dn_dev.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Device Layer
  7. *
  8. * Authors: Steve Whitehouse <SteveW@ACM.org>
  9. * Eduardo Marcelo Serrat <emserrat@geocities.com>
  10. *
  11. * Changes:
  12. * Steve Whitehouse : Devices now see incoming frames so they
  13. * can mark on who it came from.
  14. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
  15. * can now have a device specific setup func.
  16. * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
  17. * Steve Whitehouse : Fixed bug which sometimes killed timer
  18. * Steve Whitehouse : Multiple ifaddr support
  19. * Steve Whitehouse : SIOCGIFCONF is now a compile time option
  20. * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
  21. * Steve Whitehouse : Removed timer1 - it's a user space issue now
  22. * Patrick Caulfield : Fixed router hello message format
  23. * Steve Whitehouse : Got rid of constant sizes for blksize for
  24. * devices. All mtu based now.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/capability.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/init.h>
  31. #include <linux/net.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/timer.h>
  36. #include <linux/string.h>
  37. #include <linux/if_arp.h>
  38. #include <linux/if_ether.h>
  39. #include <linux/skbuff.h>
  40. #include <linux/rtnetlink.h>
  41. #include <linux/sysctl.h>
  42. #include <linux/notifier.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <net/neighbour.h>
  46. #include <net/dst.h>
  47. #include <net/flow.h>
  48. #include <net/dn.h>
  49. #include <net/dn_dev.h>
  50. #include <net/dn_route.h>
  51. #include <net/dn_neigh.h>
  52. #include <net/dn_fib.h>
  53. #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
  54. static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
  55. static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
  56. static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
  57. static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
  58. extern struct neigh_table dn_neigh_table;
  59. /*
  60. * decnet_address is kept in network order.
  61. */
  62. __le16 decnet_address = 0;
  63. static DEFINE_RWLOCK(dndev_lock);
  64. static struct net_device *decnet_default_device;
  65. static BLOCKING_NOTIFIER_HEAD(dnaddr_chain);
  66. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
  67. static void dn_dev_delete(struct net_device *dev);
  68. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa);
  69. static int dn_eth_up(struct net_device *);
  70. static void dn_eth_down(struct net_device *);
  71. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  72. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  73. static struct dn_dev_parms dn_dev_list[] = {
  74. {
  75. .type = ARPHRD_ETHER, /* Ethernet */
  76. .mode = DN_DEV_BCAST,
  77. .state = DN_DEV_S_RU,
  78. .t2 = 1,
  79. .t3 = 10,
  80. .name = "ethernet",
  81. .ctl_name = NET_DECNET_CONF_ETHER,
  82. .up = dn_eth_up,
  83. .down = dn_eth_down,
  84. .timer3 = dn_send_brd_hello,
  85. },
  86. {
  87. .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
  88. .mode = DN_DEV_BCAST,
  89. .state = DN_DEV_S_RU,
  90. .t2 = 1,
  91. .t3 = 10,
  92. .name = "ipgre",
  93. .ctl_name = NET_DECNET_CONF_GRE,
  94. .timer3 = dn_send_brd_hello,
  95. },
  96. #if 0
  97. {
  98. .type = ARPHRD_X25, /* Bog standard X.25 */
  99. .mode = DN_DEV_UCAST,
  100. .state = DN_DEV_S_DS,
  101. .t2 = 1,
  102. .t3 = 120,
  103. .name = "x25",
  104. .ctl_name = NET_DECNET_CONF_X25,
  105. .timer3 = dn_send_ptp_hello,
  106. },
  107. #endif
  108. #if 0
  109. {
  110. .type = ARPHRD_PPP, /* DECnet over PPP */
  111. .mode = DN_DEV_BCAST,
  112. .state = DN_DEV_S_RU,
  113. .t2 = 1,
  114. .t3 = 10,
  115. .name = "ppp",
  116. .ctl_name = NET_DECNET_CONF_PPP,
  117. .timer3 = dn_send_brd_hello,
  118. },
  119. #endif
  120. {
  121. .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
  122. .mode = DN_DEV_UCAST,
  123. .state = DN_DEV_S_DS,
  124. .t2 = 1,
  125. .t3 = 120,
  126. .name = "ddcmp",
  127. .ctl_name = NET_DECNET_CONF_DDCMP,
  128. .timer3 = dn_send_ptp_hello,
  129. },
  130. {
  131. .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
  132. .mode = DN_DEV_BCAST,
  133. .state = DN_DEV_S_RU,
  134. .t2 = 1,
  135. .t3 = 10,
  136. .name = "loopback",
  137. .ctl_name = NET_DECNET_CONF_LOOPBACK,
  138. .timer3 = dn_send_brd_hello,
  139. }
  140. };
  141. #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms))
  142. #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x))
  143. #ifdef CONFIG_SYSCTL
  144. static int min_t2[] = { 1 };
  145. static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
  146. static int min_t3[] = { 1 };
  147. static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
  148. static int min_priority[1];
  149. static int max_priority[] = { 127 }; /* From DECnet spec */
  150. static int dn_forwarding_proc(ctl_table *, int, struct file *,
  151. void __user *, size_t *, loff_t *);
  152. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  153. void __user *oldval, size_t __user *oldlenp,
  154. void __user *newval, size_t newlen,
  155. void **context);
  156. static struct dn_dev_sysctl_table {
