431. }
  2432. }
  2433. STATIC int
  2434. xfs_iflush_cluster(
  2435. xfs_inode_t *ip,
  2436. xfs_buf_t *bp)
  2437. {
  2438. xfs_mount_t *mp = ip->i_mount;
  2439. struct xfs_perag *pag;
  2440. unsigned long first_index, mask;
  2441. unsigned long inodes_per_cluster;
  2442. int ilist_size;
  2443. xfs_inode_t **ilist;
  2444. xfs_inode_t *iq;
  2445. int nr_found;
  2446. int clcount = 0;
  2447. int bufwasdelwri;
  2448. int i;
  2449. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2450. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2451. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2452. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2453. if (!ilist)
  2454. goto out_put;
  2455. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2456. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2457. rcu_read_lock();
  2458. /* really need a gang lookup range call here */
  2459. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2460. first_index, inodes_per_cluster);
  2461. if (nr_found == 0)
  2462. goto out_free;
  2463. for (i = 0; i < nr_found; i++) {
  2464. iq = ilist[i];
  2465. if (iq == ip)
  2466. continue;
  2467. /*
  2468. * because this is an RCU protected lookup, we could find a
  2469. * recently freed or even reallocated inode during the lookup.
  2470. * We need to check under the i_flags_lock for a valid inode
  2471. * here. Skip it if it is not valid or the wrong inode.
  2472. */
  2473. spin_lock(&ip->i_flags_lock);
  2474. if (!ip->i_ino ||
  2475. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2476. spin_unlock(&ip->i_flags_lock);
  2477. continue;
  2478. }
  2479. spin_unlock(&ip->i_flags_lock);
  2480. /*
  2481. * Do an un-protected check to see if the inode is dirty and
  2482. * is a candidate for flushing. These checks will be repeated
  2483. * later after the appropriate locks are acquired.
  2484. */
  2485. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2486. continue;
  2487. /*
  2488. * Try to get locks. If any are unavailable or it is pinned,
  2489. * then this inode cannot be flushed and is skipped.
  2490. */
  2491. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2492. continue;
  2493. if (!xfs_iflock_nowait(iq)) {
  2494. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2495. continue;
  2496. }
  2497. if (xfs_ipincount(iq)) {
  2498. xfs_ifunlock(iq);
  2499. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2500. continue;
  2501. }
  2502. /*
  2503. * arriving here means that this inode can be flushed. First
  2504. * re-check that it's dirty before flushing.
  2505. */
  2506. if (!xfs_inode_clean(iq)) {
  2507. int error;
  2508. error = xfs_iflush_int(iq, bp);
  2509. if (error) {
  2510. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2511. goto cluster_corrupt_out;
  2512. }
  2513. clcount++;
  2514. } else {
  2515. xfs_ifunlock(iq);
  2516. }
  2517. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2518. }
  2519. if (clcount) {
  2520. XFS_STATS_INC(xs_icluster_flushcnt);
  2521. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2522. }
  2523. out_free:
  2524. rcu_read_unlock();
  2525. kmem_free(ilist);
  2526. out_put:
  2527. xfs_perag_put(pag);
  2528. return 0;
  2529. cluster_corrupt_out:
  2530. /*
  2531. * Corruption detected in the clustering loop. Invalidate the
  2532. * inode buffer and shut down the filesystem.
  2533. */
  2534. rcu_read_unlock();
  2535. /*
  2536. * Clean up the buffer. If it was B_DELWRI, just release it --
  2537. * brelse can handle it with no problems. If not, shut down the
  2538. * filesystem before releasing the buffer.
  2539. */
  2540. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2541. if (bufwasdelwri)
  2542. xfs_buf_relse(bp);
  2543. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2544. if (!bufwasdelwri) {
  2545. /*
  2546. * Just like incore_relse: if we have b_iodone functions,
  2547. * mark the buffer as an error and call them. Otherwise
  2548. * mark it as stale and brelse.
  2549. */
  2550. if (XFS_BUF_IODONE_FUNC(bp)) {
  2551. XFS_BUF_UNDONE(bp);
  2552. XFS_BUF_STALE(bp);
  2553. XFS_BUF_ERROR(bp,EIO);
  2554. xfs_buf_ioend(bp, 0);
  2555. } else {
  2556. XFS_BUF_STALE(bp);
  2557. xfs_buf_relse(bp);
  2558. }
  2559. }
  2560. /*
  2561. * Unlocks the flush lock
  2562. */
  2563. xfs_iflush_abort(iq);
  2564. kmem_free(ilist);
  2565. xfs_perag_put(pag);
  2566. return XFS_ERROR(EFSCORRUPTED);
  2567. }
  2568. /*
  2569. * xfs_iflush() will write a modified inode's changes out to the
  2570. * inode's on disk home. The caller must have the inode lock held
  2571. * in at least shared mode and the inode flush completion must be
  2572. * active as well. The inode lock will still be held upon return from
  2573. * the call and the caller is free to unlock it.
  2574. * The inode flush will be completed when the inode reaches the disk.
  2575. * The flags indicate how the inode's buffer should be written out.
  2576. */
  2577. int
  2578. xfs_iflush(
  2579. xfs_inode_t *ip,
  2580. uint flags)
  2581. {
  2582. xfs_inode_log_item_t *iip;
  2583. xfs_buf_t *bp;
  2584. xfs_dinode_t *dip;
  2585. xfs_mount_t *mp;
  2586. int error;
  2587. XFS_STATS_INC(xs_iflush_count);
  2588. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2589. ASSERT(!completion_done(&ip->i_flush));
  2590. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2591. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2592. iip = ip->i_itemp;
  2593. mp = ip->i_mount;
  2594. /*
  2595. * We can't flush the inode until it is unpinned, so wait for it if we
  2596. * are allowed to block. We know noone new can pin it, because we are
  2597. * holding the inode lock shared and you need to hold it exclusively to
  2598. * pin the inode.
  2599. *
  2600. * If we are not allowed to block, force the log out asynchronously so
  2601. * that when we come back the inode will be unpinned. If other inodes
  2602. * in the same cluster are dirty, they will probably write the inode
  2603. * out for us if they occur after the log force completes.
