hugetlb.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
  23. unsigned long max_huge_pages;
  24. static struct list_head hugepage_freelists[MAX_NUMNODES];
  25. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  26. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  27. /*
  28. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  29. */
  30. static DEFINE_SPINLOCK(hugetlb_lock);
  31. static void clear_huge_page(struct page *page, unsigned long addr)
  32. {
  33. int i;
  34. might_sleep();
  35. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  36. cond_resched();
  37. clear_user_highpage(page + i, addr);
  38. }
  39. }
  40. static void copy_huge_page(struct page *dst, struct page *src,
  41. unsigned long addr)
  42. {
  43. int i;
  44. might_sleep();
  45. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  46. cond_resched();
  47. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
  48. }
  49. }
  50. static void enqueue_huge_page(struct page *page)
  51. {
  52. int nid = page_to_nid(page);
  53. list_add(&page->lru, &hugepage_freelists[nid]);
  54. free_huge_pages++;
  55. free_huge_pages_node[nid]++;
  56. }
  57. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  58. unsigned long address)
  59. {
  60. int nid = numa_node_id();
  61. struct page *page = NULL;
  62. struct zonelist *zonelist = huge_zonelist(vma, address);
  63. struct zone **z;
  64. for (z = zonelist->zones; *z; z++) {
  65. nid = (*z)->zone_pgdat->node_id;
  66. if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
  67. !list_empty(&hugepage_freelists[nid]))
  68. break;
  69. }
  70. if (*z) {
  71. page = list_entry(hugepage_freelists[nid].next,
  72. struct page, lru);
  73. list_del(&page->lru);
  74. free_huge_pages--;
  75. free_huge_pages_node[nid]--;
  76. }
  77. return page;
  78. }
  79. static void free_huge_page(struct page *page)
  80. {
  81. BUG_ON(page_count(page));
  82. INIT_LIST_HEAD(&page->lru);
  83. spin_lock(&hugetlb_lock);
  84. enqueue_huge_page(page);
  85. spin_unlock(&hugetlb_lock);
  86. }
  87. static int alloc_fresh_huge_page(void)
  88. {
  89. static int nid = 0;
  90. struct page *page;
  91. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  92. HUGETLB_PAGE_ORDER);
  93. nid = next_node(nid, node_online_map);
  94. if (nid == MAX_NUMNODES)
  95. nid = first_node(node_online_map);
  96. if (page) {
  97. page[1].lru.next = (void *)free_huge_page; /* dtor */
  98. spin_lock(&hugetlb_lock);
  99. nr_huge_pages++;
  100. nr_huge_pages_node[page_to_nid(page)]++;
  101. spin_unlock(&hugetlb_lock);
  102. put_page(page); /* free it into the hugepage allocator */
  103. return 1;
  104. }
  105. return 0;
  106. }
  107. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  108. unsigned long addr)
  109. {
  110. struct inode *inode = vma->vm_file->f_dentry->d_inode;
  111. struct page *page;
  112. int use_reserve = 0;
  113. unsigned long idx;
  114. spin_lock(&hugetlb_lock);
  115. if (vma->vm_flags & VM_MAYSHARE) {
  116. /* idx = radix tree index, i.e. offset into file in
  117. * HPAGE_SIZE units */
  118. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  119. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  120. /* The hugetlbfs specific inode info stores the number
  121. * of "guaranteed available" (huge) pages. That is,
  122. * the first 'prereserved_hpages' pages of the inode
  123. * are either already instantiated, or have been
  124. * pre-reserved (by hugetlb_reserve_for_inode()). Here
  125. * we're in the process of instantiating the page, so
  126. * we use this to determine whether to draw from the
  127. * pre-reserved pool or the truly free pool. */
  128. if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
  129. use_reserve = 1;
  130. }
  131. if (!use_reserve) {
  132. if (free_huge_pages <= reserved_huge_pages)
  133. goto fail;
  134. } else {
  135. BUG_ON(reserved_huge_pages == 0);
  136. reserved_huge_pages--;
  137. }
  138. page = dequeue_huge_page(vma, addr);
  139. if (!page)
  140. goto fail;
  141. spin_unlock(&hugetlb_lock);
  142. set_page_refcounted(page);
  143. return page;
  144. fail:
  145. WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
  146. spin_unlock(&hugetlb_lock);
  147. return NULL;
  148. }
  149. /* hugetlb_extend_reservation()
  150. *
  151. * Ensure that at least 'atleast' hugepages are, and will remain,
  152. * available to instantiate the first 'atleast' pages of the given
  153. * inode. If the inode doesn't already have this many pages reserved
  154. * or instantiated, set aside some hugepages in the reserved pool to
  155. * satisfy later faults (or fail now if there aren't enough, rather
  156. * than getting the SIGBUS later).
