slab.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  196. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  197. /* Max number of objs-per-slab for caches which use off-slab slabs.
  198. * Needed to avoid a possible looping condition in cache_grow().
  199. */
  200. static unsigned long offslab_limit;
  201. /*
  202. * struct slab
  203. *
  204. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  205. * for a slab, or allocated from an general cache.
  206. * Slabs are chained into three list: fully used, partial, fully free slabs.
  207. */
  208. struct slab {
  209. struct list_head list;
  210. unsigned long colouroff;
  211. void *s_mem; /* including colour offset */
  212. unsigned int inuse; /* num of objs active in slab */
  213. kmem_bufctl_t free;
  214. unsigned short nodeid;
  215. };
  216. /*
  217. * struct slab_rcu
  218. *
  219. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  220. * arrange for kmem_freepages to be called via RCU. This is useful if
  221. * we need to approach a kernel structure obliquely, from its address
  222. * obtained without the usual locking. We can lock the structure to
  223. * stabilize it and check it's still at the given address, only if we
  224. * can be sure that the memory has not been meanwhile reused for some
  225. * other kind of object (which our subsystem's lock might corrupt).
  226. *
  227. * rcu_read_lock before reading the address, then rcu_read_unlock after
  228. * taking the spinlock within the structure expected at that address.
  229. *
  230. * We assume struct slab_rcu can overlay struct slab when destroying.
  231. */
  232. struct slab_rcu {
  233. struct rcu_head head;
  234. struct kmem_cache *cachep;
  235. void *addr;
  236. };
  237. /*
  238. * struct array_cache
  239. *
  240. * Purpose:
  241. * - LIFO ordering, to hand out cache-warm objects from _alloc
  242. * - reduce the number of linked list operations
  243. * - reduce spinlock operations
  244. *
  245. * The limit is stored in the per-cpu structure to reduce the data cache
  246. * footprint.
  247. *
  248. */
  249. struct array_cache {
  250. unsigned int avail;
  251. unsigned int limit;
  252. unsigned int batchcount;
  253. unsigned int touched;
  254. spinlock_t lock;
  255. void *entry[0]; /*
  256. * Must have this definition in here for the proper
  257. * alignment of array_cache. Also simplifies accessing
  258. * the entries.
  259. * [0] is for gcc 2.95. It should really be [].
  260. */
  261. };
  262. /*
  263. * bootstrap: The caches do not work without cpuarrays anymore, but the
  264. * cpuarrays are allocated from the generic caches...
  265. */
  266. #define BOOT_CPUCACHE_ENTRIES 1
  267. struct arraycache_init {
  268. struct array_cache cache;
  269. void *entries[BOOT_CPUCACHE_ENTRIES];
  270. };
  271. /*
  272. * The slab lists for all objects.
  273. */
  274. struct kmem_list3 {
  275. struct list_head slabs_partial; /* partial list first, better asm code */
  276. struct list_head slabs_full;
  277. struct list_head slabs_free;
  278. unsigned long free_objects;
  279. unsigned int free_limit;
  280. unsigned int colour_next; /* Per-node cache coloring */
  281. spinlock_t list_lock;
  282. struct array_cache *shared; /* shared per node */
  283. struct array_cache **alien; /* on other nodes */
  284. unsigned long next_reap; /* updated without locking */
  285. int free_touched; /* updated without locking */
  286. };
  287. /*
  288. * Need this for bootstrapping a per node allocator.
  289. */
  290. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  291. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  292. #define CACHE_CACHE 0
  293. #define SIZE_AC 1
  294. #define SIZE_L3 (1 + MAX_NUMNODES)
  295. /*
  296. * This function must be completely optimized away if a constant is passed to
  297. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  298. */
  299. static __always_inline int index_of(const size_t size)
  300. {
  301. extern void __bad_size(void);
  302. if (__builtin_constant_p(size)) {
  303. int i = 0;
  304. #define CACHE(x) \
  305. if (size <=x) \
  306. return i; \
  307. else \
  308. i++;
  309. #include "linux/kmalloc_sizes.h"
  310. #undef CACHE
  311. __bad_size();
  312. } else
  313. __bad_size();
  314. return 0;
  315. }
  316. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  317. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  318. static void kmem_list3_init(struct kmem_list3 *parent)
  319. {
  320. INIT_LIST_HEAD(&parent->slabs_full);
  321. INIT_LIST_HEAD(&parent->slabs_partial);
  322. INIT_LIST_HEAD(&parent->slabs_free);
  323. parent->shared = NULL;
  324. parent->alien = NULL;
  325. parent->colour_next = 0;
  326. spin_lock_init(&parent->list_lock);
  327. parent->free_objects = 0;
  328. parent->free_touched = 0;
  329. }
  330. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  331. do { \
  332. INIT_LIST_HEAD(listp); \
  333. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  334. } while (0)
  335. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  336. do { \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  338. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  339. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  340. } while (0)
  341. /*
  342. * struct kmem_cache
  343. *
  344. * manages a cache.
  345. */
  346. struct kmem_cache {
  347. /* 1) per-cpu data, touched during every alloc/free */
  348. struct array_cache *array[NR_CPUS];
  349. /* 2) Cache tunables. Protected by cache_chain_mutex */
  350. unsigned int batchcount;
  351. unsigned int limit;
  352. unsigned int shared;
  353. unsigned int buffer_size;
  354. /* 3) touched by every alloc & free from the backend */
  355. struct kmem_list3 *nodelists[MAX_NUMNODES];
  356. unsigned int flags; /* constant flags */
  357. unsigned int num; /* # of objs per slab */
  358. /* 4) cache_grow/shrink */
  359. /* order of pgs per slab (2^n) */
  360. unsigned int gfporder;
  361. /* force GFP flags, e.g. GFP_DMA */
  362. gfp_t gfpflags;
  363. size_t colour; /* cache colouring range */
  364. unsigned int colour_off; /* colour offset */
  365. struct kmem_cache *slabp_cache;
  366. unsigned int slab_size;
  367. unsigned int dflags; /* dynamic flags */
  368. /* constructor func */
  369. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  370. /* de-constructor func */
  371. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  372. /* 5) cache creation/removal */
  373. const char *name;
  374. struct list_head next;
  375. /* 6) statistics */
  376. #if STATS
  377. unsigned long num_active;
  378. unsigned long num_allocations;
  379. unsigned long high_mark;
  380. unsigned long grown;
  381. unsigned long reaped;
  382. unsigned long errors;
  383. unsigned long max_freeable;
  384. unsigned long node_allocs;
  385. unsigned long node_frees;
  386. unsigned long node_overflow;
  387. atomic_t allochit;
  388. atomic_t allocmiss;
  389. atomic_t freehit;
  390. atomic_t freemiss;
  391. #endif
  392. #if DEBUG
  393. /*
  394. * If debugging is enabled, then the allocator can add additional
  395. * fields and/or padding to every object. buffer_size contains the total
  396. * object size including these internal fields, the following two
  397. * variables contain the offset to the user object and its size.
  398. */
  399. int obj_offset;
  400. int obj_size;
  401. #endif
  402. };
  403. #define CFLGS_OFF_SLAB (0x80000000UL)
  404. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  405. #define BATCHREFILL_LIMIT 16
  406. /*
  407. * Optimization question: fewer reaps means less probability for unnessary
  408. * cpucache drain/refill cycles.
  409. *
  410. * OTOH the cpuarrays can contain lots of objects,
  411. * which could lock up otherwise freeable slabs.
  412. */
  413. #define REAPTIMEOUT_CPUC (2*HZ)
  414. #define REAPTIMEOUT_LIST3 (4*HZ)
  415. #if STATS
  416. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  417. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  418. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  419. #define STATS_INC_GROWN(x) ((x)->grown++)
  420. #define STATS_INC_REAPED(x) ((x)->reaped++)
  421. #define STATS_SET_HIGH(x) \
  422. do { \
  423. if ((x)->num_active > (x)->high_mark) \
  424. (x)->high_mark = (x)->num_active; \
  425. } while (0)
  426. #define STATS_INC_ERR(x) ((x)->errors++)
  427. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  428. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  429. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  430. #define STATS_SET_FREEABLE(x, i) \
  431. do { \
  432. if ((x)->max_freeable < i) \
  433. (x)->max_freeable = i; \
  434. } while (0)
  435. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  436. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  437. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  438. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  439. #else
  440. #define STATS_INC_ACTIVE(x) do { } while (0)
  441. #define STATS_DEC_ACTIVE(x) do { } while (0)
  442. #define STATS_INC_ALLOCED(x) do { } while (0)
  443. #define STATS_INC_GROWN(x) do { } while (0)
  444. #define STATS_INC_REAPED(x) do { } while (0)
  445. #define STATS_SET_HIGH(x) do { } while (0)
  446. #define STATS_INC_ERR(x) do { } while (0)
  447. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  448. #define STATS_INC_NODEFREES(x) do { } while (0)
  449. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  450. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  451. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  452. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  453. #define STATS_INC_FREEHIT(x) do { } while (0)
  454. #define STATS_INC_FREEMISS(x) do { } while (0)
  455. #endif
  456. #if DEBUG
  457. /*
  458. * Magic nums for obj red zoning.
  459. * Placed in the first word before and the first word after an obj.
  460. */
  461. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  462. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  463. /* ...and for poisoning */
  464. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  465. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  466. #define POISON_END 0xa5 /* end-byte of poisoning */
  467. /*
  468. * memory layout of objects:
  469. * 0 : objp
  470. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  471. * the end of an object is aligned with the end of the real
  472. * allocation. Catches writes behind the end of the allocation.
  473. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  474. * redzone word.
  475. * cachep->obj_offset: The real object.
  476. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  477. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  478. * [BYTES_PER_WORD long]
  479. */
  480. static int obj_offset(struct kmem_cache *cachep)
  481. {
  482. return cachep->obj_offset;
  483. }
  484. static int obj_size(struct kmem_cache *cachep)
  485. {
  486. return cachep->obj_size;
  487. }
  488. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  492. }
  493. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  494. {
  495. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  496. if (cachep->flags & SLAB_STORE_USER)
  497. return (unsigned long *)(objp + cachep->buffer_size -
  498. 2 * BYTES_PER_WORD);
  499. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  502. {
  503. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  504. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  505. }
  506. #else
  507. #define obj_offset(x) 0
  508. #define obj_size(cachep) (cachep->buffer_size)
  509. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  510. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  511. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  512. #endif
  513. /*
  514. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  515. * order.
  516. */
  517. #if defined(CONFIG_LARGE_ALLOCS)
  518. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  519. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  520. #elif defined(CONFIG_MMU)
  521. #define MAX_OBJ_ORDER 5 /* 32 pages */
  522. #define MAX_GFP_ORDER 5 /* 32 pages */
  523. #else
  524. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  525. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  526. #endif
  527. /*
  528. * Do not go above this order unless 0 objects fit into the slab.
  529. */
  530. #define BREAK_GFP_ORDER_HI 1
  531. #define BREAK_GFP_ORDER_LO 0
  532. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  533. /*
  534. * Functions for storing/retrieving the cachep and or slab from the page
  535. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  536. * these are used to find the cache which an obj belongs to.
  537. */
  538. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  539. {
  540. page->lru.next = (struct list_head *)cache;
  541. }
  542. static inline struct kmem_cache *page_get_cache(struct page *page)
  543. {
  544. if (unlikely(PageCompound(page)))
  545. page = (struct page *)page_private(page);
  546. return (struct kmem_cache *)page->lru.next;
  547. }
  548. static inline void page_set_slab(struct page *page, struct slab *slab)
  549. {
  550. page->lru.prev = (struct list_head *)slab;
  551. }
  552. static inline struct slab *page_get_slab(struct page *page)
  553. {
  554. if (unlikely(PageCompound(page)))
  555. page = (struct page *)page_private(page);
  556. return (struct slab *)page->lru.prev;
  557. }
  558. static inline struct kmem_cache *virt_to_cache(const void *obj)
  559. {
  560. struct page *page = virt_to_page(obj);
  561. return page_get_cache(page);
  562. }
  563. static inline struct slab *virt_to_slab(const void *obj)
  564. {
  565. struct page *page = virt_to_page(obj);
  566. return page_get_slab(page);
  567. }
  568. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  569. unsigned int idx)
  570. {
  571. return slab->s_mem + cache->buffer_size * idx;
  572. }
  573. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  574. struct slab *slab, void *obj)
  575. {
  576. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  577. }
  578. /*
  579. * These are the default caches for kmalloc. Custom caches can have other sizes.
  580. */
  581. struct cache_sizes malloc_sizes[] = {
  582. #define CACHE(x) { .cs_size = (x) },
  583. #include <linux/kmalloc_sizes.h>
  584. CACHE(ULONG_MAX)
  585. #undef CACHE
  586. };
  587. EXPORT_SYMBOL(malloc_sizes);
  588. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  589. struct cache_names {
  590. char *name;
  591. char *name_dma;
  592. };
  593. static struct cache_names __initdata cache_names[] = {
  594. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  595. #include <linux/kmalloc_sizes.h>
  596. {NULL,}
  597. #undef CACHE
  598. };
  599. static struct arraycache_init initarray_cache __initdata =
  600. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  601. static struct arraycache_init initarray_generic =
  602. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  603. /* internal cache of cache description objs */
  604. static struct kmem_cache cache_cache = {
  605. .batchcount = 1,
  606. .limit = BOOT_CPUCACHE_ENTRIES,
  607. .shared = 1,
  608. .buffer_size = sizeof(struct kmem_cache),
  609. .name = "kmem_cache",
  610. #if DEBUG
  611. .obj_size = sizeof(struct kmem_cache),
  612. #endif
  613. };
  614. /* Guard access to the cache-chain. */
  615. static DEFINE_MUTEX(cache_chain_mutex);
  616. static struct list_head cache_chain;
  617. /*
  618. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  619. * are possibly freeable under pressure
  620. *
  621. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  622. */
  623. atomic_t slab_reclaim_pages;
  624. /*
  625. * chicken and egg problem: delay the per-cpu array allocation
  626. * until the general caches are up.
  627. */
  628. static enum {
  629. NONE,
  630. PARTIAL_AC,
  631. PARTIAL_L3,
  632. FULL
  633. } g_cpucache_up;
  634. static DEFINE_PER_CPU(struct work_struct, reap_work);
  635. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  636. int node);
  637. static void enable_cpucache(struct kmem_cache *cachep);
  638. static void cache_reap(void *unused);
  639. static int __node_shrink(struct kmem_cache *cachep, int node);
  640. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  641. {
  642. return cachep->array[smp_processor_id()];
  643. }
  644. static inline struct kmem_cache *__find_general_cachep(size_t size,
  645. gfp_t gfpflags)
  646. {
  647. struct cache_sizes *csizep = malloc_sizes;
  648. #if DEBUG
  649. /* This happens if someone tries to call
  650. * kmem_cache_create(), or __kmalloc(), before
  651. * the generic caches are initialized.
  652. */
  653. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  654. #endif
  655. while (size > csizep->cs_size)
  656. csizep++;
  657. /*
  658. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  659. * has cs_{dma,}cachep==NULL. Thus no special case
  660. * for large kmalloc calls required.