  157. struct ctl_table_header *sysctl_header;
  158. ctl_table dn_dev_vars[5];
  159. ctl_table dn_dev_dev[2];
  160. ctl_table dn_dev_conf_dir[2];
  161. ctl_table dn_dev_proto_dir[2];
  162. ctl_table dn_dev_root_dir[2];
  163. } dn_dev_sysctl = {
  164. NULL,
  165. {
  166. {
  167. .ctl_name = NET_DECNET_CONF_DEV_FORWARDING,
  168. .procname = "forwarding",
  169. .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
  170. .maxlen = sizeof(int),
  171. .mode = 0644,
  172. .proc_handler = dn_forwarding_proc,
  173. .strategy = dn_forwarding_sysctl,
  174. },
  175. {
  176. .ctl_name = NET_DECNET_CONF_DEV_PRIORITY,
  177. .procname = "priority",
  178. .data = (void *)DN_DEV_PARMS_OFFSET(priority),
  179. .maxlen = sizeof(int),
  180. .mode = 0644,
  181. .proc_handler = proc_dointvec_minmax,
  182. .strategy = sysctl_intvec,
  183. .extra1 = &min_priority,
  184. .extra2 = &max_priority
  185. },
  186. {
  187. .ctl_name = NET_DECNET_CONF_DEV_T2,
  188. .procname = "t2",
  189. .data = (void *)DN_DEV_PARMS_OFFSET(t2),
  190. .maxlen = sizeof(int),
  191. .mode = 0644,
  192. .proc_handler = proc_dointvec_minmax,
  193. .strategy = sysctl_intvec,
  194. .extra1 = &min_t2,
  195. .extra2 = &max_t2
  196. },
  197. {
  198. .ctl_name = NET_DECNET_CONF_DEV_T3,
  199. .procname = "t3",
  200. .data = (void *)DN_DEV_PARMS_OFFSET(t3),
  201. .maxlen = sizeof(int),
  202. .mode = 0644,
  203. .proc_handler = proc_dointvec_minmax,
  204. .strategy = sysctl_intvec,
  205. .extra1 = &min_t3,
  206. .extra2 = &max_t3
  207. },
  208. {0}
  209. },
  210. {{
  211. .ctl_name = 0,
  212. .procname = "",
  213. .mode = 0555,
  214. .child = dn_dev_sysctl.dn_dev_vars
  215. }, {0}},
  216. {{
  217. .ctl_name = NET_DECNET_CONF,
  218. .procname = "conf",
  219. .mode = 0555,
  220. .child = dn_dev_sysctl.dn_dev_dev
  221. }, {0}},
  222. {{
  223. .ctl_name = NET_DECNET,
  224. .procname = "decnet",
  225. .mode = 0555,
  226. .child = dn_dev_sysctl.dn_dev_conf_dir
  227. }, {0}},
  228. {{
  229. .ctl_name = CTL_NET,
  230. .procname = "net",
  231. .mode = 0555,
  232. .child = dn_dev_sysctl.dn_dev_proto_dir
  233. }, {0}}
  234. };
  235. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  236. {
  237. struct dn_dev_sysctl_table *t;
  238. int i;
  239. t = kmalloc(sizeof(*t), GFP_KERNEL);
  240. if (t == NULL)
  241. return;
  242. memcpy(t, &dn_dev_sysctl, sizeof(*t));
  243. for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
  244. long offset = (long)t->dn_dev_vars[i].data;
  245. t->dn_dev_vars[i].data = ((char *)parms) + offset;
  246. t->dn_dev_vars[i].de = NULL;
  247. }
  248. if (dev) {
  249. t->dn_dev_dev[0].procname = dev->name;
  250. t->dn_dev_dev[0].ctl_name = dev->ifindex;
  251. } else {
  252. t->dn_dev_dev[0].procname = parms->name;
  253. t->dn_dev_dev[0].ctl_name = parms->ctl_name;
  254. }
  255. t->dn_dev_dev[0].child = t->dn_dev_vars;
  256. t->dn_dev_dev[0].de = NULL;
  257. t->dn_dev_conf_dir[0].child = t->dn_dev_dev;
  258. t->dn_dev_conf_dir[0].de = NULL;
  259. t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir;
  260. t->dn_dev_proto_dir[0].de = NULL;
  261. t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir;
  262. t->dn_dev_root_dir[0].de = NULL;
  263. t->dn_dev_vars[0].extra1 = (void *)dev;
  264. t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0);
  265. if (t->sysctl_header == NULL)
  266. kfree(t);
  267. else
  268. parms->sysctl = t;
  269. }
  270. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  271. {
  272. if (parms->sysctl) {
  273. struct dn_dev_sysctl_table *t = parms->sysctl;
  274. parms->sysctl = NULL;
  275. unregister_sysctl_table(t->sysctl_header);
  276. kfree(t);
  277. }
  278. }
  279. static int dn_forwarding_proc(ctl_table *table, int write,
  280. struct file *filep,
  281. void __user *buffer,
  282. size_t *lenp, loff_t *ppos)
  283. {
  284. #ifdef CONFIG_DECNET_ROUTER
  285. struct net_device *dev = table->extra1;
  286. struct dn_dev *dn_db;
  287. int err;
  288. int tmp, old;
  289. if (table->extra1 == NULL)
  290. return -EINVAL;
  291. dn_db = dev->dn_ptr;
  292. old = dn_db->parms.forwarding;
  293. err = proc_dointvec(table, write, filep, buffer, lenp, ppos);
  294. if ((err >= 0) && write) {
  295. if (dn_db->parms.forwarding < 0)
  296. dn_db->parms.forwarding = 0;
  297. if (dn_db->parms.forwarding > 2)
  298. dn_db->parms.forwarding = 2;
  299. /*
  300. * What an ugly hack this is... its works, just. It
  301. * would be nice if sysctl/proc were just that little
  302. * bit more flexible so I don't have to write a special
  303. * routine, or suffer hacks like this - SJW
  304. */
  305. tmp = dn_db->parms.forwarding;
  306. dn_db->parms.forwarding = old;
  307. if (dn_db->parms.down)
  308. dn_db->parms.down(dev);
  309. dn_db->parms.forwarding = tmp;
  310. if (dn_db->parms.up)
  311. dn_db->parms.up(dev);
  312. }
  313. return err;
  314. #else
  315. return -EINVAL;
  316. #endif
  317. }
  318. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  319. void __user *oldval, size_t __user *oldlenp,
  320. void __user *newval, size_t newlen,
  321. void **context)
  322. {
  323. #ifdef CONFIG_DECNET_ROUTER