  157. */
  158. int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
  159. unsigned long atleast)
  160. {
  161. struct inode *inode = &info->vfs_inode;
  162. unsigned long change_in_reserve = 0;
  163. int ret = 0;
  164. spin_lock(&hugetlb_lock);
  165. read_lock_irq(&inode->i_mapping->tree_lock);
  166. if (info->prereserved_hpages >= atleast)
  167. goto out;
  168. /* Because we always call this on shared mappings, none of the
  169. * pages beyond info->prereserved_hpages can have been
  170. * instantiated, so we need to reserve all of them now. */
  171. change_in_reserve = atleast - info->prereserved_hpages;
  172. if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
  173. ret = -ENOMEM;
  174. goto out;
  175. }
  176. reserved_huge_pages += change_in_reserve;
  177. info->prereserved_hpages = atleast;
  178. out:
  179. read_unlock_irq(&inode->i_mapping->tree_lock);
  180. spin_unlock(&hugetlb_lock);
  181. return ret;
  182. }
  183. /* hugetlb_truncate_reservation()
  184. *
  185. * This returns pages reserved for the given inode to the general free
  186. * hugepage pool. If the inode has any pages prereserved, but not
  187. * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
  188. * them.
  189. */
  190. void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
  191. unsigned long atmost)
  192. {
  193. struct inode *inode = &info->vfs_inode;
  194. struct address_space *mapping = inode->i_mapping;
  195. unsigned long idx;
  196. unsigned long change_in_reserve = 0;
  197. struct page *page;
  198. spin_lock(&hugetlb_lock);
  199. read_lock_irq(&inode->i_mapping->tree_lock);
  200. if (info->prereserved_hpages <= atmost)
  201. goto out;
  202. /* Count pages which were reserved, but not instantiated, and
  203. * which we can now release. */
  204. for (idx = atmost; idx < info->prereserved_hpages; idx++) {
  205. page = radix_tree_lookup(&mapping->page_tree, idx);
  206. if (!page)
  207. /* Pages which are already instantiated can't
  208. * be unreserved (and in fact have already
  209. * been removed from the reserved pool) */
  210. change_in_reserve++;
  211. }
  212. BUG_ON(reserved_huge_pages < change_in_reserve);
  213. reserved_huge_pages -= change_in_reserve;
  214. info->prereserved_hpages = atmost;
  215. out:
  216. read_unlock_irq(&inode->i_mapping->tree_lock);
  217. spin_unlock(&hugetlb_lock);
  218. }
  219. static int __init hugetlb_init(void)
  220. {
  221. unsigned long i;
  222. if (HPAGE_SHIFT == 0)
  223. return 0;
  224. for (i = 0; i < MAX_NUMNODES; ++i)
  225. INIT_LIST_HEAD(&hugepage_freelists[i]);
  226. for (i = 0; i < max_huge_pages; ++i) {
  227. if (!alloc_fresh_huge_page())
  228. break;
  229. }
  230. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  231. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  232. return 0;
  233. }
  234. module_init(hugetlb_init);
  235. static int __init hugetlb_setup(char *s)
  236. {
  237. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  238. max_huge_pages = 0;
  239. return 1;
  240. }
  241. __setup("hugepages=", hugetlb_setup);
  242. #ifdef CONFIG_SYSCTL
  243. static void update_and_free_page(struct page *page)
  244. {
  245. int i;
  246. nr_huge_pages--;
  247. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  248. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  249. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  250. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  251. 1 << PG_private | 1<< PG_writeback);
  252. }
  253. page[1].lru.next = NULL;
  254. set_page_refcounted(page);
  255. __free_pages(page, HUGETLB_PAGE_ORDER);
  256. }
  257. #ifdef CONFIG_HIGHMEM
  258. static void try_to_free_low(unsigned long count)
  259. {
  260. int i, nid;
  261. for (i = 0; i < MAX_NUMNODES; ++i) {
  262. struct page *page, *next;
  263. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  264. if (PageHighMem(page))
  265. continue;
  266. list_del(&page->lru);
  267. update_and_free_page(page);
  268. nid = page_zone(page)->zone_pgdat->node_id;
  269. free_huge_pages--;
  270. free_huge_pages_node[nid]--;
  271. if (count >= nr_huge_pages)
  272. return;
  273. }
  274. }
  275. }
  276. #else
  277. static inline void try_to_free_low(unsigned long count)
  278. {
  279. }
  280. #endif
  281. static unsigned long set_max_huge_pages(unsigned long count)
