memalloc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
  3. * Takashi Iwai <tiwai@suse.de>
  4. *
  5. * Generic memory allocators
  6. *
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. */
  23. #include <linux/config.h>
  24. #include <linux/module.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/init.h>
  27. #include <linux/pci.h>
  28. #include <linux/slab.h>
  29. #include <linux/mm.h>
  30. #include <asm/uaccess.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/moduleparam.h>
  33. #include <linux/mutex.h>
  34. #include <sound/memalloc.h>
  35. #ifdef CONFIG_SBUS
  36. #include <asm/sbus.h>
  37. #endif
  38. MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
  39. MODULE_DESCRIPTION("Memory allocator for ALSA system.");
  40. MODULE_LICENSE("GPL");
  41. /*
  42. */
  43. void *snd_malloc_sgbuf_pages(struct device *device,
  44. size_t size, struct snd_dma_buffer *dmab,
  45. size_t *res_size);
  46. int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
  47. /*
  48. */
  49. static DEFINE_MUTEX(list_mutex);
  50. static LIST_HEAD(mem_list_head);
  51. /* buffer preservation list */
  52. struct snd_mem_list {
  53. struct snd_dma_buffer buffer;
  54. unsigned int id;
  55. struct list_head list;
  56. };
  57. /* id for pre-allocated buffers */
  58. #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
  59. #ifdef CONFIG_SND_DEBUG
  60. #define __ASTRING__(x) #x
  61. #define snd_assert(expr, args...) do {\
  62. if (!(expr)) {\
  63. printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
  64. args;\
  65. }\
  66. } while (0)
  67. #else
  68. #define snd_assert(expr, args...) /**/
  69. #endif
  70. /*
  71. * Hacks
  72. */
  73. #if defined(__i386__)
  74. /*
  75. * A hack to allocate large buffers via dma_alloc_coherent()
  76. *
  77. * since dma_alloc_coherent always tries GFP_DMA when the requested
  78. * pci memory region is below 32bit, it happens quite often that even
  79. * 2 order of pages cannot be allocated.
  80. *
  81. * so in the following, we allocate at first without dma_mask, so that
  82. * allocation will be done without GFP_DMA. if the area doesn't match
  83. * with the requested region, then realloate with the original dma_mask
  84. * again.
  85. *
  86. * Really, we want to move this type of thing into dma_alloc_coherent()
  87. * so dma_mask doesn't have to be messed with.
  88. */
  89. static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
  90. dma_addr_t *dma_handle,
  91. gfp_t flags)
  92. {
  93. void *ret;
  94. u64 dma_mask, coherent_dma_mask;
  95. if (dev == NULL || !dev->dma_mask)
  96. return dma_alloc_coherent(dev, size, dma_handle, flags);
  97. dma_mask = *dev->dma_mask;
  98. coherent_dma_mask = dev->coherent_dma_mask;
  99. *dev->dma_mask = 0xffffffff; /* do without masking */
  100. dev->coherent_dma_mask = 0xffffffff; /* do without masking */
  101. ret = dma_alloc_coherent(dev, size, dma_handle, flags);
  102. *dev->dma_mask = dma_mask; /* restore */
  103. dev->coherent_dma_mask = coherent_dma_mask; /* restore */
  104. if (ret) {
  105. /* obtained address is out of range? */
  106. if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
  107. /* reallocate with the proper mask */
  108. dma_free_coherent(dev, size, ret, *dma_handle);
  109. ret = dma_alloc_coherent(dev, size, dma_handle, flags);
  110. }
  111. } else {
  112. /* wish to success now with the proper mask... */
  113. if (dma_mask != 0xffffffffUL) {
  114. /* allocation with GFP_ATOMIC to avoid the long stall */
  115. flags &= ~GFP_KERNEL;
  116. flags |= GFP_ATOMIC;
  117. ret = dma_alloc_coherent(dev, size, dma_handle, flags);
  118. }
  119. }
  120. return ret;
  121. }
  122. /* redefine dma_alloc_coherent for some architectures */
  123. #undef dma_alloc_coherent
  124. #define dma_alloc_coherent snd_dma_hack_alloc_coherent
  125. #endif /* arch */
  126. /*
  127. *
  128. * Generic memory allocators
  129. *
  130. */
  131. static long snd_allocated_pages; /* holding the number of allocated pages */
  132. static inline void inc_snd_pages(int order)
  133. {
  134. snd_allocated_pages += 1 << order;
  135. }
  136. static inline void dec_snd_pages(int order)
  137. {
  138. snd_allocated_pages -= 1 << order;
  139. }
  140. /**
  141. * snd_malloc_pages - allocate pages with the given size
  142. * @size: the size to allocate in bytes
  143. * @gfp_flags: the allocation conditions, GFP_XXX
  144. *
  145. * Allocates the physically contiguous pages with the given size.