  324. struct net_device *dev = table->extra1;
  325. struct dn_dev *dn_db;
  326. int value;
  327. if (table->extra1 == NULL)
  328. return -EINVAL;
  329. dn_db = dev->dn_ptr;
  330. if (newval && newlen) {
  331. if (newlen != sizeof(int))
  332. return -EINVAL;
  333. if (get_user(value, (int __user *)newval))
  334. return -EFAULT;
  335. if (value < 0)
  336. return -EINVAL;
  337. if (value > 2)
  338. return -EINVAL;
  339. if (dn_db->parms.down)
  340. dn_db->parms.down(dev);
  341. dn_db->parms.forwarding = value;
  342. if (dn_db->parms.up)
  343. dn_db->parms.up(dev);
  344. }
  345. return 0;
  346. #else
  347. return -EINVAL;
  348. #endif
  349. }
  350. #else /* CONFIG_SYSCTL */
  351. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  352. {
  353. }
  354. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  355. {
  356. }
  357. #endif /* CONFIG_SYSCTL */
  358. static inline __u16 mtu2blksize(struct net_device *dev)
  359. {
  360. u32 blksize = dev->mtu;
  361. if (blksize > 0xffff)
  362. blksize = 0xffff;
  363. if (dev->type == ARPHRD_ETHER ||
  364. dev->type == ARPHRD_PPP ||
  365. dev->type == ARPHRD_IPGRE ||
  366. dev->type == ARPHRD_LOOPBACK)
  367. blksize -= 2;
  368. return (__u16)blksize;
  369. }
  370. static struct dn_ifaddr *dn_dev_alloc_ifa(void)
  371. {
  372. struct dn_ifaddr *ifa;
  373. ifa = kmalloc(sizeof(*ifa), GFP_KERNEL);
  374. if (ifa) {
  375. memset(ifa, 0, sizeof(*ifa));
  376. }
  377. return ifa;
  378. }
  379. static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa)
  380. {
  381. kfree(ifa);
  382. }
  383. static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy)
  384. {
  385. struct dn_ifaddr *ifa1 = *ifap;
  386. unsigned char mac_addr[6];
  387. struct net_device *dev = dn_db->dev;
  388. ASSERT_RTNL();
  389. *ifap = ifa1->ifa_next;
  390. if (dn_db->dev->type == ARPHRD_ETHER) {
  391. if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) {
  392. dn_dn2eth(mac_addr, ifa1->ifa_local);
  393. dev_mc_delete(dev, mac_addr, ETH_ALEN, 0);
  394. }
  395. }
  396. rtmsg_ifa(RTM_DELADDR, ifa1);
  397. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
  398. if (destroy) {
  399. dn_dev_free_ifa(ifa1);
  400. if (dn_db->ifa_list == NULL)
  401. dn_dev_delete(dn_db->dev);
  402. }
  403. }
  404. static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  405. {
  406. struct net_device *dev = dn_db->dev;
  407. struct dn_ifaddr *ifa1;
  408. unsigned char mac_addr[6];
  409. ASSERT_RTNL();
  410. /* Check for duplicates */
  411. for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  412. if (ifa1->ifa_local == ifa->ifa_local)
  413. return -EEXIST;
  414. }
  415. if (dev->type == ARPHRD_ETHER) {
  416. if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) {
  417. dn_dn2eth(mac_addr, ifa->ifa_local);
  418. dev_mc_add(dev, mac_addr, ETH_ALEN, 0);
  419. dev_mc_upload(dev);
  420. }
  421. }
  422. ifa->ifa_next = dn_db->ifa_list;
  423. dn_db->ifa_list = ifa;
  424. rtmsg_ifa(RTM_NEWADDR, ifa);
  425. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
  426. return 0;
  427. }
  428. static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
  429. {
  430. struct dn_dev *dn_db = dev->dn_ptr;
  431. int rv;
  432. if (dn_db == NULL) {
  433. int err;
  434. dn_db = dn_dev_create(dev, &err);
  435. if (dn_db == NULL)
  436. return err;
  437. }
  438. ifa->ifa_dev = dn_db;
  439. if (dev->flags & IFF_LOOPBACK)
  440. ifa->ifa_scope = RT_SCOPE_HOST;
  441. rv = dn_dev_insert_ifa(dn_db, ifa);
  442. if (rv)
  443. dn_dev_free_ifa(ifa);
  444. return rv;
  445. }
  446. int dn_dev_ioctl(unsigned int cmd, void __user *arg)
  447. {
  448. char buffer[DN_IFREQ_SIZE];
  449. struct ifreq *ifr = (struct ifreq *)buffer;
  450. struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
  451. struct dn_dev *dn_db;
  452. struct net_device *dev;
  453. struct dn_ifaddr *ifa = NULL, **ifap = NULL;
  454. int ret = 0;
  455. if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
  456. return -EFAULT;
  457. ifr->ifr_name[IFNAMSIZ-1] = 0;
  458. #ifdef CONFIG_KMOD
  459. dev_load(ifr->ifr_name);
  460. #endif
  461. switch(cmd) {
  462. case SIOCGIFADDR:
  463. break;
  464. case SIOCSIFADDR:
  465. if (!capable(CAP_NET_ADMIN))
  466. return -EACCES;
  467. if (sdn->sdn_family != AF_DECnet)
  468. return -EINVAL;
  469. break;
  470. default:
  471. return -EINVAL;
  472. }
  473. rtnl_lock();
  474. if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) {
  475. ret = -ENODEV;
  476. goto done;
  477. }
  478. if ((dn_db = dev->dn_ptr) != NULL) {
  479. for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next)
  480. if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
  481. break;
  482. }
  483. if (ifa == NULL && cmd != SIOCSIFADDR) {
  484. ret = -EADDRNOTAVAIL;
  485. goto done;
  486. }
  487. switch(cmd) {
  488. case SIOCGIFADDR:
  489. *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local;
  490. goto rarok;
  491. case SIOCSIFADDR:
  492. if (!ifa) {
  493. if ((ifa = dn_dev_alloc_ifa()) == NULL) {
  494. ret = -ENOBUFS;
  495. break;
  496. }
  497. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  498. } else {
  499. if (ifa->ifa_local == dn_saddr2dn(sdn))