  2604. */
  2605. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2606. xfs_iunpin_nowait(ip);
  2607. xfs_ifunlock(ip);
  2608. return EAGAIN;
  2609. }
  2610. xfs_iunpin_wait(ip);
  2611. /*
  2612. * For stale inodes we cannot rely on the backing buffer remaining
  2613. * stale in cache for the remaining life of the stale inode and so
  2614. * xfs_itobp() below may give us a buffer that no longer contains
  2615. * inodes below. We have to check this after ensuring the inode is
  2616. * unpinned so that it is safe to reclaim the stale inode after the
  2617. * flush call.
  2618. */
  2619. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2620. xfs_ifunlock(ip);
  2621. return 0;
  2622. }
  2623. /*
  2624. * This may have been unpinned because the filesystem is shutting
  2625. * down forcibly. If that's the case we must not write this inode
  2626. * to disk, because the log record didn't make it to disk!
  2627. */
  2628. if (XFS_FORCED_SHUTDOWN(mp)) {
  2629. ip->i_update_core = 0;
  2630. if (iip)
  2631. iip->ili_format.ilf_fields = 0;
  2632. xfs_ifunlock(ip);
  2633. return XFS_ERROR(EIO);
  2634. }
  2635. /*
  2636. * Get the buffer containing the on-disk inode.
  2637. */
  2638. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2639. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2640. if (error || !bp) {
  2641. xfs_ifunlock(ip);
  2642. return error;
  2643. }
  2644. /*
  2645. * First flush out the inode that xfs_iflush was called with.
  2646. */
  2647. error = xfs_iflush_int(ip, bp);
  2648. if (error)
  2649. goto corrupt_out;
  2650. /*
  2651. * If the buffer is pinned then push on the log now so we won't
  2652. * get stuck waiting in the write for too long.
  2653. */
  2654. if (XFS_BUF_ISPINNED(bp))
  2655. xfs_log_force(mp, 0);
  2656. /*
  2657. * inode clustering:
  2658. * see if other inodes can be gathered into this write
  2659. */
  2660. error = xfs_iflush_cluster(ip, bp);
  2661. if (error)
  2662. goto cluster_corrupt_out;
  2663. if (flags & SYNC_WAIT)
  2664. error = xfs_bwrite(mp, bp);
  2665. else
  2666. xfs_bdwrite(mp, bp);
  2667. return error;
  2668. corrupt_out:
  2669. xfs_buf_relse(bp);
  2670. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2671. cluster_corrupt_out:
  2672. /*
  2673. * Unlocks the flush lock
  2674. */
  2675. xfs_iflush_abort(ip);
  2676. return XFS_ERROR(EFSCORRUPTED);
  2677. }
  2678. STATIC int
  2679. xfs_iflush_int(
  2680. xfs_inode_t *ip,
  2681. xfs_buf_t *bp)
  2682. {
  2683. xfs_inode_log_item_t *iip;
  2684. xfs_dinode_t *dip;
  2685. xfs_mount_t *mp;
  2686. #ifdef XFS_TRANS_DEBUG
  2687. int first;
  2688. #endif
  2689. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2690. ASSERT(!completion_done(&ip->i_flush));
  2691. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2692. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2693. iip = ip->i_itemp;
  2694. mp = ip->i_mount;
  2695. /* set *dip = inode's place in the buffer */
  2696. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2697. /*
  2698. * Clear i_update_core before copying out the data.
  2699. * This is for coordination with our timestamp updates
  2700. * that don't hold the inode lock. They will always
  2701. * update the timestamps BEFORE setting i_update_core,
  2702. * so if we clear i_update_core after they set it we
  2703. * are guaranteed to see their updates to the timestamps.
  2704. * I believe that this depends on strongly ordered memory
  2705. * semantics, but we have that. We use the SYNCHRONIZE
  2706. * macro to make sure that the compiler does not reorder
  2707. * the i_update_core access below the data copy below.
  2708. */
  2709. ip->i_update_core = 0;
  2710. SYNCHRONIZE();
  2711. /*
  2712. * Make sure to get the latest timestamps from the Linux inode.
  2713. */
  2714. xfs_synchronize_times(ip);
  2715. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2716. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2717. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2718. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2719. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2720. goto corrupt_out;
  2721. }
  2722. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2723. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2724. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2725. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2726. ip->i_ino, ip, ip->i_d.di_magic);
  2727. goto corrupt_out;
  2728. }
  2729. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2730. if (XFS_TEST_ERROR(
  2731. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2732. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2733. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2734. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2735. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2736. ip->i_ino, ip);
  2737. goto corrupt_out;
  2738. }
  2739. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2740. if (XFS_TEST_ERROR(
  2741. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2742. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2743. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2744. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2745. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2746. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2747. ip->i_ino, ip);
  2748. goto corrupt_out;
  2749. }
  2750. }
  2751. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2752. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2753. XFS_RANDOM_IFLUSH_5)) {
  2754. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2755. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2756. ip->i_ino,
  2757. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2758. ip->i_d.di_nblocks,
  2759. ip);
  2760. goto corrupt_out;
  2761. }
  2762. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2763. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2764. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2765. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2766. ip->i_ino, ip->i_d.di_forkoff, ip);
  2767. goto corrupt_out;
  2768. }
  2769. /*
  2770. * bump the flush iteration count, used to detect flushes which
  2771. * postdate a log record during recovery.
  2772. */
  2773. ip->i_d.di_flushiter++;
  2774. /*
  2775. * Copy the dirty parts of the inode into the on-disk
  2776. * inode. We always copy out the core of the inode,
  2777. * because if the inode is dirty at all the core must
  2778. * be.
  2779. */
  2780. xfs_dinode_to_disk(dip, &ip->i_d);
  2781. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2782. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2783. ip->i_d.di_flushiter = 0;
  2784. /*
  2785. * If this is really an old format inode and the superblock version
  2786. * has not been updated to support only new format inodes, then
  2787. * convert back to the old inode format. If the superblock version
  2788. * has been updated, then make the conversion permanent.
  2789. */
  2790. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2791. if (ip->i_d.di_version == 1) {
  2792. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2793. /*
  2794. * Convert it back.
  2795. */
  2796. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2797. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2798. } else {
  2799. /*
  2800. * The superblock version has already been bumped,
  2801. * so just make the conversion to the new inode
  2802. * format permanent.
