fsl_dma.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/list.h>
  25. #include <sound/core.h>
  26. #include <sound/pcm.h>
  27. #include <sound/pcm_params.h>
  28. #include <sound/soc.h>
  29. #include <asm/io.h>
  30. #include "fsl_dma.h"
  31. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  32. /*
  33. * The formats that the DMA controller supports, which is anything
  34. * that is 8, 16, or 32 bits.
  35. */
  36. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  37. SNDRV_PCM_FMTBIT_U8 | \
  38. SNDRV_PCM_FMTBIT_S16_LE | \
  39. SNDRV_PCM_FMTBIT_S16_BE | \
  40. SNDRV_PCM_FMTBIT_U16_LE | \
  41. SNDRV_PCM_FMTBIT_U16_BE | \
  42. SNDRV_PCM_FMTBIT_S24_LE | \
  43. SNDRV_PCM_FMTBIT_S24_BE | \
  44. SNDRV_PCM_FMTBIT_U24_LE | \
  45. SNDRV_PCM_FMTBIT_U24_BE | \
  46. SNDRV_PCM_FMTBIT_S32_LE | \
  47. SNDRV_PCM_FMTBIT_S32_BE | \
  48. SNDRV_PCM_FMTBIT_U32_LE | \
  49. SNDRV_PCM_FMTBIT_U32_BE)
  50. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  51. SNDRV_PCM_RATE_CONTINUOUS)
  52. struct dma_object {
  53. struct list_head list;
  54. struct snd_soc_platform_driver dai;
  55. dma_addr_t ssi_stx_phys;
  56. dma_addr_t ssi_srx_phys;
  57. struct ccsr_dma_channel __iomem *channel;
  58. unsigned int irq;
  59. bool assigned;
  60. char path[1];
  61. };
  62. /*
  63. * The number of DMA links to use. Two is the bare minimum, but if you
  64. * have really small links you might need more.
  65. */
  66. #define NUM_DMA_LINKS 2
  67. /** fsl_dma_private: p-substream DMA data
  68. *
  69. * Each substream has a 1-to-1 association with a DMA channel.
  70. *
  71. * The link[] array is first because it needs to be aligned on a 32-byte
  72. * boundary, so putting it first will ensure alignment without padding the
  73. * structure.
  74. *
  75. * @link[]: array of link descriptors
  76. * @dma_channel: pointer to the DMA channel's registers
  77. * @irq: IRQ for this DMA channel
  78. * @substream: pointer to the substream object, needed by the ISR
  79. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  80. * @ld_buf_phys: physical address of the LD buffer
  81. * @current_link: index into link[] of the link currently being processed
  82. * @dma_buf_phys: physical address of the DMA buffer
  83. * @dma_buf_next: physical address of the next period to process
  84. * @dma_buf_end: physical address of the byte after the end of the DMA
  85. * @buffer period_size: the size of a single period
  86. * @num_periods: the number of periods in the DMA buffer
  87. */
  88. struct fsl_dma_private {
  89. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  90. struct ccsr_dma_channel __iomem *dma_channel;
  91. unsigned int irq;
  92. struct snd_pcm_substream *substream;
  93. dma_addr_t ssi_sxx_phys;
  94. dma_addr_t ld_buf_phys;
  95. unsigned int current_link;
  96. dma_addr_t dma_buf_phys;
  97. dma_addr_t dma_buf_next;
  98. dma_addr_t dma_buf_end;
  99. size_t period_size;
  100. unsigned int num_periods;
  101. };
  102. /**
  103. * fsl_dma_hardare: define characteristics of the PCM hardware.
  104. *
  105. * The PCM hardware is the Freescale DMA controller. This structure defines
  106. * the capabilities of that hardware.
  107. *
  108. * Since the sampling rate and data format are not controlled by the DMA
  109. * controller, we specify no limits for those values. The only exception is
  110. * period_bytes_min, which is set to a reasonably low value to prevent the
  111. * DMA controller from generating too many interrupts per second.