  500. break;
  501. dn_dev_del_ifa(dn_db, ifap, 0);
  502. }
  503. ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
  504. ret = dn_dev_set_ifa(dev, ifa);
  505. }
  506. done:
  507. rtnl_unlock();
  508. return ret;
  509. rarok:
  510. if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
  511. ret = -EFAULT;
  512. goto done;
  513. }
  514. struct net_device *dn_dev_get_default(void)
  515. {
  516. struct net_device *dev;
  517. read_lock(&dndev_lock);
  518. dev = decnet_default_device;
  519. if (dev) {
  520. if (dev->dn_ptr)
  521. dev_hold(dev);
  522. else
  523. dev = NULL;
  524. }
  525. read_unlock(&dndev_lock);
  526. return dev;
  527. }
  528. int dn_dev_set_default(struct net_device *dev, int force)
  529. {
  530. struct net_device *old = NULL;
  531. int rv = -EBUSY;
  532. if (!dev->dn_ptr)
  533. return -ENODEV;
  534. write_lock(&dndev_lock);
  535. if (force || decnet_default_device == NULL) {
  536. old = decnet_default_device;
  537. decnet_default_device = dev;
  538. rv = 0;
  539. }
  540. write_unlock(&dndev_lock);
  541. if (old)
  542. dev_put(old);
  543. return rv;
  544. }
  545. static void dn_dev_check_default(struct net_device *dev)
  546. {
  547. write_lock(&dndev_lock);
  548. if (dev == decnet_default_device) {
  549. decnet_default_device = NULL;
  550. } else {
  551. dev = NULL;
  552. }
  553. write_unlock(&dndev_lock);
  554. if (dev)
  555. dev_put(dev);
  556. }
  557. static struct dn_dev *dn_dev_by_index(int ifindex)
  558. {
  559. struct net_device *dev;
  560. struct dn_dev *dn_dev = NULL;
  561. dev = dev_get_by_index(ifindex);
  562. if (dev) {
  563. dn_dev = dev->dn_ptr;
  564. dev_put(dev);
  565. }
  566. return dn_dev;
  567. }
  568. static int dn_dev_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  569. {
  570. struct rtattr **rta = arg;
  571. struct dn_dev *dn_db;
  572. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  573. struct dn_ifaddr *ifa, **ifap;
  574. if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
  575. return -EADDRNOTAVAIL;
  576. for(ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) {
  577. void *tmp = rta[IFA_LOCAL-1];
  578. if ((tmp && memcmp(RTA_DATA(tmp), &ifa->ifa_local, 2)) ||
  579. (rta[IFA_LABEL-1] && rtattr_strcmp(rta[IFA_LABEL-1], ifa->ifa_label)))
  580. continue;
  581. dn_dev_del_ifa(dn_db, ifap, 1);
  582. return 0;
  583. }
  584. return -EADDRNOTAVAIL;
  585. }
  586. static int dn_dev_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  587. {
  588. struct rtattr **rta = arg;
  589. struct net_device *dev;
  590. struct dn_dev *dn_db;
  591. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  592. struct dn_ifaddr *ifa;
  593. int rv;
  594. if (rta[IFA_LOCAL-1] == NULL)
  595. return -EINVAL;
  596. if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL)
  597. return -ENODEV;
  598. if ((dn_db = dev->dn_ptr) == NULL) {
  599. int err;
  600. dn_db = dn_dev_create(dev, &err);
  601. if (!dn_db)
  602. return err;
  603. }
  604. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  605. return -ENOBUFS;
  606. if (!rta[IFA_ADDRESS - 1])
  607. rta[IFA_ADDRESS - 1] = rta[IFA_LOCAL - 1];
  608. memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 2);
  609. memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 2);
  610. ifa->ifa_flags = ifm->ifa_flags;
  611. ifa->ifa_scope = ifm->ifa_scope;
  612. ifa->ifa_dev = dn_db;
  613. if (rta[IFA_LABEL-1])
  614. rtattr_strlcpy(ifa->ifa_label, rta[IFA_LABEL-1], IFNAMSIZ);
  615. else
  616. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  617. rv = dn_dev_insert_ifa(dn_db, ifa);
  618. if (rv)
  619. dn_dev_free_ifa(ifa);
  620. return rv;
  621. }
  622. static int dn_dev_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
  623. u32 pid, u32 seq, int event, unsigned int flags)
  624. {
  625. struct ifaddrmsg *ifm;
  626. struct nlmsghdr *nlh;
  627. unsigned char *b = skb->tail;
  628. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
  629. ifm = NLMSG_DATA(nlh);
  630. ifm->ifa_family = AF_DECnet;
  631. ifm->ifa_prefixlen = 16;
  632. ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
  633. ifm->ifa_scope = ifa->ifa_scope;
  634. ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
  635. if (ifa->ifa_address)
  636. RTA_PUT(skb, IFA_ADDRESS, 2, &ifa->ifa_address);
  637. if (ifa->ifa_local)
  638. RTA_PUT(skb, IFA_LOCAL, 2, &ifa->ifa_local);
  639. if (ifa->ifa_label[0])
  640. RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label);
  641. nlh->nlmsg_len = skb->tail - b;
  642. return skb->len;
  643. nlmsg_failure:
  644. rtattr_failure:
  645. skb_trim(skb, b - skb->data);
  646. return -1;
  647. }
  648. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa)
  649. {
  650. struct sk_buff *skb;
  651. int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128);
  652. skb = alloc_skb(size, GFP_KERNEL);
  653. if (!skb) {
  654. netlink_set_err(rtnl, 0, RTNLGRP_DECnet_IFADDR, ENOBUFS);
  655. return;
  656. }
  657. if (dn_dev_fill_ifaddr(skb, ifa, 0, 0, event, 0) < 0) {
  658. kfree_skb(skb);
  659. netlink_set_err(rtnl, 0, RTNLGRP_DECnet_IFADDR, EINVAL);
  660. return;
  661. }
  662. NETLINK_CB(skb).dst_group = RTNLGRP_DECnet_IFADDR;