  661. */
  662. if (unlikely(gfpflags & GFP_DMA))
  663. return csizep->cs_dmacachep;
  664. return csizep->cs_cachep;
  665. }
  666. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  667. {
  668. return __find_general_cachep(size, gfpflags);
  669. }
  670. EXPORT_SYMBOL(kmem_find_general_cachep);
  671. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  672. {
  673. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  674. }
  675. /*
  676. * Calculate the number of objects and left-over bytes for a given buffer size.
  677. */
  678. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  679. size_t align, int flags, size_t *left_over,
  680. unsigned int *num)
  681. {
  682. int nr_objs;
  683. size_t mgmt_size;
  684. size_t slab_size = PAGE_SIZE << gfporder;
  685. /*
  686. * The slab management structure can be either off the slab or
  687. * on it. For the latter case, the memory allocated for a
  688. * slab is used for:
  689. *
  690. * - The struct slab
  691. * - One kmem_bufctl_t for each object
  692. * - Padding to respect alignment of @align
  693. * - @buffer_size bytes for each object
  694. *
  695. * If the slab management structure is off the slab, then the
  696. * alignment will already be calculated into the size. Because
  697. * the slabs are all pages aligned, the objects will be at the
  698. * correct alignment when allocated.
  699. */
  700. if (flags & CFLGS_OFF_SLAB) {
  701. mgmt_size = 0;
  702. nr_objs = slab_size / buffer_size;
  703. if (nr_objs > SLAB_LIMIT)
  704. nr_objs = SLAB_LIMIT;
  705. } else {
  706. /*
  707. * Ignore padding for the initial guess. The padding
  708. * is at most @align-1 bytes, and @buffer_size is at
  709. * least @align. In the worst case, this result will
  710. * be one greater than the number of objects that fit
  711. * into the memory allocation when taking the padding
  712. * into account.
  713. */
  714. nr_objs = (slab_size - sizeof(struct slab)) /
  715. (buffer_size + sizeof(kmem_bufctl_t));
  716. /*
  717. * This calculated number will be either the right
  718. * amount, or one greater than what we want.
  719. */
  720. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  721. > slab_size)
  722. nr_objs--;
  723. if (nr_objs > SLAB_LIMIT)
  724. nr_objs = SLAB_LIMIT;
  725. mgmt_size = slab_mgmt_size(nr_objs, align);
  726. }
  727. *num = nr_objs;
  728. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  729. }
  730. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  731. static void __slab_error(const char *function, struct kmem_cache *cachep,
  732. char *msg)
  733. {
  734. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  735. function, cachep->name, msg);
  736. dump_stack();
  737. }
  738. #ifdef CONFIG_NUMA
  739. /*
  740. * Special reaping functions for NUMA systems called from cache_reap().
  741. * These take care of doing round robin flushing of alien caches (containing
  742. * objects freed on different nodes from which they were allocated) and the
  743. * flushing of remote pcps by calling drain_node_pages.
  744. */
  745. static DEFINE_PER_CPU(unsigned long, reap_node);
  746. static void init_reap_node(int cpu)
  747. {
  748. int node;
  749. node = next_node(cpu_to_node(cpu), node_online_map);
  750. if (node == MAX_NUMNODES)
  751. node = first_node(node_online_map);
  752. __get_cpu_var(reap_node) = node;
  753. }
  754. static void next_reap_node(void)
  755. {
  756. int node = __get_cpu_var(reap_node);
  757. /*
  758. * Also drain per cpu pages on remote zones
  759. */
  760. if (node != numa_node_id())
  761. drain_node_pages(node);
  762. node = next_node(node, node_online_map);
  763. if (unlikely(node >= MAX_NUMNODES))
  764. node = first_node(node_online_map);
  765. __get_cpu_var(reap_node) = node;
  766. }
  767. #else
  768. #define init_reap_node(cpu) do { } while (0)
  769. #define next_reap_node(void) do { } while (0)
  770. #endif
  771. /*
  772. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  773. * via the workqueue/eventd.
  774. * Add the CPU number into the expiration time to minimize the possibility of
  775. * the CPUs getting into lockstep and contending for the global cache chain
  776. * lock.
  777. */
  778. static void __devinit start_cpu_timer(int cpu)
  779. {
  780. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  781. /*
  782. * When this gets called from do_initcalls via cpucache_init(),
  783. * init_workqueues() has already run, so keventd will be setup
  784. * at that time.
  785. */
  786. if (keventd_up() && reap_work->func == NULL) {
  787. init_reap_node(cpu);
  788. INIT_WORK(reap_work, cache_reap, NULL);
  789. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  790. }
  791. }
  792. static struct array_cache *alloc_arraycache(int node, int entries,
  793. int batchcount)
  794. {
  795. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  796. struct array_cache *nc = NULL;
  797. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  798. if (nc) {
  799. nc->avail = 0;
  800. nc->limit = entries;
  801. nc->batchcount = batchcount;
  802. nc->touched = 0;
  803. spin_lock_init(&nc->lock);
  804. }
  805. return nc;
  806. }
  807. /*
  808. * Transfer objects in one arraycache to another.
  809. * Locking must be handled by the caller.
  810. *
  811. * Return the number of entries transferred.
  812. */
  813. static int transfer_objects(struct array_cache *to,
  814. struct array_cache *from, unsigned int max)
  815. {
  816. /* Figure out how many entries to transfer */
  817. int nr = min(min(from->avail, max), to->limit - to->avail);
  818. if (!nr)
  819. return 0;
  820. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  821. sizeof(void *) *nr);
  822. from->avail -= nr;
  823. to->avail += nr;
  824. to->touched = 1;
  825. return nr;
  826. }
  827. #ifdef CONFIG_NUMA
  828. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  829. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  830. static struct array_cache **alloc_alien_cache(int node, int limit)
  831. {
  832. struct array_cache **ac_ptr;
  833. int memsize = sizeof(void *) * MAX_NUMNODES;
  834. int i;
  835. if (limit > 1)
  836. limit = 12;
  837. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  838. if (ac_ptr) {
  839. for_each_node(i) {
  840. if (i == node || !node_online(i)) {
  841. ac_ptr[i] = NULL;
  842. continue;
  843. }
  844. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  845. if (!ac_ptr[i]) {
  846. for (i--; i <= 0; i--)
  847. kfree(ac_ptr[i]);
  848. kfree(ac_ptr);
  849. return NULL;
  850. }
  851. }
  852. }
  853. return ac_ptr;
  854. }
  855. static void free_alien_cache(struct array_cache **ac_ptr)
  856. {
  857. int i;
  858. if (!ac_ptr)
  859. return;
  860. for_each_node(i)
  861. kfree(ac_ptr[i]);
  862. kfree(ac_ptr);
  863. }
  864. static void __drain_alien_cache(struct kmem_cache *cachep,
  865. struct array_cache *ac, int node)
  866. {
  867. struct kmem_list3 *rl3 = cachep->nodelists[node];
  868. if (ac->avail) {
  869. spin_lock(&rl3->list_lock);
  870. /*
  871. * Stuff objects into the remote nodes shared array first.
  872. * That way we could avoid the overhead of putting the objects
  873. * into the free lists and getting them back later.
  874. */
  875. transfer_objects(rl3->shared, ac, ac->limit);
  876. free_block(cachep, ac->entry, ac->avail, node);
  877. ac->avail = 0;
  878. spin_unlock(&rl3->list_lock);
  879. }
  880. }
  881. /*
  882. * Called from cache_reap() to regularly drain alien caches round robin.
  883. */
  884. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  885. {
  886. int node = __get_cpu_var(reap_node);
  887. if (l3->alien) {
  888. struct array_cache *ac = l3->alien[node];
  889. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  890. __drain_alien_cache(cachep, ac, node);
  891. spin_unlock_irq(&ac->lock);
  892. }
  893. }
  894. }
  895. static void drain_alien_cache(struct kmem_cache *cachep,
  896. struct array_cache **alien)
  897. {
  898. int i = 0;
  899. struct array_cache *ac;
  900. unsigned long flags;
  901. for_each_online_node(i) {
  902. ac = alien[i];
  903. if (ac) {
  904. spin_lock_irqsave(&ac->lock, flags);
  905. __drain_alien_cache(cachep, ac, i);
  906. spin_unlock_irqrestore(&ac->lock, flags);
  907. }
  908. }
  909. }
  910. #else
  911. #define drain_alien_cache(cachep, alien) do { } while (0)
  912. #define reap_alien(cachep, l3) do { } while (0)
  913. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  914. {
  915. return (struct array_cache **) 0x01020304ul;
  916. }
  917. static inline void free_alien_cache(struct array_cache **ac_ptr)
  918. {
  919. }
  920. #endif
  921. static int __devinit cpuup_callback(struct notifier_block *nfb,
  922. unsigned long action, void *hcpu)
  923. {
  924. long cpu = (long)hcpu;
  925. struct kmem_cache *cachep;
  926. struct kmem_list3 *l3 = NULL;
  927. int node = cpu_to_node(cpu);
  928. int memsize = sizeof(struct kmem_list3);
  929. switch (action) {
  930. case CPU_UP_PREPARE:
  931. mutex_lock(&cache_chain_mutex);
  932. /*
  933. * We need to do this right in the beginning since
  934. * alloc_arraycache's are going to use this list.
  935. * kmalloc_node allows us to add the slab to the right
  936. * kmem_list3 and not this cpu's kmem_list3
  937. */
  938. list_for_each_entry(cachep, &cache_chain, next) {
  939. /*
  940. * Set up the size64 kmemlist for cpu before we can
  941. * begin anything. Make sure some other cpu on this
  942. * node has not already allocated this
  943. */
  944. if (!cachep->nodelists[node]) {
  945. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  946. if (!l3)
  947. goto bad;
  948. kmem_list3_init(l3);
  949. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  950. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  951. /*
  952. * The l3s don't come and go as CPUs come and
  953. * go. cache_chain_mutex is sufficient
  954. * protection here.
  955. */
  956. cachep->nodelists[node] = l3;
  957. }
  958. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  959. cachep->nodelists[node]->free_limit =
  960. (1 + nr_cpus_node(node)) *
  961. cachep->batchcount + cachep->num;
  962. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  963. }
  964. /*
  965. * Now we can go ahead with allocating the shared arrays and
  966. * array caches
  967. */
  968. list_for_each_entry(cachep, &cache_chain, next) {
  969. struct array_cache *nc;
  970. struct array_cache *shared;
  971. struct array_cache **alien;
  972. nc = alloc_arraycache(node, cachep->limit,
  973. cachep->batchcount);
  974. if (!nc)
  975. goto bad;
  976. shared = alloc_arraycache(node,
  977. cachep->shared * cachep->batchcount,
  978. 0xbaadf00d);
  979. if (!shared)
  980. goto bad;
  981. alien = alloc_alien_cache(node, cachep->limit);
  982. if (!alien)
  983. goto bad;
  984. cachep->array[cpu] = nc;
  985. l3 = cachep->nodelists[node];
  986. BUG_ON(!l3);
  987. spin_lock_irq(&l3->list_lock);
  988. if (!l3->shared) {
  989. /*
  990. * We are serialised from CPU_DEAD or
  991. * CPU_UP_CANCELLED by the cpucontrol lock
  992. */
  993. l3->shared = shared;
  994. shared = NULL;
  995. }
  996. #ifdef CONFIG_NUMA
  997. if (!l3->alien) {
  998. l3->alien = alien;
  999. alien = NULL;
  1000. }
  1001. #endif
  1002. spin_unlock_irq(&l3->list_lock);
  1003. kfree(shared);
  1004. free_alien_cache(alien);
  1005. }
  1006. mutex_unlock(&cache_chain_mutex);
  1007. break;
  1008. case CPU_ONLINE:
  1009. start_cpu_timer(cpu);
  1010. break;
  1011. #ifdef CONFIG_HOTPLUG_CPU
  1012. case CPU_DEAD:
  1013. /*
  1014. * Even if all the cpus of a node are down, we don't free the
  1015. * kmem_list3 of any cache. This to avoid a race between
  1016. * cpu_down, and a kmalloc allocation from another cpu for
  1017. * memory from the node of the cpu going down. The list3
  1018. * structure is usually allocated from kmem_cache_create() and
  1019. * gets destroyed at kmem_cache_destroy().
  1020. */
  1021. /* fall thru */
  1022. case CPU_UP_CANCELED:
  1023. mutex_lock(&cache_chain_mutex);
  1024. list_for_each_entry(cachep, &cache_chain, next) {
  1025. struct array_cache *nc;
  1026. struct array_cache *shared;
  1027. struct array_cache **alien;
  1028. cpumask_t mask;
  1029. mask = node_to_cpumask(node);
  1030. /* cpu is dead; no one can alloc from it. */
  1031. nc = cachep->array[cpu];
  1032. cachep->array[cpu] = NULL;
  1033. l3 = cachep->nodelists[node];
  1034. if (!l3)
  1035. goto free_array_cache;
  1036. spin_lock_irq(&l3->list_lock);
  1037. /* Free limit for this kmem_list3 */
  1038. l3->free_limit -= cachep->batchcount;
  1039. if (nc)
  1040. free_block(cachep, nc->entry, nc->avail, node);
  1041. if (!cpus_empty(mask)) {
  1042. spin_unlock_irq(&l3->list_lock);
  1043. goto free_array_cache;
  1044. }
  1045. shared = l3->shared;
  1046. if (shared) {
  1047. free_block(cachep, l3->shared->entry,
  1048. l3->shared->avail, node);
  1049. l3->shared = NULL;
  1050. }
  1051. alien = l3->alien;
  1052. l3->alien = NULL;
  1053. spin_unlock_irq(&l3->list_lock);
  1054. kfree(shared);
  1055. if (alien) {
  1056. drain_alien_cache(cachep, alien);
  1057. free_alien_cache(alien);
  1058. }
  1059. free_array_cache:
  1060. kfree(nc);
  1061. }
  1062. /*
  1063. * In the previous loop, all the objects were freed to
  1064. * the respective cache's slabs, now we can go ahead and
  1065. * shrink each nodelist to its limit.
  1066. */
  1067. list_for_each_entry(cachep, &cache_chain, next) {
  1068. l3 = cachep->nodelists[node];
  1069. if (!l3)
  1070. continue;
  1071. spin_lock_irq(&l3->list_lock);
  1072. /* free slabs belonging to this node */
  1073. __node_shrink(cachep, node);
  1074. spin_unlock_irq(&l3->list_lock);
  1075. }
  1076. mutex_unlock(&cache_chain_mutex);
  1077. break;
  1078. #endif
  1079. }
  1080. return NOTIFY_OK;
  1081. bad:
  1082. mutex_unlock(&cache_chain_mutex);
  1083. return NOTIFY_BAD;
  1084. }
  1085. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1086. /*
  1087. * swap the static kmem_list3 with kmalloced memory
  1088. */
  1089. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1090. int nodeid)
  1091. {
  1092. struct kmem_list3 *ptr;
  1093. BUG_ON(cachep->nodelists[nodeid] != list);
  1094. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1095. BUG_ON(!ptr);
  1096. local_irq_disable();
  1097. memcpy(ptr, list, sizeof(struct kmem_list3));
  1098. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1099. cachep->nodelists[nodeid] = ptr;
  1100. local_irq_enable();
  1101. }
  1102. /*
  1103. * Initialisation. Called after the page allocator have been initialised and
  1104. * before smp_init().