  112. *
  113. * Since each link descriptor has a 32-bit byte count field, we set
  114. * period_bytes_max to the largest 32-bit number. We also have no maximum
  115. * number of periods.
  116. *
  117. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  118. * limitation in the SSI driver requires the sample rates for playback and
  119. * capture to be the same.
  120. */
  121. static const struct snd_pcm_hardware fsl_dma_hardware = {
  122. .info = SNDRV_PCM_INFO_INTERLEAVED |
  123. SNDRV_PCM_INFO_MMAP |
  124. SNDRV_PCM_INFO_MMAP_VALID |
  125. SNDRV_PCM_INFO_JOINT_DUPLEX |
  126. SNDRV_PCM_INFO_PAUSE,
  127. .formats = FSLDMA_PCM_FORMATS,
  128. .rates = FSLDMA_PCM_RATES,
  129. .rate_min = 5512,
  130. .rate_max = 192000,
  131. .period_bytes_min = 512, /* A reasonable limit */
  132. .period_bytes_max = (u32) -1,
  133. .periods_min = NUM_DMA_LINKS,
  134. .periods_max = (unsigned int) -1,
  135. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  136. };
  137. /**
  138. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  139. *
  140. * This function should be called by the ISR whenever the DMA controller
  141. * halts data transfer.
  142. */
  143. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  144. {
  145. unsigned long flags;
  146. snd_pcm_stream_lock_irqsave(substream, flags);
  147. if (snd_pcm_running(substream))
  148. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  149. snd_pcm_stream_unlock_irqrestore(substream, flags);
  150. }
  151. /**
  152. * fsl_dma_update_pointers - update LD pointers to point to the next period
  153. *
  154. * As each period is completed, this function changes the the link
  155. * descriptor pointers for that period to point to the next period.
  156. */
  157. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  158. {
  159. struct fsl_dma_link_descriptor *link =
  160. &dma_private->link[dma_private->current_link];
  161. /* Update our link descriptors to point to the next period. On a 36-bit
  162. * system, we also need to update the ESAD bits. We also set (keep) the
  163. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  164. */
  165. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  166. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  167. #ifdef CONFIG_PHYS_64BIT
  168. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  169. upper_32_bits(dma_private->dma_buf_next));
  170. #endif
  171. } else {
  172. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  173. #ifdef CONFIG_PHYS_64BIT
  174. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  175. upper_32_bits(dma_private->dma_buf_next));
  176. #endif
  177. }
  178. /* Update our variables for next time */
  179. dma_private->dma_buf_next += dma_private->period_size;
  180. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  181. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  182. if (++dma_private->current_link >= NUM_DMA_LINKS)
  183. dma_private->current_link = 0;
  184. }
  185. /**
  186. * fsl_dma_isr: interrupt handler for the DMA controller
  187. *
  188. * @irq: IRQ of the DMA channel
  189. * @dev_id: pointer to the dma_private structure for this DMA channel
  190. */
  191. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  192. {
  193. struct fsl_dma_private *dma_private = dev_id;
  194. struct snd_pcm_substream *substream = dma_private->substream;
  195. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  196. struct device *dev = rtd->platform->dev;
  197. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  198. irqreturn_t ret = IRQ_NONE;
  199. u32 sr, sr2 = 0;
  200. /* We got an interrupt, so read the status register to see what we
  201. were interrupted for.