  2803. */
  2804. ip->i_d.di_version = 2;
  2805. dip->di_version = 2;
  2806. ip->i_d.di_onlink = 0;
  2807. dip->di_onlink = 0;
  2808. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2809. memset(&(dip->di_pad[0]), 0,
  2810. sizeof(dip->di_pad));
  2811. ASSERT(xfs_get_projid(ip) == 0);
  2812. }
  2813. }
  2814. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2815. if (XFS_IFORK_Q(ip))
  2816. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2817. xfs_inobp_check(mp, bp);
  2818. /*
  2819. * We've recorded everything logged in the inode, so we'd
  2820. * like to clear the ilf_fields bits so we don't log and
  2821. * flush things unnecessarily. However, we can't stop
  2822. * logging all this information until the data we've copied
  2823. * into the disk buffer is written to disk. If we did we might
  2824. * overwrite the copy of the inode in the log with all the
  2825. * data after re-logging only part of it, and in the face of
  2826. * a crash we wouldn't have all the data we need to recover.
  2827. *
  2828. * What we do is move the bits to the ili_last_fields field.
  2829. * When logging the inode, these bits are moved back to the
  2830. * ilf_fields field. In the xfs_iflush_done() routine we
  2831. * clear ili_last_fields, since we know that the information
  2832. * those bits represent is permanently on disk. As long as
  2833. * the flush completes before the inode is logged again, then
  2834. * both ilf_fields and ili_last_fields will be cleared.
  2835. *
  2836. * We can play with the ilf_fields bits here, because the inode
  2837. * lock must be held exclusively in order to set bits there
  2838. * and the flush lock protects the ili_last_fields bits.
  2839. * Set ili_logged so the flush done
  2840. * routine can tell whether or not to look in the AIL.
  2841. * Also, store the current LSN of the inode so that we can tell
  2842. * whether the item has moved in the AIL from xfs_iflush_done().
  2843. * In order to read the lsn we need the AIL lock, because
  2844. * it is a 64 bit value that cannot be read atomically.
  2845. */
  2846. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2847. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2848. iip->ili_format.ilf_fields = 0;
  2849. iip->ili_logged = 1;
  2850. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2851. &iip->ili_item.li_lsn);
  2852. /*
  2853. * Attach the function xfs_iflush_done to the inode's
  2854. * buffer. This will remove the inode from the AIL
  2855. * and unlock the inode's flush lock when the inode is
  2856. * completely written to disk.
  2857. */
  2858. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2859. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2860. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2861. } else {
  2862. /*
  2863. * We're flushing an inode which is not in the AIL and has
  2864. * not been logged but has i_update_core set. For this
  2865. * case we can use a B_DELWRI flush and immediately drop
  2866. * the inode flush lock because we can avoid the whole
  2867. * AIL state thing. It's OK to drop the flush lock now,
  2868. * because we've already locked the buffer and to do anything
  2869. * you really need both.
  2870. */
  2871. if (iip != NULL) {
  2872. ASSERT(iip->ili_logged == 0);
  2873. ASSERT(iip->ili_last_fields == 0);
  2874. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2875. }
  2876. xfs_ifunlock(ip);
  2877. }
  2878. return 0;
  2879. corrupt_out:
  2880. return XFS_ERROR(EFSCORRUPTED);
  2881. }
  2882. /*
  2883. * Return a pointer to the extent record at file index idx.
  2884. */
  2885. xfs_bmbt_rec_host_t *
  2886. xfs_iext_get_ext(
  2887. xfs_ifork_t *ifp, /* inode fork pointer */
  2888. xfs_extnum_t idx) /* index of target extent */
  2889. {
  2890. ASSERT(idx >= 0);
  2891. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2892. return ifp->if_u1.if_ext_irec->er_extbuf;
  2893. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2894. xfs_ext_irec_t *erp; /* irec pointer */
  2895. int erp_idx = 0; /* irec index */
  2896. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2897. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2898. return &erp->er_extbuf[page_idx];
  2899. } else if (ifp->if_bytes) {
  2900. return &ifp->if_u1.if_extents[idx];
  2901. } else {
  2902. return NULL;
  2903. }
  2904. }
  2905. /*
  2906. * Insert new item(s) into the extent records for incore inode
  2907. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2908. */
  2909. void
  2910. xfs_iext_insert(
  2911. xfs_inode_t *ip, /* incore inode pointer */
  2912. xfs_extnum_t idx, /* starting index of new items */
  2913. xfs_extnum_t count, /* number of inserted items */
  2914. xfs_bmbt_irec_t *new, /* items to insert */
  2915. int state) /* type of extent conversion */
  2916. {
  2917. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2918. xfs_extnum_t i; /* extent record index */
  2919. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2920. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2921. xfs_iext_add(ifp, idx, count);
  2922. for (i = idx; i < idx + count; i++, new++)
  2923. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2924. }
  2925. /*
  2926. * This is called when the amount of space required for incore file
  2927. * extents needs to be increased. The ext_diff parameter stores the
  2928. * number of new extents being added and the idx parameter contains
  2929. * the extent index where the new extents will be added. If the new
  2930. * extents are being appended, then we just need to (re)allocate and
  2931. * initialize the space. Otherwise, if the new extents are being
  2932. * inserted into the middle of the existing entries, a bit more work
  2933. * is required to make room for the new extents to be inserted. The
  2934. * caller is responsible for filling in the new extent entries upon
  2935. * return.
  2936. */
  2937. void
  2938. xfs_iext_add(
  2939. xfs_ifork_t *ifp, /* inode fork pointer */
  2940. xfs_extnum_t idx, /* index to begin adding exts */
  2941. int ext_diff) /* number of extents to add */
  2942. {
  2943. int byte_diff; /* new bytes being added */
  2944. int new_size; /* size of extents after adding */
  2945. xfs_extnum_t nextents; /* number of extents in file */
  2946. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2947. ASSERT((idx >= 0) && (idx <= nextents));
  2948. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2949. new_size = ifp->if_bytes + byte_diff;
  2950. /*
  2951. * If the new number of extents (nextents + ext_diff)
  2952. * fits inside the inode, then continue to use the inline
  2953. * extent buffer.
  2954. */
  2955. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2956. if (idx < nextents) {
  2957. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2958. &ifp->if_u2.if_inline_ext[idx],
  2959. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2960. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2961. }
  2962. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2963. ifp->if_real_bytes = 0;
  2964. ifp->if_lastex = nextents + ext_diff;
  2965. }
  2966. /*
  2967. * Otherwise use a linear (direct) extent list.
