af_key.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/config.h>
  17. #include <linux/capability.h>
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/socket.h>
  21. #include <linux/pfkeyv2.h>
  22. #include <linux/ipsec.h>
  23. #include <linux/skbuff.h>
  24. #include <linux/rtnetlink.h>
  25. #include <linux/in.h>
  26. #include <linux/in6.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/init.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (!capable(CAP_NET_ADMIN))
  118. return -EPERM;
  119. if (sock->type != SOCK_RAW)
  120. return -ESOCKTNOSUPPORT;
  121. if (protocol != PF_KEY_V2)
  122. return -EPROTONOSUPPORT;
  123. err = -ENOMEM;
  124. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  125. if (sk == NULL)
  126. goto out;
  127. sock->ops = &pfkey_ops;
  128. sock_init_data(sock, sk);
  129. sk->sk_family = PF_KEY;
  130. sk->sk_destruct = pfkey_sock_destruct;
  131. atomic_inc(&pfkey_socks_nr);
  132. pfkey_insert(sk);
  133. return 0;
  134. out:
  135. return err;
  136. }
  137. static int pfkey_release(struct socket *sock)
  138. {
  139. struct sock *sk = sock->sk;
  140. if (!sk)
  141. return 0;
  142. pfkey_remove(sk);
  143. sock_orphan(sk);
  144. sock->sk = NULL;
  145. skb_queue_purge(&sk->sk_write_queue);
  146. sock_put(sk);
  147. return 0;
  148. }
  149. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  150. gfp_t allocation, struct sock *sk)
  151. {
  152. int err = -ENOBUFS;
  153. sock_hold(sk);
  154. if (*skb2 == NULL) {
  155. if (atomic_read(&skb->users) != 1) {
  156. *skb2 = skb_clone(skb, allocation);
  157. } else {
  158. *skb2 = skb;
  159. atomic_inc(&skb->users);
  160. }
  161. }
  162. if (*skb2 != NULL) {
  163. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  164. skb_orphan(*skb2);
  165. skb_set_owner_r(*skb2, sk);
  166. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  167. sk->sk_data_ready(sk, (*skb2)->len);
  168. *skb2 = NULL;
  169. err = 0;
  170. }
  171. }
  172. sock_put(sk);
  173. return err;
  174. }
  175. /* Send SKB to all pfkey sockets matching selected criteria. */
  176. #define BROADCAST_ALL 0
  177. #define BROADCAST_ONE 1
  178. #define BROADCAST_REGISTERED 2
  179. #define BROADCAST_PROMISC_ONLY 4
  180. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  181. int broadcast_flags, struct sock *one_sk)
  182. {
  183. struct sock *sk;
  184. struct hlist_node *node;
  185. struct sk_buff *skb2 = NULL;
  186. int err = -ESRCH;
  187. /* XXX Do we need something like netlink_overrun? I think
  188. * XXX PF_KEY socket apps will not mind current behavior.
  189. */
  190. if (!skb)
  191. return -ENOMEM;
  192. pfkey_lock_table();
  193. sk_for_each(sk, node, &pfkey_table) {
  194. struct pfkey_sock *pfk = pfkey_sk(sk);
  195. int err2;
  196. /* Yes, it means that if you are meant to receive this
  197. * pfkey message you receive it twice as promiscuous
  198. * socket.
  199. */
  200. if (pfk->promisc)
  201. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  202. /* the exact target will be processed later */
  203. if (sk == one_sk)
  204. continue;
  205. if (broadcast_flags != BROADCAST_ALL) {
  206. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  207. continue;
  208. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  209. !pfk->registered)
  210. continue;
  211. if (broadcast_flags & BROADCAST_ONE)
  212. continue;
  213. }
  214. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  215. /* Error is cleare after succecful sending to at least one
  216. * registered KM */
  217. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  218. err = err2;
  219. }
  220. pfkey_unlock_table();
  221. if (one_sk != NULL)
  222. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  223. if (skb2)
  224. kfree_skb(skb2);
  225. kfree_skb(skb);
  226. return err;
  227. }
  228. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  229. {
  230. *new = *orig;
  231. }
  232. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  233. {
  234. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  235. struct sadb_msg *hdr;
  236. if (!skb)
  237. return -ENOBUFS;
  238. /* Woe be to the platform trying to support PFKEY yet
  239. * having normal errnos outside the 1-255 range, inclusive.
  240. */
  241. err = -err;
  242. if (err == ERESTARTSYS ||
  243. err == ERESTARTNOHAND ||
  244. err == ERESTARTNOINTR)
  245. err = EINTR;
  246. if (err >= 512)
  247. err = EINVAL;
  248. BUG_ON(err <= 0 || err >= 256);
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  283. };
  284. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  285. static int verify_address_len(void *p)
  286. {
  287. struct sadb_address *sp = p;
  288. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  289. struct sockaddr_in *sin;
  290. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  291. struct sockaddr_in6 *sin6;
  292. #endif
  293. int len;
  294. switch (addr->sa_family) {
  295. case AF_INET:
  296. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  297. len /= sizeof(uint64_t);
  298. if (sp->sadb_address_len != len ||
  299. sp->sadb_address_prefixlen > 32)
  300. return -EINVAL;
  301. break;
  302. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  303. case AF_INET6:
  304. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  305. len /= sizeof(uint64_t);
  306. if (sp->sadb_address_len != len ||
  307. sp->sadb_address_prefixlen > 128)
  308. return -EINVAL;
  309. break;
  310. #endif
  311. default:
  312. /* It is user using kernel to keep track of security
  313. * associations for another protocol, such as
  314. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  315. * lengths.
  316. *
  317. * XXX Actually, association/policy database is not yet
  318. * XXX able to cope with arbitrary sockaddr families.
  319. * XXX When it can, remove this -EINVAL. -DaveM
  320. */
  321. return -EINVAL;
  322. break;
  323. };
  324. return 0;
  325. }
  326. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  327. {
  328. int len = 0;
  329. len += sizeof(struct sadb_x_sec_ctx);
  330. len += sec_ctx->sadb_x_ctx_len;
  331. len += sizeof(uint64_t) - 1;
  332. len /= sizeof(uint64_t);
  333. return len;
  334. }
  335. static inline int verify_sec_ctx_len(void *p)
  336. {
  337. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  338. int len;
  339. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  340. return -EINVAL;
  341. len = pfkey_sec_ctx_len(sec_ctx);
  342. if (sec_ctx->sadb_x_sec_len != len)
  343. return -EINVAL;
  344. return 0;
  345. }
  346. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  347. {
  348. struct xfrm_user_sec_ctx *uctx = NULL;
  349. int ctx_size = sec_ctx->sadb_x_ctx_len;
  350. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  351. if (!uctx)
  352. return NULL;
  353. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  354. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  355. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  356. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  357. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  358. memcpy(uctx + 1, sec_ctx + 1,
  359. uctx->ctx_len);
  360. return uctx;
  361. }
  362. static int present_and_same_family(struct sadb_address *src,
  363. struct sadb_address *dst)
  364. {
  365. struct sockaddr *s_addr, *d_addr;
  366. if (!src || !dst)
  367. return 0;
  368. s_addr = (struct sockaddr *)(src + 1);
  369. d_addr = (struct sockaddr *)(dst + 1);
  370. if (s_addr->sa_family != d_addr->sa_family)
  371. return 0;
  372. if (s_addr->sa_family != AF_INET
  373. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  374. && s_addr->sa_family != AF_INET6
  375. #endif
  376. )
  377. return 0;
  378. return 1;
  379. }
  380. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  381. {
  382. char *p = (char *) hdr;
  383. int len = skb->len;
  384. len -= sizeof(*hdr);
  385. p += sizeof(*hdr);
  386. while (len > 0) {
  387. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  388. uint16_t ext_type;
  389. int ext_len;
  390. ext_len = ehdr->sadb_ext_len;
  391. ext_len *= sizeof(uint64_t);
  392. ext_type = ehdr->sadb_ext_type;
  393. if (ext_len < sizeof(uint64_t) ||
  394. ext_len > len ||
  395. ext_type == SADB_EXT_RESERVED)
  396. return -EINVAL;
  397. if (ext_type <= SADB_EXT_MAX) {
  398. int min = (int) sadb_ext_min_len[ext_type];
  399. if (ext_len < min)
  400. return -EINVAL;
  401. if (ext_hdrs[ext_type-1] != NULL)
  402. return -EINVAL;
  403. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  404. ext_type == SADB_EXT_ADDRESS_DST ||
  405. ext_type == SADB_EXT_ADDRESS_PROXY ||
  406. ext_type == SADB_X_EXT_NAT_T_OA) {
  407. if (verify_address_len(p))
  408. return -EINVAL;
  409. }
  410. if (ext_type == SADB_X_EXT_SEC_CTX) {
  411. if (verify_sec_ctx_len(p))
  412. return -EINVAL;
  413. }
  414. ext_hdrs[ext_type-1] = p;
  415. }
  416. p += ext_len;
  417. len -= ext_len;
  418. }
  419. return 0;
  420. }
  421. static uint16_t
  422. pfkey_satype2proto(uint8_t satype)
  423. {
  424. switch (satype) {
  425. case SADB_SATYPE_UNSPEC:
  426. return IPSEC_PROTO_ANY;
  427. case SADB_SATYPE_AH:
  428. return IPPROTO_AH;
  429. case SADB_SATYPE_ESP:
  430. return IPPROTO_ESP;
  431. case SADB_X_SATYPE_IPCOMP:
  432. return IPPROTO_COMP;
  433. break;
  434. default:
  435. return 0;
  436. }
  437. /* NOTREACHED */
  438. }
  439. static uint8_t
  440. pfkey_proto2satype(uint16_t proto)
  441. {
  442. switch (proto) {
  443. case IPPROTO_AH:
  444. return SADB_SATYPE_AH;
  445. case IPPROTO_ESP:
  446. return SADB_SATYPE_ESP;
  447. case IPPROTO_COMP:
  448. return SADB_X_SATYPE_IPCOMP;
  449. break;
  450. default:
  451. return 0;
  452. }
  453. /* NOTREACHED */
  454. }
  455. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  456. * say specifically 'just raw sockets' as we encode them as 255.