  663. netlink_broadcast(rtnl, skb, 0, RTNLGRP_DECnet_IFADDR, GFP_KERNEL);
  664. }
  665. static int dn_dev_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
  666. {
  667. int idx, dn_idx;
  668. int s_idx, s_dn_idx;
  669. struct net_device *dev;
  670. struct dn_dev *dn_db;
  671. struct dn_ifaddr *ifa;
  672. s_idx = cb->args[0];
  673. s_dn_idx = dn_idx = cb->args[1];
  674. read_lock(&dev_base_lock);
  675. for(dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
  676. if (idx < s_idx)
  677. continue;
  678. if (idx > s_idx)
  679. s_dn_idx = 0;
  680. if ((dn_db = dev->dn_ptr) == NULL)
  681. continue;
  682. for(ifa = dn_db->ifa_list, dn_idx = 0; ifa; ifa = ifa->ifa_next, dn_idx++) {
  683. if (dn_idx < s_dn_idx)
  684. continue;
  685. if (dn_dev_fill_ifaddr(skb, ifa,
  686. NETLINK_CB(cb->skb).pid,
  687. cb->nlh->nlmsg_seq,
  688. RTM_NEWADDR,
  689. NLM_F_MULTI) <= 0)
  690. goto done;
  691. }
  692. }
  693. done:
  694. read_unlock(&dev_base_lock);
  695. cb->args[0] = idx;
  696. cb->args[1] = dn_idx;
  697. return skb->len;
  698. }
  699. static int dn_dev_get_first(struct net_device *dev, __le16 *addr)
  700. {
  701. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  702. struct dn_ifaddr *ifa;
  703. int rv = -ENODEV;
  704. if (dn_db == NULL)
  705. goto out;
  706. ifa = dn_db->ifa_list;
  707. if (ifa != NULL) {
  708. *addr = ifa->ifa_local;
  709. rv = 0;
  710. }
  711. out:
  712. return rv;
  713. }
  714. /*
  715. * Find a default address to bind to.
  716. *
  717. * This is one of those areas where the initial VMS concepts don't really
  718. * map onto the Linux concepts, and since we introduced multiple addresses
  719. * per interface we have to cope with slightly odd ways of finding out what
  720. * "our address" really is. Mostly it's not a problem; for this we just guess
  721. * a sensible default. Eventually the routing code will take care of all the
  722. * nasties for us I hope.
  723. */
  724. int dn_dev_bind_default(__le16 *addr)
  725. {
  726. struct net_device *dev;
  727. int rv;
  728. dev = dn_dev_get_default();
  729. last_chance:
  730. if (dev) {
  731. read_lock(&dev_base_lock);
  732. rv = dn_dev_get_first(dev, addr);
  733. read_unlock(&dev_base_lock);
  734. dev_put(dev);
  735. if (rv == 0 || dev == &loopback_dev)
  736. return rv;
  737. }
  738. dev = &loopback_dev;
  739. dev_hold(dev);
  740. goto last_chance;
  741. }
  742. static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  743. {
  744. struct endnode_hello_message *msg;
  745. struct sk_buff *skb = NULL;
  746. __le16 *pktlen;
  747. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  748. if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
  749. return;
  750. skb->dev = dev;
  751. msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
  752. msg->msgflg = 0x0D;
  753. memcpy(msg->tiver, dn_eco_version, 3);
  754. dn_dn2eth(msg->id, ifa->ifa_local);
  755. msg->iinfo = DN_RT_INFO_ENDN;
  756. msg->blksize = dn_htons(mtu2blksize(dev));
  757. msg->area = 0x00;
  758. memset(msg->seed, 0, 8);
  759. memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
  760. if (dn_db->router) {
  761. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  762. dn_dn2eth(msg->neighbor, dn->addr);
  763. }
  764. msg->timer = dn_htons((unsigned short)dn_db->parms.t3);
  765. msg->mpd = 0x00;
  766. msg->datalen = 0x02;
  767. memset(msg->data, 0xAA, 2);
  768. pktlen = (__le16 *)skb_push(skb,2);
  769. *pktlen = dn_htons(skb->len - 2);
  770. skb->nh.raw = skb->data;
  771. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
  772. }
  773. #define DRDELAY (5 * HZ)
  774. static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  775. {
  776. /* First check time since device went up */
  777. if ((jiffies - dn_db->uptime) < DRDELAY)
  778. return 0;
  779. /* If there is no router, then yes... */
  780. if (!dn_db->router)
  781. return 1;
  782. /* otherwise only if we have a higher priority or.. */
  783. if (dn->priority < dn_db->parms.priority)
  784. return 1;
  785. /* if we have equal priority and a higher node number */
  786. if (dn->priority != dn_db->parms.priority)
  787. return 0;
  788. if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local))
  789. return 1;
  790. return 0;
  791. }
  792. static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  793. {
  794. int n;
  795. struct dn_dev *dn_db = dev->dn_ptr;
  796. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  797. struct sk_buff *skb;
  798. size_t size;
  799. unsigned char *ptr;
  800. unsigned char *i1, *i2;
  801. __le16 *pktlen;
  802. char *src;
  803. if (mtu2blksize(dev) < (26 + 7))
  804. return;
  805. n = mtu2blksize(dev) - 26;
  806. n /= 7;
  807. if (n > 32)
  808. n = 32;
  809. size = 2 + 26 + 7 * n;
  810. if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
  811. return;
  812. skb->dev = dev;
  813. ptr = skb_put(skb, size);
  814. *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
  815. *ptr++ = 2; /* ECO */
  816. *ptr++ = 0;
  817. *ptr++ = 0;
  818. dn_dn2eth(ptr, ifa->ifa_local);
  819. src = ptr;
  820. ptr += ETH_ALEN;
  821. *ptr++ = dn_db->parms.forwarding == 1 ?