  2968. * If the extents are currently inside the inode,
  2969. * xfs_iext_realloc_direct will switch us from
  2970. * inline to direct extent allocation mode.
  2971. */
  2972. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2973. xfs_iext_realloc_direct(ifp, new_size);
  2974. if (idx < nextents) {
  2975. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2976. &ifp->if_u1.if_extents[idx],
  2977. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2978. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2979. }
  2980. }
  2981. /* Indirection array */
  2982. else {
  2983. xfs_ext_irec_t *erp;
  2984. int erp_idx = 0;
  2985. int page_idx = idx;
  2986. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2987. if (ifp->if_flags & XFS_IFEXTIREC) {
  2988. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2989. } else {
  2990. xfs_iext_irec_init(ifp);
  2991. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2992. erp = ifp->if_u1.if_ext_irec;
  2993. }
  2994. /* Extents fit in target extent page */
  2995. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2996. if (page_idx < erp->er_extcount) {
  2997. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2998. &erp->er_extbuf[page_idx],
  2999. (erp->er_extcount - page_idx) *
  3000. sizeof(xfs_bmbt_rec_t));
  3001. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3002. }
  3003. erp->er_extcount += ext_diff;
  3004. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3005. }
  3006. /* Insert a new extent page */
  3007. else if (erp) {
  3008. xfs_iext_add_indirect_multi(ifp,
  3009. erp_idx, page_idx, ext_diff);
  3010. }
  3011. /*
  3012. * If extent(s) are being appended to the last page in
  3013. * the indirection array and the new extent(s) don't fit
  3014. * in the page, then erp is NULL and erp_idx is set to
  3015. * the next index needed in the indirection array.
  3016. */
  3017. else {
  3018. int count = ext_diff;
  3019. while (count) {
  3020. erp = xfs_iext_irec_new(ifp, erp_idx);
  3021. erp->er_extcount = count;
  3022. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3023. if (count) {
  3024. erp_idx++;
  3025. }
  3026. }
  3027. }
  3028. }
  3029. ifp->if_bytes = new_size;
  3030. }
  3031. /*
  3032. * This is called when incore extents are being added to the indirection
  3033. * array and the new extents do not fit in the target extent list. The
  3034. * erp_idx parameter contains the irec index for the target extent list
  3035. * in the indirection array, and the idx parameter contains the extent
  3036. * index within the list. The number of extents being added is stored
  3037. * in the count parameter.
  3038. *
  3039. * |-------| |-------|
  3040. * | | | | idx - number of extents before idx
  3041. * | idx | | count |
  3042. * | | | | count - number of extents being inserted at idx
  3043. * |-------| |-------|
  3044. * | count | | nex2 | nex2 - number of extents after idx + count
  3045. * |-------| |-------|
  3046. */
  3047. void
  3048. xfs_iext_add_indirect_multi(
  3049. xfs_ifork_t *ifp, /* inode fork pointer */
  3050. int erp_idx, /* target extent irec index */
  3051. xfs_extnum_t idx, /* index within target list */
  3052. int count) /* new extents being added */
  3053. {
  3054. int byte_diff; /* new bytes being added */
  3055. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3056. xfs_extnum_t ext_diff; /* number of extents to add */
  3057. xfs_extnum_t ext_cnt; /* new extents still needed */
  3058. xfs_extnum_t nex2; /* extents after idx + count */
  3059. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3060. int nlists; /* number of irec's (lists) */
  3061. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3062. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3063. nex2 = erp->er_extcount - idx;
  3064. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3065. /*
  3066. * Save second part of target extent list
  3067. * (all extents past */
  3068. if (nex2) {
  3069. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3070. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3071. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3072. erp->er_extcount -= nex2;
  3073. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3074. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3075. }
  3076. /*
  3077. * Add the new extents to the end of the target
  3078. * list, then allocate new irec record(s) and
  3079. * extent buffer(s) as needed to store the rest
  3080. * of the new extents.
  3081. */
  3082. ext_cnt = count;
  3083. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3084. if (ext_diff) {
  3085. erp->er_extcount += ext_diff;
  3086. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3087. ext_cnt -= ext_diff;
  3088. }
  3089. while (ext_cnt) {
  3090. erp_idx++;
  3091. erp = xfs_iext_irec_new(ifp, erp_idx);
  3092. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3093. erp->er_extcount = ext_diff;
  3094. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3095. ext_cnt -= ext_diff;
  3096. }
  3097. /* Add nex2 extents back to indirection array */
  3098. if (nex2) {
  3099. xfs_extnum_t ext_avail;
  3100. int i;
  3101. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3102. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3103. i = 0;
  3104. /*
  3105. * If nex2 extents fit in the current page, append
  3106. * nex2_ep after the new extents.
  3107. */
  3108. if (nex2 <= ext_avail) {
  3109. i = erp->er_extcount;
  3110. }
  3111. /*
  3112. * Otherwise, check if space is available in the
  3113. * next page.
  3114. */
  3115. else if ((erp_idx < nlists - 1) &&
  3116. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3117. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3118. erp_idx++;
  3119. erp++;
  3120. /* Create a hole for nex2 extents */
  3121. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3122. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3123. }
  3124. /*
  3125. * Final choice, create a new extent page for
  3126. * nex2 extents.
  3127. */
  3128. else {
  3129. erp_idx++;
  3130. erp = xfs_iext_irec_new(ifp, erp_idx);
  3131. }
  3132. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3133. kmem_free(nex2_ep);
  3134. erp->er_extcount += nex2;
  3135. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3136. }
  3137. }
  3138. /*
  3139. * This is called when the amount of space required for incore file
  3140. * extents needs to be decreased. The ext_diff parameter stores the
  3141. * number of extents to be removed and the idx parameter contains
  3142. * the extent index where the extents will be removed from.
  3143. *
  3144. * If the amount of space needed has decreased below the linear
  3145. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3146. * extent array. Otherwise, use kmem_realloc() to adjust the
  3147. * size to what is needed.