  146. *
  147. * Returns the pointer of the buffer, or NULL if no enoguh memory.
  148. */
  149. void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
  150. {
  151. int pg;
  152. void *res;
  153. snd_assert(size > 0, return NULL);
  154. snd_assert(gfp_flags != 0, return NULL);
  155. gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */
  156. pg = get_order(size);
  157. if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
  158. inc_snd_pages(pg);
  159. return res;
  160. }
  161. /**
  162. * snd_free_pages - release the pages
  163. * @ptr: the buffer pointer to release
  164. * @size: the allocated buffer size
  165. *
  166. * Releases the buffer allocated via snd_malloc_pages().
  167. */
  168. void snd_free_pages(void *ptr, size_t size)
  169. {
  170. int pg;
  171. if (ptr == NULL)
  172. return;
  173. pg = get_order(size);
  174. dec_snd_pages(pg);
  175. free_pages((unsigned long) ptr, pg);
  176. }
  177. /*
  178. *
  179. * Bus-specific memory allocators
  180. *
  181. */
  182. /* allocate the coherent DMA pages */
  183. static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
  184. {
  185. int pg;
  186. void *res;
  187. gfp_t gfp_flags;
  188. snd_assert(size > 0, return NULL);
  189. snd_assert(dma != NULL, return NULL);
  190. pg = get_order(size);
  191. gfp_flags = GFP_KERNEL
  192. | __GFP_COMP /* compound page lets parts be mapped */
  193. | __GFP_NORETRY /* don't trigger OOM-killer */
  194. | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
  195. res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
  196. if (res != NULL)
  197. inc_snd_pages(pg);
  198. return res;
  199. }
  200. /* free the coherent DMA pages */
  201. static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
  202. dma_addr_t dma)
  203. {
  204. int pg;
  205. if (ptr == NULL)
  206. return;
  207. pg = get_order(size);
  208. dec_snd_pages(pg);
  209. dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
  210. }
  211. #ifdef CONFIG_SBUS
  212. static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
  213. dma_addr_t *dma_addr)
  214. {
  215. struct sbus_dev *sdev = (struct sbus_dev *)dev;
  216. int pg;
  217. void *res;
  218. snd_assert(size > 0, return NULL);
  219. snd_assert(dma_addr != NULL, return NULL);
  220. pg = get_order(size);
  221. res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
  222. if (res != NULL)
  223. inc_snd_pages(pg);
  224. return res;
  225. }
  226. static void snd_free_sbus_pages(struct device *dev, size_t size,
  227. void *ptr, dma_addr_t dma_addr)
  228. {
  229. struct sbus_dev *sdev = (struct sbus_dev *)dev;
  230. int pg;
  231. if (ptr == NULL)
  232. return;
  233. pg = get_order(size);
  234. dec_snd_pages(pg);
  235. sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
  236. }
  237. #endif /* CONFIG_SBUS */
  238. /*
  239. *
  240. * ALSA generic memory management
  241. *
  242. */
  243. /**
  244. * snd_dma_alloc_pages - allocate the buffer area according to the given type
  245. * @type: the DMA buffer type
  246. * @device: the device pointer
  247. * @size: the buffer size to allocate
  248. * @dmab: buffer allocation record to store the allocated data
  249. *
  250. * Calls the memory-allocator function for the corresponding
  251. * buffer type.