  822. DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
  823. *((__le16 *)ptr) = dn_htons(mtu2blksize(dev));
  824. ptr += 2;
  825. *ptr++ = dn_db->parms.priority; /* Priority */
  826. *ptr++ = 0; /* Area: Reserved */
  827. *((__le16 *)ptr) = dn_htons((unsigned short)dn_db->parms.t3);
  828. ptr += 2;
  829. *ptr++ = 0; /* MPD: Reserved */
  830. i1 = ptr++;
  831. memset(ptr, 0, 7); /* Name: Reserved */
  832. ptr += 7;
  833. i2 = ptr++;
  834. n = dn_neigh_elist(dev, ptr, n);
  835. *i2 = 7 * n;
  836. *i1 = 8 + *i2;
  837. skb_trim(skb, (27 + *i2));
  838. pktlen = (__le16 *)skb_push(skb, 2);
  839. *pktlen = dn_htons(skb->len - 2);
  840. skb->nh.raw = skb->data;
  841. if (dn_am_i_a_router(dn, dn_db, ifa)) {
  842. struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
  843. if (skb2) {
  844. dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
  845. }
  846. }
  847. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  848. }
  849. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  850. {
  851. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  852. if (dn_db->parms.forwarding == 0)
  853. dn_send_endnode_hello(dev, ifa);
  854. else
  855. dn_send_router_hello(dev, ifa);
  856. }
  857. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  858. {
  859. int tdlen = 16;
  860. int size = dev->hard_header_len + 2 + 4 + tdlen;
  861. struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
  862. int i;
  863. unsigned char *ptr;
  864. char src[ETH_ALEN];
  865. if (skb == NULL)
  866. return ;
  867. skb->dev = dev;
  868. skb_push(skb, dev->hard_header_len);
  869. ptr = skb_put(skb, 2 + 4 + tdlen);
  870. *ptr++ = DN_RT_PKT_HELO;
  871. *((__le16 *)ptr) = ifa->ifa_local;
  872. ptr += 2;
  873. *ptr++ = tdlen;
  874. for(i = 0; i < tdlen; i++)
  875. *ptr++ = 0252;
  876. dn_dn2eth(src, ifa->ifa_local);
  877. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  878. }
  879. static int dn_eth_up(struct net_device *dev)
  880. {
  881. struct dn_dev *dn_db = dev->dn_ptr;
  882. if (dn_db->parms.forwarding == 0)
  883. dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  884. else
  885. dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  886. dev_mc_upload(dev);
  887. dn_db->use_long = 1;
  888. return 0;
  889. }
  890. static void dn_eth_down(struct net_device *dev)
  891. {
  892. struct dn_dev *dn_db = dev->dn_ptr;
  893. if (dn_db->parms.forwarding == 0)
  894. dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  895. else
  896. dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  897. }
  898. static void dn_dev_set_timer(struct net_device *dev);
  899. static void dn_dev_timer_func(unsigned long arg)
  900. {
  901. struct net_device *dev = (struct net_device *)arg;
  902. struct dn_dev *dn_db = dev->dn_ptr;
  903. struct dn_ifaddr *ifa;
  904. if (dn_db->t3 <= dn_db->parms.t2) {
  905. if (dn_db->parms.timer3) {
  906. for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) {
  907. if (!(ifa->ifa_flags & IFA_F_SECONDARY))
  908. dn_db->parms.timer3(dev, ifa);
  909. }
  910. }
  911. dn_db->t3 = dn_db->parms.t3;
  912. } else {
  913. dn_db->t3 -= dn_db->parms.t2;
  914. }
  915. dn_dev_set_timer(dev);
  916. }
  917. static void dn_dev_set_timer(struct net_device *dev)
  918. {
  919. struct dn_dev *dn_db = dev->dn_ptr;
  920. if (dn_db->parms.t2 > dn_db->parms.t3)
  921. dn_db->parms.t2 = dn_db->parms.t3;
  922. dn_db->timer.data = (unsigned long)dev;
  923. dn_db->timer.function = dn_dev_timer_func;
  924. dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
  925. add_timer(&dn_db->timer);
  926. }
  927. struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
  928. {
  929. int i;
  930. struct dn_dev_parms *p = dn_dev_list;
  931. struct dn_dev *dn_db;
  932. for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
  933. if (p->type == dev->type)
  934. break;
  935. }
  936. *err = -ENODEV;
  937. if (i == DN_DEV_LIST_SIZE)
  938. return NULL;
  939. *err = -ENOBUFS;
  940. if ((dn_db = kmalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
  941. return NULL;
  942. memset(dn_db, 0, sizeof(struct dn_dev));
  943. memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
  944. smp_wmb();
  945. dev->dn_ptr = dn_db;
  946. dn_db->dev = dev;
  947. init_timer(&dn_db->timer);
  948. dn_db->uptime = jiffies;
  949. if (dn_db->parms.up) {
  950. if (dn_db->parms.up(dev) < 0) {
  951. dev->dn_ptr = NULL;
  952. kfree(dn_db);
  953. return NULL;
  954. }
  955. }
  956. dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
  957. dn_dev_sysctl_register(dev, &dn_db->parms);
  958. dn_dev_set_timer(dev);
  959. *err = 0;
  960. return dn_db;
  961. }
  962. /*
  963. * This processes a device up event. We only start up
  964. * the loopback device & ethernet devices with correct
  965. * MAC addreses automatically. Others must be started
  966. * specifically.