  3148. */
  3149. void
  3150. xfs_iext_remove(
  3151. xfs_inode_t *ip, /* incore inode pointer */
  3152. xfs_extnum_t idx, /* index to begin removing exts */
  3153. int ext_diff, /* number of extents to remove */
  3154. int state) /* type of extent conversion */
  3155. {
  3156. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3157. xfs_extnum_t nextents; /* number of extents in file */
  3158. int new_size; /* size of extents after removal */
  3159. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3160. ASSERT(ext_diff > 0);
  3161. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3162. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3163. if (new_size == 0) {
  3164. xfs_iext_destroy(ifp);
  3165. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3166. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3167. } else if (ifp->if_real_bytes) {
  3168. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3169. } else {
  3170. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3171. }
  3172. ifp->if_bytes = new_size;
  3173. }
  3174. /*
  3175. * This removes ext_diff extents from the inline buffer, beginning
  3176. * at extent index idx.
  3177. */
  3178. void
  3179. xfs_iext_remove_inline(
  3180. xfs_ifork_t *ifp, /* inode fork pointer */
  3181. xfs_extnum_t idx, /* index to begin removing exts */
  3182. int ext_diff) /* number of extents to remove */
  3183. {
  3184. int nextents; /* number of extents in file */
  3185. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3186. ASSERT(idx < XFS_INLINE_EXTS);
  3187. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3188. ASSERT(((nextents - ext_diff) > 0) &&
  3189. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3190. if (idx + ext_diff < nextents) {
  3191. memmove(&ifp->if_u2.if_inline_ext[idx],
  3192. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3193. (nextents - (idx + ext_diff)) *
  3194. sizeof(xfs_bmbt_rec_t));
  3195. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3196. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3197. } else {
  3198. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3199. ext_diff * sizeof(xfs_bmbt_rec_t));
  3200. }
  3201. }
  3202. /*
  3203. * This removes ext_diff extents from a linear (direct) extent list,
  3204. * beginning at extent index idx. If the extents are being removed
  3205. * from the end of the list (ie. truncate) then we just need to re-
  3206. * allocate the list to remove the extra space. Otherwise, if the
  3207. * extents are being removed from the middle of the existing extent
  3208. * entries, then we first need to move the extent records beginning
  3209. * at idx + ext_diff up in the list to overwrite the records being
  3210. * removed, then remove the extra space via kmem_realloc.
  3211. */
  3212. void
  3213. xfs_iext_remove_direct(
  3214. xfs_ifork_t *ifp, /* inode fork pointer */
  3215. xfs_extnum_t idx, /* index to begin removing exts */
  3216. int ext_diff) /* number of extents to remove */
  3217. {
  3218. xfs_extnum_t nextents; /* number of extents in file */
  3219. int new_size; /* size of extents after removal */
  3220. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3221. new_size = ifp->if_bytes -
  3222. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3223. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3224. if (new_size == 0) {
  3225. xfs_iext_destroy(ifp);
  3226. return;
  3227. }
  3228. /* Move extents up in the list (if needed) */
  3229. if (idx + ext_diff < nextents) {
  3230. memmove(&ifp->if_u1.if_extents[idx],
  3231. &ifp->if_u1.if_extents[idx + ext_diff],
  3232. (nextents - (idx + ext_diff)) *
  3233. sizeof(xfs_bmbt_rec_t));
  3234. }
  3235. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3236. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3237. /*
  3238. * Reallocate the direct extent list. If the extents
  3239. * will fit inside the inode then xfs_iext_realloc_direct
  3240. * will switch from direct to inline extent allocation
  3241. * mode for us.
  3242. */
  3243. xfs_iext_realloc_direct(ifp, new_size);
  3244. ifp->if_bytes = new_size;
  3245. }
  3246. /*
  3247. * This is called when incore extents are being removed from the
  3248. * indirection array and the extents being removed span multiple extent
  3249. * buffers. The idx parameter contains the file extent index where we
  3250. * want to begin removing extents, and the count parameter contains
  3251. * how many extents need to be removed.
  3252. *
  3253. * |-------| |-------|
  3254. * | nex1 | | | nex1 - number of extents before idx
  3255. * |-------| | count |
  3256. * | | | | count - number of extents being removed at idx
  3257. * | count | |-------|
  3258. * | | | nex2 | nex2 - number of extents after idx + count
  3259. * |-------| |-------|
  3260. */
  3261. void
  3262. xfs_iext_remove_indirect(
  3263. xfs_ifork_t *ifp, /* inode fork pointer */
  3264. xfs_extnum_t idx, /* index to begin removing extents */
  3265. int count) /* number of extents to remove */
  3266. {
  3267. xfs_ext_irec_t *erp; /* indirection array pointer */
  3268. int erp_idx = 0; /* indirection array index */
  3269. xfs_extnum_t ext_cnt; /* extents left to remove */
  3270. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3271. xfs_extnum_t nex1; /* number of extents before idx */
  3272. xfs_extnum_t nex2; /* extents after idx + count */
  3273. int page_idx = idx; /* index in target extent list */
  3274. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3275. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3276. ASSERT(erp != NULL);
  3277. nex1 = page_idx;
  3278. ext_cnt = count;
  3279. while (ext_cnt) {
  3280. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3281. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3282. /*
  3283. * Check for deletion of entire list;
  3284. * xfs_iext_irec_remove() updates extent offsets.
  3285. */
  3286. if (ext_diff == erp->er_extcount) {
  3287. xfs_iext_irec_remove(ifp, erp_idx);
  3288. ext_cnt -= ext_diff;
  3289. nex1 = 0;
  3290. if (ext_cnt) {
  3291. ASSERT(erp_idx < ifp->if_real_bytes /
  3292. XFS_IEXT_BUFSZ);
  3293. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3294. nex1 = 0;
  3295. continue;
  3296. } else {
  3297. break;
  3298. }
  3299. }
  3300. /* Move extents up (if needed) */
  3301. if (nex2) {
  3302. memmove(&erp->er_extbuf[nex1],
  3303. &erp->er_extbuf[nex1 + ext_diff],
  3304. nex2 * sizeof(xfs_bmbt_rec_t));
  3305. }
  3306. /* Zero out rest of page */
  3307. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3308. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3309. /* Update remaining counters */
  3310. erp->er_extcount -= ext_diff;
  3311. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3312. ext_cnt -= ext_diff;
  3313. nex1 = 0;
  3314. erp_idx++;
  3315. erp++;
  3316. }
  3317. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3318. xfs_iext_irec_compact(ifp);
  3319. }
  3320. /*
  3321. * Create, destroy, or resize a linear (direct) block of extents.