  1105. */
  1106. void __init kmem_cache_init(void)
  1107. {
  1108. size_t left_over;
  1109. struct cache_sizes *sizes;
  1110. struct cache_names *names;
  1111. int i;
  1112. int order;
  1113. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1114. kmem_list3_init(&initkmem_list3[i]);
  1115. if (i < MAX_NUMNODES)
  1116. cache_cache.nodelists[i] = NULL;
  1117. }
  1118. /*
  1119. * Fragmentation resistance on low memory - only use bigger
  1120. * page orders on machines with more than 32MB of memory.
  1121. */
  1122. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1123. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1124. /* Bootstrap is tricky, because several objects are allocated
  1125. * from caches that do not exist yet:
  1126. * 1) initialize the cache_cache cache: it contains the struct
  1127. * kmem_cache structures of all caches, except cache_cache itself:
  1128. * cache_cache is statically allocated.
  1129. * Initially an __init data area is used for the head array and the
  1130. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1131. * array at the end of the bootstrap.
  1132. * 2) Create the first kmalloc cache.
  1133. * The struct kmem_cache for the new cache is allocated normally.
  1134. * An __init data area is used for the head array.
  1135. * 3) Create the remaining kmalloc caches, with minimally sized
  1136. * head arrays.
  1137. * 4) Replace the __init data head arrays for cache_cache and the first
  1138. * kmalloc cache with kmalloc allocated arrays.
  1139. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1140. * the other cache's with kmalloc allocated memory.
  1141. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1142. */
  1143. /* 1) create the cache_cache */
  1144. INIT_LIST_HEAD(&cache_chain);
  1145. list_add(&cache_cache.next, &cache_chain);
  1146. cache_cache.colour_off = cache_line_size();
  1147. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1148. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1149. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1150. cache_line_size());
  1151. for (order = 0; order < MAX_ORDER; order++) {
  1152. cache_estimate(order, cache_cache.buffer_size,
  1153. cache_line_size(), 0, &left_over, &cache_cache.num);
  1154. if (cache_cache.num)
  1155. break;
  1156. }
  1157. BUG_ON(!cache_cache.num);
  1158. cache_cache.gfporder = order;
  1159. cache_cache.colour = left_over / cache_cache.colour_off;
  1160. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1161. sizeof(struct slab), cache_line_size());
  1162. /* 2+3) create the kmalloc caches */
  1163. sizes = malloc_sizes;
  1164. names = cache_names;
  1165. /*
  1166. * Initialize the caches that provide memory for the array cache and the
  1167. * kmem_list3 structures first. Without this, further allocations will
  1168. * bug.
  1169. */
  1170. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1171. sizes[INDEX_AC].cs_size,
  1172. ARCH_KMALLOC_MINALIGN,
  1173. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1174. NULL, NULL);
  1175. if (INDEX_AC != INDEX_L3) {
  1176. sizes[INDEX_L3].cs_cachep =
  1177. kmem_cache_create(names[INDEX_L3].name,
  1178. sizes[INDEX_L3].cs_size,
  1179. ARCH_KMALLOC_MINALIGN,
  1180. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1181. NULL, NULL);
  1182. }
  1183. while (sizes->cs_size != ULONG_MAX) {
  1184. /*
  1185. * For performance, all the general caches are L1 aligned.
  1186. * This should be particularly beneficial on SMP boxes, as it
  1187. * eliminates "false sharing".
  1188. * Note for systems short on memory removing the alignment will
  1189. * allow tighter packing of the smaller caches.
  1190. */
  1191. if (!sizes->cs_cachep) {
  1192. sizes->cs_cachep = kmem_cache_create(names->name,
  1193. sizes->cs_size,
  1194. ARCH_KMALLOC_MINALIGN,
  1195. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1196. NULL, NULL);
  1197. }
  1198. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1199. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1200. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1201. offslab_limit /= sizeof(kmem_bufctl_t);
  1202. }
  1203. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1204. sizes->cs_size,
  1205. ARCH_KMALLOC_MINALIGN,
  1206. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1207. SLAB_PANIC,
  1208. NULL, NULL);
  1209. sizes++;
  1210. names++;
  1211. }
  1212. /* 4) Replace the bootstrap head arrays */
  1213. {
  1214. void *ptr;
  1215. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1216. local_irq_disable();
  1217. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1218. memcpy(ptr, cpu_cache_get(&cache_cache),
  1219. sizeof(struct arraycache_init));
  1220. cache_cache.array[smp_processor_id()] = ptr;
  1221. local_irq_enable();
  1222. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1223. local_irq_disable();
  1224. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1225. != &initarray_generic.cache);
  1226. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1227. sizeof(struct arraycache_init));
  1228. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1229. ptr;
  1230. local_irq_enable();
  1231. }
  1232. /* 5) Replace the bootstrap kmem_list3's */
  1233. {
  1234. int node;
  1235. /* Replace the static kmem_list3 structures for the boot cpu */
  1236. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1237. numa_node_id());
  1238. for_each_online_node(node) {
  1239. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1240. &initkmem_list3[SIZE_AC + node], node);
  1241. if (INDEX_AC != INDEX_L3) {
  1242. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1243. &initkmem_list3[SIZE_L3 + node],
  1244. node);
  1245. }
  1246. }
  1247. }
  1248. /* 6) resize the head arrays to their final sizes */
  1249. {
  1250. struct kmem_cache *cachep;
  1251. mutex_lock(&cache_chain_mutex);
  1252. list_for_each_entry(cachep, &cache_chain, next)
  1253. enable_cpucache(cachep);
  1254. mutex_unlock(&cache_chain_mutex);
  1255. }
  1256. /* Done! */
  1257. g_cpucache_up = FULL;
  1258. /*
  1259. * Register a cpu startup notifier callback that initializes
  1260. * cpu_cache_get for all new cpus
  1261. */
  1262. register_cpu_notifier(&cpucache_notifier);
  1263. /*
  1264. * The reap timers are started later, with a module init call: That part
  1265. * of the kernel is not yet operational.
  1266. */
  1267. }
  1268. static int __init cpucache_init(void)
  1269. {
  1270. int cpu;
  1271. /*
  1272. * Register the timers that return unneeded pages to the page allocator
  1273. */
  1274. for_each_online_cpu(cpu)
  1275. start_cpu_timer(cpu);
  1276. return 0;
  1277. }
  1278. __initcall(cpucache_init);
  1279. /*
  1280. * Interface to system's page allocator. No need to hold the cache-lock.
  1281. *
  1282. * If we requested dmaable memory, we will get it. Even if we
  1283. * did not request dmaable memory, we might get it, but that
  1284. * would be relatively rare and ignorable.
  1285. */
  1286. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1287. {
  1288. struct page *page;
  1289. void *addr;
  1290. int i;
  1291. flags |= cachep->gfpflags;
  1292. #ifndef CONFIG_MMU
  1293. /* nommu uses slab's for process anonymous memory allocations, so
  1294. * requires __GFP_COMP to properly refcount higher order allocations"
  1295. */
  1296. page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
  1297. #else
  1298. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1299. #endif
  1300. if (!page)
  1301. return NULL;
  1302. addr = page_address(page);
  1303. i = (1 << cachep->gfporder);
  1304. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1305. atomic_add(i, &slab_reclaim_pages);
  1306. add_page_state(nr_slab, i);
  1307. while (i--) {
  1308. __SetPageSlab(page);
  1309. page++;
  1310. }
  1311. return addr;
  1312. }
  1313. /*
  1314. * Interface to system's page release.
  1315. */
  1316. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1317. {
  1318. unsigned long i = (1 << cachep->gfporder);
  1319. struct page *page = virt_to_page(addr);
  1320. const unsigned long nr_freed = i;
  1321. while (i--) {
  1322. BUG_ON(!PageSlab(page));
  1323. __ClearPageSlab(page);
  1324. page++;
  1325. }
  1326. sub_page_state(nr_slab, nr_freed);
  1327. if (current->reclaim_state)
  1328. current->reclaim_state->reclaimed_slab += nr_freed;
  1329. free_pages((unsigned long)addr, cachep->gfporder);
  1330. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1331. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1332. }
  1333. static void kmem_rcu_free(struct rcu_head *head)
  1334. {
  1335. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1336. struct kmem_cache *cachep = slab_rcu->cachep;
  1337. kmem_freepages(cachep, slab_rcu->addr);
  1338. if (OFF_SLAB(cachep))
  1339. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1340. }
  1341. #if DEBUG
  1342. #ifdef CONFIG_DEBUG_PAGEALLOC
  1343. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1344. unsigned long caller)
  1345. {
  1346. int size = obj_size(cachep);
  1347. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1348. if (size < 5 * sizeof(unsigned long))
  1349. return;
  1350. *addr++ = 0x12345678;
  1351. *addr++ = caller;
  1352. *addr++ = smp_processor_id();
  1353. size -= 3 * sizeof(unsigned long);
  1354. {
  1355. unsigned long *sptr = &caller;
  1356. unsigned long svalue;
  1357. while (!kstack_end(sptr)) {
  1358. svalue = *sptr++;
  1359. if (kernel_text_address(svalue)) {
  1360. *addr++ = svalue;
  1361. size -= sizeof(unsigned long);
  1362. if (size <= sizeof(unsigned long))
  1363. break;
  1364. }
  1365. }
  1366. }
  1367. *addr++ = 0x87654321;
  1368. }
  1369. #endif
  1370. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1371. {
  1372. int size = obj_size(cachep);
  1373. addr = &((char *)addr)[obj_offset(cachep)];
  1374. memset(addr, val, size);
  1375. *(unsigned char *)(addr + size - 1) = POISON_END;
  1376. }
  1377. static void dump_line(char *data, int offset, int limit)
  1378. {
  1379. int i;
  1380. printk(KERN_ERR "%03x:", offset);
  1381. for (i = 0; i < limit; i++)
  1382. printk(" %02x", (unsigned char)data[offset + i]);
  1383. printk("\n");
  1384. }
  1385. #endif
  1386. #if DEBUG
  1387. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1388. {
  1389. int i, size;
  1390. char *realobj;
  1391. if (cachep->flags & SLAB_RED_ZONE) {
  1392. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1393. *dbg_redzone1(cachep, objp),
  1394. *dbg_redzone2(cachep, objp));
  1395. }
  1396. if (cachep->flags & SLAB_STORE_USER) {
  1397. printk(KERN_ERR "Last user: [<%p>]",
  1398. *dbg_userword(cachep, objp));
  1399. print_symbol("(%s)",
  1400. (unsigned long)*dbg_userword(cachep, objp));
  1401. printk("\n");
  1402. }
  1403. realobj = (char *)objp + obj_offset(cachep);
  1404. size = obj_size(cachep);
  1405. for (i = 0; i < size && lines; i += 16, lines--) {
  1406. int limit;
  1407. limit = 16;
  1408. if (i + limit > size)
  1409. limit = size - i;
  1410. dump_line(realobj, i, limit);
  1411. }
  1412. }
  1413. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1414. {
  1415. char *realobj;
  1416. int size, i;
  1417. int lines = 0;
  1418. realobj = (char *)objp + obj_offset(cachep);
  1419. size = obj_size(cachep);
  1420. for (i = 0; i < size; i++) {
  1421. char exp = POISON_FREE;
  1422. if (i == size - 1)
  1423. exp = POISON_END;
  1424. if (realobj[i] != exp) {
  1425. int limit;
  1426. /* Mismatch ! */
  1427. /* Print header */
  1428. if (lines == 0) {
  1429. printk(KERN_ERR
  1430. "Slab corruption: start=%p, len=%d\n",
  1431. realobj, size);
  1432. print_objinfo(cachep, objp, 0);
  1433. }
  1434. /* Hexdump the affected line */
  1435. i = (i / 16) * 16;
  1436. limit = 16;
  1437. if (i + limit > size)
  1438. limit = size - i;
  1439. dump_line(realobj, i, limit);
  1440. i += 16;
  1441. lines++;
  1442. /* Limit to 5 lines */
  1443. if (lines > 5)
  1444. break;
  1445. }
  1446. }
  1447. if (lines != 0) {
  1448. /* Print some data about the neighboring objects, if they
  1449. * exist:
  1450. */
  1451. struct slab *slabp = virt_to_slab(objp);
  1452. unsigned int objnr;
  1453. objnr = obj_to_index(cachep, slabp, objp);
  1454. if (objnr) {
  1455. objp = index_to_obj(cachep, slabp, objnr - 1);
  1456. realobj = (char *)objp + obj_offset(cachep);
  1457. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1458. realobj, size);
  1459. print_objinfo(cachep, objp, 2);
  1460. }
  1461. if (objnr + 1 < cachep->num) {
  1462. objp = index_to_obj(cachep, slabp, objnr + 1);
  1463. realobj = (char *)objp + obj_offset(cachep);
  1464. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1465. realobj, size);
  1466. print_objinfo(cachep, objp, 2);
  1467. }
  1468. }
  1469. }
  1470. #endif
  1471. #if DEBUG
  1472. /**
  1473. * slab_destroy_objs - destroy a slab and its objects
  1474. * @cachep: cache pointer being destroyed
  1475. * @slabp: slab pointer being destroyed
  1476. *
  1477. * Call the registered destructor for each object in a slab that is being
  1478. * destroyed.
  1479. */
  1480. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1481. {
  1482. int i;
  1483. for (i = 0; i < cachep->num; i++) {
  1484. void *objp = index_to_obj(cachep, slabp, i);
  1485. if (cachep->flags & SLAB_POISON) {
  1486. #ifdef CONFIG_DEBUG_PAGEALLOC
  1487. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1488. OFF_SLAB(cachep))
  1489. kernel_map_pages(virt_to_page(objp),
  1490. cachep->buffer_size / PAGE_SIZE, 1);
  1491. else
  1492. check_poison_obj(cachep, objp);
  1493. #else
  1494. check_poison_obj(cachep, objp);
  1495. #endif
  1496. }
  1497. if (cachep->flags & SLAB_RED_ZONE) {
  1498. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1499. slab_error(cachep, "start of a freed object "
  1500. "was overwritten");
  1501. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1502. slab_error(cachep, "end of a freed object "
  1503. "was overwritten");
  1504. }
  1505. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1506. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1507. }
  1508. }
  1509. #else
  1510. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1511. {
  1512. if (cachep->dtor) {
  1513. int i;
  1514. for (i = 0; i < cachep->num; i++) {
  1515. void *objp = index_to_obj(cachep, slabp, i);
  1516. (cachep->dtor) (objp, cachep, 0);
  1517. }
  1518. }
  1519. }
  1520. #endif
  1521. /**
  1522. * slab_destroy - destroy and release all objects in a slab
  1523. * @cachep: cache pointer being destroyed
  1524. * @slabp: slab pointer being destroyed
  1525. *
  1526. * Destroy all the objs in a slab, and release the mem back to the system.
  1527. * Before calling the slab must have been unlinked from the cache. The
  1528. * cache-lock is not held/needed.