  967. *
  968. * FIXME: How should we configure the loopback address ? If we could dispense
  969. * with using decnet_address here and for autobind, it will be one less thing
  970. * for users to worry about setting up.
  971. */
  972. void dn_dev_up(struct net_device *dev)
  973. {
  974. struct dn_ifaddr *ifa;
  975. __le16 addr = decnet_address;
  976. int maybe_default = 0;
  977. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  978. if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
  979. return;
  980. /*
  981. * Need to ensure that loopback device has a dn_db attached to it
  982. * to allow creation of neighbours against it, even though it might
  983. * not have a local address of its own. Might as well do the same for
  984. * all autoconfigured interfaces.
  985. */
  986. if (dn_db == NULL) {
  987. int err;
  988. dn_db = dn_dev_create(dev, &err);
  989. if (dn_db == NULL)
  990. return;
  991. }
  992. if (dev->type == ARPHRD_ETHER) {
  993. if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
  994. return;
  995. addr = dn_eth2dn(dev->dev_addr);
  996. maybe_default = 1;
  997. }
  998. if (addr == 0)
  999. return;
  1000. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  1001. return;
  1002. ifa->ifa_local = ifa->ifa_address = addr;
  1003. ifa->ifa_flags = 0;
  1004. ifa->ifa_scope = RT_SCOPE_UNIVERSE;
  1005. strcpy(ifa->ifa_label, dev->name);
  1006. dn_dev_set_ifa(dev, ifa);
  1007. /*
  1008. * Automagically set the default device to the first automatically
  1009. * configured ethernet card in the system.
  1010. */
  1011. if (maybe_default) {
  1012. dev_hold(dev);
  1013. if (dn_dev_set_default(dev, 0))
  1014. dev_put(dev);
  1015. }
  1016. }
  1017. static void dn_dev_delete(struct net_device *dev)
  1018. {
  1019. struct dn_dev *dn_db = dev->dn_ptr;
  1020. if (dn_db == NULL)
  1021. return;
  1022. del_timer_sync(&dn_db->timer);
  1023. dn_dev_sysctl_unregister(&dn_db->parms);
  1024. dn_dev_check_default(dev);
  1025. neigh_ifdown(&dn_neigh_table, dev);
  1026. if (dn_db->parms.down)
  1027. dn_db->parms.down(dev);
  1028. dev->dn_ptr = NULL;
  1029. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  1030. neigh_ifdown(&dn_neigh_table, dev);
  1031. if (dn_db->router)
  1032. neigh_release(dn_db->router);
  1033. if (dn_db->peer)
  1034. neigh_release(dn_db->peer);
  1035. kfree(dn_db);
  1036. }
  1037. void dn_dev_down(struct net_device *dev)
  1038. {
  1039. struct dn_dev *dn_db = dev->dn_ptr;
  1040. struct dn_ifaddr *ifa;
  1041. if (dn_db == NULL)
  1042. return;
  1043. while((ifa = dn_db->ifa_list) != NULL) {
  1044. dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
  1045. dn_dev_free_ifa(ifa);
  1046. }
  1047. dn_dev_delete(dev);
  1048. }
  1049. void dn_dev_init_pkt(struct sk_buff *skb)
  1050. {
  1051. return;
  1052. }
  1053. void dn_dev_veri_pkt(struct sk_buff *skb)
  1054. {
  1055. return;
  1056. }
  1057. void dn_dev_hello(struct sk_buff *skb)
  1058. {
  1059. return;
  1060. }
  1061. void dn_dev_devices_off(void)
  1062. {
  1063. struct net_device *dev;
  1064. rtnl_lock();
  1065. for(dev = dev_base; dev; dev = dev->next)
  1066. dn_dev_down(dev);
  1067. rtnl_unlock();
  1068. }
  1069. void dn_dev_devices_on(void)
  1070. {
  1071. struct net_device *dev;
  1072. rtnl_lock();
  1073. for(dev = dev_base; dev; dev = dev->next) {
  1074. if (dev->flags & IFF_UP)
  1075. dn_dev_up(dev);
  1076. }
  1077. rtnl_unlock();
  1078. }
  1079. int register_dnaddr_notifier(struct notifier_block *nb)
  1080. {
  1081. return blocking_notifier_chain_register(&dnaddr_chain, nb);
  1082. }
  1083. int unregister_dnaddr_notifier(struct notifier_block *nb)
  1084. {
  1085. return blocking_notifier_chain_unregister(&dnaddr_chain, nb);
  1086. }
  1087. #ifdef CONFIG_PROC_FS
  1088. static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev)
  1089. {
  1090. do {
  1091. dev = dev->next;
  1092. } while(dev && !dev->dn_ptr);
  1093. return dev;
  1094. }
  1095. static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos)
  1096. {
  1097. struct net_device *dev;
  1098. dev = dev_base;
  1099. if (dev && !dev->dn_ptr)
  1100. dev = dn_dev_get_next(seq, dev);
  1101. if (pos) {
  1102. while(dev && (dev = dn_dev_get_next(seq, dev)))
  1103. --pos;
  1104. }
  1105. return dev;
  1106. }
  1107. static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
  1108. {
  1109. if (*pos) {
  1110. struct net_device *dev;
  1111. read_lock(&dev_base_lock);
  1112. dev = dn_dev_get_idx(seq, *pos - 1);
  1113. if (dev == NULL)
  1114. read_unlock(&dev_base_lock);
  1115. return dev;