  3322. */
  3323. void
  3324. xfs_iext_realloc_direct(
  3325. xfs_ifork_t *ifp, /* inode fork pointer */
  3326. int new_size) /* new size of extents */
  3327. {
  3328. int rnew_size; /* real new size of extents */
  3329. rnew_size = new_size;
  3330. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3331. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3332. (new_size != ifp->if_real_bytes)));
  3333. /* Free extent records */
  3334. if (new_size == 0) {
  3335. xfs_iext_destroy(ifp);
  3336. }
  3337. /* Resize direct extent list and zero any new bytes */
  3338. else if (ifp->if_real_bytes) {
  3339. /* Check if extents will fit inside the inode */
  3340. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3341. xfs_iext_direct_to_inline(ifp, new_size /
  3342. (uint)sizeof(xfs_bmbt_rec_t));
  3343. ifp->if_bytes = new_size;
  3344. return;
  3345. }
  3346. if (!is_power_of_2(new_size)){
  3347. rnew_size = roundup_pow_of_two(new_size);
  3348. }
  3349. if (rnew_size != ifp->if_real_bytes) {
  3350. ifp->if_u1.if_extents =
  3351. kmem_realloc(ifp->if_u1.if_extents,
  3352. rnew_size,
  3353. ifp->if_real_bytes, KM_NOFS);
  3354. }
  3355. if (rnew_size > ifp->if_real_bytes) {
  3356. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3357. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3358. rnew_size - ifp->if_real_bytes);
  3359. }
  3360. }
  3361. /*
  3362. * Switch from the inline extent buffer to a direct
  3363. * extent list. Be sure to include the inline extent
  3364. * bytes in new_size.
  3365. */
  3366. else {
  3367. new_size += ifp->if_bytes;
  3368. if (!is_power_of_2(new_size)) {
  3369. rnew_size = roundup_pow_of_two(new_size);
  3370. }
  3371. xfs_iext_inline_to_direct(ifp, rnew_size);
  3372. }
  3373. ifp->if_real_bytes = rnew_size;
  3374. ifp->if_bytes = new_size;
  3375. }
  3376. /*
  3377. * Switch from linear (direct) extent records to inline buffer.
  3378. */
  3379. void
  3380. xfs_iext_direct_to_inline(
  3381. xfs_ifork_t *ifp, /* inode fork pointer */
  3382. xfs_extnum_t nextents) /* number of extents in file */
  3383. {
  3384. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3385. ASSERT(nextents <= XFS_INLINE_EXTS);
  3386. /*
  3387. * The inline buffer was zeroed when we switched
  3388. * from inline to direct extent allocation mode,
  3389. * so we don't need to clear it here.
  3390. */
  3391. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3392. nextents * sizeof(xfs_bmbt_rec_t));
  3393. kmem_free(ifp->if_u1.if_extents);
  3394. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3395. ifp->if_real_bytes = 0;
  3396. }
  3397. /*
  3398. * Switch from inline buffer to linear (direct) extent records.
  3399. * new_size should already be rounded up to the next power of 2
  3400. * by the caller (when appropriate), so use new_size as it is.
  3401. * However, since new_size may be rounded up, we can't update
  3402. * if_bytes here. It is the caller's responsibility to update
  3403. * if_bytes upon return.
  3404. */
  3405. void
  3406. xfs_iext_inline_to_direct(
  3407. xfs_ifork_t *ifp, /* inode fork pointer */
  3408. int new_size) /* number of extents in file */
  3409. {
  3410. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3411. memset(ifp->if_u1.if_extents, 0, new_size);
  3412. if (ifp->if_bytes) {
  3413. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3414. ifp->if_bytes);
  3415. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3416. sizeof(xfs_bmbt_rec_t));
  3417. }
  3418. ifp->if_real_bytes = new_size;
  3419. }
  3420. /*
  3421. * Resize an extent indirection array to new_size bytes.
  3422. */
  3423. STATIC void
  3424. xfs_iext_realloc_indirect(
  3425. xfs_ifork_t *ifp, /* inode fork pointer */
  3426. int new_size) /* new indirection array size */
  3427. {
  3428. int nlists; /* number of irec's (ex lists) */
  3429. int size; /* current indirection array size */
  3430. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3431. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3432. size = nlists * sizeof(xfs_ext_irec_t);
  3433. ASSERT(ifp->if_real_bytes);
  3434. ASSERT((new_size >= 0) && (new_size != size));
  3435. if (new_size == 0) {
  3436. xfs_iext_destroy(ifp);
  3437. } else {
  3438. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3439. kmem_realloc(ifp->if_u1.if_ext_irec,
  3440. new_size, size, KM_NOFS);
  3441. }
  3442. }
  3443. /*
  3444. * Switch from indirection array to linear (direct) extent allocations.
  3445. */
  3446. STATIC void
  3447. xfs_iext_indirect_to_direct(
  3448. xfs_ifork_t *ifp) /* inode fork pointer */
  3449. {
  3450. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3451. xfs_extnum_t nextents; /* number of extents in file */
  3452. int size; /* size of file extents */
  3453. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3454. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3455. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3456. size = nextents * sizeof(xfs_bmbt_rec_t);
  3457. xfs_iext_irec_compact_pages(ifp);
  3458. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3459. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3460. kmem_free(ifp->if_u1.if_ext_irec);
  3461. ifp->if_flags &= ~XFS_IFEXTIREC;
  3462. ifp->if_u1.if_extents = ep;
  3463. ifp->if_bytes = size;
  3464. if (nextents < XFS_LINEAR_EXTS) {
  3465. xfs_iext_realloc_direct(ifp, size);
  3466. }
  3467. }
  3468. /*
  3469. * Free incore file extents.
  3470. */
  3471. void
  3472. xfs_iext_destroy(
  3473. xfs_ifork_t *ifp) /* inode fork pointer */
  3474. {
  3475. if (ifp->if_flags & XFS_IFEXTIREC) {
  3476. int erp_idx;
  3477. int nlists;
  3478. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3479. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3480. xfs_iext_irec_remove(ifp, erp_idx);
  3481. }
  3482. ifp->if_flags &= ~XFS_IFEXTIREC;
  3483. } else if (ifp->if_real_bytes) {
  3484. kmem_free(ifp->if_u1.if_extents);
  3485. } else if (ifp->if_bytes) {
  3486. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3487. sizeof(xfs_bmbt_rec_t));
  3488. }
  3489. ifp->if_u1.if_extents = NULL;
  3490. ifp->if_real_bytes = 0;
  3491. ifp->if_bytes = 0;
  3492. }
  3493. /*
  3494. * Return a pointer to the extent record for file system block bno.