  457. */
  458. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  459. {
  460. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  461. }
  462. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  463. {
  464. return (proto ? proto : IPSEC_PROTO_ANY);
  465. }
  466. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  467. xfrm_address_t *xaddr)
  468. {
  469. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  470. case AF_INET:
  471. xaddr->a4 =
  472. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  473. return AF_INET;
  474. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  475. case AF_INET6:
  476. memcpy(xaddr->a6,
  477. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  478. sizeof(struct in6_addr));
  479. return AF_INET6;
  480. #endif
  481. default:
  482. return 0;
  483. }
  484. /* NOTREACHED */
  485. }
  486. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  487. {
  488. struct sadb_sa *sa;
  489. struct sadb_address *addr;
  490. uint16_t proto;
  491. unsigned short family;
  492. xfrm_address_t *xaddr;
  493. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  494. if (sa == NULL)
  495. return NULL;
  496. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  497. if (proto == 0)
  498. return NULL;
  499. /* sadb_address_len should be checked by caller */
  500. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  501. if (addr == NULL)
  502. return NULL;
  503. family = ((struct sockaddr *)(addr + 1))->sa_family;
  504. switch (family) {
  505. case AF_INET:
  506. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  507. break;
  508. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  509. case AF_INET6:
  510. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  511. break;
  512. #endif
  513. default:
  514. xaddr = NULL;
  515. }
  516. if (!xaddr)
  517. return NULL;
  518. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  519. }
  520. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  521. static int
  522. pfkey_sockaddr_size(sa_family_t family)
  523. {
  524. switch (family) {
  525. case AF_INET:
  526. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  527. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  528. case AF_INET6:
  529. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  530. #endif
  531. default:
  532. return 0;
  533. }
  534. /* NOTREACHED */
  535. }
  536. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  537. {
  538. struct sk_buff *skb;
  539. struct sadb_msg *hdr;
  540. struct sadb_sa *sa;
  541. struct sadb_lifetime *lifetime;
  542. struct sadb_address *addr;
  543. struct sadb_key *key;
  544. struct sadb_x_sa2 *sa2;
  545. struct sockaddr_in *sin;
  546. struct sadb_x_sec_ctx *sec_ctx;
  547. struct xfrm_sec_ctx *xfrm_ctx;
  548. int ctx_size = 0;
  549. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  550. struct sockaddr_in6 *sin6;
  551. #endif
  552. int size;
  553. int auth_key_size = 0;
  554. int encrypt_key_size = 0;
  555. int sockaddr_size;
  556. struct xfrm_encap_tmpl *natt = NULL;
  557. /* address family check */
  558. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  559. if (!sockaddr_size)
  560. return ERR_PTR(-EINVAL);
  561. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  562. key(AE), (identity(SD),) (sensitivity)> */
  563. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  564. sizeof(struct sadb_lifetime) +
  565. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  566. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  567. sizeof(struct sadb_address)*2 +
  568. sockaddr_size*2 +
  569. sizeof(struct sadb_x_sa2);
  570. if ((xfrm_ctx = x->security)) {
  571. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  572. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  573. }
  574. /* identity & sensitivity */
  575. if ((x->props.family == AF_INET &&
  576. x->sel.saddr.a4 != x->props.saddr.a4)
  577. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  578. || (x->props.family == AF_INET6 &&
  579. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  580. #endif
  581. )
  582. size += sizeof(struct sadb_address) + sockaddr_size;
  583. if (add_keys) {
  584. if (x->aalg && x->aalg->alg_key_len) {
  585. auth_key_size =
  586. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  587. size += sizeof(struct sadb_key) + auth_key_size;
  588. }
  589. if (x->ealg && x->ealg->alg_key_len) {
  590. encrypt_key_size =
  591. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  592. size += sizeof(struct sadb_key) + encrypt_key_size;
  593. }
  594. }
  595. if (x->encap)
  596. natt = x->encap;
  597. if (natt && natt->encap_type) {
  598. size += sizeof(struct sadb_x_nat_t_type);
  599. size += sizeof(struct sadb_x_nat_t_port);
  600. size += sizeof(struct sadb_x_nat_t_port);
  601. }
  602. skb = alloc_skb(size + 16, GFP_ATOMIC);
  603. if (skb == NULL)
  604. return ERR_PTR(-ENOBUFS);
  605. /* call should fill header later */
  606. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  607. memset(hdr, 0, size); /* XXX do we need this ? */
  608. hdr->sadb_msg_len = size / sizeof(uint64_t);
  609. /* sa */
  610. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  611. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  612. sa->sadb_sa_exttype = SADB_EXT_SA;
  613. sa->sadb_sa_spi = x->id.spi;
  614. sa->sadb_sa_replay = x->props.replay_window;
  615. switch (x->km.state) {
  616. case XFRM_STATE_VALID:
  617. sa->sadb_sa_state = x->km.dying ?
  618. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  619. break;
  620. case XFRM_STATE_ACQ:
  621. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  622. break;
  623. default:
  624. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  625. break;
  626. }
  627. sa->sadb_sa_auth = 0;
  628. if (x->aalg) {
  629. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  630. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  631. }
  632. sa->sadb_sa_encrypt = 0;
  633. BUG_ON(x->ealg && x->calg);
  634. if (x->ealg) {
  635. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  636. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  637. }
  638. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  639. if (x->calg) {
  640. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  641. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  642. }
  643. sa->sadb_sa_flags = 0;
  644. if (x->props.flags & XFRM_STATE_NOECN)
  645. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  646. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  647. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  648. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  649. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  650. /* hard time */
  651. if (hsc & 2) {
  652. lifetime = (struct sadb_lifetime *) skb_put(skb,
  653. sizeof(struct sadb_lifetime));
  654. lifetime->sadb_lifetime_len =
  655. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  656. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  657. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  658. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  659. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  660. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  661. }
  662. /* soft time */
  663. if (hsc & 1) {
  664. lifetime = (struct sadb_lifetime *) skb_put(skb,
  665. sizeof(struct sadb_lifetime));
  666. lifetime->sadb_lifetime_len =
  667. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  668. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  669. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  670. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  671. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  672. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  673. }
  674. /* current time */
  675. lifetime = (struct sadb_lifetime *) skb_put(skb,
  676. sizeof(struct sadb_lifetime));
  677. lifetime->sadb_lifetime_len =
  678. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  679. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  680. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  681. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  682. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  683. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  684. /* src address */
  685. addr = (struct sadb_address*) skb_put(skb,
  686. sizeof(struct sadb_address)+sockaddr_size);
  687. addr->sadb_address_len =
  688. (sizeof(struct sadb_address)+sockaddr_size)/
  689. sizeof(uint64_t);
  690. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  691. /* "if the ports are non-zero, then the sadb_address_proto field,
  692. normally zero, MUST be filled in with the transport
  693. protocol's number." - RFC2367 */
  694. addr->sadb_address_proto = 0;
  695. addr->sadb_address_reserved = 0;
  696. if (x->props.family == AF_INET) {
  697. addr->sadb_address_prefixlen = 32;
  698. sin = (struct sockaddr_in *) (addr + 1);
  699. sin->sin_family = AF_INET;
  700. sin->sin_addr.s_addr = x->props.saddr.a4;
  701. sin->sin_port = 0;
  702. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  703. }
  704. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  705. else if (x->props.family == AF_INET6) {
  706. addr->sadb_address_prefixlen = 128;
  707. sin6 = (struct sockaddr_in6 *) (addr + 1);
  708. sin6->sin6_family = AF_INET6;
  709. sin6->sin6_port = 0;
  710. sin6->sin6_flowinfo = 0;
  711. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  712. sizeof(struct in6_addr));
  713. sin6->sin6_scope_id = 0;
  714. }
  715. #endif
  716. else
  717. BUG();
  718. /* dst address */
  719. addr = (struct sadb_address*) skb_put(skb,
  720. sizeof(struct sadb_address)+sockaddr_size);
  721. addr->sadb_address_len =
  722. (sizeof(struct sadb_address)+sockaddr_size)/
  723. sizeof(uint64_t);
  724. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  725. addr->sadb_address_proto = 0;
  726. addr->sadb_address_prefixlen = 32; /* XXX */
  727. addr->sadb_address_reserved = 0;
  728. if (x->props.family == AF_INET) {
  729. sin = (struct sockaddr_in *) (addr + 1);
  730. sin->sin_family = AF_INET;
  731. sin->sin_addr.s_addr = x->id.daddr.a4;
  732. sin->sin_port = 0;
  733. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  734. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  735. addr = (struct sadb_address*) skb_put(skb,
  736. sizeof(struct sadb_address)+sockaddr_size);
  737. addr->sadb_address_len =
  738. (sizeof(struct sadb_address)+sockaddr_size)/
  739. sizeof(uint64_t);
  740. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  741. addr->sadb_address_proto =
  742. pfkey_proto_from_xfrm(x->sel.proto);
  743. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  744. addr->sadb_address_reserved = 0;
  745. sin = (struct sockaddr_in *) (addr + 1);
  746. sin->sin_family = AF_INET;
  747. sin->sin_addr.s_addr = x->sel.saddr.a4;
  748. sin->sin_port = x->sel.sport;
  749. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  750. }
  751. }
  752. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  753. else if (x->props.family == AF_INET6) {
  754. addr->sadb_address_prefixlen = 128;
  755. sin6 = (struct sockaddr_in6 *) (addr + 1);
  756. sin6->sin6_family = AF_INET6;
  757. sin6->sin6_port = 0;
  758. sin6->sin6_flowinfo = 0;
  759. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  760. sin6->sin6_scope_id = 0;
  761. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  762. sizeof(struct in6_addr))) {
  763. addr = (struct sadb_address *) skb_put(skb,
  764. sizeof(struct sadb_address)+sockaddr_size);
  765. addr->sadb_address_len =
  766. (sizeof(struct sadb_address)+sockaddr_size)/
  767. sizeof(uint64_t);
  768. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  769. addr->sadb_address_proto =
  770. pfkey_proto_from_xfrm(x->sel.proto);
  771. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  772. addr->sadb_address_reserved = 0;
  773. sin6 = (struct sockaddr_in6 *) (addr + 1);
  774. sin6->sin6_family = AF_INET6;
  775. sin6->sin6_port = x->sel.sport;
  776. sin6->sin6_flowinfo = 0;
  777. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  778. sizeof(struct in6_addr));
  779. sin6->sin6_scope_id = 0;
  780. }
  781. }
  782. #endif
  783. else
  784. BUG();
  785. /* auth key */
  786. if (add_keys && auth_key_size) {
  787. key = (struct sadb_key *) skb_put(skb,
  788. sizeof(struct sadb_key)+auth_key_size);
  789. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  790. sizeof(uint64_t);
  791. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  792. key->sadb_key_bits = x->aalg->alg_key_len;
  793. key->sadb_key_reserved = 0;
  794. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  795. }
  796. /* encrypt key */
  797. if (add_keys && encrypt_key_size) {
  798. key = (struct sadb_key *) skb_put(skb,
  799. sizeof(struct sadb_key)+encrypt_key_size);
  800. key->sadb_key_len = (sizeof(struct sadb_key) +
  801. encrypt_key_size) / sizeof(uint64_t);
  802. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  803. key->sadb_key_bits = x->ealg->alg_key_len;
  804. key->sadb_key_reserved = 0;
  805. memcpy(key + 1, x->ealg->alg_key,
  806. (x->ealg->alg_key_len+7)/8);
  807. }
  808. /* sa */
  809. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  810. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  811. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  812. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  813. sa2->sadb_x_sa2_reserved1 = 0;
  814. sa2->sadb_x_sa2_reserved2 = 0;
  815. sa2->sadb_x_sa2_sequence = 0;
  816. sa2->sadb_x_sa2_reqid = x->props.reqid;
  817. if (natt && natt->encap_type) {
  818. struct sadb_x_nat_t_type *n_type;
  819. struct sadb_x_nat_t_port *n_port;
  820. /* type */
  821. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  822. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  823. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  824. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  825. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  826. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  827. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  828. /* source port */
  829. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  830. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  831. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  832. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  833. n_port->sadb_x_nat_t_port_reserved = 0;
  834. /* dest port */
  835. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  836. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  837. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  838. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  839. n_port->sadb_x_nat_t_port_reserved = 0;
  840. }
  841. /* security context */
  842. if (xfrm_ctx) {
  843. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  844. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  845. sec_ctx->sadb_x_sec_len =
  846. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  847. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  848. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  849. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  850. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  851. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  852. xfrm_ctx->ctx_len);
  853. }
  854. return skb;
  855. }
  856. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  857. void **ext_hdrs)
  858. {
  859. struct xfrm_state *x;
  860. struct sadb_lifetime *lifetime;
  861. struct sadb_sa *sa;
  862. struct sadb_key *key;
  863. struct sadb_x_sec_ctx *sec_ctx;
  864. uint16_t proto;
  865. int err;
  866. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  867. if (!sa ||
  868. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  869. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  870. return ERR_PTR(-EINVAL);
  871. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  872. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  873. return ERR_PTR(-EINVAL);
  874. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  875. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  876. return ERR_PTR(-EINVAL);
  877. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  878. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  879. return ERR_PTR(-EINVAL);
  880. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  881. if (proto == 0)
  882. return ERR_PTR(-EINVAL);
  883. /* default error is no buffer space */
  884. err = -ENOBUFS;
  885. /* RFC2367:
  886. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  887. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  888. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  889. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  890. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  891. not true.