  202. */
  203. sr = in_be32(&dma_channel->sr);
  204. if (sr & CCSR_DMA_SR_TE) {
  205. dev_err(dev, "dma transmit error\n");
  206. fsl_dma_abort_stream(substream);
  207. sr2 |= CCSR_DMA_SR_TE;
  208. ret = IRQ_HANDLED;
  209. }
  210. if (sr & CCSR_DMA_SR_CH)
  211. ret = IRQ_HANDLED;
  212. if (sr & CCSR_DMA_SR_PE) {
  213. dev_err(dev, "dma programming error\n");
  214. fsl_dma_abort_stream(substream);
  215. sr2 |= CCSR_DMA_SR_PE;
  216. ret = IRQ_HANDLED;
  217. }
  218. if (sr & CCSR_DMA_SR_EOLNI) {
  219. sr2 |= CCSR_DMA_SR_EOLNI;
  220. ret = IRQ_HANDLED;
  221. }
  222. if (sr & CCSR_DMA_SR_CB)
  223. ret = IRQ_HANDLED;
  224. if (sr & CCSR_DMA_SR_EOSI) {
  225. /* Tell ALSA we completed a period. */
  226. snd_pcm_period_elapsed(substream);
  227. /*
  228. * Update our link descriptors to point to the next period. We
  229. * only need to do this if the number of periods is not equal to
  230. * the number of links.
  231. */
  232. if (dma_private->num_periods != NUM_DMA_LINKS)
  233. fsl_dma_update_pointers(dma_private);
  234. sr2 |= CCSR_DMA_SR_EOSI;
  235. ret = IRQ_HANDLED;
  236. }
  237. if (sr & CCSR_DMA_SR_EOLSI) {
  238. sr2 |= CCSR_DMA_SR_EOLSI;
  239. ret = IRQ_HANDLED;
  240. }
  241. /* Clear the bits that we set */
  242. if (sr2)
  243. out_be32(&dma_channel->sr, sr2);
  244. return ret;
  245. }
  246. /**
  247. * fsl_dma_new: initialize this PCM driver.
  248. *
  249. * This function is called when the codec driver calls snd_soc_new_pcms(),
  250. * once for each .dai_link in the machine driver's snd_soc_card
  251. * structure.
  252. *
  253. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  254. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  255. * is specified. Therefore, any DMA buffers we allocate will always be in low
  256. * memory, but we support for 36-bit physical addresses anyway.
  257. *
  258. * Regardless of where the memory is actually allocated, since the device can
  259. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  260. */
  261. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  262. struct snd_pcm *pcm)
  263. {
  264. static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
  265. int ret;
  266. if (!card->dev->dma_mask)
  267. card->dev->dma_mask = &fsl_dma_dmamask;
  268. if (!card->dev->coherent_dma_mask)
  269. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  270. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  271. fsl_dma_hardware.buffer_bytes_max,
  272. &pcm->streams[0].substream->dma_buffer);
  273. if (ret) {
  274. dev_err(card->dev, "can't allocate playback dma buffer\n");
  275. return ret;
  276. }
  277. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  278. fsl_dma_hardware.buffer_bytes_max,
  279. &pcm->streams[1].substream->dma_buffer);
  280. if (ret) {
  281. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  282. dev_err(card->dev, "can't allocate capture dma buffer\n");
  283. return ret;
  284. }
  285. return 0;
  286. }
  287. /**
  288. * fsl_dma_open: open a new substream.
  289. *
  290. * Each substream has its own DMA buffer.
  291. *
  292. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  293. * descriptors that ping-pong from one period to the next. For example, if
  294. * there are six periods and two link descriptors, this is how they look
  295. * before playback starts:
  296. *
  297. * The last link descriptor
  298. * ____________ points back to the first
  299. * | |
  300. * V |
  301. * ___ ___ |
  302. * | |->| |->|
  303. * |___| |___|
  304. * | |
  305. * | |
  306. * V V
  307. * _________________________________________
  308. * | | | | | | | The DMA buffer is
  309. * | | | | | | | divided into 6 parts
  310. * |______|______|______|______|______|______|
  311. *
  312. * and here's how they look after the first period is finished playing:
  313. *
  314. * ____________
  315. * | |
  316. * V |
  317. * ___ ___ |
  318. * | |->| |->|
  319. * |___| |___|
  320. * | |
  321. * |______________
  322. * | |
  323. * V V
  324. * _________________________________________
  325. * | | | | | | |
  326. * | | | | | | |
  327. * |______|______|______|______|______|______|
  328. *
  329. * The first link descriptor now points to the third period. The DMA
  330. * controller is currently playing the second period. When it finishes, it
  331. * will jump back to the first descriptor and play the third period.