  1116. }
  1117. return SEQ_START_TOKEN;
  1118. }
  1119. static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1120. {
  1121. struct net_device *dev = v;
  1122. loff_t one = 1;
  1123. if (v == SEQ_START_TOKEN) {
  1124. dev = dn_dev_seq_start(seq, &one);
  1125. } else {
  1126. dev = dn_dev_get_next(seq, dev);
  1127. if (dev == NULL)
  1128. read_unlock(&dev_base_lock);
  1129. }
  1130. ++*pos;
  1131. return dev;
  1132. }
  1133. static void dn_dev_seq_stop(struct seq_file *seq, void *v)
  1134. {
  1135. if (v && v != SEQ_START_TOKEN)
  1136. read_unlock(&dev_base_lock);
  1137. }
  1138. static char *dn_type2asc(char type)
  1139. {
  1140. switch(type) {
  1141. case DN_DEV_BCAST:
  1142. return "B";
  1143. case DN_DEV_UCAST:
  1144. return "U";
  1145. case DN_DEV_MPOINT:
  1146. return "M";
  1147. }
  1148. return "?";
  1149. }
  1150. static int dn_dev_seq_show(struct seq_file *seq, void *v)
  1151. {
  1152. if (v == SEQ_START_TOKEN)
  1153. seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
  1154. else {
  1155. struct net_device *dev = v;
  1156. char peer_buf[DN_ASCBUF_LEN];
  1157. char router_buf[DN_ASCBUF_LEN];
  1158. struct dn_dev *dn_db = dev->dn_ptr;
  1159. seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
  1160. " %04hu %03d %02x %-10s %-7s %-7s\n",
  1161. dev->name ? dev->name : "???",
  1162. dn_type2asc(dn_db->parms.mode),
  1163. 0, 0,
  1164. dn_db->t3, dn_db->parms.t3,
  1165. mtu2blksize(dev),
  1166. dn_db->parms.priority,
  1167. dn_db->parms.state, dn_db->parms.name,
  1168. dn_db->router ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->router->primary_key), router_buf) : "",
  1169. dn_db->peer ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->peer->primary_key), peer_buf) : "");
  1170. }
  1171. return 0;
  1172. }
  1173. static struct seq_operations dn_dev_seq_ops = {
  1174. .start = dn_dev_seq_start,
  1175. .next = dn_dev_seq_next,
  1176. .stop = dn_dev_seq_stop,
  1177. .show = dn_dev_seq_show,
  1178. };
  1179. static int dn_dev_seq_open(struct inode *inode, struct file *file)
  1180. {
  1181. return seq_open(file, &dn_dev_seq_ops);
  1182. }
  1183. static struct file_operations dn_dev_seq_fops = {
  1184. .owner = THIS_MODULE,
  1185. .open = dn_dev_seq_open,
  1186. .read = seq_read,
  1187. .llseek = seq_lseek,
  1188. .release = seq_release,
  1189. };
  1190. #endif /* CONFIG_PROC_FS */
  1191. static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] =
  1192. {
  1193. [RTM_NEWADDR - RTM_BASE] = { .doit = dn_dev_rtm_newaddr, },
  1194. [RTM_DELADDR - RTM_BASE] = { .doit = dn_dev_rtm_deladdr, },
  1195. [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_dev_dump_ifaddr, },
  1196. #ifdef CONFIG_DECNET_ROUTER
  1197. [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, },
  1198. [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, },
  1199. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1200. .dumpit = dn_fib_dump, },
  1201. [RTM_NEWRULE - RTM_BASE] = { .doit = dn_fib_rtm_newrule, },
  1202. [RTM_DELRULE - RTM_BASE] = { .doit = dn_fib_rtm_delrule, },
  1203. [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, },
  1204. #else
  1205. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1206. .dumpit = dn_cache_dump, },
  1207. #endif
  1208. };
  1209. static int __initdata addr[2];
  1210. module_param_array(addr, int, NULL, 0444);
  1211. MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
  1212. void __init dn_dev_init(void)
  1213. {
  1214. if (addr[0] > 63 || addr[0] < 0) {
  1215. printk(KERN_ERR "DECnet: Area must be between 0 and 63");
  1216. return;
  1217. }
  1218. if (addr[1] > 1023 || addr[1] < 0) {
  1219. printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
  1220. return;
  1221. }
  1222. decnet_address = dn_htons((addr[0] << 10) | addr[1]);
  1223. dn_dev_devices_on();
  1224. rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table;
  1225. proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops);
  1226. #ifdef CONFIG_SYSCTL
  1227. {
  1228. int i;
  1229. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1230. dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
  1231. }
  1232. #endif /* CONFIG_SYSCTL */
  1233. }
  1234. void __exit dn_dev_cleanup(void)
  1235. {
  1236. rtnetlink_links[PF_DECnet] = NULL;
  1237. #ifdef CONFIG_SYSCTL
  1238. {
  1239. int i;
  1240. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1241. dn_dev_sysctl_unregister(&dn_dev_list[i]);
  1242. }
  1243. #endif /* CONFIG_SYSCTL */
  1244. proc_net_remove("decnet_dev");
  1245. dn_dev_devices_off();
  1246. }