  892. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  893. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  894. */
  895. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  896. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  897. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  898. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  899. return ERR_PTR(-EINVAL);
  900. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  901. if (key != NULL &&
  902. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  903. ((key->sadb_key_bits+7) / 8 == 0 ||
  904. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  905. return ERR_PTR(-EINVAL);
  906. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  907. if (key != NULL &&
  908. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  909. ((key->sadb_key_bits+7) / 8 == 0 ||
  910. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  911. return ERR_PTR(-EINVAL);
  912. x = xfrm_state_alloc();
  913. if (x == NULL)
  914. return ERR_PTR(-ENOBUFS);
  915. x->id.proto = proto;
  916. x->id.spi = sa->sadb_sa_spi;
  917. x->props.replay_window = sa->sadb_sa_replay;
  918. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  919. x->props.flags |= XFRM_STATE_NOECN;
  920. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  921. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  922. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  923. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  924. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  925. if (lifetime != NULL) {
  926. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  927. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  928. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  929. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  930. }
  931. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  932. if (lifetime != NULL) {
  933. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  934. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  935. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  936. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  937. }
  938. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  939. if (sec_ctx != NULL) {
  940. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  941. if (!uctx)
  942. goto out;
  943. err = security_xfrm_state_alloc(x, uctx);
  944. kfree(uctx);
  945. if (err)
  946. goto out;
  947. }
  948. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  949. if (sa->sadb_sa_auth) {
  950. int keysize = 0;
  951. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  952. if (!a) {
  953. err = -ENOSYS;
  954. goto out;
  955. }
  956. if (key)
  957. keysize = (key->sadb_key_bits + 7) / 8;
  958. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  959. if (!x->aalg)
  960. goto out;
  961. strcpy(x->aalg->alg_name, a->name);
  962. x->aalg->alg_key_len = 0;
  963. if (key) {
  964. x->aalg->alg_key_len = key->sadb_key_bits;
  965. memcpy(x->aalg->alg_key, key+1, keysize);
  966. }
  967. x->props.aalgo = sa->sadb_sa_auth;
  968. /* x->algo.flags = sa->sadb_sa_flags; */
  969. }
  970. if (sa->sadb_sa_encrypt) {
  971. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  972. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  973. if (!a) {
  974. err = -ENOSYS;
  975. goto out;
  976. }
  977. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  978. if (!x->calg)
  979. goto out;
  980. strcpy(x->calg->alg_name, a->name);
  981. x->props.calgo = sa->sadb_sa_encrypt;
  982. } else {
  983. int keysize = 0;
  984. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  985. if (!a) {
  986. err = -ENOSYS;
  987. goto out;
  988. }
  989. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  990. if (key)
  991. keysize = (key->sadb_key_bits + 7) / 8;
  992. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  993. if (!x->ealg)
  994. goto out;
  995. strcpy(x->ealg->alg_name, a->name);
  996. x->ealg->alg_key_len = 0;
  997. if (key) {
  998. x->ealg->alg_key_len = key->sadb_key_bits;
  999. memcpy(x->ealg->alg_key, key+1, keysize);
  1000. }
  1001. x->props.ealgo = sa->sadb_sa_encrypt;
  1002. }
  1003. }
  1004. /* x->algo.flags = sa->sadb_sa_flags; */
  1005. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1006. &x->props.saddr);
  1007. if (!x->props.family) {
  1008. err = -EAFNOSUPPORT;
  1009. goto out;
  1010. }
  1011. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1012. &x->id.daddr);
  1013. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1014. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1015. x->props.mode = sa2->sadb_x_sa2_mode;
  1016. if (x->props.mode)
  1017. x->props.mode--;
  1018. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1019. }
  1020. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1021. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1022. /* Nobody uses this, but we try. */
  1023. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1024. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1025. }
  1026. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1027. struct sadb_x_nat_t_type* n_type;
  1028. struct xfrm_encap_tmpl *natt;
  1029. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1030. if (!x->encap)
  1031. goto out;
  1032. natt = x->encap;
  1033. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1034. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1035. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1036. struct sadb_x_nat_t_port* n_port =
  1037. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1038. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1039. }
  1040. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1041. struct sadb_x_nat_t_port* n_port =
  1042. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1043. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1044. }
  1045. }
  1046. err = xfrm_init_state(x);
  1047. if (err)
  1048. goto out;
  1049. x->km.seq = hdr->sadb_msg_seq;
  1050. return x;
  1051. out:
  1052. x->km.state = XFRM_STATE_DEAD;
  1053. xfrm_state_put(x);
  1054. return ERR_PTR(err);
  1055. }
  1056. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1057. {
  1058. return -EOPNOTSUPP;
  1059. }
  1060. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1061. {
  1062. struct sk_buff *resp_skb;
  1063. struct sadb_x_sa2 *sa2;
  1064. struct sadb_address *saddr, *daddr;
  1065. struct sadb_msg *out_hdr;
  1066. struct xfrm_state *x = NULL;
  1067. u8 mode;
  1068. u32 reqid;
  1069. u8 proto;
  1070. unsigned short family;
  1071. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1072. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1073. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1074. return -EINVAL;
  1075. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1076. if (proto == 0)
  1077. return -EINVAL;
  1078. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1079. mode = sa2->sadb_x_sa2_mode - 1;
  1080. reqid = sa2->sadb_x_sa2_reqid;
  1081. } else {
  1082. mode = 0;
  1083. reqid = 0;
  1084. }
  1085. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1086. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1087. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1088. switch (family) {
  1089. case AF_INET:
  1090. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1091. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1092. break;
  1093. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1094. case AF_INET6:
  1095. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1096. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1097. break;
  1098. #endif
  1099. }
  1100. if (hdr->sadb_msg_seq) {
  1101. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1102. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1103. xfrm_state_put(x);
  1104. x = NULL;
  1105. }
  1106. }
  1107. if (!x)
  1108. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1109. if (x == NULL)
  1110. return -ENOENT;
  1111. resp_skb = ERR_PTR(-ENOENT);
  1112. spin_lock_bh(&x->lock);
  1113. if (x->km.state != XFRM_STATE_DEAD) {
  1114. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1115. u32 min_spi, max_spi;
  1116. if (range != NULL) {
  1117. min_spi = range->sadb_spirange_min;
  1118. max_spi = range->sadb_spirange_max;
  1119. } else {
  1120. min_spi = 0x100;
  1121. max_spi = 0x0fffffff;
  1122. }
  1123. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1124. if (x->id.spi)
  1125. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1126. }
  1127. spin_unlock_bh(&x->lock);
  1128. if (IS_ERR(resp_skb)) {
  1129. xfrm_state_put(x);
  1130. return PTR_ERR(resp_skb);
  1131. }
  1132. out_hdr = (struct sadb_msg *) resp_skb->data;
  1133. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1134. out_hdr->sadb_msg_type = SADB_GETSPI;
  1135. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1136. out_hdr->sadb_msg_errno = 0;
  1137. out_hdr->sadb_msg_reserved = 0;
  1138. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1139. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1140. xfrm_state_put(x);
  1141. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1142. return 0;
  1143. }
  1144. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1145. {
  1146. struct xfrm_state *x;
  1147. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1148. return -EOPNOTSUPP;
  1149. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1150. return 0;
  1151. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1152. if (x == NULL)
  1153. return 0;
  1154. spin_lock_bh(&x->lock);
  1155. if (x->km.state == XFRM_STATE_ACQ) {
  1156. x->km.state = XFRM_STATE_ERROR;
  1157. wake_up(&km_waitq);
  1158. }
  1159. spin_unlock_bh(&x->lock);
  1160. xfrm_state_put(x);
  1161. return 0;
  1162. }
  1163. static inline int event2poltype(int event)
  1164. {
  1165. switch (event) {
  1166. case XFRM_MSG_DELPOLICY:
  1167. return SADB_X_SPDDELETE;
  1168. case XFRM_MSG_NEWPOLICY:
  1169. return SADB_X_SPDADD;
  1170. case XFRM_MSG_UPDPOLICY:
  1171. return SADB_X_SPDUPDATE;
  1172. case XFRM_MSG_POLEXPIRE:
  1173. // return SADB_X_SPDEXPIRE;
  1174. default:
  1175. printk("pfkey: Unknown policy event %d\n", event);
  1176. break;
  1177. }
  1178. return 0;
  1179. }
  1180. static inline int event2keytype(int event)
  1181. {
  1182. switch (event) {
  1183. case XFRM_MSG_DELSA:
  1184. return SADB_DELETE;
  1185. case XFRM_MSG_NEWSA:
  1186. return SADB_ADD;
  1187. case XFRM_MSG_UPDSA:
  1188. return SADB_UPDATE;
  1189. case XFRM_MSG_EXPIRE:
  1190. return SADB_EXPIRE;
  1191. default:
  1192. printk("pfkey: Unknown SA event %d\n", event);
  1193. break;
  1194. }
  1195. return 0;
  1196. }
  1197. /* ADD/UPD/DEL */
  1198. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1199. {
  1200. struct sk_buff *skb;
  1201. struct sadb_msg *hdr;
  1202. int hsc = 3;
  1203. if (c->event == XFRM_MSG_DELSA)
  1204. hsc = 0;
  1205. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1206. if (IS_ERR(skb))
  1207. return PTR_ERR(skb);
  1208. hdr = (struct sadb_msg *) skb->data;
  1209. hdr->sadb_msg_version = PF_KEY_V2;
  1210. hdr->sadb_msg_type = event2keytype(c->event);
  1211. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1212. hdr->sadb_msg_errno = 0;
  1213. hdr->sadb_msg_reserved = 0;
  1214. hdr->sadb_msg_seq = c->seq;
  1215. hdr->sadb_msg_pid = c->pid;
  1216. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1217. return 0;
  1218. }
  1219. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1220. {
  1221. struct xfrm_state *x;
  1222. int err;
  1223. struct km_event c;
  1224. xfrm_probe_algs();
  1225. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1226. if (IS_ERR(x))