  282. {
  283. while (count > nr_huge_pages) {
  284. if (!alloc_fresh_huge_page())
  285. return nr_huge_pages;
  286. }
  287. if (count >= nr_huge_pages)
  288. return nr_huge_pages;
  289. spin_lock(&hugetlb_lock);
  290. count = max(count, reserved_huge_pages);
  291. try_to_free_low(count);
  292. while (count < nr_huge_pages) {
  293. struct page *page = dequeue_huge_page(NULL, 0);
  294. if (!page)
  295. break;
  296. update_and_free_page(page);
  297. }
  298. spin_unlock(&hugetlb_lock);
  299. return nr_huge_pages;
  300. }
  301. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  302. struct file *file, void __user *buffer,
  303. size_t *length, loff_t *ppos)
  304. {
  305. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  306. max_huge_pages = set_max_huge_pages(max_huge_pages);
  307. return 0;
  308. }
  309. #endif /* CONFIG_SYSCTL */
  310. int hugetlb_report_meminfo(char *buf)
  311. {
  312. return sprintf(buf,
  313. "HugePages_Total: %5lu\n"
  314. "HugePages_Free: %5lu\n"
  315. "HugePages_Rsvd: %5lu\n"
  316. "Hugepagesize: %5lu kB\n",
  317. nr_huge_pages,
  318. free_huge_pages,
  319. reserved_huge_pages,
  320. HPAGE_SIZE/1024);
  321. }
  322. int hugetlb_report_node_meminfo(int nid, char *buf)
  323. {
  324. return sprintf(buf,
  325. "Node %d HugePages_Total: %5u\n"
  326. "Node %d HugePages_Free: %5u\n",
  327. nid, nr_huge_pages_node[nid],
  328. nid, free_huge_pages_node[nid]);
  329. }
  330. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  331. unsigned long hugetlb_total_pages(void)
  332. {
  333. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  334. }
  335. /*
  336. * We cannot handle pagefaults against hugetlb pages at all. They cause
  337. * handle_mm_fault() to try to instantiate regular-sized pages in the
  338. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  339. * this far.
  340. */
  341. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  342. unsigned long address, int *unused)
  343. {
  344. BUG();
  345. return NULL;
  346. }
  347. struct vm_operations_struct hugetlb_vm_ops = {
  348. .nopage = hugetlb_nopage,
  349. };
  350. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  351. int writable)
  352. {
  353. pte_t entry;
  354. if (writable) {
  355. entry =
  356. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  357. } else {
  358. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  359. }
  360. entry = pte_mkyoung(entry);
  361. entry = pte_mkhuge(entry);
  362. return entry;
  363. }
  364. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  365. unsigned long address, pte_t *ptep)
  366. {
  367. pte_t entry;
  368. entry = pte_mkwrite(pte_mkdirty(*ptep));
  369. ptep_set_access_flags(vma, address, ptep, entry, 1);
  370. update_mmu_cache(vma, address, entry);
  371. lazy_mmu_prot_update(entry);
  372. }
  373. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  374. struct vm_area_struct *vma)
  375. {
  376. pte_t *src_pte, *dst_pte, entry;
  377. struct page *ptepage;
  378. unsigned long addr;
  379. int cow;
  380. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  381. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  382. src_pte = huge_pte_offset(src, addr);
  383. if (!src_pte)
  384. continue;
  385. dst_pte = huge_pte_alloc(dst, addr);
  386. if (!dst_pte)
  387. goto nomem;
  388. spin_lock(&dst->page_table_lock);
  389. spin_lock(&src->page_table_lock);
  390. if (!pte_none(*src_pte)) {
  391. if (cow)
  392. ptep_set_wrprotect(src, addr, src_pte);
  393. entry = *src_pte;
  394. ptepage = pte_page(entry);
  395. get_page(ptepage);
  396. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  397. set_huge_pte_at(dst, addr, dst_pte, entry);
  398. }
  399. spin_unlock(&src->page_table_lock);
  400. spin_unlock(&dst->page_table_lock);
  401. }
  402. return 0;
  403. nomem:
  404. return -ENOMEM;
  405. }
  406. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  407. unsigned long end)
  408. {
  409. struct mm_struct *mm = vma->vm_mm;
  410. unsigned long address;
  411. pte_t *ptep;
  412. pte_t pte;
  413. struct page *page;
  414. WARN_ON(!is_vm_hugetlb_page(vma));
  415. BUG_ON(start & ~HPAGE_MASK);
  416. BUG_ON(end & ~HPAGE_MASK);
  417. spin_lock(&mm->page_table_lock);
  418. /* Update high watermark before we lower rss */