  1529. */
  1530. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1531. {
  1532. void *addr = slabp->s_mem - slabp->colouroff;
  1533. slab_destroy_objs(cachep, slabp);
  1534. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1535. struct slab_rcu *slab_rcu;
  1536. slab_rcu = (struct slab_rcu *)slabp;
  1537. slab_rcu->cachep = cachep;
  1538. slab_rcu->addr = addr;
  1539. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1540. } else {
  1541. kmem_freepages(cachep, addr);
  1542. if (OFF_SLAB(cachep))
  1543. kmem_cache_free(cachep->slabp_cache, slabp);
  1544. }
  1545. }
  1546. /*
  1547. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1548. * size of kmem_list3.
  1549. */
  1550. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1551. {
  1552. int node;
  1553. for_each_online_node(node) {
  1554. cachep->nodelists[node] = &initkmem_list3[index + node];
  1555. cachep->nodelists[node]->next_reap = jiffies +
  1556. REAPTIMEOUT_LIST3 +
  1557. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1558. }
  1559. }
  1560. /**
  1561. * calculate_slab_order - calculate size (page order) of slabs
  1562. * @cachep: pointer to the cache that is being created
  1563. * @size: size of objects to be created in this cache.
  1564. * @align: required alignment for the objects.
  1565. * @flags: slab allocation flags
  1566. *
  1567. * Also calculates the number of objects per slab.
  1568. *
  1569. * This could be made much more intelligent. For now, try to avoid using
  1570. * high order pages for slabs. When the gfp() functions are more friendly
  1571. * towards high-order requests, this should be changed.
  1572. */
  1573. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1574. size_t size, size_t align, unsigned long flags)
  1575. {
  1576. size_t left_over = 0;
  1577. int gfporder;
  1578. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1579. unsigned int num;
  1580. size_t remainder;
  1581. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1582. if (!num)
  1583. continue;
  1584. /* More than offslab_limit objects will cause problems */
  1585. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1586. break;
  1587. /* Found something acceptable - save it away */
  1588. cachep->num = num;
  1589. cachep->gfporder = gfporder;
  1590. left_over = remainder;
  1591. /*
  1592. * A VFS-reclaimable slab tends to have most allocations
  1593. * as GFP_NOFS and we really don't want to have to be allocating
  1594. * higher-order pages when we are unable to shrink dcache.
  1595. */
  1596. if (flags & SLAB_RECLAIM_ACCOUNT)
  1597. break;
  1598. /*
  1599. * Large number of objects is good, but very large slabs are
  1600. * currently bad for the gfp()s.
  1601. */
  1602. if (gfporder >= slab_break_gfp_order)
  1603. break;
  1604. /*
  1605. * Acceptable internal fragmentation?
  1606. */
  1607. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1608. break;
  1609. }
  1610. return left_over;
  1611. }
  1612. static void setup_cpu_cache(struct kmem_cache *cachep)
  1613. {
  1614. if (g_cpucache_up == FULL) {
  1615. enable_cpucache(cachep);
  1616. return;
  1617. }
  1618. if (g_cpucache_up == NONE) {
  1619. /*
  1620. * Note: the first kmem_cache_create must create the cache
  1621. * that's used by kmalloc(24), otherwise the creation of
  1622. * further caches will BUG().
  1623. */
  1624. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1625. /*
  1626. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1627. * the first cache, then we need to set up all its list3s,
  1628. * otherwise the creation of further caches will BUG().
  1629. */
  1630. set_up_list3s(cachep, SIZE_AC);
  1631. if (INDEX_AC == INDEX_L3)
  1632. g_cpucache_up = PARTIAL_L3;
  1633. else
  1634. g_cpucache_up = PARTIAL_AC;
  1635. } else {
  1636. cachep->array[smp_processor_id()] =
  1637. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1638. if (g_cpucache_up == PARTIAL_AC) {
  1639. set_up_list3s(cachep, SIZE_L3);
  1640. g_cpucache_up = PARTIAL_L3;
  1641. } else {
  1642. int node;
  1643. for_each_online_node(node) {
  1644. cachep->nodelists[node] =
  1645. kmalloc_node(sizeof(struct kmem_list3),
  1646. GFP_KERNEL, node);
  1647. BUG_ON(!cachep->nodelists[node]);
  1648. kmem_list3_init(cachep->nodelists[node]);
  1649. }
  1650. }
  1651. }
  1652. cachep->nodelists[numa_node_id()]->next_reap =
  1653. jiffies + REAPTIMEOUT_LIST3 +
  1654. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1655. cpu_cache_get(cachep)->avail = 0;
  1656. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1657. cpu_cache_get(cachep)->batchcount = 1;
  1658. cpu_cache_get(cachep)->touched = 0;
  1659. cachep->batchcount = 1;
  1660. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1661. }
  1662. /**
  1663. * kmem_cache_create - Create a cache.
  1664. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1665. * @size: The size of objects to be created in this cache.
  1666. * @align: The required alignment for the objects.
  1667. * @flags: SLAB flags
  1668. * @ctor: A constructor for the objects.
  1669. * @dtor: A destructor for the objects.
  1670. *
  1671. * Returns a ptr to the cache on success, NULL on failure.
  1672. * Cannot be called within a int, but can be interrupted.
  1673. * The @ctor is run when new pages are allocated by the cache
  1674. * and the @dtor is run before the pages are handed back.
  1675. *
  1676. * @name must be valid until the cache is destroyed. This implies that
  1677. * the module calling this has to destroy the cache before getting unloaded.
  1678. *
  1679. * The flags are
  1680. *
  1681. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1682. * to catch references to uninitialised memory.
  1683. *
  1684. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1685. * for buffer overruns.
  1686. *
  1687. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1688. * cacheline. This can be beneficial if you're counting cycles as closely
  1689. * as davem.
  1690. */
  1691. struct kmem_cache *
  1692. kmem_cache_create (const char *name, size_t size, size_t align,
  1693. unsigned long flags,
  1694. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1695. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1696. {
  1697. size_t left_over, slab_size, ralign;
  1698. struct kmem_cache *cachep = NULL;
  1699. struct list_head *p;
  1700. /*
  1701. * Sanity checks... these are all serious usage bugs.
  1702. */
  1703. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1704. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1705. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1706. name);
  1707. BUG();
  1708. }
  1709. /*
  1710. * Prevent CPUs from coming and going.
  1711. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1712. */
  1713. lock_cpu_hotplug();
  1714. mutex_lock(&cache_chain_mutex);
  1715. list_for_each(p, &cache_chain) {
  1716. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1717. mm_segment_t old_fs = get_fs();
  1718. char tmp;
  1719. int res;
  1720. /*
  1721. * This happens when the module gets unloaded and doesn't
  1722. * destroy its slab cache and no-one else reuses the vmalloc
  1723. * area of the module. Print a warning.
  1724. */
  1725. set_fs(KERNEL_DS);
  1726. res = __get_user(tmp, pc->name);
  1727. set_fs(old_fs);
  1728. if (res) {
  1729. printk("SLAB: cache with size %d has lost its name\n",
  1730. pc->buffer_size);
  1731. continue;
  1732. }
  1733. if (!strcmp(pc->name, name)) {
  1734. printk("kmem_cache_create: duplicate cache %s\n", name);
  1735. dump_stack();
  1736. goto oops;
  1737. }
  1738. }
  1739. #if DEBUG
  1740. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1741. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1742. /* No constructor, but inital state check requested */
  1743. printk(KERN_ERR "%s: No con, but init state check "
  1744. "requested - %s\n", __FUNCTION__, name);
  1745. flags &= ~SLAB_DEBUG_INITIAL;
  1746. }
  1747. #if FORCED_DEBUG
  1748. /*
  1749. * Enable redzoning and last user accounting, except for caches with
  1750. * large objects, if the increased size would increase the object size
  1751. * above the next power of two: caches with object sizes just above a
  1752. * power of two have a significant amount of internal fragmentation.
  1753. */
  1754. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1755. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1756. if (!(flags & SLAB_DESTROY_BY_RCU))
  1757. flags |= SLAB_POISON;
  1758. #endif
  1759. if (flags & SLAB_DESTROY_BY_RCU)
  1760. BUG_ON(flags & SLAB_POISON);
  1761. #endif
  1762. if (flags & SLAB_DESTROY_BY_RCU)
  1763. BUG_ON(dtor);
  1764. /*
  1765. * Always checks flags, a caller might be expecting debug support which
  1766. * isn't available.
  1767. */
  1768. BUG_ON(flags & ~CREATE_MASK);
  1769. /*
  1770. * Check that size is in terms of words. This is needed to avoid
  1771. * unaligned accesses for some archs when redzoning is used, and makes
  1772. * sure any on-slab bufctl's are also correctly aligned.
  1773. */
  1774. if (size & (BYTES_PER_WORD - 1)) {
  1775. size += (BYTES_PER_WORD - 1);
  1776. size &= ~(BYTES_PER_WORD - 1);
  1777. }
  1778. /* calculate the final buffer alignment: */
  1779. /* 1) arch recommendation: can be overridden for debug */
  1780. if (flags & SLAB_HWCACHE_ALIGN) {
  1781. /*
  1782. * Default alignment: as specified by the arch code. Except if
  1783. * an object is really small, then squeeze multiple objects into
  1784. * one cacheline.
  1785. */
  1786. ralign = cache_line_size();
  1787. while (size <= ralign / 2)
  1788. ralign /= 2;
  1789. } else {
  1790. ralign = BYTES_PER_WORD;
  1791. }
  1792. /* 2) arch mandated alignment: disables debug if necessary */
  1793. if (ralign < ARCH_SLAB_MINALIGN) {
  1794. ralign = ARCH_SLAB_MINALIGN;
  1795. if (ralign > BYTES_PER_WORD)
  1796. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1797. }
  1798. /* 3) caller mandated alignment: disables debug if necessary */
  1799. if (ralign < align) {
  1800. ralign = align;
  1801. if (ralign > BYTES_PER_WORD)
  1802. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1803. }
  1804. /*
  1805. * 4) Store it. Note that the debug code below can reduce
  1806. * the alignment to BYTES_PER_WORD.
  1807. */
  1808. align = ralign;
  1809. /* Get cache's description obj. */
  1810. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1811. if (!cachep)
  1812. goto oops;
  1813. #if DEBUG
  1814. cachep->obj_size = size;
  1815. if (flags & SLAB_RED_ZONE) {
  1816. /* redzoning only works with word aligned caches */
  1817. align = BYTES_PER_WORD;
  1818. /* add space for red zone words */
  1819. cachep->obj_offset += BYTES_PER_WORD;
  1820. size += 2 * BYTES_PER_WORD;
  1821. }
  1822. if (flags & SLAB_STORE_USER) {
  1823. /* user store requires word alignment and
  1824. * one word storage behind the end of the real
  1825. * object.
  1826. */
  1827. align = BYTES_PER_WORD;
  1828. size += BYTES_PER_WORD;
  1829. }
  1830. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1831. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1832. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1833. cachep->obj_offset += PAGE_SIZE - size;
  1834. size = PAGE_SIZE;
  1835. }
  1836. #endif
  1837. #endif
  1838. /* Determine if the slab management is 'on' or 'off' slab. */
  1839. if (size >= (PAGE_SIZE >> 3))
  1840. /*
  1841. * Size is large, assume best to place the slab management obj
  1842. * off-slab (should allow better packing of objs).
  1843. */
  1844. flags |= CFLGS_OFF_SLAB;
  1845. size = ALIGN(size, align);
  1846. left_over = calculate_slab_order(cachep, size, align, flags);
  1847. if (!cachep->num) {
  1848. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1849. kmem_cache_free(&cache_cache, cachep);
  1850. cachep = NULL;
  1851. goto oops;
  1852. }
  1853. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1854. + sizeof(struct slab), align);
  1855. /*
  1856. * If the slab has been placed off-slab, and we have enough space then
  1857. * move it on-slab. This is at the expense of any extra colouring.
  1858. */
  1859. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1860. flags &= ~CFLGS_OFF_SLAB;
  1861. left_over -= slab_size;
  1862. }
  1863. if (flags & CFLGS_OFF_SLAB) {
  1864. /* really off slab. No need for manual alignment */
  1865. slab_size =
  1866. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1867. }
  1868. cachep->colour_off = cache_line_size();
  1869. /* Offset must be a multiple of the alignment. */
  1870. if (cachep->colour_off < align)
  1871. cachep->colour_off = align;
  1872. cachep->colour = left_over / cachep->colour_off;
  1873. cachep->slab_size = slab_size;
  1874. cachep->flags = flags;
  1875. cachep->gfpflags = 0;
  1876. if (flags & SLAB_CACHE_DMA)
  1877. cachep->gfpflags |= GFP_DMA;
  1878. cachep->buffer_size = size;
  1879. if (flags & CFLGS_OFF_SLAB)
  1880. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1881. cachep->ctor = ctor;
  1882. cachep->dtor = dtor;
  1883. cachep->name = name;
  1884. setup_cpu_cache(cachep);
  1885. /* cache setup completed, link it into the list */
  1886. list_add(&cachep->next, &cache_chain);
  1887. oops:
  1888. if (!cachep && (flags & SLAB_PANIC))
  1889. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1890. name);
  1891. mutex_unlock(&cache_chain_mutex);
  1892. unlock_cpu_hotplug();
  1893. return cachep;
  1894. }
  1895. EXPORT_SYMBOL(kmem_cache_create);
  1896. #if DEBUG
  1897. static void check_irq_off(void)
  1898. {
  1899. BUG_ON(!irqs_disabled());
  1900. }
  1901. static void check_irq_on(void)
  1902. {
  1903. BUG_ON(irqs_disabled());
  1904. }
  1905. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1906. {
  1907. #ifdef CONFIG_SMP
  1908. check_irq_off();
  1909. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1910. #endif
  1911. }
  1912. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1913. {
  1914. #ifdef CONFIG_SMP
  1915. check_irq_off();
  1916. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1917. #endif
  1918. }
  1919. #else
  1920. #define check_irq_off() do { } while(0)
  1921. #define check_irq_on() do { } while(0)
  1922. #define check_spinlock_acquired(x) do { } while(0)
  1923. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1924. #endif
  1925. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1926. struct array_cache *ac,
  1927. int force, int node);
  1928. static void do_drain(void *arg)
  1929. {
  1930. struct kmem_cache *cachep = arg;
  1931. struct array_cache *ac;
  1932. int node = numa_node_id();
  1933. check_irq_off();
  1934. ac = cpu_cache_get(cachep);
  1935. spin_lock(&cachep->nodelists[node]->list_lock);
  1936. free_block(cachep, ac->entry, ac->avail, node);
  1937. spin_unlock(&cachep->nodelists[node]->list_lock);
  1938. ac->avail = 0;
  1939. }
  1940. static void drain_cpu_caches(struct kmem_cache *cachep)
  1941. {
  1942. struct kmem_list3 *l3;
  1943. int node;
  1944. on_each_cpu(do_drain, cachep, 1, 1);
  1945. check_irq_on();
  1946. for_each_online_node(node) {
  1947. l3 = cachep->nodelists[node];
  1948. if (l3) {
  1949. drain_array(cachep, l3, l3->shared, 1, node);
  1950. if (l3->alien)
  1951. drain_alien_cache(cachep, l3->alien);
  1952. }
  1953. }
  1954. }
  1955. static int __node_shrink(struct kmem_cache *cachep, int node)
  1956. {
  1957. struct slab *slabp;
  1958. struct kmem_list3 *l3 = cachep->nodelists[node];
  1959. int ret;
  1960. for (;;) {
  1961. struct list_head *p;
  1962. p = l3->slabs_free.prev;
  1963. if (p == &l3->slabs_free)
  1964. break;
  1965. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1966. #if DEBUG
  1967. BUG_ON(slabp->inuse);
  1968. #endif
  1969. list_del(&slabp->list);
  1970. l3->free_objects -= cachep->num;
  1971. spin_unlock_irq(&l3->list_lock);
  1972. slab_destroy(cachep, slabp);
  1973. spin_lock_irq(&l3->list_lock);
  1974. }
  1975. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1976. return ret;
  1977. }
  1978. static int __cache_shrink(struct kmem_cache *cachep)
  1979. {
  1980. int ret = 0, i = 0;
  1981. struct kmem_list3 *l3;
  1982. drain_cpu_caches(cachep);
  1983. check_irq_on();
  1984. for_each_online_node(i) {
  1985. l3 = cachep->nodelists[i];
  1986. if (l3) {
  1987. spin_lock_irq(&l3->list_lock);
  1988. ret += __node_shrink(cachep, i);
  1989. spin_unlock_irq(&l3->list_lock);
  1990. }
  1991. }
  1992. return (ret ? 1 : 0);
  1993. }
  1994. /**
  1995. * kmem_cache_shrink - Shrink a cache.