  1227. return PTR_ERR(x);
  1228. xfrm_state_hold(x);
  1229. if (hdr->sadb_msg_type == SADB_ADD)
  1230. err = xfrm_state_add(x);
  1231. else
  1232. err = xfrm_state_update(x);
  1233. if (err < 0) {
  1234. x->km.state = XFRM_STATE_DEAD;
  1235. __xfrm_state_put(x);
  1236. goto out;
  1237. }
  1238. if (hdr->sadb_msg_type == SADB_ADD)
  1239. c.event = XFRM_MSG_NEWSA;
  1240. else
  1241. c.event = XFRM_MSG_UPDSA;
  1242. c.seq = hdr->sadb_msg_seq;
  1243. c.pid = hdr->sadb_msg_pid;
  1244. km_state_notify(x, &c);
  1245. out:
  1246. xfrm_state_put(x);
  1247. return err;
  1248. }
  1249. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1250. {
  1251. struct xfrm_state *x;
  1252. struct km_event c;
  1253. int err;
  1254. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1255. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1256. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1257. return -EINVAL;
  1258. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1259. if (x == NULL)
  1260. return -ESRCH;
  1261. if (xfrm_state_kern(x)) {
  1262. xfrm_state_put(x);
  1263. return -EPERM;
  1264. }
  1265. err = xfrm_state_delete(x);
  1266. if (err < 0) {
  1267. xfrm_state_put(x);
  1268. return err;
  1269. }
  1270. c.seq = hdr->sadb_msg_seq;
  1271. c.pid = hdr->sadb_msg_pid;
  1272. c.event = XFRM_MSG_DELSA;
  1273. km_state_notify(x, &c);
  1274. xfrm_state_put(x);
  1275. return err;
  1276. }
  1277. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1278. {
  1279. __u8 proto;
  1280. struct sk_buff *out_skb;
  1281. struct sadb_msg *out_hdr;
  1282. struct xfrm_state *x;
  1283. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1284. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1285. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1286. return -EINVAL;
  1287. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1288. if (x == NULL)
  1289. return -ESRCH;
  1290. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1291. proto = x->id.proto;
  1292. xfrm_state_put(x);
  1293. if (IS_ERR(out_skb))
  1294. return PTR_ERR(out_skb);
  1295. out_hdr = (struct sadb_msg *) out_skb->data;
  1296. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1297. out_hdr->sadb_msg_type = SADB_DUMP;
  1298. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1299. out_hdr->sadb_msg_errno = 0;
  1300. out_hdr->sadb_msg_reserved = 0;
  1301. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1302. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1303. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1304. return 0;
  1305. }
  1306. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1307. gfp_t allocation)
  1308. {
  1309. struct sk_buff *skb;
  1310. struct sadb_msg *hdr;
  1311. int len, auth_len, enc_len, i;
  1312. auth_len = xfrm_count_auth_supported();
  1313. if (auth_len) {
  1314. auth_len *= sizeof(struct sadb_alg);
  1315. auth_len += sizeof(struct sadb_supported);
  1316. }
  1317. enc_len = xfrm_count_enc_supported();
  1318. if (enc_len) {
  1319. enc_len *= sizeof(struct sadb_alg);
  1320. enc_len += sizeof(struct sadb_supported);
  1321. }
  1322. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1323. skb = alloc_skb(len + 16, allocation);
  1324. if (!skb)
  1325. goto out_put_algs;
  1326. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1327. pfkey_hdr_dup(hdr, orig);
  1328. hdr->sadb_msg_errno = 0;
  1329. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1330. if (auth_len) {
  1331. struct sadb_supported *sp;
  1332. struct sadb_alg *ap;
  1333. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1334. ap = (struct sadb_alg *) (sp + 1);
  1335. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1336. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1337. for (i = 0; ; i++) {
  1338. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1339. if (!aalg)
  1340. break;
  1341. if (aalg->available)
  1342. *ap++ = aalg->desc;
  1343. }
  1344. }
  1345. if (enc_len) {
  1346. struct sadb_supported *sp;
  1347. struct sadb_alg *ap;
  1348. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1349. ap = (struct sadb_alg *) (sp + 1);
  1350. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1351. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1352. for (i = 0; ; i++) {
  1353. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1354. if (!ealg)
  1355. break;
  1356. if (ealg->available)
  1357. *ap++ = ealg->desc;
  1358. }
  1359. }
  1360. out_put_algs:
  1361. return skb;
  1362. }
  1363. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1364. {
  1365. struct pfkey_sock *pfk = pfkey_sk(sk);
  1366. struct sk_buff *supp_skb;
  1367. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1368. return -EINVAL;
  1369. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1370. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1371. return -EEXIST;
  1372. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1373. }
  1374. xfrm_probe_algs();
  1375. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1376. if (!supp_skb) {
  1377. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1378. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1379. return -ENOBUFS;
  1380. }
  1381. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1382. return 0;
  1383. }
  1384. static int key_notify_sa_flush(struct km_event *c)
  1385. {
  1386. struct sk_buff *skb;
  1387. struct sadb_msg *hdr;
  1388. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1389. if (!skb)
  1390. return -ENOBUFS;
  1391. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1392. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1393. hdr->sadb_msg_type = SADB_FLUSH;
  1394. hdr->sadb_msg_seq = c->seq;
  1395. hdr->sadb_msg_pid = c->pid;
  1396. hdr->sadb_msg_version = PF_KEY_V2;
  1397. hdr->sadb_msg_errno = (uint8_t) 0;
  1398. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1399. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1400. return 0;
  1401. }
  1402. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1403. {
  1404. unsigned proto;
  1405. struct km_event c;
  1406. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1407. if (proto == 0)
  1408. return -EINVAL;
  1409. xfrm_state_flush(proto);
  1410. c.data.proto = proto;
  1411. c.seq = hdr->sadb_msg_seq;
  1412. c.pid = hdr->sadb_msg_pid;
  1413. c.event = XFRM_MSG_FLUSHSA;
  1414. km_state_notify(NULL, &c);
  1415. return 0;
  1416. }
  1417. struct pfkey_dump_data
  1418. {
  1419. struct sk_buff *skb;
  1420. struct sadb_msg *hdr;
  1421. struct sock *sk;
  1422. };
  1423. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1424. {
  1425. struct pfkey_dump_data *data = ptr;
  1426. struct sk_buff *out_skb;
  1427. struct sadb_msg *out_hdr;
  1428. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1429. if (IS_ERR(out_skb))
  1430. return PTR_ERR(out_skb);
  1431. out_hdr = (struct sadb_msg *) out_skb->data;
  1432. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1433. out_hdr->sadb_msg_type = SADB_DUMP;
  1434. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1435. out_hdr->sadb_msg_errno = 0;
  1436. out_hdr->sadb_msg_reserved = 0;
  1437. out_hdr->sadb_msg_seq = count;
  1438. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1439. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1440. return 0;
  1441. }
  1442. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1443. {
  1444. u8 proto;
  1445. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1446. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1447. if (proto == 0)
  1448. return -EINVAL;
  1449. return xfrm_state_walk(proto, dump_sa, &data);
  1450. }
  1451. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1452. {
  1453. struct pfkey_sock *pfk = pfkey_sk(sk);
  1454. int satype = hdr->sadb_msg_satype;
  1455. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1456. /* XXX we mangle packet... */
  1457. hdr->sadb_msg_errno = 0;
  1458. if (satype != 0 && satype != 1)
  1459. return -EINVAL;
  1460. pfk->promisc = satype;
  1461. }
  1462. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1463. return 0;
  1464. }
  1465. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1466. {
  1467. int i;
  1468. u32 reqid = *(u32*)ptr;
  1469. for (i=0; i<xp->xfrm_nr; i++) {
  1470. if (xp->xfrm_vec[i].reqid == reqid)
  1471. return -EEXIST;
  1472. }
  1473. return 0;
  1474. }
  1475. static u32 gen_reqid(void)
  1476. {
  1477. u32 start;
  1478. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1479. start = reqid;
  1480. do {
  1481. ++reqid;
  1482. if (reqid == 0)
  1483. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1484. if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
  1485. return reqid;
  1486. } while (reqid != start);
  1487. return 0;
  1488. }
  1489. static int
  1490. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1491. {
  1492. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1493. struct sockaddr_in *sin;
  1494. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1495. struct sockaddr_in6 *sin6;
  1496. #endif
  1497. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1498. return -ELOOP;
  1499. if (rq->sadb_x_ipsecrequest_mode == 0)
  1500. return -EINVAL;
  1501. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1502. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1503. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1504. t->optional = 1;
  1505. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1506. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1507. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1508. t->reqid = 0;
  1509. if (!t->reqid && !(t->reqid = gen_reqid()))
  1510. return -ENOBUFS;
  1511. }
  1512. /* addresses present only in tunnel mode */
  1513. if (t->mode) {
  1514. switch (xp->family) {
  1515. case AF_INET:
  1516. sin = (void*)(rq+1);
  1517. if (sin->sin_family != AF_INET)
  1518. return -EINVAL;
  1519. t->saddr.a4 = sin->sin_addr.s_addr;
  1520. sin++;
  1521. if (sin->sin_family != AF_INET)
  1522. return -EINVAL;
  1523. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1524. break;
  1525. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1526. case AF_INET6:
  1527. sin6 = (void *)(rq+1);
  1528. if (sin6->sin6_family != AF_INET6)
  1529. return -EINVAL;
  1530. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1531. sin6++;
  1532. if (sin6->sin6_family != AF_INET6)
  1533. return -EINVAL;
  1534. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1535. break;
  1536. #endif
  1537. default:
  1538. return -EINVAL;
  1539. }
  1540. }
  1541. /* No way to set this via kame pfkey */
  1542. t->aalgos = t->ealgos = t->calgos = ~0;
  1543. xp->xfrm_nr++;
  1544. return 0;
  1545. }
  1546. static int
  1547. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1548. {
  1549. int err;
  1550. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1551. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1552. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1553. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1554. return err;
  1555. len -= rq->sadb_x_ipsecrequest_len;
  1556. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1557. }
  1558. return 0;
  1559. }
  1560. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1561. {
  1562. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1563. if (xfrm_ctx) {
  1564. int len = sizeof(struct sadb_x_sec_ctx);
  1565. len += xfrm_ctx->ctx_len;
  1566. return PFKEY_ALIGN8(len);
  1567. }
  1568. return 0;
  1569. }
  1570. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1571. {
  1572. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1573. int socklen = (xp->family == AF_INET ?