  332. *
  333. * There are four reasons we do this:
  334. *
  335. * 1. The only way to get the DMA controller to automatically restart the
  336. * transfer when it gets to the end of the buffer is to use chaining
  337. * mode. Basic direct mode doesn't offer that feature.
  338. * 2. We need to receive an interrupt at the end of every period. The DMA
  339. * controller can generate an interrupt at the end of every link transfer
  340. * (aka segment). Making each period into a DMA segment will give us the
  341. * interrupts we need.
  342. * 3. By creating only two link descriptors, regardless of the number of
  343. * periods, we do not need to reallocate the link descriptors if the
  344. * number of periods changes.
  345. * 4. All of the audio data is still stored in a single, contiguous DMA
  346. * buffer, which is what ALSA expects. We're just dividing it into
  347. * contiguous parts, and creating a link descriptor for each one.
  348. */
  349. static int fsl_dma_open(struct snd_pcm_substream *substream)
  350. {
  351. struct snd_pcm_runtime *runtime = substream->runtime;
  352. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  353. struct device *dev = rtd->platform->dev;
  354. struct dma_object *dma =
  355. container_of(rtd->platform->driver, struct dma_object, dai);
  356. struct fsl_dma_private *dma_private;
  357. struct ccsr_dma_channel __iomem *dma_channel;
  358. dma_addr_t ld_buf_phys;
  359. u64 temp_link; /* Pointer to next link descriptor */
  360. u32 mr;
  361. unsigned int channel;
  362. int ret = 0;
  363. unsigned int i;
  364. /*
  365. * Reject any DMA buffer whose size is not a multiple of the period
  366. * size. We need to make sure that the DMA buffer can be evenly divided
  367. * into periods.
  368. */
  369. ret = snd_pcm_hw_constraint_integer(runtime,
  370. SNDRV_PCM_HW_PARAM_PERIODS);
  371. if (ret < 0) {
  372. dev_err(dev, "invalid buffer size\n");
  373. return ret;
  374. }
  375. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  376. if (dma->assigned) {
  377. dev_err(dev, "dma channel already assigned\n");
  378. return -EBUSY;
  379. }
  380. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  381. &ld_buf_phys, GFP_KERNEL);
  382. if (!dma_private) {
  383. dev_err(dev, "can't allocate dma private data\n");
  384. return -ENOMEM;
  385. }
  386. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  387. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  388. else
  389. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  390. dma_private->dma_channel = dma->channel;
  391. dma_private->irq = dma->irq;
  392. dma_private->substream = substream;
  393. dma_private->ld_buf_phys = ld_buf_phys;
  394. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  395. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  396. if (ret) {
  397. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  398. dma_private->irq, ret);
  399. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  400. dma_private, dma_private->ld_buf_phys);
  401. return ret;
  402. }
  403. dma->assigned = 1;
  404. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  405. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  406. runtime->private_data = dma_private;
  407. /* Program the fixed DMA controller parameters */
  408. dma_channel = dma_private->dma_channel;
  409. temp_link = dma_private->ld_buf_phys +
  410. sizeof(struct fsl_dma_link_descriptor);
  411. for (i = 0; i < NUM_DMA_LINKS; i++) {
  412. dma_private->link[i].next = cpu_to_be64(temp_link);
  413. temp_link += sizeof(struct fsl_dma_link_descriptor);
  414. }
  415. /* The last link descriptor points to the first */
  416. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  417. /* Tell the DMA controller where the first link descriptor is */
  418. out_be32(&dma_channel->clndar,
  419. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  420. out_be32(&dma_channel->eclndar,
  421. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  422. /* The manual says the BCR must be clear before enabling EMP */
  423. out_be32(&dma_channel->bcr, 0);
  424. /*
  425. * Program the mode register for interrupts, external master control,
  426. * and source/destination hold. Also clear the Channel Abort bit.