  1996. * @cachep: The cache to shrink.
  1997. *
  1998. * Releases as many slabs as possible for a cache.
  1999. * To help debugging, a zero exit status indicates all slabs were released.
  2000. */
  2001. int kmem_cache_shrink(struct kmem_cache *cachep)
  2002. {
  2003. BUG_ON(!cachep || in_interrupt());
  2004. return __cache_shrink(cachep);
  2005. }
  2006. EXPORT_SYMBOL(kmem_cache_shrink);
  2007. /**
  2008. * kmem_cache_destroy - delete a cache
  2009. * @cachep: the cache to destroy
  2010. *
  2011. * Remove a struct kmem_cache object from the slab cache.
  2012. * Returns 0 on success.
  2013. *
  2014. * It is expected this function will be called by a module when it is
  2015. * unloaded. This will remove the cache completely, and avoid a duplicate
  2016. * cache being allocated each time a module is loaded and unloaded, if the
  2017. * module doesn't have persistent in-kernel storage across loads and unloads.
  2018. *
  2019. * The cache must be empty before calling this function.
  2020. *
  2021. * The caller must guarantee that noone will allocate memory from the cache
  2022. * during the kmem_cache_destroy().
  2023. */
  2024. int kmem_cache_destroy(struct kmem_cache *cachep)
  2025. {
  2026. int i;
  2027. struct kmem_list3 *l3;
  2028. BUG_ON(!cachep || in_interrupt());
  2029. /* Don't let CPUs to come and go */
  2030. lock_cpu_hotplug();
  2031. /* Find the cache in the chain of caches. */
  2032. mutex_lock(&cache_chain_mutex);
  2033. /*
  2034. * the chain is never empty, cache_cache is never destroyed
  2035. */
  2036. list_del(&cachep->next);
  2037. mutex_unlock(&cache_chain_mutex);
  2038. if (__cache_shrink(cachep)) {
  2039. slab_error(cachep, "Can't free all objects");
  2040. mutex_lock(&cache_chain_mutex);
  2041. list_add(&cachep->next, &cache_chain);
  2042. mutex_unlock(&cache_chain_mutex);
  2043. unlock_cpu_hotplug();
  2044. return 1;
  2045. }
  2046. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2047. synchronize_rcu();
  2048. for_each_online_cpu(i)
  2049. kfree(cachep->array[i]);
  2050. /* NUMA: free the list3 structures */
  2051. for_each_online_node(i) {
  2052. l3 = cachep->nodelists[i];
  2053. if (l3) {
  2054. kfree(l3->shared);
  2055. free_alien_cache(l3->alien);
  2056. kfree(l3);
  2057. }
  2058. }
  2059. kmem_cache_free(&cache_cache, cachep);
  2060. unlock_cpu_hotplug();
  2061. return 0;
  2062. }
  2063. EXPORT_SYMBOL(kmem_cache_destroy);
  2064. /* Get the memory for a slab management obj. */
  2065. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2066. int colour_off, gfp_t local_flags,
  2067. int nodeid)
  2068. {
  2069. struct slab *slabp;
  2070. if (OFF_SLAB(cachep)) {
  2071. /* Slab management obj is off-slab. */
  2072. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2073. local_flags, nodeid);
  2074. if (!slabp)
  2075. return NULL;
  2076. } else {
  2077. slabp = objp + colour_off;
  2078. colour_off += cachep->slab_size;
  2079. }
  2080. slabp->inuse = 0;
  2081. slabp->colouroff = colour_off;
  2082. slabp->s_mem = objp + colour_off;
  2083. slabp->nodeid = nodeid;
  2084. return slabp;
  2085. }
  2086. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2087. {
  2088. return (kmem_bufctl_t *) (slabp + 1);
  2089. }
  2090. static void cache_init_objs(struct kmem_cache *cachep,
  2091. struct slab *slabp, unsigned long ctor_flags)
  2092. {
  2093. int i;
  2094. for (i = 0; i < cachep->num; i++) {
  2095. void *objp = index_to_obj(cachep, slabp, i);
  2096. #if DEBUG
  2097. /* need to poison the objs? */
  2098. if (cachep->flags & SLAB_POISON)
  2099. poison_obj(cachep, objp, POISON_FREE);
  2100. if (cachep->flags & SLAB_STORE_USER)
  2101. *dbg_userword(cachep, objp) = NULL;
  2102. if (cachep->flags & SLAB_RED_ZONE) {
  2103. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2104. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2105. }
  2106. /*
  2107. * Constructors are not allowed to allocate memory from the same
  2108. * cache which they are a constructor for. Otherwise, deadlock.
  2109. * They must also be threaded.
  2110. */
  2111. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2112. cachep->ctor(objp + obj_offset(cachep), cachep,
  2113. ctor_flags);
  2114. if (cachep->flags & SLAB_RED_ZONE) {
  2115. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2116. slab_error(cachep, "constructor overwrote the"
  2117. " end of an object");
  2118. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2119. slab_error(cachep, "constructor overwrote the"
  2120. " start of an object");
  2121. }
  2122. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2123. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2124. kernel_map_pages(virt_to_page(objp),
  2125. cachep->buffer_size / PAGE_SIZE, 0);
  2126. #else
  2127. if (cachep->ctor)
  2128. cachep->ctor(objp, cachep, ctor_flags);
  2129. #endif
  2130. slab_bufctl(slabp)[i] = i + 1;
  2131. }
  2132. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2133. slabp->free = 0;
  2134. }
  2135. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2136. {
  2137. if (flags & SLAB_DMA)
  2138. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2139. else
  2140. BUG_ON(cachep->gfpflags & GFP_DMA);
  2141. }
  2142. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2143. int nodeid)
  2144. {
  2145. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2146. kmem_bufctl_t next;
  2147. slabp->inuse++;
  2148. next = slab_bufctl(slabp)[slabp->free];
  2149. #if DEBUG
  2150. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2151. WARN_ON(slabp->nodeid != nodeid);
  2152. #endif
  2153. slabp->free = next;
  2154. return objp;
  2155. }
  2156. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2157. void *objp, int nodeid)
  2158. {
  2159. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2160. #if DEBUG
  2161. /* Verify that the slab belongs to the intended node */
  2162. WARN_ON(slabp->nodeid != nodeid);
  2163. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2164. printk(KERN_ERR "slab: double free detected in cache "
  2165. "'%s', objp %p\n", cachep->name, objp);
  2166. BUG();
  2167. }
  2168. #endif
  2169. slab_bufctl(slabp)[objnr] = slabp->free;
  2170. slabp->free = objnr;
  2171. slabp->inuse--;
  2172. }
  2173. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2174. void *objp)
  2175. {
  2176. int i;
  2177. struct page *page;
  2178. /* Nasty!!!!!! I hope this is OK. */
  2179. page = virt_to_page(objp);
  2180. i = 1;
  2181. if (likely(!PageCompound(page)))
  2182. i <<= cachep->gfporder;
  2183. do {
  2184. page_set_cache(page, cachep);
  2185. page_set_slab(page, slabp);
  2186. page++;
  2187. } while (--i);
  2188. }
  2189. /*
  2190. * Grow (by 1) the number of slabs within a cache. This is called by
  2191. * kmem_cache_alloc() when there are no active objs left in a cache.
  2192. */
  2193. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2194. {
  2195. struct slab *slabp;
  2196. void *objp;
  2197. size_t offset;
  2198. gfp_t local_flags;
  2199. unsigned long ctor_flags;
  2200. struct kmem_list3 *l3;
  2201. /*
  2202. * Be lazy and only check for valid flags here, keeping it out of the
  2203. * critical path in kmem_cache_alloc().
  2204. */
  2205. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2206. if (flags & SLAB_NO_GROW)
  2207. return 0;
  2208. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2209. local_flags = (flags & SLAB_LEVEL_MASK);
  2210. if (!(local_flags & __GFP_WAIT))
  2211. /*
  2212. * Not allowed to sleep. Need to tell a constructor about
  2213. * this - it might need to know...
  2214. */
  2215. ctor_flags |= SLAB_CTOR_ATOMIC;
  2216. /* Take the l3 list lock to change the colour_next on this node */
  2217. check_irq_off();
  2218. l3 = cachep->nodelists[nodeid];
  2219. spin_lock(&l3->list_lock);
  2220. /* Get colour for the slab, and cal the next value. */
  2221. offset = l3->colour_next;
  2222. l3->colour_next++;
  2223. if (l3->colour_next >= cachep->colour)
  2224. l3->colour_next = 0;
  2225. spin_unlock(&l3->list_lock);
  2226. offset *= cachep->colour_off;
  2227. if (local_flags & __GFP_WAIT)
  2228. local_irq_enable();
  2229. /*
  2230. * The test for missing atomic flag is performed here, rather than
  2231. * the more obvious place, simply to reduce the critical path length
  2232. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2233. * will eventually be caught here (where it matters).
  2234. */
  2235. kmem_flagcheck(cachep, flags);
  2236. /*
  2237. * Get mem for the objs. Attempt to allocate a physical page from
  2238. * 'nodeid'.
  2239. */
  2240. objp = kmem_getpages(cachep, flags, nodeid);
  2241. if (!objp)
  2242. goto failed;
  2243. /* Get slab management. */
  2244. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2245. if (!slabp)
  2246. goto opps1;
  2247. slabp->nodeid = nodeid;
  2248. set_slab_attr(cachep, slabp, objp);
  2249. cache_init_objs(cachep, slabp, ctor_flags);
  2250. if (local_flags & __GFP_WAIT)
  2251. local_irq_disable();
  2252. check_irq_off();
  2253. spin_lock(&l3->list_lock);
  2254. /* Make slab active. */
  2255. list_add_tail(&slabp->list, &(l3->slabs_free));
  2256. STATS_INC_GROWN(cachep);
  2257. l3->free_objects += cachep->num;
  2258. spin_unlock(&l3->list_lock);
  2259. return 1;
  2260. opps1:
  2261. kmem_freepages(cachep, objp);
  2262. failed:
  2263. if (local_flags & __GFP_WAIT)
  2264. local_irq_disable();
  2265. return 0;
  2266. }
  2267. #if DEBUG
  2268. /*
  2269. * Perform extra freeing checks:
  2270. * - detect bad pointers.
  2271. * - POISON/RED_ZONE checking
  2272. * - destructor calls, for caches with POISON+dtor
  2273. */
  2274. static void kfree_debugcheck(const void *objp)
  2275. {
  2276. struct page *page;
  2277. if (!virt_addr_valid(objp)) {
  2278. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2279. (unsigned long)objp);
  2280. BUG();
  2281. }
  2282. page = virt_to_page(objp);
  2283. if (!PageSlab(page)) {
  2284. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2285. (unsigned long)objp);
  2286. BUG();
  2287. }
  2288. }
  2289. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2290. void *caller)
  2291. {
  2292. struct page *page;
  2293. unsigned int objnr;
  2294. struct slab *slabp;
  2295. objp -= obj_offset(cachep);
  2296. kfree_debugcheck(objp);
  2297. page = virt_to_page(objp);
  2298. if (page_get_cache(page) != cachep) {
  2299. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2300. "cache %p, got %p\n",
  2301. page_get_cache(page), cachep);
  2302. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2303. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2304. page_get_cache(page)->name);
  2305. WARN_ON(1);
  2306. }
  2307. slabp = page_get_slab(page);
  2308. if (cachep->flags & SLAB_RED_ZONE) {
  2309. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2310. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2311. slab_error(cachep, "double free, or memory outside"
  2312. " object was overwritten");
  2313. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2314. "redzone 2:0x%lx.\n",
  2315. objp, *dbg_redzone1(cachep, objp),
  2316. *dbg_redzone2(cachep, objp));
  2317. }
  2318. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2319. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2320. }
  2321. if (cachep->flags & SLAB_STORE_USER)
  2322. *dbg_userword(cachep, objp) = caller;
  2323. objnr = obj_to_index(cachep, slabp, objp);
  2324. BUG_ON(objnr >= cachep->num);
  2325. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2326. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2327. /*
  2328. * Need to call the slab's constructor so the caller can
  2329. * perform a verify of its state (debugging). Called without
  2330. * the cache-lock held.
  2331. */
  2332. cachep->ctor(objp + obj_offset(cachep),
  2333. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2334. }
  2335. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2336. /* we want to cache poison the object,
  2337. * call the destruction callback
  2338. */
  2339. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2340. }
  2341. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2342. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2343. #endif
  2344. if (cachep->flags & SLAB_POISON) {
  2345. #ifdef CONFIG_DEBUG_PAGEALLOC
  2346. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2347. store_stackinfo(cachep, objp, (unsigned long)caller);
  2348. kernel_map_pages(virt_to_page(objp),
  2349. cachep->buffer_size / PAGE_SIZE, 0);
  2350. } else {
  2351. poison_obj(cachep, objp, POISON_FREE);
  2352. }
  2353. #else
  2354. poison_obj(cachep, objp, POISON_FREE);
  2355. #endif
  2356. }
  2357. return objp;
  2358. }
  2359. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2360. {
  2361. kmem_bufctl_t i;
  2362. int entries = 0;
  2363. /* Check slab's freelist to see if this obj is there. */
  2364. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2365. entries++;
  2366. if (entries > cachep->num || i >= cachep->num)
  2367. goto bad;
  2368. }
  2369. if (entries != cachep->num - slabp->inuse) {
  2370. bad:
  2371. printk(KERN_ERR "slab: Internal list corruption detected in "
  2372. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2373. cachep->name, cachep->num, slabp, slabp->inuse);
  2374. for (i = 0;
  2375. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2376. i++) {
  2377. if (i % 16 == 0)
  2378. printk("\n%03x:", i);
  2379. printk(" %02x", ((unsigned char *)slabp)[i]);
  2380. }
  2381. printk("\n");
  2382. BUG();
  2383. }
  2384. }
  2385. #else
  2386. #define kfree_debugcheck(x) do { } while(0)
  2387. #define cache_free_debugcheck(x,objp,z) (objp)
  2388. #define check_slabp(x,y) do { } while(0)
  2389. #endif
  2390. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2391. {
  2392. int batchcount;
  2393. struct kmem_list3 *l3;
  2394. struct array_cache *ac;
  2395. check_irq_off();
  2396. ac = cpu_cache_get(cachep);
  2397. retry:
  2398. batchcount = ac->batchcount;
  2399. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2400. /*
  2401. * If there was little recent activity on this cache, then
  2402. * perform only a partial refill. Otherwise we could generate
  2403. * refill bouncing.