  1574. sizeof(struct sockaddr_in) :
  1575. sizeof(struct sockaddr_in6));
  1576. return sizeof(struct sadb_msg) +
  1577. (sizeof(struct sadb_lifetime) * 3) +
  1578. (sizeof(struct sadb_address) * 2) +
  1579. (sockaddr_size * 2) +
  1580. sizeof(struct sadb_x_policy) +
  1581. (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
  1582. (socklen * 2))) +
  1583. pfkey_xfrm_policy2sec_ctx_size(xp);
  1584. }
  1585. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1586. {
  1587. struct sk_buff *skb;
  1588. int size;
  1589. size = pfkey_xfrm_policy2msg_size(xp);
  1590. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1591. if (skb == NULL)
  1592. return ERR_PTR(-ENOBUFS);
  1593. return skb;
  1594. }
  1595. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1596. {
  1597. struct sadb_msg *hdr;
  1598. struct sadb_address *addr;
  1599. struct sadb_lifetime *lifetime;
  1600. struct sadb_x_policy *pol;
  1601. struct sockaddr_in *sin;
  1602. struct sadb_x_sec_ctx *sec_ctx;
  1603. struct xfrm_sec_ctx *xfrm_ctx;
  1604. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1605. struct sockaddr_in6 *sin6;
  1606. #endif
  1607. int i;
  1608. int size;
  1609. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1610. int socklen = (xp->family == AF_INET ?
  1611. sizeof(struct sockaddr_in) :
  1612. sizeof(struct sockaddr_in6));
  1613. size = pfkey_xfrm_policy2msg_size(xp);
  1614. /* call should fill header later */
  1615. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1616. memset(hdr, 0, size); /* XXX do we need this ? */
  1617. /* src address */
  1618. addr = (struct sadb_address*) skb_put(skb,
  1619. sizeof(struct sadb_address)+sockaddr_size);
  1620. addr->sadb_address_len =
  1621. (sizeof(struct sadb_address)+sockaddr_size)/
  1622. sizeof(uint64_t);
  1623. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1624. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1625. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1626. addr->sadb_address_reserved = 0;
  1627. /* src address */
  1628. if (xp->family == AF_INET) {
  1629. sin = (struct sockaddr_in *) (addr + 1);
  1630. sin->sin_family = AF_INET;
  1631. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1632. sin->sin_port = xp->selector.sport;
  1633. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1634. }
  1635. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1636. else if (xp->family == AF_INET6) {
  1637. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1638. sin6->sin6_family = AF_INET6;
  1639. sin6->sin6_port = xp->selector.sport;
  1640. sin6->sin6_flowinfo = 0;
  1641. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1642. sizeof(struct in6_addr));
  1643. sin6->sin6_scope_id = 0;
  1644. }
  1645. #endif
  1646. else
  1647. BUG();
  1648. /* dst address */
  1649. addr = (struct sadb_address*) skb_put(skb,
  1650. sizeof(struct sadb_address)+sockaddr_size);
  1651. addr->sadb_address_len =
  1652. (sizeof(struct sadb_address)+sockaddr_size)/
  1653. sizeof(uint64_t);
  1654. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1655. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1656. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1657. addr->sadb_address_reserved = 0;
  1658. if (xp->family == AF_INET) {
  1659. sin = (struct sockaddr_in *) (addr + 1);
  1660. sin->sin_family = AF_INET;
  1661. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1662. sin->sin_port = xp->selector.dport;
  1663. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1664. }
  1665. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1666. else if (xp->family == AF_INET6) {
  1667. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1668. sin6->sin6_family = AF_INET6;
  1669. sin6->sin6_port = xp->selector.dport;
  1670. sin6->sin6_flowinfo = 0;
  1671. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1672. sizeof(struct in6_addr));
  1673. sin6->sin6_scope_id = 0;
  1674. }
  1675. #endif
  1676. else
  1677. BUG();
  1678. /* hard time */
  1679. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1680. sizeof(struct sadb_lifetime));
  1681. lifetime->sadb_lifetime_len =
  1682. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1683. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1684. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1685. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1686. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1687. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1688. /* soft time */
  1689. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1690. sizeof(struct sadb_lifetime));
  1691. lifetime->sadb_lifetime_len =
  1692. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1693. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1694. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1695. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1696. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1697. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1698. /* current time */
  1699. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1700. sizeof(struct sadb_lifetime));
  1701. lifetime->sadb_lifetime_len =
  1702. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1703. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1704. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1705. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1706. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1707. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1708. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1709. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1710. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1711. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1712. if (xp->action == XFRM_POLICY_ALLOW) {
  1713. if (xp->xfrm_nr)
  1714. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1715. else
  1716. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1717. }
  1718. pol->sadb_x_policy_dir = dir+1;
  1719. pol->sadb_x_policy_id = xp->index;
  1720. pol->sadb_x_policy_priority = xp->priority;
  1721. for (i=0; i<xp->xfrm_nr; i++) {
  1722. struct sadb_x_ipsecrequest *rq;
  1723. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1724. int req_size;
  1725. req_size = sizeof(struct sadb_x_ipsecrequest);
  1726. if (t->mode)
  1727. req_size += 2*socklen;
  1728. else
  1729. size -= 2*socklen;
  1730. rq = (void*)skb_put(skb, req_size);
  1731. pol->sadb_x_policy_len += req_size/8;
  1732. memset(rq, 0, sizeof(*rq));
  1733. rq->sadb_x_ipsecrequest_len = req_size;
  1734. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1735. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1736. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1737. if (t->reqid)
  1738. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1739. if (t->optional)
  1740. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1741. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1742. if (t->mode) {
  1743. switch (xp->family) {
  1744. case AF_INET:
  1745. sin = (void*)(rq+1);
  1746. sin->sin_family = AF_INET;
  1747. sin->sin_addr.s_addr = t->saddr.a4;
  1748. sin->sin_port = 0;
  1749. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1750. sin++;
  1751. sin->sin_family = AF_INET;
  1752. sin->sin_addr.s_addr = t->id.daddr.a4;
  1753. sin->sin_port = 0;
  1754. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1755. break;
  1756. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1757. case AF_INET6:
  1758. sin6 = (void*)(rq+1);
  1759. sin6->sin6_family = AF_INET6;
  1760. sin6->sin6_port = 0;
  1761. sin6->sin6_flowinfo = 0;
  1762. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1763. sizeof(struct in6_addr));
  1764. sin6->sin6_scope_id = 0;
  1765. sin6++;
  1766. sin6->sin6_family = AF_INET6;
  1767. sin6->sin6_port = 0;
  1768. sin6->sin6_flowinfo = 0;
  1769. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1770. sizeof(struct in6_addr));
  1771. sin6->sin6_scope_id = 0;
  1772. break;
  1773. #endif
  1774. default:
  1775. break;
  1776. }
  1777. }
  1778. }
  1779. /* security context */
  1780. if ((xfrm_ctx = xp->security)) {
  1781. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1782. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1783. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1784. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1785. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1786. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1787. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1788. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1789. xfrm_ctx->ctx_len);
  1790. }
  1791. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1792. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1793. }
  1794. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1795. {
  1796. struct sk_buff *out_skb;
  1797. struct sadb_msg *out_hdr;
  1798. int err;
  1799. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1800. if (IS_ERR(out_skb)) {
  1801. err = PTR_ERR(out_skb);
  1802. goto out;
  1803. }
  1804. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1805. out_hdr = (struct sadb_msg *) out_skb->data;
  1806. out_hdr->sadb_msg_version = PF_KEY_V2;
  1807. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1808. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1809. else
  1810. out_hdr->sadb_msg_type = event2poltype(c->event);
  1811. out_hdr->sadb_msg_errno = 0;
  1812. out_hdr->sadb_msg_seq = c->seq;
  1813. out_hdr->sadb_msg_pid = c->pid;
  1814. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1815. out:
  1816. return 0;
  1817. }
  1818. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1819. {
  1820. int err = 0;
  1821. struct sadb_lifetime *lifetime;
  1822. struct sadb_address *sa;
  1823. struct sadb_x_policy *pol;
  1824. struct xfrm_policy *xp;
  1825. struct km_event c;
  1826. struct sadb_x_sec_ctx *sec_ctx;
  1827. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1828. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1829. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1830. return -EINVAL;
  1831. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1832. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1833. return -EINVAL;
  1834. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1835. return -EINVAL;
  1836. xp = xfrm_policy_alloc(GFP_KERNEL);
  1837. if (xp == NULL)
  1838. return -ENOBUFS;
  1839. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1840. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1841. xp->priority = pol->sadb_x_policy_priority;
  1842. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1843. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1844. if (!xp->family) {
  1845. err = -EINVAL;
  1846. goto out;
  1847. }
  1848. xp->selector.family = xp->family;
  1849. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1850. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1851. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1852. if (xp->selector.sport)
  1853. xp->selector.sport_mask = ~0;
  1854. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1855. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1856. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1857. /* Amusing, we set this twice. KAME apps appear to set same value
  1858. * in both addresses.