  3495. */
  3496. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3497. xfs_iext_bno_to_ext(
  3498. xfs_ifork_t *ifp, /* inode fork pointer */
  3499. xfs_fileoff_t bno, /* block number to search for */
  3500. xfs_extnum_t *idxp) /* index of target extent */
  3501. {
  3502. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3503. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3504. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3505. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3506. int high; /* upper boundary in search */
  3507. xfs_extnum_t idx = 0; /* index of target extent */
  3508. int low; /* lower boundary in search */
  3509. xfs_extnum_t nextents; /* number of file extents */
  3510. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3511. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3512. if (nextents == 0) {
  3513. *idxp = 0;
  3514. return NULL;
  3515. }
  3516. low = 0;
  3517. if (ifp->if_flags & XFS_IFEXTIREC) {
  3518. /* Find target extent list */
  3519. int erp_idx = 0;
  3520. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3521. base = erp->er_extbuf;
  3522. high = erp->er_extcount - 1;
  3523. } else {
  3524. base = ifp->if_u1.if_extents;
  3525. high = nextents - 1;
  3526. }
  3527. /* Binary search extent records */
  3528. while (low <= high) {
  3529. idx = (low + high) >> 1;
  3530. ep = base + idx;
  3531. startoff = xfs_bmbt_get_startoff(ep);
  3532. blockcount = xfs_bmbt_get_blockcount(ep);
  3533. if (bno < startoff) {
  3534. high = idx - 1;
  3535. } else if (bno >= startoff + blockcount) {
  3536. low = idx + 1;
  3537. } else {
  3538. /* Convert back to file-based extent index */
  3539. if (ifp->if_flags & XFS_IFEXTIREC) {
  3540. idx += erp->er_extoff;
  3541. }
  3542. *idxp = idx;
  3543. return ep;
  3544. }
  3545. }
  3546. /* Convert back to file-based extent index */
  3547. if (ifp->if_flags & XFS_IFEXTIREC) {
  3548. idx += erp->er_extoff;
  3549. }
  3550. if (bno >= startoff + blockcount) {
  3551. if (++idx == nextents) {
  3552. ep = NULL;
  3553. } else {
  3554. ep = xfs_iext_get_ext(ifp, idx);
  3555. }
  3556. }
  3557. *idxp = idx;
  3558. return ep;
  3559. }
  3560. /*
  3561. * Return a pointer to the indirection array entry containing the
  3562. * extent record for filesystem block bno. Store the index of the
  3563. * target irec in *erp_idxp.
  3564. */
  3565. xfs_ext_irec_t * /* pointer to found extent record */
  3566. xfs_iext_bno_to_irec(
  3567. xfs_ifork_t *ifp, /* inode fork pointer */
  3568. xfs_fileoff_t bno, /* block number to search for */
  3569. int *erp_idxp) /* irec index of target ext list */
  3570. {
  3571. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3572. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3573. int erp_idx; /* indirection array index */
  3574. int nlists; /* number of extent irec's (lists) */
  3575. int high; /* binary search upper limit */
  3576. int low; /* binary search lower limit */
  3577. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3578. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3579. erp_idx = 0;
  3580. low = 0;
  3581. high = nlists - 1;
  3582. while (low <= high) {
  3583. erp_idx = (low + high) >> 1;
  3584. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3585. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3586. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3587. high = erp_idx - 1;
  3588. } else if (erp_next && bno >=
  3589. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3590. low = erp_idx + 1;
  3591. } else {
  3592. break;
  3593. }
  3594. }
  3595. *erp_idxp = erp_idx;
  3596. return erp;
  3597. }
  3598. /*
  3599. * Return a pointer to the indirection array entry containing the
  3600. * extent record at file extent index *idxp. Store the index of the
  3601. * target irec in *erp_idxp and store the page index of the target
  3602. * extent record in *idxp.
  3603. */
  3604. xfs_ext_irec_t *
  3605. xfs_iext_idx_to_irec(
  3606. xfs_ifork_t *ifp, /* inode fork pointer */
  3607. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3608. int *erp_idxp, /* pointer to target irec */
  3609. int realloc) /* new bytes were just added */
  3610. {
  3611. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3612. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3613. int erp_idx; /* indirection array index */
  3614. int nlists; /* number of irec's (ex lists) */
  3615. int high; /* binary search upper limit */
  3616. int low; /* binary search lower limit */
  3617. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3618. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3619. ASSERT(page_idx >= 0 && page_idx <=
  3620. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3621. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3622. erp_idx = 0;
  3623. low = 0;
  3624. high = nlists - 1;
  3625. /* Binary search extent irec's */
  3626. while (low <= high) {
  3627. erp_idx = (low + high) >> 1;
  3628. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3629. prev = erp_idx > 0 ? erp - 1 : NULL;
  3630. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3631. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3632. high = erp_idx - 1;
  3633. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3634. (page_idx == erp->er_extoff + erp->er_extcount &&
  3635. !realloc)) {
  3636. low = erp_idx + 1;
  3637. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3638. erp->er_extcount == XFS_LINEAR_EXTS) {
  3639. ASSERT(realloc);
  3640. page_idx = 0;
  3641. erp_idx++;
  3642. erp = erp_idx < nlists ? erp + 1 : NULL;
  3643. break;
  3644. } else {
  3645. page_idx -= erp->er_extoff;
  3646. break;
  3647. }
  3648. }
  3649. *idxp = page_idx;
  3650. *erp_idxp = erp_idx;
  3651. return(erp);
  3652. }
  3653. /*
  3654. * Allocate and initialize an indirection array once the space needed
  3655. * for incore extents increases above XFS_IEXT_BUFSZ.
  3656. */
  3657. void
  3658. xfs_iext_irec_init(
  3659. xfs_ifork_t *ifp) /* inode fork pointer */
  3660. {
  3661. xfs_ext_irec_t *erp; /* indirection array pointer */
  3662. xfs_extnum_t nextents; /* number of extents in file */
  3663. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3664. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3665. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3666. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3667. if (nextents == 0) {
  3668. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3669. } else if (!ifp->if_real_bytes) {
  3670. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3671. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3672. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3673. }
  3674. erp->er_extbuf = ifp->if_u1.if_extents;
  3675. erp->er_extcount = nextents;
  3676. erp->er_extoff = 0;
  3677. ifp->if_flags |= XFS_IFEXTIREC;
  3678. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3679. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3680. ifp->if_u1.if_ext_irec = erp;
  3681. return;
  3682. }
  3683. /*
  3684. * Allocate and initialize a new entry in the indirection array.