  2404. */
  2405. batchcount = BATCHREFILL_LIMIT;
  2406. }
  2407. l3 = cachep->nodelists[numa_node_id()];
  2408. BUG_ON(ac->avail > 0 || !l3);
  2409. spin_lock(&l3->list_lock);
  2410. /* See if we can refill from the shared array */
  2411. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2412. goto alloc_done;
  2413. while (batchcount > 0) {
  2414. struct list_head *entry;
  2415. struct slab *slabp;
  2416. /* Get slab alloc is to come from. */
  2417. entry = l3->slabs_partial.next;
  2418. if (entry == &l3->slabs_partial) {
  2419. l3->free_touched = 1;
  2420. entry = l3->slabs_free.next;
  2421. if (entry == &l3->slabs_free)
  2422. goto must_grow;
  2423. }
  2424. slabp = list_entry(entry, struct slab, list);
  2425. check_slabp(cachep, slabp);
  2426. check_spinlock_acquired(cachep);
  2427. while (slabp->inuse < cachep->num && batchcount--) {
  2428. STATS_INC_ALLOCED(cachep);
  2429. STATS_INC_ACTIVE(cachep);
  2430. STATS_SET_HIGH(cachep);
  2431. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2432. numa_node_id());
  2433. }
  2434. check_slabp(cachep, slabp);
  2435. /* move slabp to correct slabp list: */
  2436. list_del(&slabp->list);
  2437. if (slabp->free == BUFCTL_END)
  2438. list_add(&slabp->list, &l3->slabs_full);
  2439. else
  2440. list_add(&slabp->list, &l3->slabs_partial);
  2441. }
  2442. must_grow:
  2443. l3->free_objects -= ac->avail;
  2444. alloc_done:
  2445. spin_unlock(&l3->list_lock);
  2446. if (unlikely(!ac->avail)) {
  2447. int x;
  2448. x = cache_grow(cachep, flags, numa_node_id());
  2449. /* cache_grow can reenable interrupts, then ac could change. */
  2450. ac = cpu_cache_get(cachep);
  2451. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2452. return NULL;
  2453. if (!ac->avail) /* objects refilled by interrupt? */
  2454. goto retry;
  2455. }
  2456. ac->touched = 1;
  2457. return ac->entry[--ac->avail];
  2458. }
  2459. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2460. gfp_t flags)
  2461. {
  2462. might_sleep_if(flags & __GFP_WAIT);
  2463. #if DEBUG
  2464. kmem_flagcheck(cachep, flags);
  2465. #endif
  2466. }
  2467. #if DEBUG
  2468. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2469. gfp_t flags, void *objp, void *caller)
  2470. {
  2471. if (!objp)
  2472. return objp;
  2473. if (cachep->flags & SLAB_POISON) {
  2474. #ifdef CONFIG_DEBUG_PAGEALLOC
  2475. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2476. kernel_map_pages(virt_to_page(objp),
  2477. cachep->buffer_size / PAGE_SIZE, 1);
  2478. else
  2479. check_poison_obj(cachep, objp);
  2480. #else
  2481. check_poison_obj(cachep, objp);
  2482. #endif
  2483. poison_obj(cachep, objp, POISON_INUSE);
  2484. }
  2485. if (cachep->flags & SLAB_STORE_USER)
  2486. *dbg_userword(cachep, objp) = caller;
  2487. if (cachep->flags & SLAB_RED_ZONE) {
  2488. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2489. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2490. slab_error(cachep, "double free, or memory outside"
  2491. " object was overwritten");
  2492. printk(KERN_ERR
  2493. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2494. objp, *dbg_redzone1(cachep, objp),
  2495. *dbg_redzone2(cachep, objp));
  2496. }
  2497. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2498. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2499. }
  2500. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2501. {
  2502. struct slab *slabp;
  2503. unsigned objnr;
  2504. slabp = page_get_slab(virt_to_page(objp));
  2505. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2506. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2507. }
  2508. #endif
  2509. objp += obj_offset(cachep);
  2510. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2511. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2512. if (!(flags & __GFP_WAIT))
  2513. ctor_flags |= SLAB_CTOR_ATOMIC;
  2514. cachep->ctor(objp, cachep, ctor_flags);
  2515. }
  2516. return objp;
  2517. }
  2518. #else
  2519. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2520. #endif
  2521. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2522. {
  2523. void *objp;
  2524. struct array_cache *ac;
  2525. #ifdef CONFIG_NUMA
  2526. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2527. objp = alternate_node_alloc(cachep, flags);
  2528. if (objp != NULL)
  2529. return objp;
  2530. }
  2531. #endif
  2532. check_irq_off();
  2533. ac = cpu_cache_get(cachep);
  2534. if (likely(ac->avail)) {
  2535. STATS_INC_ALLOCHIT(cachep);
  2536. ac->touched = 1;
  2537. objp = ac->entry[--ac->avail];
  2538. } else {
  2539. STATS_INC_ALLOCMISS(cachep);
  2540. objp = cache_alloc_refill(cachep, flags);
  2541. }
  2542. return objp;
  2543. }
  2544. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2545. gfp_t flags, void *caller)
  2546. {
  2547. unsigned long save_flags;
  2548. void *objp;
  2549. cache_alloc_debugcheck_before(cachep, flags);
  2550. local_irq_save(save_flags);
  2551. objp = ____cache_alloc(cachep, flags);
  2552. local_irq_restore(save_flags);
  2553. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2554. caller);
  2555. prefetchw(objp);
  2556. return objp;
  2557. }
  2558. #ifdef CONFIG_NUMA
  2559. /*
  2560. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2561. *
  2562. * If we are in_interrupt, then process context, including cpusets and
  2563. * mempolicy, may not apply and should not be used for allocation policy.
  2564. */
  2565. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2566. {
  2567. int nid_alloc, nid_here;
  2568. if (in_interrupt())
  2569. return NULL;
  2570. nid_alloc = nid_here = numa_node_id();
  2571. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2572. nid_alloc = cpuset_mem_spread_node();
  2573. else if (current->mempolicy)
  2574. nid_alloc = slab_node(current->mempolicy);
  2575. if (nid_alloc != nid_here)
  2576. return __cache_alloc_node(cachep, flags, nid_alloc);
  2577. return NULL;
  2578. }
  2579. /*
  2580. * A interface to enable slab creation on nodeid
  2581. */
  2582. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2583. int nodeid)
  2584. {
  2585. struct list_head *entry;
  2586. struct slab *slabp;
  2587. struct kmem_list3 *l3;
  2588. void *obj;
  2589. int x;
  2590. l3 = cachep->nodelists[nodeid];
  2591. BUG_ON(!l3);
  2592. retry:
  2593. check_irq_off();
  2594. spin_lock(&l3->list_lock);
  2595. entry = l3->slabs_partial.next;
  2596. if (entry == &l3->slabs_partial) {
  2597. l3->free_touched = 1;
  2598. entry = l3->slabs_free.next;
  2599. if (entry == &l3->slabs_free)
  2600. goto must_grow;
  2601. }
  2602. slabp = list_entry(entry, struct slab, list);
  2603. check_spinlock_acquired_node(cachep, nodeid);
  2604. check_slabp(cachep, slabp);
  2605. STATS_INC_NODEALLOCS(cachep);
  2606. STATS_INC_ACTIVE(cachep);
  2607. STATS_SET_HIGH(cachep);
  2608. BUG_ON(slabp->inuse == cachep->num);
  2609. obj = slab_get_obj(cachep, slabp, nodeid);
  2610. check_slabp(cachep, slabp);
  2611. l3->free_objects--;
  2612. /* move slabp to correct slabp list: */
  2613. list_del(&slabp->list);
  2614. if (slabp->free == BUFCTL_END)
  2615. list_add(&slabp->list, &l3->slabs_full);
  2616. else
  2617. list_add(&slabp->list, &l3->slabs_partial);
  2618. spin_unlock(&l3->list_lock);
  2619. goto done;
  2620. must_grow:
  2621. spin_unlock(&l3->list_lock);
  2622. x = cache_grow(cachep, flags, nodeid);
  2623. if (!x)
  2624. return NULL;
  2625. goto retry;
  2626. done:
  2627. return obj;
  2628. }
  2629. #endif
  2630. /*
  2631. * Caller needs to acquire correct kmem_list's list_lock
  2632. */
  2633. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2634. int node)
  2635. {
  2636. int i;
  2637. struct kmem_list3 *l3;
  2638. for (i = 0; i < nr_objects; i++) {
  2639. void *objp = objpp[i];
  2640. struct slab *slabp;
  2641. slabp = virt_to_slab(objp);
  2642. l3 = cachep->nodelists[node];
  2643. list_del(&slabp->list);
  2644. check_spinlock_acquired_node(cachep, node);
  2645. check_slabp(cachep, slabp);
  2646. slab_put_obj(cachep, slabp, objp, node);
  2647. STATS_DEC_ACTIVE(cachep);
  2648. l3->free_objects++;
  2649. check_slabp(cachep, slabp);
  2650. /* fixup slab chains */
  2651. if (slabp->inuse == 0) {
  2652. if (l3->free_objects > l3->free_limit) {
  2653. l3->free_objects -= cachep->num;
  2654. slab_destroy(cachep, slabp);
  2655. } else {
  2656. list_add(&slabp->list, &l3->slabs_free);
  2657. }
  2658. } else {
  2659. /* Unconditionally move a slab to the end of the
  2660. * partial list on free - maximum time for the
  2661. * other objects to be freed, too.
  2662. */
  2663. list_add_tail(&slabp->list, &l3->slabs_partial);
  2664. }
  2665. }
  2666. }
  2667. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2668. {
  2669. int batchcount;
  2670. struct kmem_list3 *l3;
  2671. int node = numa_node_id();
  2672. batchcount = ac->batchcount;
  2673. #if DEBUG
  2674. BUG_ON(!batchcount || batchcount > ac->avail);
  2675. #endif
  2676. check_irq_off();
  2677. l3 = cachep->nodelists[node];
  2678. spin_lock(&l3->list_lock);
  2679. if (l3->shared) {
  2680. struct array_cache *shared_array = l3->shared;
  2681. int max = shared_array->limit - shared_array->avail;
  2682. if (max) {
  2683. if (batchcount > max)
  2684. batchcount = max;
  2685. memcpy(&(shared_array->entry[shared_array->avail]),
  2686. ac->entry, sizeof(void *) * batchcount);
  2687. shared_array->avail += batchcount;
  2688. goto free_done;
  2689. }
  2690. }
  2691. free_block(cachep, ac->entry, batchcount, node);
  2692. free_done:
  2693. #if STATS
  2694. {
  2695. int i = 0;
  2696. struct list_head *p;
  2697. p = l3->slabs_free.next;
  2698. while (p != &(l3->slabs_free)) {
  2699. struct slab *slabp;
  2700. slabp = list_entry(p, struct slab, list);
  2701. BUG_ON(slabp->inuse);
  2702. i++;
  2703. p = p->next;
  2704. }
  2705. STATS_SET_FREEABLE(cachep, i);
  2706. }
  2707. #endif
  2708. spin_unlock(&l3->list_lock);
  2709. ac->avail -= batchcount;
  2710. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2711. }
  2712. /*
  2713. * Release an obj back to its cache. If the obj has a constructed state, it must
  2714. * be in this state _before_ it is released. Called with disabled ints.
  2715. */
  2716. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2717. {
  2718. struct array_cache *ac = cpu_cache_get(cachep);
  2719. check_irq_off();
  2720. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2721. /* Make sure we are not freeing a object from another
  2722. * node to the array cache on this cpu.
  2723. */
  2724. #ifdef CONFIG_NUMA
  2725. {
  2726. struct slab *slabp;
  2727. slabp = virt_to_slab(objp);
  2728. if (unlikely(slabp->nodeid != numa_node_id())) {
  2729. struct array_cache *alien = NULL;
  2730. int nodeid = slabp->nodeid;
  2731. struct kmem_list3 *l3;
  2732. l3 = cachep->nodelists[numa_node_id()];
  2733. STATS_INC_NODEFREES(cachep);
  2734. if (l3->alien && l3->alien[nodeid]) {
  2735. alien = l3->alien[nodeid];
  2736. spin_lock(&alien->lock);
  2737. if (unlikely(alien->avail == alien->limit)) {
  2738. STATS_INC_ACOVERFLOW(cachep);
  2739. __drain_alien_cache(cachep,
  2740. alien, nodeid);
  2741. }
  2742. alien->entry[alien->avail++] = objp;
  2743. spin_unlock(&alien->lock);
  2744. } else {
  2745. spin_lock(&(cachep->nodelists[nodeid])->
  2746. list_lock);
  2747. free_block(cachep, &objp, 1, nodeid);
  2748. spin_unlock(&(cachep->nodelists[nodeid])->
  2749. list_lock);
  2750. }
  2751. return;
  2752. }
  2753. }
  2754. #endif
  2755. if (likely(ac->avail < ac->limit)) {
  2756. STATS_INC_FREEHIT(cachep);
  2757. ac->entry[ac->avail++] = objp;
  2758. return;
  2759. } else {
  2760. STATS_INC_FREEMISS(cachep);
  2761. cache_flusharray(cachep, ac);
  2762. ac->entry[ac->avail++] = objp;
  2763. }
  2764. }
  2765. /**
  2766. * kmem_cache_alloc - Allocate an object
  2767. * @cachep: The cache to allocate from.
  2768. * @flags: See kmalloc().
  2769. *
  2770. * Allocate an object from this cache. The flags are only relevant
  2771. * if the cache has no available objects.
  2772. */
  2773. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2774. {
  2775. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2776. }
  2777. EXPORT_SYMBOL(kmem_cache_alloc);
  2778. /**
  2779. * kmem_cache_alloc - Allocate an object. The memory is set to zero.
  2780. * @cache: The cache to allocate from.
  2781. * @flags: See kmalloc().
  2782. *
  2783. * Allocate an object from this cache and set the allocated memory to zero.
  2784. * The flags are only relevant if the cache has no available objects.
  2785. */
  2786. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2787. {
  2788. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2789. if (ret)
  2790. memset(ret, 0, obj_size(cache));
  2791. return ret;
  2792. }
  2793. EXPORT_SYMBOL(kmem_cache_zalloc);
  2794. /**
  2795. * kmem_ptr_validate - check if an untrusted pointer might
  2796. * be a slab entry.