  1859. */
  1860. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1861. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1862. if (xp->selector.dport)
  1863. xp->selector.dport_mask = ~0;
  1864. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1865. if (sec_ctx != NULL) {
  1866. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1867. if (!uctx) {
  1868. err = -ENOBUFS;
  1869. goto out;
  1870. }
  1871. err = security_xfrm_policy_alloc(xp, uctx);
  1872. kfree(uctx);
  1873. if (err)
  1874. goto out;
  1875. }
  1876. xp->lft.soft_byte_limit = XFRM_INF;
  1877. xp->lft.hard_byte_limit = XFRM_INF;
  1878. xp->lft.soft_packet_limit = XFRM_INF;
  1879. xp->lft.hard_packet_limit = XFRM_INF;
  1880. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1881. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1882. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1883. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1884. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1885. }
  1886. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1887. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1888. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1889. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1890. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1891. }
  1892. xp->xfrm_nr = 0;
  1893. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1894. (err = parse_ipsecrequests(xp, pol)) < 0)
  1895. goto out;
  1896. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1897. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1898. if (err)
  1899. goto out;
  1900. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1901. c.event = XFRM_MSG_UPDPOLICY;
  1902. else
  1903. c.event = XFRM_MSG_NEWPOLICY;
  1904. c.seq = hdr->sadb_msg_seq;
  1905. c.pid = hdr->sadb_msg_pid;
  1906. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1907. xfrm_pol_put(xp);
  1908. return 0;
  1909. out:
  1910. security_xfrm_policy_free(xp);
  1911. kfree(xp);
  1912. return err;
  1913. }
  1914. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1915. {
  1916. int err;
  1917. struct sadb_address *sa;
  1918. struct sadb_x_policy *pol;
  1919. struct xfrm_policy *xp, tmp;
  1920. struct xfrm_selector sel;
  1921. struct km_event c;
  1922. struct sadb_x_sec_ctx *sec_ctx;
  1923. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1924. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1925. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1926. return -EINVAL;
  1927. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1928. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1929. return -EINVAL;
  1930. memset(&sel, 0, sizeof(sel));
  1931. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1932. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1933. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1934. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1935. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1936. if (sel.sport)
  1937. sel.sport_mask = ~0;
  1938. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1939. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1940. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1941. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1942. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1943. if (sel.dport)
  1944. sel.dport_mask = ~0;
  1945. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1946. memset(&tmp, 0, sizeof(struct xfrm_policy));
  1947. if (sec_ctx != NULL) {
  1948. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1949. if (!uctx)
  1950. return -ENOMEM;
  1951. err = security_xfrm_policy_alloc(&tmp, uctx);
  1952. kfree(uctx);
  1953. if (err)
  1954. return err;
  1955. }
  1956. xp = xfrm_policy_bysel_ctx(pol->sadb_x_policy_dir-1, &sel, tmp.security, 1);
  1957. security_xfrm_policy_free(&tmp);
  1958. if (xp == NULL)
  1959. return -ENOENT;
  1960. err = 0;
  1961. c.seq = hdr->sadb_msg_seq;
  1962. c.pid = hdr->sadb_msg_pid;
  1963. c.event = XFRM_MSG_DELPOLICY;
  1964. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1965. xfrm_pol_put(xp);
  1966. return err;
  1967. }
  1968. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1969. {
  1970. int err;
  1971. struct sk_buff *out_skb;
  1972. struct sadb_msg *out_hdr;
  1973. err = 0;
  1974. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1975. if (IS_ERR(out_skb)) {
  1976. err = PTR_ERR(out_skb);
  1977. goto out;
  1978. }
  1979. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1980. out_hdr = (struct sadb_msg *) out_skb->data;
  1981. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1982. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1983. out_hdr->sadb_msg_satype = 0;
  1984. out_hdr->sadb_msg_errno = 0;
  1985. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1986. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1987. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1988. err = 0;
  1989. out:
  1990. return err;
  1991. }
  1992. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1993. {
  1994. unsigned int dir;
  1995. int err;
  1996. struct sadb_x_policy *pol;
  1997. struct xfrm_policy *xp;
  1998. struct km_event c;
  1999. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2000. return -EINVAL;
  2001. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2002. if (dir >= XFRM_POLICY_MAX)
  2003. return -EINVAL;
  2004. xp = xfrm_policy_byid(dir, pol->sadb_x_policy_id,
  2005. hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2006. if (xp == NULL)
  2007. return -ENOENT;
  2008. err = 0;
  2009. c.seq = hdr->sadb_msg_seq;
  2010. c.pid = hdr->sadb_msg_pid;
  2011. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  2012. c.data.byid = 1;
  2013. c.event = XFRM_MSG_DELPOLICY;
  2014. km_policy_notify(xp, dir, &c);
  2015. } else {
  2016. err = key_pol_get_resp(sk, xp, hdr, dir);
  2017. }
  2018. xfrm_pol_put(xp);
  2019. return err;
  2020. }
  2021. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2022. {
  2023. struct pfkey_dump_data *data = ptr;
  2024. struct sk_buff *out_skb;
  2025. struct sadb_msg *out_hdr;
  2026. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2027. if (IS_ERR(out_skb))
  2028. return PTR_ERR(out_skb);
  2029. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2030. out_hdr = (struct sadb_msg *) out_skb->data;
  2031. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2032. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2033. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2034. out_hdr->sadb_msg_errno = 0;
  2035. out_hdr->sadb_msg_seq = count;
  2036. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2037. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2038. return 0;
  2039. }
  2040. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2041. {
  2042. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2043. return xfrm_policy_walk(dump_sp, &data);
  2044. }
  2045. static int key_notify_policy_flush(struct km_event *c)
  2046. {
  2047. struct sk_buff *skb_out;
  2048. struct sadb_msg *hdr;
  2049. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2050. if (!skb_out)
  2051. return -ENOBUFS;
  2052. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2053. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2054. hdr->sadb_msg_seq = c->seq;
  2055. hdr->sadb_msg_pid = c->pid;
  2056. hdr->sadb_msg_version = PF_KEY_V2;
  2057. hdr->sadb_msg_errno = (uint8_t) 0;
  2058. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2059. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2060. return 0;
  2061. }
  2062. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2063. {
  2064. struct km_event c;
  2065. xfrm_policy_flush();
  2066. c.event = XFRM_MSG_FLUSHPOLICY;
  2067. c.pid = hdr->sadb_msg_pid;
  2068. c.seq = hdr->sadb_msg_seq;
  2069. km_policy_notify(NULL, 0, &c);
  2070. return 0;
  2071. }
  2072. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2073. struct sadb_msg *hdr, void **ext_hdrs);
  2074. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2075. [SADB_RESERVED] = pfkey_reserved,
  2076. [SADB_GETSPI] = pfkey_getspi,
  2077. [SADB_UPDATE] = pfkey_add,
  2078. [SADB_ADD] = pfkey_add,
  2079. [SADB_DELETE] = pfkey_delete,
  2080. [SADB_GET] = pfkey_get,
  2081. [SADB_ACQUIRE] = pfkey_acquire,
  2082. [SADB_REGISTER] = pfkey_register,
  2083. [SADB_EXPIRE] = NULL,
  2084. [SADB_FLUSH] = pfkey_flush,
  2085. [SADB_DUMP] = pfkey_dump,
  2086. [SADB_X_PROMISC] = pfkey_promisc,
  2087. [SADB_X_PCHANGE] = NULL,
  2088. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2089. [SADB_X_SPDADD] = pfkey_spdadd,
  2090. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2091. [SADB_X_SPDGET] = pfkey_spdget,
  2092. [SADB_X_SPDACQUIRE] = NULL,
  2093. [SADB_X_SPDDUMP] = pfkey_spddump,
  2094. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2095. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2096. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2097. };
  2098. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2099. {
  2100. void *ext_hdrs[SADB_EXT_MAX];
  2101. int err;
  2102. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2103. BROADCAST_PROMISC_ONLY, NULL);
  2104. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2105. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2106. if (!err) {
  2107. err = -EOPNOTSUPP;
  2108. if (pfkey_funcs[hdr->sadb_msg_type])
  2109. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2110. }
  2111. return err;
  2112. }
  2113. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2114. {
  2115. struct sadb_msg *hdr = NULL;
  2116. if (skb->len < sizeof(*hdr)) {
  2117. *errp = -EMSGSIZE;
  2118. } else {
  2119. hdr = (struct sadb_msg *) skb->data;
  2120. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2121. hdr->sadb_msg_reserved != 0 ||
  2122. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2123. hdr->sadb_msg_type > SADB_MAX)) {
  2124. hdr = NULL;
  2125. *errp = -EINVAL;
  2126. } else if (hdr->sadb_msg_len != (skb->len /
  2127. sizeof(uint64_t)) ||
  2128. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2129. sizeof(uint64_t))) {
  2130. hdr = NULL;
  2131. *errp = -EMSGSIZE;
  2132. } else {
  2133. *errp = 0;
  2134. }
  2135. }
  2136. return hdr;
  2137. }
  2138. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2139. {
  2140. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2141. }
  2142. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2143. {
  2144. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2145. }
  2146. static int count_ah_combs(struct xfrm_tmpl *t)
  2147. {
  2148. int i, sz = 0;
  2149. for (i = 0; ; i++) {
  2150. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2151. if (!aalg)
  2152. break;
  2153. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2154. sz += sizeof(struct sadb_comb);
  2155. }
  2156. return sz + sizeof(struct sadb_prop);
  2157. }
  2158. static int count_esp_combs(struct xfrm_tmpl *t)
  2159. {
  2160. int i, k, sz = 0;
  2161. for (i = 0; ; i++) {
  2162. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2163. if (!ealg)
  2164. break;