  252. *
  253. * Returns zero if the buffer with the given size is allocated successfuly,
  254. * other a negative value at error.
  255. */
  256. int snd_dma_alloc_pages(int type, struct device *device, size_t size,
  257. struct snd_dma_buffer *dmab)
  258. {
  259. snd_assert(size > 0, return -ENXIO);
  260. snd_assert(dmab != NULL, return -ENXIO);
  261. dmab->dev.type = type;
  262. dmab->dev.dev = device;
  263. dmab->bytes = 0;
  264. switch (type) {
  265. case SNDRV_DMA_TYPE_CONTINUOUS:
  266. dmab->area = snd_malloc_pages(size, (unsigned long)device);
  267. dmab->addr = 0;
  268. break;
  269. #ifdef CONFIG_SBUS
  270. case SNDRV_DMA_TYPE_SBUS:
  271. dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
  272. break;
  273. #endif
  274. case SNDRV_DMA_TYPE_DEV:
  275. dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
  276. break;
  277. case SNDRV_DMA_TYPE_DEV_SG:
  278. snd_malloc_sgbuf_pages(device, size, dmab, NULL);
  279. break;
  280. default:
  281. printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
  282. dmab->area = NULL;
  283. dmab->addr = 0;
  284. return -ENXIO;
  285. }
  286. if (! dmab->area)
  287. return -ENOMEM;
  288. dmab->bytes = size;
  289. return 0;
  290. }
  291. /**
  292. * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
  293. * @type: the DMA buffer type
  294. * @device: the device pointer
  295. * @size: the buffer size to allocate
  296. * @dmab: buffer allocation record to store the allocated data
  297. *
  298. * Calls the memory-allocator function for the corresponding
  299. * buffer type. When no space is left, this function reduces the size and
  300. * tries to allocate again. The size actually allocated is stored in
  301. * res_size argument.
  302. *
  303. * Returns zero if the buffer with the given size is allocated successfuly,
  304. * other a negative value at error.
  305. */
  306. int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
  307. struct snd_dma_buffer *dmab)
  308. {
  309. int err;
  310. snd_assert(size > 0, return -ENXIO);
  311. snd_assert(dmab != NULL, return -ENXIO);
  312. while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
  313. if (err != -ENOMEM)
  314. return err;
  315. size >>= 1;
  316. if (size <= PAGE_SIZE)
  317. return -ENOMEM;
  318. }
  319. if (! dmab->area)
  320. return -ENOMEM;
  321. return 0;
  322. }
  323. /**
  324. * snd_dma_free_pages - release the allocated buffer
  325. * @dmab: the buffer allocation record to release
  326. *
  327. * Releases the allocated buffer via snd_dma_alloc_pages().
  328. */
  329. void snd_dma_free_pages(struct snd_dma_buffer *dmab)
  330. {
  331. switch (dmab->dev.type) {
  332. case SNDRV_DMA_TYPE_CONTINUOUS:
  333. snd_free_pages(dmab->area, dmab->bytes);
  334. break;
  335. #ifdef CONFIG_SBUS
  336. case SNDRV_DMA_TYPE_SBUS:
  337. snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
  338. break;
  339. #endif
  340. case SNDRV_DMA_TYPE_DEV:
  341. snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
  342. break;
  343. case SNDRV_DMA_TYPE_DEV_SG:
  344. snd_free_sgbuf_pages(dmab);
  345. break;
  346. default:
  347. printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
  348. }
  349. }
  350. /**
  351. * snd_dma_get_reserved - get the reserved buffer for the given device
  352. * @dmab: the buffer allocation record to store
  353. * @id: the buffer id
  354. *
  355. * Looks for the reserved-buffer list and re-uses if the same buffer
  356. * is found in the list. When the buffer is found, it's removed from the free list.
  357. *
  358. * Returns the size of buffer if the buffer is found, or zero if not found.