  427. */
  428. mr = in_be32(&dma_channel->mr) &
  429. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  430. /*
  431. * We want External Master Start and External Master Pause enabled,
  432. * because the SSI is controlling the DMA controller. We want the DMA
  433. * controller to be set up in advance, and then we signal only the SSI
  434. * to start transferring.
  435. *
  436. * We want End-Of-Segment Interrupts enabled, because this will generate
  437. * an interrupt at the end of each segment (each link descriptor
  438. * represents one segment). Each DMA segment is the same thing as an
  439. * ALSA period, so this is how we get an interrupt at the end of every
  440. * period.
  441. *
  442. * We want Error Interrupt enabled, so that we can get an error if
  443. * the DMA controller is mis-programmed somehow.
  444. */
  445. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  446. CCSR_DMA_MR_EMS_EN;
  447. /* For playback, we want the destination address to be held. For
  448. capture, set the source address to be held. */
  449. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  450. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  451. out_be32(&dma_channel->mr, mr);
  452. return 0;
  453. }
  454. /**
  455. * fsl_dma_hw_params: continue initializing the DMA links
  456. *
  457. * This function obtains hardware parameters about the opened stream and
  458. * programs the DMA controller accordingly.
  459. *
  460. * One drawback of big-endian is that when copying integers of different
  461. * sizes to a fixed-sized register, the address to which the integer must be
  462. * copied is dependent on the size of the integer.
  463. *
  464. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  465. * integer, then X should be copied to address P. However, if X is a 16-bit
  466. * integer, then it should be copied to P+2. If X is an 8-bit register,
  467. * then it should be copied to P+3.
  468. *
  469. * So for playback of 8-bit samples, the DMA controller must transfer single
  470. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  471. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  472. *
  473. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  474. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  475. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  476. * 24-bit data must be padded to 32 bits.
  477. */
  478. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  479. struct snd_pcm_hw_params *hw_params)
  480. {
  481. struct snd_pcm_runtime *runtime = substream->runtime;
  482. struct fsl_dma_private *dma_private = runtime->private_data;
  483. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  484. struct device *dev = rtd->platform->dev;
  485. /* Number of bits per sample */
  486. unsigned int sample_size =
  487. snd_pcm_format_physical_width(params_format(hw_params));
  488. /* Number of bytes per frame */
  489. unsigned int frame_size = 2 * (sample_size / 8);
  490. /* Bus address of SSI STX register */
  491. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  492. /* Size of the DMA buffer, in bytes */
  493. size_t buffer_size = params_buffer_bytes(hw_params);
  494. /* Number of bytes per period */
  495. size_t period_size = params_period_bytes(hw_params);
  496. /* Pointer to next period */
  497. dma_addr_t temp_addr = substream->dma_buffer.addr;
  498. /* Pointer to DMA controller */
  499. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  500. u32 mr; /* DMA Mode Register */
  501. unsigned int i;
  502. /* Initialize our DMA tracking variables */
  503. dma_private->period_size = period_size;
  504. dma_private->num_periods = params_periods(hw_params);
  505. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  506. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  507. (NUM_DMA_LINKS * period_size);
  508. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  509. /* This happens if the number of periods == NUM_DMA_LINKS */
  510. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  511. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  512. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  513. /* Due to a quirk of the SSI's STX register, the target address
  514. * for the DMA operations depends on the sample size. So we calculate
  515. * that offset here. While we're at it, also tell the DMA controller
  516. * how much data to transfer per sample.