  419. update_hiwater_rss(mm);
  420. for (address = start; address < end; address += HPAGE_SIZE) {
  421. ptep = huge_pte_offset(mm, address);
  422. if (!ptep)
  423. continue;
  424. pte = huge_ptep_get_and_clear(mm, address, ptep);
  425. if (pte_none(pte))
  426. continue;
  427. page = pte_page(pte);
  428. put_page(page);
  429. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  430. }
  431. spin_unlock(&mm->page_table_lock);
  432. flush_tlb_range(vma, start, end);
  433. }
  434. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  435. unsigned long address, pte_t *ptep, pte_t pte)
  436. {
  437. struct page *old_page, *new_page;
  438. int avoidcopy;
  439. old_page = pte_page(pte);
  440. /* If no-one else is actually using this page, avoid the copy
  441. * and just make the page writable */
  442. avoidcopy = (page_count(old_page) == 1);
  443. if (avoidcopy) {
  444. set_huge_ptep_writable(vma, address, ptep);
  445. return VM_FAULT_MINOR;
  446. }
  447. page_cache_get(old_page);
  448. new_page = alloc_huge_page(vma, address);
  449. if (!new_page) {
  450. page_cache_release(old_page);
  451. return VM_FAULT_OOM;
  452. }
  453. spin_unlock(&mm->page_table_lock);
  454. copy_huge_page(new_page, old_page, address);
  455. spin_lock(&mm->page_table_lock);
  456. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  457. if (likely(pte_same(*ptep, pte))) {
  458. /* Break COW */
  459. set_huge_pte_at(mm, address, ptep,
  460. make_huge_pte(vma, new_page, 1));
  461. /* Make the old page be freed below */
  462. new_page = old_page;
  463. }
  464. page_cache_release(new_page);
  465. page_cache_release(old_page);
  466. return VM_FAULT_MINOR;
  467. }
  468. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  469. unsigned long address, pte_t *ptep, int write_access)
  470. {
  471. int ret = VM_FAULT_SIGBUS;
  472. unsigned long idx;
  473. unsigned long size;
  474. struct page *page;
  475. struct address_space *mapping;
  476. pte_t new_pte;
  477. mapping = vma->vm_file->f_mapping;
  478. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  479. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  480. /*
  481. * Use page lock to guard against racing truncation
  482. * before we get page_table_lock.
  483. */
  484. retry:
  485. page = find_lock_page(mapping, idx);
  486. if (!page) {
  487. if (hugetlb_get_quota(mapping))
  488. goto out;
  489. page = alloc_huge_page(vma, address);
  490. if (!page) {
  491. hugetlb_put_quota(mapping);
  492. ret = VM_FAULT_OOM;
  493. goto out;
  494. }
  495. clear_huge_page(page, address);
  496. if (vma->vm_flags & VM_SHARED) {
  497. int err;
  498. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  499. if (err) {
  500. put_page(page);
  501. hugetlb_put_quota(mapping);
  502. if (err == -EEXIST)
  503. goto retry;
  504. goto out;
  505. }
  506. } else
  507. lock_page(page);
  508. }
  509. spin_lock(&mm->page_table_lock);
  510. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  511. if (idx >= size)
  512. goto backout;
  513. ret = VM_FAULT_MINOR;
  514. if (!pte_none(*ptep))
  515. goto backout;
  516. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  517. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  518. && (vma->vm_flags & VM_SHARED)));
  519. set_huge_pte_at(mm, address, ptep, new_pte);
  520. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  521. /* Optimization, do the COW without a second fault */
  522. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  523. }
  524. spin_unlock(&mm->page_table_lock);
  525. unlock_page(page);
  526. out:
  527. return ret;
  528. backout:
  529. spin_unlock(&mm->page_table_lock);
  530. hugetlb_put_quota(mapping);
  531. unlock_page(page);
  532. put_page(page);
  533. goto out;
  534. }
  535. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  536. unsigned long address, int write_access)
  537. {
  538. pte_t *ptep;
  539. pte_t entry;
  540. int ret;
  541. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  542. ptep = huge_pte_alloc(mm, address);
  543. if (!ptep)
  544. return VM_FAULT_OOM;
  545. /*
  546. * Serialize hugepage allocation and instantiation, so that we don't
  547. * get spurious allocation failures if two CPUs race to instantiate
  548. * the same page in the page cache.