  2797. * @cachep: the cache we're checking against
  2798. * @ptr: pointer to validate
  2799. *
  2800. * This verifies that the untrusted pointer looks sane:
  2801. * it is _not_ a guarantee that the pointer is actually
  2802. * part of the slab cache in question, but it at least
  2803. * validates that the pointer can be dereferenced and
  2804. * looks half-way sane.
  2805. *
  2806. * Currently only used for dentry validation.
  2807. */
  2808. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2809. {
  2810. unsigned long addr = (unsigned long)ptr;
  2811. unsigned long min_addr = PAGE_OFFSET;
  2812. unsigned long align_mask = BYTES_PER_WORD - 1;
  2813. unsigned long size = cachep->buffer_size;
  2814. struct page *page;
  2815. if (unlikely(addr < min_addr))
  2816. goto out;
  2817. if (unlikely(addr > (unsigned long)high_memory - size))
  2818. goto out;
  2819. if (unlikely(addr & align_mask))
  2820. goto out;
  2821. if (unlikely(!kern_addr_valid(addr)))
  2822. goto out;
  2823. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2824. goto out;
  2825. page = virt_to_page(ptr);
  2826. if (unlikely(!PageSlab(page)))
  2827. goto out;
  2828. if (unlikely(page_get_cache(page) != cachep))
  2829. goto out;
  2830. return 1;
  2831. out:
  2832. return 0;
  2833. }
  2834. #ifdef CONFIG_NUMA
  2835. /**
  2836. * kmem_cache_alloc_node - Allocate an object on the specified node
  2837. * @cachep: The cache to allocate from.
  2838. * @flags: See kmalloc().
  2839. * @nodeid: node number of the target node.
  2840. *
  2841. * Identical to kmem_cache_alloc, except that this function is slow
  2842. * and can sleep. And it will allocate memory on the given node, which
  2843. * can improve the performance for cpu bound structures.
  2844. * New and improved: it will now make sure that the object gets
  2845. * put on the correct node list so that there is no false sharing.
  2846. */
  2847. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2848. {
  2849. unsigned long save_flags;
  2850. void *ptr;
  2851. cache_alloc_debugcheck_before(cachep, flags);
  2852. local_irq_save(save_flags);
  2853. if (nodeid == -1 || nodeid == numa_node_id() ||
  2854. !cachep->nodelists[nodeid])
  2855. ptr = ____cache_alloc(cachep, flags);
  2856. else
  2857. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2858. local_irq_restore(save_flags);
  2859. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2860. __builtin_return_address(0));
  2861. return ptr;
  2862. }
  2863. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2864. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2865. {
  2866. struct kmem_cache *cachep;
  2867. cachep = kmem_find_general_cachep(size, flags);
  2868. if (unlikely(cachep == NULL))
  2869. return NULL;
  2870. return kmem_cache_alloc_node(cachep, flags, node);
  2871. }
  2872. EXPORT_SYMBOL(kmalloc_node);
  2873. #endif
  2874. /**
  2875. * kmalloc - allocate memory
  2876. * @size: how many bytes of memory are required.
  2877. * @flags: the type of memory to allocate.
  2878. * @caller: function caller for debug tracking of the caller
  2879. *
  2880. * kmalloc is the normal method of allocating memory
  2881. * in the kernel.
  2882. *
  2883. * The @flags argument may be one of:
  2884. *
  2885. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2886. *
  2887. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2888. *
  2889. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2890. *
  2891. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2892. * must be suitable for DMA. This can mean different things on different
  2893. * platforms. For example, on i386, it means that the memory must come
  2894. * from the first 16MB.
  2895. */
  2896. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2897. void *caller)
  2898. {
  2899. struct kmem_cache *cachep;
  2900. /* If you want to save a few bytes .text space: replace
  2901. * __ with kmem_.
  2902. * Then kmalloc uses the uninlined functions instead of the inline
  2903. * functions.
  2904. */
  2905. cachep = __find_general_cachep(size, flags);
  2906. if (unlikely(cachep == NULL))
  2907. return NULL;
  2908. return __cache_alloc(cachep, flags, caller);
  2909. }
  2910. void *__kmalloc(size_t size, gfp_t flags)
  2911. {
  2912. #ifndef CONFIG_DEBUG_SLAB
  2913. return __do_kmalloc(size, flags, NULL);
  2914. #else
  2915. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2916. #endif
  2917. }
  2918. EXPORT_SYMBOL(__kmalloc);
  2919. #ifdef CONFIG_DEBUG_SLAB
  2920. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2921. {
  2922. return __do_kmalloc(size, flags, caller);
  2923. }
  2924. EXPORT_SYMBOL(__kmalloc_track_caller);
  2925. #endif
  2926. #ifdef CONFIG_SMP
  2927. /**
  2928. * __alloc_percpu - allocate one copy of the object for every present
  2929. * cpu in the system, zeroing them.
  2930. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2931. *
  2932. * @size: how many bytes of memory are required.
  2933. */
  2934. void *__alloc_percpu(size_t size)
  2935. {
  2936. int i;
  2937. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2938. if (!pdata)
  2939. return NULL;
  2940. /*
  2941. * Cannot use for_each_online_cpu since a cpu may come online
  2942. * and we have no way of figuring out how to fix the array
  2943. * that we have allocated then....
  2944. */
  2945. for_each_possible_cpu(i) {
  2946. int node = cpu_to_node(i);
  2947. if (node_online(node))
  2948. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2949. else
  2950. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2951. if (!pdata->ptrs[i])
  2952. goto unwind_oom;
  2953. memset(pdata->ptrs[i], 0, size);
  2954. }
  2955. /* Catch derefs w/o wrappers */
  2956. return (void *)(~(unsigned long)pdata);
  2957. unwind_oom:
  2958. while (--i >= 0) {
  2959. if (!cpu_possible(i))
  2960. continue;
  2961. kfree(pdata->ptrs[i]);
  2962. }
  2963. kfree(pdata);
  2964. return NULL;
  2965. }
  2966. EXPORT_SYMBOL(__alloc_percpu);
  2967. #endif
  2968. /**
  2969. * kmem_cache_free - Deallocate an object
  2970. * @cachep: The cache the allocation was from.
  2971. * @objp: The previously allocated object.
  2972. *
  2973. * Free an object which was previously allocated from this
  2974. * cache.
  2975. */
  2976. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2977. {
  2978. unsigned long flags;
  2979. local_irq_save(flags);
  2980. __cache_free(cachep, objp);
  2981. local_irq_restore(flags);
  2982. }
  2983. EXPORT_SYMBOL(kmem_cache_free);
  2984. /**
  2985. * kfree - free previously allocated memory
  2986. * @objp: pointer returned by kmalloc.
  2987. *
  2988. * If @objp is NULL, no operation is performed.
  2989. *
  2990. * Don't free memory not originally allocated by kmalloc()
  2991. * or you will run into trouble.
  2992. */
  2993. void kfree(const void *objp)
  2994. {
  2995. struct kmem_cache *c;
  2996. unsigned long flags;
  2997. if (unlikely(!objp))
  2998. return;
  2999. local_irq_save(flags);
  3000. kfree_debugcheck(objp);
  3001. c = virt_to_cache(objp);
  3002. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  3003. __cache_free(c, (void *)objp);
  3004. local_irq_restore(flags);
  3005. }
  3006. EXPORT_SYMBOL(kfree);
  3007. #ifdef CONFIG_SMP
  3008. /**
  3009. * free_percpu - free previously allocated percpu memory
  3010. * @objp: pointer returned by alloc_percpu.
  3011. *
  3012. * Don't free memory not originally allocated by alloc_percpu()
  3013. * The complemented objp is to check for that.
  3014. */
  3015. void free_percpu(const void *objp)
  3016. {
  3017. int i;
  3018. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3019. /*
  3020. * We allocate for all cpus so we cannot use for online cpu here.
  3021. */
  3022. for_each_possible_cpu(i)
  3023. kfree(p->ptrs[i]);
  3024. kfree(p);
  3025. }
  3026. EXPORT_SYMBOL(free_percpu);
  3027. #endif
  3028. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3029. {
  3030. return obj_size(cachep);
  3031. }
  3032. EXPORT_SYMBOL(kmem_cache_size);
  3033. const char *kmem_cache_name(struct kmem_cache *cachep)
  3034. {
  3035. return cachep->name;
  3036. }
  3037. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3038. /*
  3039. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3040. */
  3041. static int alloc_kmemlist(struct kmem_cache *cachep)
  3042. {
  3043. int node;
  3044. struct kmem_list3 *l3;
  3045. struct array_cache *new_shared;
  3046. struct array_cache **new_alien;
  3047. for_each_online_node(node) {
  3048. new_alien = alloc_alien_cache(node, cachep->limit);
  3049. if (!new_alien)
  3050. goto fail;
  3051. new_shared = alloc_arraycache(node,
  3052. cachep->shared*cachep->batchcount,
  3053. 0xbaadf00d);
  3054. if (!new_shared) {
  3055. free_alien_cache(new_alien);
  3056. goto fail;
  3057. }
  3058. l3 = cachep->nodelists[node];
  3059. if (l3) {
  3060. struct array_cache *shared = l3->shared;
  3061. spin_lock_irq(&l3->list_lock);
  3062. if (shared)
  3063. free_block(cachep, shared->entry,
  3064. shared->avail, node);
  3065. l3->shared = new_shared;
  3066. if (!l3->alien) {
  3067. l3->alien = new_alien;
  3068. new_alien = NULL;
  3069. }
  3070. l3->free_limit = (1 + nr_cpus_node(node)) *
  3071. cachep->batchcount + cachep->num;
  3072. spin_unlock_irq(&l3->list_lock);
  3073. kfree(shared);
  3074. free_alien_cache(new_alien);
  3075. continue;
  3076. }
  3077. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3078. if (!l3) {
  3079. free_alien_cache(new_alien);
  3080. kfree(new_shared);
  3081. goto fail;
  3082. }
  3083. kmem_list3_init(l3);
  3084. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3085. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3086. l3->shared = new_shared;
  3087. l3->alien = new_alien;
  3088. l3->free_limit = (1 + nr_cpus_node(node)) *
  3089. cachep->batchcount + cachep->num;
  3090. cachep->nodelists[node] = l3;
  3091. }
  3092. return 0;
  3093. fail:
  3094. if (!cachep->next.next) {
  3095. /* Cache is not active yet. Roll back what we did */
  3096. node--;
  3097. while (node >= 0) {
  3098. if (cachep->nodelists[node]) {
  3099. l3 = cachep->nodelists[node];
  3100. kfree(l3->shared);
  3101. free_alien_cache(l3->alien);
  3102. kfree(l3);
  3103. cachep->nodelists[node] = NULL;
  3104. }
  3105. node--;
  3106. }
  3107. }
  3108. return -ENOMEM;
  3109. }
  3110. struct ccupdate_struct {
  3111. struct kmem_cache *cachep;
  3112. struct array_cache *new[NR_CPUS];
  3113. };
  3114. static void do_ccupdate_local(void *info)
  3115. {
  3116. struct ccupdate_struct *new = info;
  3117. struct array_cache *old;
  3118. check_irq_off();
  3119. old = cpu_cache_get(new->cachep);
  3120. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3121. new->new[smp_processor_id()] = old;
  3122. }
  3123. /* Always called with the cache_chain_mutex held */
  3124. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3125. int batchcount, int shared)
  3126. {
  3127. struct ccupdate_struct new;
  3128. int i, err;
  3129. memset(&new.new, 0, sizeof(new.new));
  3130. for_each_online_cpu(i) {
  3131. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3132. batchcount);
  3133. if (!new.new[i]) {
  3134. for (i--; i >= 0; i--)
  3135. kfree(new.new[i]);
  3136. return -ENOMEM;
  3137. }
  3138. }
  3139. new.cachep = cachep;
  3140. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3141. check_irq_on();
  3142. cachep->batchcount = batchcount;
  3143. cachep->limit = limit;
  3144. cachep->shared = shared;
  3145. for_each_online_cpu(i) {
  3146. struct array_cache *ccold = new.new[i];
  3147. if (!ccold)
  3148. continue;
  3149. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3150. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3151. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3152. kfree(ccold);
  3153. }
  3154. err = alloc_kmemlist(cachep);
  3155. if (err) {
  3156. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3157. cachep->name, -err);
  3158. BUG();
  3159. }
  3160. return 0;
  3161. }
  3162. /* Called with cache_chain_mutex held always */
  3163. static void enable_cpucache(struct kmem_cache *cachep)
  3164. {
  3165. int err;
  3166. int limit, shared;
  3167. /*
  3168. * The head array serves three purposes:
  3169. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3170. * - reduce the number of spinlock operations.
  3171. * - reduce the number of linked list operations on the slab and
  3172. * bufctl chains: array operations are cheaper.
  3173. * The numbers are guessed, we should auto-tune as described by
  3174. * Bonwick.
  3175. */
  3176. if (cachep->buffer_size > 131072)
  3177. limit = 1;
  3178. else if (cachep->buffer_size > PAGE_SIZE)
  3179. limit = 8;
  3180. else if (cachep->buffer_size > 1024)
  3181. limit = 24;
  3182. else if (cachep->buffer_size > 256)
  3183. limit = 54;
  3184. else
  3185. limit = 120;
  3186. /*
  3187. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3188. * allocation behaviour: Most allocs on one cpu, most free operations
  3189. * on another cpu. For these cases, an efficient object passing between
  3190. * cpus is necessary. This is provided by a shared array. The array
  3191. * replaces Bonwick's magazine layer.
  3192. * On uniprocessor, it's functionally equivalent (but less efficient)
  3193. * to a larger limit. Thus disabled by default.
  3194. */
  3195. shared = 0;
  3196. #ifdef CONFIG_SMP
  3197. if (cachep->buffer_size <= PAGE_SIZE)
  3198. shared = 8;
  3199. #endif
  3200. #if DEBUG
  3201. /*
  3202. * With debugging enabled, large batchcount lead to excessively long
  3203. * periods with disabled local interrupts. Limit the batchcount
  3204. */
  3205. if (limit > 32)
  3206. limit = 32;
  3207. #endif
  3208. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3209. if (err)
  3210. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3211. cachep->name, -err);
  3212. }
  3213. /*
  3214. * Drain an array if it contains any elements taking the l3 lock only if
  3215. * necessary. Note that the l3 listlock also protects the array_cache
  3216. * if drain_array() is used on the shared array.
  3217. */
  3218. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3219. struct array_cache *ac, int force, int node)
  3220. {
  3221. int tofree;
  3222. if (!ac || !ac->avail)
  3223. return;
  3224. if (ac->touched && !force) {
  3225. ac->touched = 0;
  3226. } else {
  3227. spin_lock_irq(&l3->list_lock);
  3228. if (ac->avail) {
  3229. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3230. if (tofree > ac->avail)
  3231. tofree = (ac->avail + 1) / 2;
  3232. free_block(cachep, ac->entry, tofree, node);
  3233. ac->avail -= tofree;
  3234. memmove(ac->entry, &(ac->entry[tofree]),
  3235. sizeof(void *) * ac->avail);
  3236. }
  3237. spin_unlock_irq(&l3->list_lock);
  3238. }
  3239. }
  3240. /**
  3241. * cache_reap - Reclaim memory from caches.
  3242. * @unused: unused parameter
  3243. *
  3244. * Called from workqueue/eventd every few seconds.