  2165. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2166. continue;
  2167. for (k = 1; ; k++) {
  2168. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2169. if (!aalg)
  2170. break;
  2171. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2172. sz += sizeof(struct sadb_comb);
  2173. }
  2174. }
  2175. return sz + sizeof(struct sadb_prop);
  2176. }
  2177. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2178. {
  2179. struct sadb_prop *p;
  2180. int i;
  2181. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2182. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2183. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2184. p->sadb_prop_replay = 32;
  2185. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2186. for (i = 0; ; i++) {
  2187. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2188. if (!aalg)
  2189. break;
  2190. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2191. struct sadb_comb *c;
  2192. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2193. memset(c, 0, sizeof(*c));
  2194. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2195. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2196. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2197. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2198. c->sadb_comb_hard_addtime = 24*60*60;
  2199. c->sadb_comb_soft_addtime = 20*60*60;
  2200. c->sadb_comb_hard_usetime = 8*60*60;
  2201. c->sadb_comb_soft_usetime = 7*60*60;
  2202. }
  2203. }
  2204. }
  2205. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2206. {
  2207. struct sadb_prop *p;
  2208. int i, k;
  2209. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2210. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2211. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2212. p->sadb_prop_replay = 32;
  2213. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2214. for (i=0; ; i++) {
  2215. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2216. if (!ealg)
  2217. break;
  2218. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2219. continue;
  2220. for (k = 1; ; k++) {
  2221. struct sadb_comb *c;
  2222. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2223. if (!aalg)
  2224. break;
  2225. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2226. continue;
  2227. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2228. memset(c, 0, sizeof(*c));
  2229. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2230. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2231. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2232. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2233. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2234. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2235. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2236. c->sadb_comb_hard_addtime = 24*60*60;
  2237. c->sadb_comb_soft_addtime = 20*60*60;
  2238. c->sadb_comb_hard_usetime = 8*60*60;
  2239. c->sadb_comb_soft_usetime = 7*60*60;
  2240. }
  2241. }
  2242. }
  2243. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2244. {
  2245. return 0;
  2246. }
  2247. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2248. {
  2249. struct sk_buff *out_skb;
  2250. struct sadb_msg *out_hdr;
  2251. int hard;
  2252. int hsc;
  2253. hard = c->data.hard;
  2254. if (hard)
  2255. hsc = 2;
  2256. else
  2257. hsc = 1;
  2258. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2259. if (IS_ERR(out_skb))
  2260. return PTR_ERR(out_skb);
  2261. out_hdr = (struct sadb_msg *) out_skb->data;
  2262. out_hdr->sadb_msg_version = PF_KEY_V2;
  2263. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2264. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2265. out_hdr->sadb_msg_errno = 0;
  2266. out_hdr->sadb_msg_reserved = 0;
  2267. out_hdr->sadb_msg_seq = 0;
  2268. out_hdr->sadb_msg_pid = 0;
  2269. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2270. return 0;
  2271. }
  2272. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2273. {
  2274. switch (c->event) {
  2275. case XFRM_MSG_EXPIRE:
  2276. return key_notify_sa_expire(x, c);
  2277. case XFRM_MSG_DELSA:
  2278. case XFRM_MSG_NEWSA:
  2279. case XFRM_MSG_UPDSA:
  2280. return key_notify_sa(x, c);
  2281. case XFRM_MSG_FLUSHSA:
  2282. return key_notify_sa_flush(c);
  2283. case XFRM_MSG_NEWAE: /* not yet supported */
  2284. break;
  2285. default:
  2286. printk("pfkey: Unknown SA event %d\n", c->event);
  2287. break;
  2288. }
  2289. return 0;
  2290. }
  2291. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2292. {
  2293. switch (c->event) {
  2294. case XFRM_MSG_POLEXPIRE:
  2295. return key_notify_policy_expire(xp, c);
  2296. case XFRM_MSG_DELPOLICY:
  2297. case XFRM_MSG_NEWPOLICY:
  2298. case XFRM_MSG_UPDPOLICY:
  2299. return key_notify_policy(xp, dir, c);
  2300. case XFRM_MSG_FLUSHPOLICY:
  2301. return key_notify_policy_flush(c);
  2302. default:
  2303. printk("pfkey: Unknown policy event %d\n", c->event);
  2304. break;
  2305. }
  2306. return 0;
  2307. }
  2308. static u32 get_acqseq(void)
  2309. {
  2310. u32 res;
  2311. static u32 acqseq;
  2312. static DEFINE_SPINLOCK(acqseq_lock);
  2313. spin_lock_bh(&acqseq_lock);
  2314. res = (++acqseq ? : ++acqseq);
  2315. spin_unlock_bh(&acqseq_lock);
  2316. return res;
  2317. }
  2318. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2319. {
  2320. struct sk_buff *skb;
  2321. struct sadb_msg *hdr;
  2322. struct sadb_address *addr;
  2323. struct sadb_x_policy *pol;
  2324. struct sockaddr_in *sin;
  2325. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2326. struct sockaddr_in6 *sin6;
  2327. #endif
  2328. int sockaddr_size;
  2329. int size;
  2330. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2331. if (!sockaddr_size)
  2332. return -EINVAL;
  2333. size = sizeof(struct sadb_msg) +
  2334. (sizeof(struct sadb_address) * 2) +
  2335. (sockaddr_size * 2) +
  2336. sizeof(struct sadb_x_policy);
  2337. if (x->id.proto == IPPROTO_AH)
  2338. size += count_ah_combs(t);
  2339. else if (x->id.proto == IPPROTO_ESP)
  2340. size += count_esp_combs(t);
  2341. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2342. if (skb == NULL)
  2343. return -ENOMEM;
  2344. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2345. hdr->sadb_msg_version = PF_KEY_V2;
  2346. hdr->sadb_msg_type = SADB_ACQUIRE;
  2347. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2348. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2349. hdr->sadb_msg_errno = 0;
  2350. hdr->sadb_msg_reserved = 0;
  2351. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2352. hdr->sadb_msg_pid = 0;
  2353. /* src address */
  2354. addr = (struct sadb_address*) skb_put(skb,
  2355. sizeof(struct sadb_address)+sockaddr_size);
  2356. addr->sadb_address_len =
  2357. (sizeof(struct sadb_address)+sockaddr_size)/
  2358. sizeof(uint64_t);
  2359. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2360. addr->sadb_address_proto = 0;
  2361. addr->sadb_address_reserved = 0;
  2362. if (x->props.family == AF_INET) {
  2363. addr->sadb_address_prefixlen = 32;
  2364. sin = (struct sockaddr_in *) (addr + 1);
  2365. sin->sin_family = AF_INET;
  2366. sin->sin_addr.s_addr = x->props.saddr.a4;
  2367. sin->sin_port = 0;
  2368. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2369. }
  2370. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2371. else if (x->props.family == AF_INET6) {
  2372. addr->sadb_address_prefixlen = 128;
  2373. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2374. sin6->sin6_family = AF_INET6;
  2375. sin6->sin6_port = 0;
  2376. sin6->sin6_flowinfo = 0;
  2377. memcpy(&sin6->sin6_addr,
  2378. x->props.saddr.a6, sizeof(struct in6_addr));
  2379. sin6->sin6_scope_id = 0;
  2380. }
  2381. #endif
  2382. else
  2383. BUG();
  2384. /* dst address */
  2385. addr = (struct sadb_address*) skb_put(skb,
  2386. sizeof(struct sadb_address)+sockaddr_size);
  2387. addr->sadb_address_len =
  2388. (sizeof(struct sadb_address)+sockaddr_size)/
  2389. sizeof(uint64_t);
  2390. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2391. addr->sadb_address_proto = 0;
  2392. addr->sadb_address_reserved = 0;
  2393. if (x->props.family == AF_INET) {
  2394. addr->sadb_address_prefixlen = 32;
  2395. sin = (struct sockaddr_in *) (addr + 1);
  2396. sin->sin_family = AF_INET;
  2397. sin->sin_addr.s_addr = x->id.daddr.a4;
  2398. sin->sin_port = 0;
  2399. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2400. }
  2401. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2402. else if (x->props.family == AF_INET6) {
  2403. addr->sadb_address_prefixlen = 128;
  2404. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2405. sin6->sin6_family = AF_INET6;
  2406. sin6->sin6_port = 0;
  2407. sin6->sin6_flowinfo = 0;
  2408. memcpy(&sin6->sin6_addr,
  2409. x->id.daddr.a6, sizeof(struct in6_addr));
  2410. sin6->sin6_scope_id = 0;
  2411. }
  2412. #endif
  2413. else
  2414. BUG();
  2415. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2416. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2417. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2418. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2419. pol->sadb_x_policy_dir = dir+1;
  2420. pol->sadb_x_policy_id = xp->index;
  2421. /* Set sadb_comb's. */
  2422. if (x->id.proto == IPPROTO_AH)
  2423. dump_ah_combs(skb, t);
  2424. else if (x->id.proto == IPPROTO_ESP)
  2425. dump_esp_combs(skb, t);
  2426. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2427. }
  2428. static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
  2429. u8 *data, int len, int *dir)
  2430. {
  2431. struct xfrm_policy *xp;
  2432. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2433. struct sadb_x_sec_ctx *sec_ctx;
  2434. switch (family) {
  2435. case AF_INET:
  2436. if (opt != IP_IPSEC_POLICY) {
  2437. *dir = -EOPNOTSUPP;
  2438. return NULL;
  2439. }
  2440. break;
  2441. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2442. case AF_INET6:
  2443. if (opt != IPV6_IPSEC_POLICY) {
  2444. *dir = -EOPNOTSUPP;
  2445. return NULL;
  2446. }
  2447. break;
  2448. #endif
  2449. default:
  2450. *dir = -EINVAL;
  2451. return NULL;
  2452. }
  2453. *dir = -EINVAL;
  2454. if (len < sizeof(struct sadb_x_policy) ||
  2455. pol->sadb_x_policy_len*8 > len ||
  2456. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2457. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2458. return NULL;
  2459. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2460. if (xp == NULL) {
  2461. *dir = -ENOBUFS;
  2462. return NULL;
  2463. }
  2464. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2465. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2466. xp->lft.soft_byte_limit = XFRM_INF;
  2467. xp->lft.hard_byte_limit = XFRM_INF;
  2468. xp->lft.soft_packet_limit = XFRM_INF;
  2469. xp->lft.hard_packet_limit = XFRM_INF;
  2470. xp->family = family;
  2471. xp->xfrm_nr = 0;
  2472. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2473. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2474. goto out;
  2475. /* security context too */
  2476. if (len >= (pol->sadb_x_policy_len*8 +
  2477. sizeof(struct sadb_x_sec_ctx))) {
  2478. char *p = (char *)pol;