  3685. */
  3686. xfs_ext_irec_t *
  3687. xfs_iext_irec_new(
  3688. xfs_ifork_t *ifp, /* inode fork pointer */
  3689. int erp_idx) /* index for new irec */
  3690. {
  3691. xfs_ext_irec_t *erp; /* indirection array pointer */
  3692. int i; /* loop counter */
  3693. int nlists; /* number of irec's (ex lists) */
  3694. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3695. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3696. /* Resize indirection array */
  3697. xfs_iext_realloc_indirect(ifp, ++nlists *
  3698. sizeof(xfs_ext_irec_t));
  3699. /*
  3700. * Move records down in the array so the
  3701. * new page can use erp_idx.
  3702. */
  3703. erp = ifp->if_u1.if_ext_irec;
  3704. for (i = nlists - 1; i > erp_idx; i--) {
  3705. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3706. }
  3707. ASSERT(i == erp_idx);
  3708. /* Initialize new extent record */
  3709. erp = ifp->if_u1.if_ext_irec;
  3710. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3711. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3712. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3713. erp[erp_idx].er_extcount = 0;
  3714. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3715. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3716. return (&erp[erp_idx]);
  3717. }
  3718. /*
  3719. * Remove a record from the indirection array.
  3720. */
  3721. void
  3722. xfs_iext_irec_remove(
  3723. xfs_ifork_t *ifp, /* inode fork pointer */
  3724. int erp_idx) /* irec index to remove */
  3725. {
  3726. xfs_ext_irec_t *erp; /* indirection array pointer */
  3727. int i; /* loop counter */
  3728. int nlists; /* number of irec's (ex lists) */
  3729. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3730. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3731. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3732. if (erp->er_extbuf) {
  3733. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3734. -erp->er_extcount);
  3735. kmem_free(erp->er_extbuf);
  3736. }
  3737. /* Compact extent records */
  3738. erp = ifp->if_u1.if_ext_irec;
  3739. for (i = erp_idx; i < nlists - 1; i++) {
  3740. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3741. }
  3742. /*
  3743. * Manually free the last extent record from the indirection
  3744. * array. A call to xfs_iext_realloc_indirect() with a size
  3745. * of zero would result in a call to xfs_iext_destroy() which
  3746. * would in turn call this function again, creating a nasty
  3747. * infinite loop.
  3748. */
  3749. if (--nlists) {
  3750. xfs_iext_realloc_indirect(ifp,
  3751. nlists * sizeof(xfs_ext_irec_t));
  3752. } else {
  3753. kmem_free(ifp->if_u1.if_ext_irec);
  3754. }
  3755. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3756. }
  3757. /*
  3758. * This is called to clean up large amounts of unused memory allocated
  3759. * by the indirection array. Before compacting anything though, verify
  3760. * that the indirection array is still needed and switch back to the
  3761. * linear extent list (or even the inline buffer) if possible. The
  3762. * compaction policy is as follows:
  3763. *
  3764. * Full Compaction: Extents fit into a single page (or inline buffer)
  3765. * Partial Compaction: Extents occupy less than 50% of allocated space
  3766. * No Compaction: Extents occupy at least 50% of allocated space
  3767. */
  3768. void
  3769. xfs_iext_irec_compact(
  3770. xfs_ifork_t *ifp) /* inode fork pointer */
  3771. {
  3772. xfs_extnum_t nextents; /* number of extents in file */
  3773. int nlists; /* number of irec's (ex lists) */
  3774. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3775. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3776. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3777. if (nextents == 0) {
  3778. xfs_iext_destroy(ifp);
  3779. } else if (nextents <= XFS_INLINE_EXTS) {
  3780. xfs_iext_indirect_to_direct(ifp);
  3781. xfs_iext_direct_to_inline(ifp, nextents);
  3782. } else if (nextents <= XFS_LINEAR_EXTS) {
  3783. xfs_iext_indirect_to_direct(ifp);
  3784. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3785. xfs_iext_irec_compact_pages(ifp);
  3786. }
  3787. }
  3788. /*
  3789. * Combine extents from neighboring extent pages.
  3790. */
  3791. void
  3792. xfs_iext_irec_compact_pages(
  3793. xfs_ifork_t *ifp) /* inode fork pointer */
  3794. {
  3795. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3796. int erp_idx = 0; /* indirection array index */
  3797. int nlists; /* number of irec's (ex lists) */
  3798. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3799. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3800. while (erp_idx < nlists - 1) {
  3801. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3802. erp_next = erp + 1;
  3803. if (erp_next->er_extcount <=
  3804. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3805. memcpy(&erp->er_extbuf[erp->er_extcount],
  3806. erp_next->er_extbuf, erp_next->er_extcount *
  3807. sizeof(xfs_bmbt_rec_t));
  3808. erp->er_extcount += erp_next->er_extcount;
  3809. /*
  3810. * Free page before removing extent record
  3811. * so er_extoffs don't get modified in
  3812. * xfs_iext_irec_remove.
  3813. */
  3814. kmem_free(erp_next->er_extbuf);
  3815. erp_next->er_extbuf = NULL;
  3816. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3817. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3818. } else {
  3819. erp_idx++;
  3820. }
  3821. }
  3822. }
  3823. /*
  3824. * This is called to update the er_extoff field in the indirection
  3825. * array when extents have been added or removed from one of the
  3826. * extent lists. erp_idx contains the irec index to begin updating
  3827. * at and ext_diff contains the number of extents that were added
  3828. * or removed.
  3829. */
  3830. void
  3831. xfs_iext_irec_update_extoffs(
  3832. xfs_ifork_t *ifp, /* inode fork pointer */
  3833. int erp_idx, /* irec index to update */
  3834. int ext_diff) /* number of new extents */
  3835. {
  3836. int i; /* loop counter */
  3837. int nlists; /* number of irec's (ex lists */
  3838. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3839. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3840. for (i = erp_idx; i < nlists; i++) {
  3841. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3842. }
  3843. }