  517. */
  518. switch (sample_size) {
  519. case 8:
  520. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  521. ssi_sxx_phys += 3;
  522. break;
  523. case 16:
  524. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  525. ssi_sxx_phys += 2;
  526. break;
  527. case 32:
  528. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  529. break;
  530. default:
  531. /* We should never get here */
  532. dev_err(dev, "unsupported sample size %u\n", sample_size);
  533. return -EINVAL;
  534. }
  535. /*
  536. * BWC should always be a multiple of the frame size. BWC determines
  537. * how many bytes are sent/received before the DMA controller checks the
  538. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  539. * hold three frames, so we want to send two frames at a time. For
  540. * capture, the receive FIFO is triggered when it contains one frame, so
  541. * we want to receive one frame at a time.
  542. */
  543. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  544. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  545. else
  546. mr |= CCSR_DMA_MR_BWC(frame_size);
  547. out_be32(&dma_channel->mr, mr);
  548. for (i = 0; i < NUM_DMA_LINKS; i++) {
  549. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  550. link->count = cpu_to_be32(period_size);
  551. /* The snoop bit tells the DMA controller whether it should tell
  552. * the ECM to snoop during a read or write to an address. For
  553. * audio, we use DMA to transfer data between memory and an I/O
  554. * device (the SSI's STX0 or SRX0 register). Snooping is only
  555. * needed if there is a cache, so we need to snoop memory
  556. * addresses only. For playback, that means we snoop the source
  557. * but not the destination. For capture, we snoop the
  558. * destination but not the source.
  559. *
  560. * Note that failing to snoop properly is unlikely to cause
  561. * cache incoherency if the period size is larger than the
  562. * size of L1 cache. This is because filling in one period will
  563. * flush out the data for the previous period. So if you
  564. * increased period_bytes_min to a large enough size, you might
  565. * get more performance by not snooping, and you'll still be
  566. * okay. You'll need to update fsl_dma_update_pointers() also.
  567. */
  568. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  569. link->source_addr = cpu_to_be32(temp_addr);
  570. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  571. upper_32_bits(temp_addr));
  572. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  573. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  574. upper_32_bits(ssi_sxx_phys));
  575. } else {
  576. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  577. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  578. upper_32_bits(ssi_sxx_phys));
  579. link->dest_addr = cpu_to_be32(temp_addr);
  580. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  581. upper_32_bits(temp_addr));
  582. }
  583. temp_addr += period_size;
  584. }
  585. return 0;
  586. }
  587. /**
  588. * fsl_dma_pointer: determine the current position of the DMA transfer
  589. *
  590. * This function is called by ALSA when ALSA wants to know where in the
  591. * stream buffer the hardware currently is.
  592. *
  593. * For playback, the SAR register contains the physical address of the most
  594. * recent DMA transfer. For capture, the value is in the DAR register.
  595. *
  596. * The base address of the buffer is stored in the source_addr field of the
  597. * first link descriptor.
  598. */
  599. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  600. {
  601. struct snd_pcm_runtime *runtime = substream->runtime;
  602. struct fsl_dma_private *dma_private = runtime->private_data;
  603. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  604. struct device *dev = rtd->platform->dev;
  605. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  606. dma_addr_t position;
  607. snd_pcm_uframes_t frames;
  608. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  609. * only have 32-bit DMA addresses. This function is typically called
  610. * in interrupt context, so we need to optimize it.
  611. */
  612. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  613. position = in_be32(&dma_channel->sar);
  614. #ifdef CONFIG_PHYS_64BIT
  615. position |= (u64)(in_be32(&dma_channel->satr) &
  616. CCSR_DMA_ATR_ESAD_MASK) << 32;
  617. #endif
  618. } else {
  619. position = in_be32(&dma_channel->dar);
  620. #ifdef CONFIG_PHYS_64BIT
  621. position |= (u64)(in_be32(&dma_channel->datr) &
  622. CCSR_DMA_ATR_ESAD_MASK) << 32;
  623. #endif
  624. }
  625. /*
  626. * When capture is started, the SSI immediately starts to fill its FIFO.
  627. * This means that the DMA controller is not started until the FIFO is
  628. * full. However, ALSA calls this function before that happens, when
  629. * MR.DAR is still zero. In this case, just return zero to indicate
  630. * that nothing has been received yet.