  2479. struct xfrm_user_sec_ctx *uctx;
  2480. p += pol->sadb_x_policy_len*8;
  2481. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2482. if (len < pol->sadb_x_policy_len*8 +
  2483. sec_ctx->sadb_x_sec_len)
  2484. goto out;
  2485. if ((*dir = verify_sec_ctx_len(p)))
  2486. goto out;
  2487. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2488. *dir = security_xfrm_policy_alloc(xp, uctx);
  2489. kfree(uctx);
  2490. if (*dir)
  2491. goto out;
  2492. }
  2493. *dir = pol->sadb_x_policy_dir-1;
  2494. return xp;
  2495. out:
  2496. security_xfrm_policy_free(xp);
  2497. kfree(xp);
  2498. return NULL;
  2499. }
  2500. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
  2501. {
  2502. struct sk_buff *skb;
  2503. struct sadb_msg *hdr;
  2504. struct sadb_sa *sa;
  2505. struct sadb_address *addr;
  2506. struct sadb_x_nat_t_port *n_port;
  2507. struct sockaddr_in *sin;
  2508. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2509. struct sockaddr_in6 *sin6;
  2510. #endif
  2511. int sockaddr_size;
  2512. int size;
  2513. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2514. struct xfrm_encap_tmpl *natt = NULL;
  2515. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2516. if (!sockaddr_size)
  2517. return -EINVAL;
  2518. if (!satype)
  2519. return -EINVAL;
  2520. if (!x->encap)
  2521. return -EINVAL;
  2522. natt = x->encap;
  2523. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2524. *
  2525. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2526. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2527. */
  2528. size = sizeof(struct sadb_msg) +
  2529. sizeof(struct sadb_sa) +
  2530. (sizeof(struct sadb_address) * 2) +
  2531. (sockaddr_size * 2) +
  2532. (sizeof(struct sadb_x_nat_t_port) * 2);
  2533. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2534. if (skb == NULL)
  2535. return -ENOMEM;
  2536. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2537. hdr->sadb_msg_version = PF_KEY_V2;
  2538. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2539. hdr->sadb_msg_satype = satype;
  2540. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2541. hdr->sadb_msg_errno = 0;
  2542. hdr->sadb_msg_reserved = 0;
  2543. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2544. hdr->sadb_msg_pid = 0;
  2545. /* SA */
  2546. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2547. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2548. sa->sadb_sa_exttype = SADB_EXT_SA;
  2549. sa->sadb_sa_spi = x->id.spi;
  2550. sa->sadb_sa_replay = 0;
  2551. sa->sadb_sa_state = 0;
  2552. sa->sadb_sa_auth = 0;
  2553. sa->sadb_sa_encrypt = 0;
  2554. sa->sadb_sa_flags = 0;
  2555. /* ADDRESS_SRC (old addr) */
  2556. addr = (struct sadb_address*)
  2557. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2558. addr->sadb_address_len =
  2559. (sizeof(struct sadb_address)+sockaddr_size)/
  2560. sizeof(uint64_t);
  2561. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2562. addr->sadb_address_proto = 0;
  2563. addr->sadb_address_reserved = 0;
  2564. if (x->props.family == AF_INET) {
  2565. addr->sadb_address_prefixlen = 32;
  2566. sin = (struct sockaddr_in *) (addr + 1);
  2567. sin->sin_family = AF_INET;
  2568. sin->sin_addr.s_addr = x->props.saddr.a4;
  2569. sin->sin_port = 0;
  2570. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2571. }
  2572. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2573. else if (x->props.family == AF_INET6) {
  2574. addr->sadb_address_prefixlen = 128;
  2575. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2576. sin6->sin6_family = AF_INET6;
  2577. sin6->sin6_port = 0;
  2578. sin6->sin6_flowinfo = 0;
  2579. memcpy(&sin6->sin6_addr,
  2580. x->props.saddr.a6, sizeof(struct in6_addr));
  2581. sin6->sin6_scope_id = 0;
  2582. }
  2583. #endif
  2584. else
  2585. BUG();
  2586. /* NAT_T_SPORT (old port) */
  2587. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2588. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2589. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2590. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2591. n_port->sadb_x_nat_t_port_reserved = 0;
  2592. /* ADDRESS_DST (new addr) */
  2593. addr = (struct sadb_address*)
  2594. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2595. addr->sadb_address_len =
  2596. (sizeof(struct sadb_address)+sockaddr_size)/
  2597. sizeof(uint64_t);
  2598. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2599. addr->sadb_address_proto = 0;
  2600. addr->sadb_address_reserved = 0;
  2601. if (x->props.family == AF_INET) {
  2602. addr->sadb_address_prefixlen = 32;
  2603. sin = (struct sockaddr_in *) (addr + 1);
  2604. sin->sin_family = AF_INET;
  2605. sin->sin_addr.s_addr = ipaddr->a4;
  2606. sin->sin_port = 0;
  2607. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2608. }
  2609. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2610. else if (x->props.family == AF_INET6) {
  2611. addr->sadb_address_prefixlen = 128;
  2612. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2613. sin6->sin6_family = AF_INET6;
  2614. sin6->sin6_port = 0;
  2615. sin6->sin6_flowinfo = 0;
  2616. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2617. sin6->sin6_scope_id = 0;
  2618. }
  2619. #endif
  2620. else
  2621. BUG();
  2622. /* NAT_T_DPORT (new port) */
  2623. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2624. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2625. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2626. n_port->sadb_x_nat_t_port_port = sport;
  2627. n_port->sadb_x_nat_t_port_reserved = 0;
  2628. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2629. }
  2630. static int pfkey_sendmsg(struct kiocb *kiocb,
  2631. struct socket *sock, struct msghdr *msg, size_t len)
  2632. {
  2633. struct sock *sk = sock->sk;
  2634. struct sk_buff *skb = NULL;
  2635. struct sadb_msg *hdr = NULL;
  2636. int err;
  2637. err = -EOPNOTSUPP;
  2638. if (msg->msg_flags & MSG_OOB)
  2639. goto out;
  2640. err = -EMSGSIZE;
  2641. if ((unsigned)len > sk->sk_sndbuf - 32)
  2642. goto out;
  2643. err = -ENOBUFS;
  2644. skb = alloc_skb(len, GFP_KERNEL);
  2645. if (skb == NULL)
  2646. goto out;
  2647. err = -EFAULT;
  2648. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2649. goto out;
  2650. hdr = pfkey_get_base_msg(skb, &err);
  2651. if (!hdr)
  2652. goto out;
  2653. mutex_lock(&xfrm_cfg_mutex);
  2654. err = pfkey_process(sk, skb, hdr);
  2655. mutex_unlock(&xfrm_cfg_mutex);
  2656. out:
  2657. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2658. err = 0;
  2659. if (skb)
  2660. kfree_skb(skb);
  2661. return err ? : len;
  2662. }
  2663. static int pfkey_recvmsg(struct kiocb *kiocb,
  2664. struct socket *sock, struct msghdr *msg, size_t len,
  2665. int flags)
  2666. {
  2667. struct sock *sk = sock->sk;
  2668. struct sk_buff *skb;
  2669. int copied, err;
  2670. err = -EINVAL;
  2671. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2672. goto out;
  2673. msg->msg_namelen = 0;
  2674. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2675. if (skb == NULL)
  2676. goto out;
  2677. copied = skb->len;
  2678. if (copied > len) {
  2679. msg->msg_flags |= MSG_TRUNC;
  2680. copied = len;
  2681. }
  2682. skb->h.raw = skb->data;
  2683. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2684. if (err)
  2685. goto out_free;
  2686. sock_recv_timestamp(msg, sk, skb);
  2687. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2688. out_free:
  2689. skb_free_datagram(sk, skb);
  2690. out:
  2691. return err;
  2692. }
  2693. static const struct proto_ops pfkey_ops = {
  2694. .family = PF_KEY,
  2695. .owner = THIS_MODULE,
  2696. /* Operations that make no sense on pfkey sockets. */
  2697. .bind = sock_no_bind,
  2698. .connect = sock_no_connect,
  2699. .socketpair = sock_no_socketpair,
  2700. .accept = sock_no_accept,
  2701. .getname = sock_no_getname,
  2702. .ioctl = sock_no_ioctl,
  2703. .listen = sock_no_listen,
  2704. .shutdown = sock_no_shutdown,
  2705. .setsockopt = sock_no_setsockopt,
  2706. .getsockopt = sock_no_getsockopt,
  2707. .mmap = sock_no_mmap,
  2708. .sendpage = sock_no_sendpage,
  2709. /* Now the operations that really occur. */
  2710. .release = pfkey_release,
  2711. .poll = datagram_poll,
  2712. .sendmsg = pfkey_sendmsg,
  2713. .recvmsg = pfkey_recvmsg,
  2714. };
  2715. static struct net_proto_family pfkey_family_ops = {
  2716. .family = PF_KEY,
  2717. .create = pfkey_create,
  2718. .owner = THIS_MODULE,
  2719. };
  2720. #ifdef CONFIG_PROC_FS
  2721. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  2722. int length, int *eof, void *data)
  2723. {
  2724. off_t pos = 0;
  2725. off_t begin = 0;
  2726. int len = 0;
  2727. struct sock *s;
  2728. struct hlist_node *node;
  2729. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  2730. read_lock(&pfkey_table_lock);
  2731. sk_for_each(s, node, &pfkey_table) {
  2732. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  2733. s,
  2734. atomic_read(&s->sk_refcnt),
  2735. atomic_read(&s->sk_rmem_alloc),
  2736. atomic_read(&s->sk_wmem_alloc),
  2737. sock_i_uid(s),
  2738. sock_i_ino(s)
  2739. );
  2740. buffer[len++] = '\n';
  2741. pos = begin + len;
  2742. if (pos < offset) {
  2743. len = 0;
  2744. begin = pos;
  2745. }
  2746. if(pos > offset + length)
  2747. goto done;
  2748. }
  2749. *eof = 1;
  2750. done:
  2751. read_unlock(&pfkey_table_lock);
  2752. *start = buffer + (offset - begin);
  2753. len -= (offset - begin);
  2754. if (len > length)
  2755. len = length;
  2756. if (len < 0)
  2757. len = 0;
  2758. return len;
  2759. }
  2760. #endif
  2761. static struct xfrm_mgr pfkeyv2_mgr =
  2762. {
  2763. .id = "pfkeyv2",
  2764. .notify = pfkey_send_notify,
  2765. .acquire = pfkey_send_acquire,
  2766. .compile_policy = pfkey_compile_policy,
  2767. .new_mapping = pfkey_send_new_mapping,
  2768. .notify_policy = pfkey_send_policy_notify,
  2769. };
  2770. static void __exit ipsec_pfkey_exit(void)
  2771. {
  2772. xfrm_unregister_km(&pfkeyv2_mgr);
  2773. remove_proc_entry("net/pfkey", NULL);
  2774. sock_unregister(PF_KEY);
  2775. proto_unregister(&key_proto);
  2776. }
  2777. static int __init ipsec_pfkey_init(void)
  2778. {
  2779. int err = proto_register(&key_proto, 0);
  2780. if (err != 0)
  2781. goto out;
  2782. err = sock_register(&pfkey_family_ops);
  2783. if (err != 0)
  2784. goto out_unregister_key_proto;
  2785. #ifdef CONFIG_PROC_FS
  2786. err = -ENOMEM;
  2787. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  2788. goto out_sock_unregister;
  2789. #endif
  2790. err = xfrm_register_km(&pfkeyv2_mgr);
  2791. if (err != 0)
  2792. goto out_remove_proc_entry;
  2793. out:
  2794. return err;
  2795. out_remove_proc_entry:
  2796. #ifdef CONFIG_PROC_FS
  2797. remove_proc_entry("net/pfkey", NULL);
  2798. out_sock_unregister:
  2799. #endif
  2800. sock_unregister(PF_KEY);
  2801. out_unregister_key_proto:
  2802. proto_unregister(&key_proto);
  2803. goto out;
  2804. }
  2805. module_init(ipsec_pfkey_init);
  2806. module_exit(ipsec_pfkey_exit);
  2807. MODULE_LICENSE("GPL");
  2808. MODULE_ALIAS_NETPROTO(PF_KEY);