  359. */
  360. size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
  361. {
  362. struct list_head *p;
  363. struct snd_mem_list *mem;
  364. snd_assert(dmab, return 0);
  365. mutex_lock(&list_mutex);
  366. list_for_each(p, &mem_list_head) {
  367. mem = list_entry(p, struct snd_mem_list, list);
  368. if (mem->id == id &&
  369. (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
  370. ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
  371. struct device *dev = dmab->dev.dev;
  372. list_del(p);
  373. *dmab = mem->buffer;
  374. if (dmab->dev.dev == NULL)
  375. dmab->dev.dev = dev;
  376. kfree(mem);
  377. mutex_unlock(&list_mutex);
  378. return dmab->bytes;
  379. }
  380. }
  381. mutex_unlock(&list_mutex);
  382. return 0;
  383. }
  384. /**
  385. * snd_dma_reserve_buf - reserve the buffer
  386. * @dmab: the buffer to reserve
  387. * @id: the buffer id
  388. *
  389. * Reserves the given buffer as a reserved buffer.
  390. *
  391. * Returns zero if successful, or a negative code at error.
  392. */
  393. int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
  394. {
  395. struct snd_mem_list *mem;
  396. snd_assert(dmab, return -EINVAL);
  397. mem = kmalloc(sizeof(*mem), GFP_KERNEL);
  398. if (! mem)
  399. return -ENOMEM;
  400. mutex_lock(&list_mutex);
  401. mem->buffer = *dmab;
  402. mem->id = id;
  403. list_add_tail(&mem->list, &mem_list_head);
  404. mutex_unlock(&list_mutex);
  405. return 0;
  406. }
  407. /*
  408. * purge all reserved buffers
  409. */
  410. static void free_all_reserved_pages(void)
  411. {
  412. struct list_head *p;
  413. struct snd_mem_list *mem;
  414. mutex_lock(&list_mutex);
  415. while (! list_empty(&mem_list_head)) {
  416. p = mem_list_head.next;
  417. mem = list_entry(p, struct snd_mem_list, list);
  418. list_del(p);
  419. snd_dma_free_pages(&mem->buffer);
  420. kfree(mem);
  421. }
  422. mutex_unlock(&list_mutex);
  423. }
  424. #ifdef CONFIG_PROC_FS
  425. /*
  426. * proc file interface
  427. */
  428. #define SND_MEM_PROC_FILE "driver/snd-page-alloc"
  429. static struct proc_dir_entry *snd_mem_proc;
  430. static int snd_mem_proc_read(char *page, char **start, off_t off,
  431. int count, int *eof, void *data)
  432. {
  433. int len = 0;
  434. long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
  435. struct list_head *p;
  436. struct snd_mem_list *mem;
  437. int devno;
  438. static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
  439. mutex_lock(&list_mutex);
  440. len += snprintf(page + len, count - len,
  441. "pages : %li bytes (%li pages per %likB)\n",
  442. pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
  443. devno = 0;
  444. list_for_each(p, &mem_list_head) {
  445. mem = list_entry(p, struct snd_mem_list, list);
  446. devno++;
  447. len += snprintf(page + len, count - len,
  448. "buffer %d : ID %08x : type %s\n",
  449. devno, mem->id, types[mem->buffer.dev.type]);
  450. len += snprintf(page + len, count - len,
  451. " addr = 0x%lx, size = %d bytes\n",
  452. (unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
  453. }
  454. mutex_unlock(&list_mutex);
  455. return len;
  456. }
  457. /* FIXME: for pci only - other bus? */
  458. #ifdef CONFIG_PCI
  459. #define gettoken(bufp) strsep(bufp, " \t\n")
  460. static int snd_mem_proc_write(struct file *file, const char __user *buffer,
  461. unsigned long count, void *data)
  462. {
  463. char buf[128];
  464. char *token, *p;
  465. if (count > ARRAY_SIZE(buf) - 1)
  466. count = ARRAY_SIZE(buf) - 1;
  467. if (copy_from_user(buf, buffer, count))
  468. return -EFAULT;
  469. buf[ARRAY_SIZE(buf) - 1] = '\0';