  3245. * Purpose:
  3246. * - clear the per-cpu caches for this CPU.
  3247. * - return freeable pages to the main free memory pool.
  3248. *
  3249. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3250. * again on the next iteration.
  3251. */
  3252. static void cache_reap(void *unused)
  3253. {
  3254. struct list_head *walk;
  3255. struct kmem_list3 *l3;
  3256. int node = numa_node_id();
  3257. if (!mutex_trylock(&cache_chain_mutex)) {
  3258. /* Give up. Setup the next iteration. */
  3259. schedule_delayed_work(&__get_cpu_var(reap_work),
  3260. REAPTIMEOUT_CPUC);
  3261. return;
  3262. }
  3263. list_for_each(walk, &cache_chain) {
  3264. struct kmem_cache *searchp;
  3265. struct list_head *p;
  3266. int tofree;
  3267. struct slab *slabp;
  3268. searchp = list_entry(walk, struct kmem_cache, next);
  3269. check_irq_on();
  3270. /*
  3271. * We only take the l3 lock if absolutely necessary and we
  3272. * have established with reasonable certainty that
  3273. * we can do some work if the lock was obtained.
  3274. */
  3275. l3 = searchp->nodelists[node];
  3276. reap_alien(searchp, l3);
  3277. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3278. /*
  3279. * These are racy checks but it does not matter
  3280. * if we skip one check or scan twice.
  3281. */
  3282. if (time_after(l3->next_reap, jiffies))
  3283. goto next;
  3284. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3285. drain_array(searchp, l3, l3->shared, 0, node);
  3286. if (l3->free_touched) {
  3287. l3->free_touched = 0;
  3288. goto next;
  3289. }
  3290. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3291. (5 * searchp->num);
  3292. do {
  3293. /*
  3294. * Do not lock if there are no free blocks.
  3295. */
  3296. if (list_empty(&l3->slabs_free))
  3297. break;
  3298. spin_lock_irq(&l3->list_lock);
  3299. p = l3->slabs_free.next;
  3300. if (p == &(l3->slabs_free)) {
  3301. spin_unlock_irq(&l3->list_lock);
  3302. break;
  3303. }
  3304. slabp = list_entry(p, struct slab, list);
  3305. BUG_ON(slabp->inuse);
  3306. list_del(&slabp->list);
  3307. STATS_INC_REAPED(searchp);
  3308. /*
  3309. * Safe to drop the lock. The slab is no longer linked
  3310. * to the cache. searchp cannot disappear, we hold
  3311. * cache_chain_lock
  3312. */
  3313. l3->free_objects -= searchp->num;
  3314. spin_unlock_irq(&l3->list_lock);
  3315. slab_destroy(searchp, slabp);
  3316. } while (--tofree > 0);
  3317. next:
  3318. cond_resched();
  3319. }
  3320. check_irq_on();
  3321. mutex_unlock(&cache_chain_mutex);
  3322. next_reap_node();
  3323. /* Set up the next iteration */
  3324. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3325. }
  3326. #ifdef CONFIG_PROC_FS
  3327. static void print_slabinfo_header(struct seq_file *m)
  3328. {
  3329. /*
  3330. * Output format version, so at least we can change it
  3331. * without _too_ many complaints.
  3332. */
  3333. #if STATS
  3334. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3335. #else
  3336. seq_puts(m, "slabinfo - version: 2.1\n");
  3337. #endif
  3338. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3339. "<objperslab> <pagesperslab>");
  3340. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3341. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3342. #if STATS
  3343. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3344. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3345. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3346. #endif
  3347. seq_putc(m, '\n');
  3348. }
  3349. static void *s_start(struct seq_file *m, loff_t *pos)
  3350. {
  3351. loff_t n = *pos;
  3352. struct list_head *p;
  3353. mutex_lock(&cache_chain_mutex);
  3354. if (!n)
  3355. print_slabinfo_header(m);
  3356. p = cache_chain.next;
  3357. while (n--) {
  3358. p = p->next;
  3359. if (p == &cache_chain)
  3360. return NULL;
  3361. }
  3362. return list_entry(p, struct kmem_cache, next);
  3363. }
  3364. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3365. {
  3366. struct kmem_cache *cachep = p;
  3367. ++*pos;
  3368. return cachep->next.next == &cache_chain ?
  3369. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3370. }
  3371. static void s_stop(struct seq_file *m, void *p)
  3372. {
  3373. mutex_unlock(&cache_chain_mutex);
  3374. }
  3375. static int s_show(struct seq_file *m, void *p)
  3376. {
  3377. struct kmem_cache *cachep = p;
  3378. struct list_head *q;
  3379. struct slab *slabp;
  3380. unsigned long active_objs;
  3381. unsigned long num_objs;
  3382. unsigned long active_slabs = 0;
  3383. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3384. const char *name;
  3385. char *error = NULL;
  3386. int node;
  3387. struct kmem_list3 *l3;
  3388. active_objs = 0;
  3389. num_slabs = 0;
  3390. for_each_online_node(node) {
  3391. l3 = cachep->nodelists[node];
  3392. if (!l3)
  3393. continue;
  3394. check_irq_on();
  3395. spin_lock_irq(&l3->list_lock);
  3396. list_for_each(q, &l3->slabs_full) {
  3397. slabp = list_entry(q, struct slab, list);
  3398. if (slabp->inuse != cachep->num && !error)
  3399. error = "slabs_full accounting error";
  3400. active_objs += cachep->num;
  3401. active_slabs++;
  3402. }
  3403. list_for_each(q, &l3->slabs_partial) {
  3404. slabp = list_entry(q, struct slab, list);
  3405. if (slabp->inuse == cachep->num && !error)
  3406. error = "slabs_partial inuse accounting error";
  3407. if (!slabp->inuse && !error)
  3408. error = "slabs_partial/inuse accounting error";
  3409. active_objs += slabp->inuse;
  3410. active_slabs++;
  3411. }
  3412. list_for_each(q, &l3->slabs_free) {
  3413. slabp = list_entry(q, struct slab, list);
  3414. if (slabp->inuse && !error)
  3415. error = "slabs_free/inuse accounting error";
  3416. num_slabs++;
  3417. }
  3418. free_objects += l3->free_objects;
  3419. if (l3->shared)
  3420. shared_avail += l3->shared->avail;
  3421. spin_unlock_irq(&l3->list_lock);
  3422. }
  3423. num_slabs += active_slabs;
  3424. num_objs = num_slabs * cachep->num;
  3425. if (num_objs - active_objs != free_objects && !error)
  3426. error = "free_objects accounting error";
  3427. name = cachep->name;
  3428. if (error)
  3429. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3430. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3431. name, active_objs, num_objs, cachep->buffer_size,
  3432. cachep->num, (1 << cachep->gfporder));
  3433. seq_printf(m, " : tunables %4u %4u %4u",
  3434. cachep->limit, cachep->batchcount, cachep->shared);
  3435. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3436. active_slabs, num_slabs, shared_avail);
  3437. #if STATS
  3438. { /* list3 stats */
  3439. unsigned long high = cachep->high_mark;
  3440. unsigned long allocs = cachep->num_allocations;
  3441. unsigned long grown = cachep->grown;
  3442. unsigned long reaped = cachep->reaped;
  3443. unsigned long errors = cachep->errors;
  3444. unsigned long max_freeable = cachep->max_freeable;
  3445. unsigned long node_allocs = cachep->node_allocs;
  3446. unsigned long node_frees = cachep->node_frees;
  3447. unsigned long overflows = cachep->node_overflow;
  3448. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3449. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3450. reaped, errors, max_freeable, node_allocs,
  3451. node_frees, overflows);
  3452. }
  3453. /* cpu stats */
  3454. {
  3455. unsigned long allochit = atomic_read(&cachep->allochit);
  3456. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3457. unsigned long freehit = atomic_read(&cachep->freehit);
  3458. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3459. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3460. allochit, allocmiss, freehit, freemiss);
  3461. }
  3462. #endif
  3463. seq_putc(m, '\n');
  3464. return 0;
  3465. }
  3466. /*
  3467. * slabinfo_op - iterator that generates /proc/slabinfo
  3468. *
  3469. * Output layout:
  3470. * cache-name
  3471. * num-active-objs
  3472. * total-objs
  3473. * object size
  3474. * num-active-slabs
  3475. * total-slabs
  3476. * num-pages-per-slab
  3477. * + further values on SMP and with statistics enabled
  3478. */
  3479. struct seq_operations slabinfo_op = {
  3480. .start = s_start,
  3481. .next = s_next,
  3482. .stop = s_stop,
  3483. .show = s_show,
  3484. };
  3485. #define MAX_SLABINFO_WRITE 128
  3486. /**
  3487. * slabinfo_write - Tuning for the slab allocator
  3488. * @file: unused
  3489. * @buffer: user buffer
  3490. * @count: data length
  3491. * @ppos: unused
  3492. */
  3493. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3494. size_t count, loff_t *ppos)
  3495. {
  3496. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3497. int limit, batchcount, shared, res;
  3498. struct list_head *p;
  3499. if (count > MAX_SLABINFO_WRITE)
  3500. return -EINVAL;
  3501. if (copy_from_user(&kbuf, buffer, count))
  3502. return -EFAULT;
  3503. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3504. tmp = strchr(kbuf, ' ');
  3505. if (!tmp)
  3506. return -EINVAL;
  3507. *tmp = '\0';
  3508. tmp++;
  3509. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3510. return -EINVAL;
  3511. /* Find the cache in the chain of caches. */
  3512. mutex_lock(&cache_chain_mutex);
  3513. res = -EINVAL;
  3514. list_for_each(p, &cache_chain) {
  3515. struct kmem_cache *cachep;
  3516. cachep = list_entry(p, struct kmem_cache, next);
  3517. if (!strcmp(cachep->name, kbuf)) {
  3518. if (limit < 1 || batchcount < 1 ||
  3519. batchcount > limit || shared < 0) {
  3520. res = 0;
  3521. } else {
  3522. res = do_tune_cpucache(cachep, limit,
  3523. batchcount, shared);
  3524. }
  3525. break;
  3526. }
  3527. }
  3528. mutex_unlock(&cache_chain_mutex);
  3529. if (res >= 0)
  3530. res = count;
  3531. return res;
  3532. }
  3533. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3534. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3535. {
  3536. loff_t n = *pos;
  3537. struct list_head *p;
  3538. mutex_lock(&cache_chain_mutex);
  3539. p = cache_chain.next;
  3540. while (n--) {
  3541. p = p->next;
  3542. if (p == &cache_chain)
  3543. return NULL;
  3544. }
  3545. return list_entry(p, struct kmem_cache, next);
  3546. }
  3547. static inline int add_caller(unsigned long *n, unsigned long v)
  3548. {
  3549. unsigned long *p;
  3550. int l;
  3551. if (!v)
  3552. return 1;
  3553. l = n[1];
  3554. p = n + 2;
  3555. while (l) {
  3556. int i = l/2;
  3557. unsigned long *q = p + 2 * i;
  3558. if (*q == v) {
  3559. q[1]++;
  3560. return 1;
  3561. }
  3562. if (*q > v) {
  3563. l = i;
  3564. } else {
  3565. p = q + 2;
  3566. l -= i + 1;
  3567. }
  3568. }
  3569. if (++n[1] == n[0])
  3570. return 0;
  3571. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3572. p[0] = v;
  3573. p[1] = 1;
  3574. return 1;
  3575. }
  3576. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3577. {
  3578. void *p;
  3579. int i;
  3580. if (n[0] == n[1])
  3581. return;
  3582. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3583. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3584. continue;
  3585. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3586. return;
  3587. }
  3588. }
  3589. static void show_symbol(struct seq_file *m, unsigned long address)
  3590. {
  3591. #ifdef CONFIG_KALLSYMS
  3592. char *modname;
  3593. const char *name;
  3594. unsigned long offset, size;
  3595. char namebuf[KSYM_NAME_LEN+1];
  3596. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3597. if (name) {
  3598. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3599. if (modname)
  3600. seq_printf(m, " [%s]", modname);
  3601. return;
  3602. }
  3603. #endif
  3604. seq_printf(m, "%p", (void *)address);
  3605. }
  3606. static int leaks_show(struct seq_file *m, void *p)
  3607. {
  3608. struct kmem_cache *cachep = p;
  3609. struct list_head *q;
  3610. struct slab *slabp;
  3611. struct kmem_list3 *l3;
  3612. const char *name;
  3613. unsigned long *n = m->private;
  3614. int node;
  3615. int i;
  3616. if (!(cachep->flags & SLAB_STORE_USER))
  3617. return 0;
  3618. if (!(cachep->flags & SLAB_RED_ZONE))
  3619. return 0;
  3620. /* OK, we can do it */
  3621. n[1] = 0;
  3622. for_each_online_node(node) {
  3623. l3 = cachep->nodelists[node];
  3624. if (!l3)
  3625. continue;
  3626. check_irq_on();
  3627. spin_lock_irq(&l3->list_lock);
  3628. list_for_each(q, &l3->slabs_full) {
  3629. slabp = list_entry(q, struct slab, list);
  3630. handle_slab(n, cachep, slabp);
  3631. }
  3632. list_for_each(q, &l3->slabs_partial) {
  3633. slabp = list_entry(q, struct slab, list);
  3634. handle_slab(n, cachep, slabp);
  3635. }
  3636. spin_unlock_irq(&l3->list_lock);
  3637. }
  3638. name = cachep->name;
  3639. if (n[0] == n[1]) {
  3640. /* Increase the buffer size */
  3641. mutex_unlock(&cache_chain_mutex);
  3642. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3643. if (!m->private) {
  3644. /* Too bad, we are really out */
  3645. m->private = n;
  3646. mutex_lock(&cache_chain_mutex);
  3647. return -ENOMEM;
  3648. }
  3649. *(unsigned long *)m->private = n[0] * 2;
  3650. kfree(n);
  3651. mutex_lock(&cache_chain_mutex);
  3652. /* Now make sure this entry will be retried */
  3653. m->count = m->size;
  3654. return 0;
  3655. }
  3656. for (i = 0; i < n[1]; i++) {
  3657. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3658. show_symbol(m, n[2*i+2]);
  3659. seq_putc(m, '\n');
  3660. }
  3661. return 0;
  3662. }
  3663. struct seq_operations slabstats_op = {
  3664. .start = leaks_start,
  3665. .next = s_next,
  3666. .stop = s_stop,
  3667. .show = leaks_show,
  3668. };
  3669. #endif
  3670. #endif
  3671. /**
  3672. * ksize - get the actual amount of memory allocated for a given object
  3673. * @objp: Pointer to the object
  3674. *
  3675. * kmalloc may internally round up allocations and return more memory
  3676. * than requested. ksize() can be used to determine the actual amount of
  3677. * memory allocated. The caller may use this additional memory, even though
  3678. * a smaller amount of memory was initially specified with the kmalloc call.
  3679. * The caller must guarantee that objp points to a valid object previously
  3680. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3681. * must not be freed during the duration of the call.
  3682. */
  3683. unsigned int ksize(const void *objp)
  3684. {
  3685. if (unlikely(objp == NULL))
  3686. return 0;
  3687. return obj_size(virt_to_cache(objp));
  3688. }