  631. */
  632. if (!position)
  633. return 0;
  634. if ((position < dma_private->dma_buf_phys) ||
  635. (position > dma_private->dma_buf_end)) {
  636. dev_err(dev, "dma pointer is out of range, halting stream\n");
  637. return SNDRV_PCM_POS_XRUN;
  638. }
  639. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  640. /*
  641. * If the current address is just past the end of the buffer, wrap it
  642. * around.
  643. */
  644. if (frames == runtime->buffer_size)
  645. frames = 0;
  646. return frames;
  647. }
  648. /**
  649. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  650. *
  651. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  652. * registers.
  653. *
  654. * This function can be called multiple times.
  655. */
  656. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  657. {
  658. struct snd_pcm_runtime *runtime = substream->runtime;
  659. struct fsl_dma_private *dma_private = runtime->private_data;
  660. if (dma_private) {
  661. struct ccsr_dma_channel __iomem *dma_channel;
  662. dma_channel = dma_private->dma_channel;
  663. /* Stop the DMA */
  664. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  665. out_be32(&dma_channel->mr, 0);
  666. /* Reset all the other registers */
  667. out_be32(&dma_channel->sr, -1);
  668. out_be32(&dma_channel->clndar, 0);
  669. out_be32(&dma_channel->eclndar, 0);
  670. out_be32(&dma_channel->satr, 0);
  671. out_be32(&dma_channel->sar, 0);
  672. out_be32(&dma_channel->datr, 0);
  673. out_be32(&dma_channel->dar, 0);
  674. out_be32(&dma_channel->bcr, 0);
  675. out_be32(&dma_channel->nlndar, 0);
  676. out_be32(&dma_channel->enlndar, 0);
  677. }
  678. return 0;
  679. }
  680. /**
  681. * fsl_dma_close: close the stream.
  682. */
  683. static int fsl_dma_close(struct snd_pcm_substream *substream)
  684. {
  685. struct snd_pcm_runtime *runtime = substream->runtime;
  686. struct fsl_dma_private *dma_private = runtime->private_data;
  687. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  688. struct device *dev = rtd->platform->dev;
  689. struct dma_object *dma =
  690. container_of(rtd->platform->driver, struct dma_object, dai);
  691. if (dma_private) {
  692. if (dma_private->irq)
  693. free_irq(dma_private->irq, dma_private);
  694. if (dma_private->ld_buf_phys) {
  695. dma_unmap_single(dev, dma_private->ld_buf_phys,
  696. sizeof(dma_private->link),
  697. DMA_TO_DEVICE);
  698. }
  699. /* Deallocate the fsl_dma_private structure */
  700. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  701. dma_private, dma_private->ld_buf_phys);
  702. substream->runtime->private_data = NULL;
  703. }
  704. dma->assigned = 0;
  705. return 0;
  706. }
  707. /*
  708. * Remove this PCM driver.
  709. */
  710. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  711. {
  712. struct snd_pcm_substream *substream;
  713. unsigned int i;
  714. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  715. substream = pcm->streams[i].substream;
  716. if (substream) {
  717. snd_dma_free_pages(&substream->dma_buffer);
  718. substream->dma_buffer.area = NULL;
  719. substream->dma_buffer.addr = 0;
  720. }
  721. }
  722. }
  723. /* List of DMA nodes that we've probed */
  724. static LIST_HEAD(dma_list);
  725. /**
  726. * find_ssi_node -- returns the SSI node that points to his DMA channel node
  727. *
  728. * Although this DMA driver attempts to operate independently of the other
  729. * devices, it still needs to determine some information about the SSI device
  730. * that it's working with. Unfortunately, the device tree does not contain
  731. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  732. * other way. So we need to scan the device tree for SSI nodes until we find
  733. * the one that points to the given DMA channel node. It's ugly, but at least
  734. * it's contained in this one function.