  549. */
  550. mutex_lock(&hugetlb_instantiation_mutex);
  551. entry = *ptep;
  552. if (pte_none(entry)) {
  553. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  554. mutex_unlock(&hugetlb_instantiation_mutex);
  555. return ret;
  556. }
  557. ret = VM_FAULT_MINOR;
  558. spin_lock(&mm->page_table_lock);
  559. /* Check for a racing update before calling hugetlb_cow */
  560. if (likely(pte_same(entry, *ptep)))
  561. if (write_access && !pte_write(entry))
  562. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  563. spin_unlock(&mm->page_table_lock);
  564. mutex_unlock(&hugetlb_instantiation_mutex);
  565. return ret;
  566. }
  567. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  568. struct page **pages, struct vm_area_struct **vmas,
  569. unsigned long *position, int *length, int i)
  570. {
  571. unsigned long pfn_offset;
  572. unsigned long vaddr = *position;
  573. int remainder = *length;
  574. spin_lock(&mm->page_table_lock);
  575. while (vaddr < vma->vm_end && remainder) {
  576. pte_t *pte;
  577. struct page *page;
  578. /*
  579. * Some archs (sparc64, sh*) have multiple pte_ts to
  580. * each hugepage. We have to make * sure we get the
  581. * first, for the page indexing below to work.
  582. */
  583. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  584. if (!pte || pte_none(*pte)) {
  585. int ret;
  586. spin_unlock(&mm->page_table_lock);
  587. ret = hugetlb_fault(mm, vma, vaddr, 0);
  588. spin_lock(&mm->page_table_lock);
  589. if (ret == VM_FAULT_MINOR)
  590. continue;
  591. remainder = 0;
  592. if (!i)
  593. i = -EFAULT;
  594. break;
  595. }
  596. pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
  597. page = pte_page(*pte);
  598. same_page:
  599. if (pages) {
  600. get_page(page);
  601. pages[i] = page + pfn_offset;
  602. }
  603. if (vmas)
  604. vmas[i] = vma;
  605. vaddr += PAGE_SIZE;
  606. ++pfn_offset;
  607. --remainder;
  608. ++i;
  609. if (vaddr < vma->vm_end && remainder &&
  610. pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
  611. /*
  612. * We use pfn_offset to avoid touching the pageframes
  613. * of this compound page.
  614. */
  615. goto same_page;
  616. }
  617. }
  618. spin_unlock(&mm->page_table_lock);
  619. *length = remainder;
  620. *position = vaddr;
  621. return i;
  622. }
  623. void hugetlb_change_protection(struct vm_area_struct *vma,
  624. unsigned long address, unsigned long end, pgprot_t newprot)
  625. {
  626. struct mm_struct *mm = vma->vm_mm;
  627. unsigned long start = address;
  628. pte_t *ptep;
  629. pte_t pte;
  630. BUG_ON(address >= end);
  631. flush_cache_range(vma, address, end);
  632. spin_lock(&mm->page_table_lock);
  633. for (; address < end; address += HPAGE_SIZE) {
  634. ptep = huge_pte_offset(mm, address);
  635. if (!ptep)
  636. continue;
  637. if (!pte_none(*ptep)) {
  638. pte = huge_ptep_get_and_clear(mm, address, ptep);
  639. pte = pte_mkhuge(pte_modify(pte, newprot));
  640. set_huge_pte_at(mm, address, ptep, pte);
  641. lazy_mmu_prot_update(pte);
  642. }
  643. }
  644. spin_unlock(&mm->page_table_lock);
  645. flush_tlb_range(vma, start, end);
  646. }