  470. p = buf;
  471. token = gettoken(&p);
  472. if (! token || *token == '#')
  473. return (int)count;
  474. if (strcmp(token, "add") == 0) {
  475. char *endp;
  476. int vendor, device, size, buffers;
  477. long mask;
  478. int i, alloced;
  479. struct pci_dev *pci;
  480. if ((token = gettoken(&p)) == NULL ||
  481. (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
  482. (token = gettoken(&p)) == NULL ||
  483. (device = simple_strtol(token, NULL, 0)) <= 0 ||
  484. (token = gettoken(&p)) == NULL ||
  485. (mask = simple_strtol(token, NULL, 0)) < 0 ||
  486. (token = gettoken(&p)) == NULL ||
  487. (size = memparse(token, &endp)) < 64*1024 ||
  488. size > 16*1024*1024 /* too big */ ||
  489. (token = gettoken(&p)) == NULL ||
  490. (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
  491. buffers > 4) {
  492. printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
  493. return (int)count;
  494. }
  495. vendor &= 0xffff;
  496. device &= 0xffff;
  497. alloced = 0;
  498. pci = NULL;
  499. while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
  500. if (mask > 0 && mask < 0xffffffff) {
  501. if (pci_set_dma_mask(pci, mask) < 0 ||
  502. pci_set_consistent_dma_mask(pci, mask) < 0) {
  503. printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
  504. return (int)count;
  505. }
  506. }
  507. for (i = 0; i < buffers; i++) {
  508. struct snd_dma_buffer dmab;
  509. memset(&dmab, 0, sizeof(dmab));
  510. if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
  511. size, &dmab) < 0) {
  512. printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
  513. pci_dev_put(pci);
  514. return (int)count;
  515. }
  516. snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
  517. }
  518. alloced++;
  519. }
  520. if (! alloced) {
  521. for (i = 0; i < buffers; i++) {
  522. struct snd_dma_buffer dmab;
  523. memset(&dmab, 0, sizeof(dmab));
  524. /* FIXME: We can allocate only in ZONE_DMA
  525. * without a device pointer!
  526. */
  527. if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
  528. size, &dmab) < 0) {
  529. printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
  530. break;
  531. }
  532. snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
  533. }
  534. }
  535. } else if (strcmp(token, "erase") == 0)
  536. /* FIXME: need for releasing each buffer chunk? */
  537. free_all_reserved_pages();
  538. else
  539. printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
  540. return (int)count;
  541. }
  542. #endif /* CONFIG_PCI */
  543. #endif /* CONFIG_PROC_FS */
  544. /*
  545. * module entry
  546. */
  547. static int __init snd_mem_init(void)
  548. {
  549. #ifdef CONFIG_PROC_FS
  550. snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
  551. if (snd_mem_proc) {
  552. snd_mem_proc->read_proc = snd_mem_proc_read;
  553. #ifdef CONFIG_PCI
  554. snd_mem_proc->write_proc = snd_mem_proc_write;
  555. #endif
  556. }
  557. #endif
  558. return 0;
  559. }
  560. static void __exit snd_mem_exit(void)
  561. {
  562. remove_proc_entry(SND_MEM_PROC_FILE, NULL);
  563. free_all_reserved_pages();
  564. if (snd_allocated_pages > 0)
  565. printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
  566. }
  567. module_init(snd_mem_init)
  568. module_exit(snd_mem_exit)
  569. /*
  570. * exports
  571. */
  572. EXPORT_SYMBOL(snd_dma_alloc_pages);
  573. EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
  574. EXPORT_SYMBOL(snd_dma_free_pages);
  575. EXPORT_SYMBOL(snd_dma_get_reserved_buf);
  576. EXPORT_SYMBOL(snd_dma_reserve_buf);
  577. EXPORT_SYMBOL(snd_malloc_pages);
  578. EXPORT_SYMBOL(snd_free_pages);