  735. */
  736. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  737. {
  738. struct device_node *ssi_np, *np;
  739. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  740. /* Check each DMA phandle to see if it points to us. We
  741. * assume that device_node pointers are a valid comparison.
  742. */
  743. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  744. if (np == dma_channel_np)
  745. return ssi_np;
  746. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  747. if (np == dma_channel_np)
  748. return ssi_np;
  749. }
  750. return NULL;
  751. }
  752. static struct snd_pcm_ops fsl_dma_ops = {
  753. .open = fsl_dma_open,
  754. .close = fsl_dma_close,
  755. .ioctl = snd_pcm_lib_ioctl,
  756. .hw_params = fsl_dma_hw_params,
  757. .hw_free = fsl_dma_hw_free,
  758. .pointer = fsl_dma_pointer,
  759. };
  760. static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
  761. const struct of_device_id *match)
  762. {
  763. struct dma_object *dma;
  764. struct device_node *np = of_dev->dev.of_node;
  765. struct device_node *ssi_np;
  766. struct resource res;
  767. int ret;
  768. /* Find the SSI node that points to us. */
  769. ssi_np = find_ssi_node(np);
  770. if (!ssi_np) {
  771. dev_err(&of_dev->dev, "cannot find parent SSI node\n");
  772. return -ENODEV;
  773. }
  774. ret = of_address_to_resource(ssi_np, 0, &res);
  775. of_node_put(ssi_np);
  776. if (ret) {
  777. dev_err(&of_dev->dev, "could not determine device resources\n");
  778. return ret;
  779. }
  780. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  781. if (!dma) {
  782. dev_err(&of_dev->dev, "could not allocate dma object\n");
  783. return -ENOMEM;
  784. }
  785. strcpy(dma->path, np->full_name);
  786. dma->dai.ops = &fsl_dma_ops;
  787. dma->dai.pcm_new = fsl_dma_new;
  788. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  789. /* Store the SSI-specific information that we need */
  790. dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
  791. dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
  792. ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
  793. if (ret) {
  794. dev_err(&of_dev->dev, "could not register platform\n");
  795. kfree(dma);
  796. return ret;
  797. }
  798. dma->channel = of_iomap(np, 0);
  799. dma->irq = irq_of_parse_and_map(np, 0);
  800. list_add(&dma->list, &dma_list);
  801. return 0;
  802. }
  803. static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
  804. {
  805. struct list_head *n, *ptr;
  806. struct dma_object *dma;
  807. list_for_each_safe(ptr, n, &dma_list) {
  808. dma = list_entry(ptr, struct dma_object, list);
  809. list_del_init(ptr);
  810. snd_soc_unregister_platform(&of_dev->dev);
  811. iounmap(dma->channel);
  812. irq_dispose_mapping(dma->irq);
  813. kfree(dma);
  814. }
  815. return 0;
  816. }
  817. static const struct of_device_id fsl_soc_dma_ids[] = {
  818. { .compatible = "fsl,ssi-dma-channel", },
  819. {}
  820. };
  821. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  822. static struct of_platform_driver fsl_soc_dma_driver = {
  823. .driver = {
  824. .name = "fsl-pcm-audio",
  825. .owner = THIS_MODULE,
  826. .of_match_table = fsl_soc_dma_ids,
  827. },
  828. .probe = fsl_soc_dma_probe,
  829. .remove = __devexit_p(fsl_soc_dma_remove),
  830. };
  831. static int __init fsl_soc_dma_init(void)
  832. {
  833. pr_info("Freescale Elo DMA ASoC PCM Driver\n");
  834. return of_register_platform_driver(&fsl_soc_dma_driver);
  835. }
  836. static void __exit fsl_soc_dma_exit(void)
  837. {
  838. of_unregister_platform_driver(&fsl_soc_dma_driver);
  839. }
  840. module_init(fsl_soc_dma_init);
  841. module_exit(fsl_soc_dma_exit);
  842. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  843. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  844. MODULE_LICENSE("GPL v2");