bootmem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/init.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/module.h>
  19. #include <asm/dma.h>
  20. #include <asm/io.h>
  21. #include "internal.h"
  22. /*
  23. * Access to this subsystem has to be serialized externally. (this is
  24. * true for the boot process anyway)
  25. */
  26. unsigned long max_low_pfn;
  27. unsigned long min_low_pfn;
  28. unsigned long max_pfn;
  29. EXPORT_SYMBOL(max_pfn); /* This is exported so
  30. * dma_get_required_mask(), which uses
  31. * it, can be an inline function */
  32. static LIST_HEAD(bdata_list);
  33. #ifdef CONFIG_CRASH_DUMP
  34. /*
  35. * If we have booted due to a crash, max_pfn will be a very low value. We need
  36. * to know the amount of memory that the previous kernel used.
  37. */
  38. unsigned long saved_max_pfn;
  39. #endif
  40. /* return the number of _pages_ that will be allocated for the boot bitmap */
  41. unsigned long __init bootmem_bootmap_pages (unsigned long pages)
  42. {
  43. unsigned long mapsize;
  44. mapsize = (pages+7)/8;
  45. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  46. mapsize >>= PAGE_SHIFT;
  47. return mapsize;
  48. }
  49. /*
  50. * link bdata in order
  51. */
  52. static void link_bootmem(bootmem_data_t *bdata)
  53. {
  54. bootmem_data_t *ent;
  55. if (list_empty(&bdata_list)) {
  56. list_add(&bdata->list, &bdata_list);
  57. return;
  58. }
  59. /* insert in order */
  60. list_for_each_entry(ent, &bdata_list, list) {
  61. if (bdata->node_boot_start < ent->node_boot_start) {
  62. list_add_tail(&bdata->list, &ent->list);
  63. return;
  64. }
  65. }
  66. list_add_tail(&bdata->list, &bdata_list);
  67. return;
  68. }
  69. /*
  70. * Called once to set up the allocator itself.
  71. */
  72. static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
  73. unsigned long mapstart, unsigned long start, unsigned long end)
  74. {
  75. bootmem_data_t *bdata = pgdat->bdata;
  76. unsigned long mapsize = ((end - start)+7)/8;
  77. mapsize = ALIGN(mapsize, sizeof(long));
  78. bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
  79. bdata->node_boot_start = (start << PAGE_SHIFT);
  80. bdata->node_low_pfn = end;
  81. link_bootmem(bdata);
  82. /*
  83. * Initially all pages are reserved - setup_arch() has to
  84. * register free RAM areas explicitly.
  85. */
  86. memset(bdata->node_bootmem_map, 0xff, mapsize);
  87. return mapsize;
  88. }
  89. /*
  90. * Marks a particular physical memory range as unallocatable. Usable RAM
  91. * might be used for boot-time allocations - or it might get added
  92. * to the free page pool later on.
  93. */
  94. static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  95. {
  96. unsigned long i;
  97. /*
  98. * round up, partially reserved pages are considered
  99. * fully reserved.
  100. */
  101. unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
  102. unsigned long eidx = (addr + size - bdata->node_boot_start +
  103. PAGE_SIZE-1)/PAGE_SIZE;
  104. unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
  105. BUG_ON(!size);
  106. BUG_ON(sidx >= eidx);
  107. BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
  108. BUG_ON(end > bdata->node_low_pfn);
  109. for (i = sidx; i < eidx; i++)
  110. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  111. #ifdef CONFIG_DEBUG_BOOTMEM
  112. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  113. #endif
  114. }
  115. }
  116. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  117. {
  118. unsigned long i;
  119. unsigned long start;
  120. /*
  121. * round down end of usable mem, partially free pages are
  122. * considered reserved.
  123. */
  124. unsigned long sidx;
  125. unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
  126. unsigned long end = (addr + size)/PAGE_SIZE;
  127. BUG_ON(!size);
  128. BUG_ON(end > bdata->node_low_pfn);
  129. if (addr < bdata->last_success)
  130. bdata->last_success = addr;
  131. /*
  132. * Round up the beginning of the address.
  133. */
  134. start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
  135. sidx = start - (bdata->node_boot_start/PAGE_SIZE);
  136. for (i = sidx; i < eidx; i++) {
  137. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  138. BUG();
  139. }
  140. }
  141. /*
  142. * We 'merge' subsequent allocations to save space. We might 'lose'
  143. * some fraction of a page if allocations cannot be satisfied due to
  144. * size constraints on boxes where there is physical RAM space
  145. * fragmentation - in these cases (mostly large memory boxes) this
  146. * is not a problem.
  147. *
  148. * On low memory boxes we get it right in 100% of the cases.
  149. *
  150. * alignment has to be a power of 2 value.
  151. *
  152. * NOTE: This function is _not_ reentrant.
  153. */
  154. void * __init
  155. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  156. unsigned long align, unsigned long goal, unsigned long limit)
  157. {
  158. unsigned long offset, remaining_size, areasize, preferred;
  159. unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn;
  160. void *ret;
  161. if(!size) {
  162. printk("__alloc_bootmem_core(): zero-sized request\n");
  163. BUG();
  164. }
  165. BUG_ON(align & (align-1));
  166. if (limit && bdata->node_boot_start >= limit)
  167. return NULL;
  168. limit >>=PAGE_SHIFT;
  169. if (limit && end_pfn > limit)
  170. end_pfn = limit;
  171. eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  172. offset = 0;
  173. if (align &&
  174. (bdata->node_boot_start & (align - 1UL)) != 0)
  175. offset = (align - (bdata->node_boot_start & (align - 1UL)));
  176. offset >>= PAGE_SHIFT;
  177. /*
  178. * We try to allocate bootmem pages above 'goal'
  179. * first, then we try to allocate lower pages.
  180. */
  181. if (goal && (goal >= bdata->node_boot_start) &&
  182. ((goal >> PAGE_SHIFT) < end_pfn)) {
  183. preferred = goal - bdata->node_boot_start;
  184. if (bdata->last_success >= preferred)
  185. if (!limit || (limit && limit > bdata->last_success))
  186. preferred = bdata->last_success;
  187. } else
  188. preferred = 0;
  189. preferred = ALIGN(preferred, align) >> PAGE_SHIFT;
  190. preferred += offset;
  191. areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
  192. incr = align >> PAGE_SHIFT ? : 1;
  193. restart_scan:
  194. for (i = preferred; i < eidx; i += incr) {
  195. unsigned long j;
  196. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  197. i = ALIGN(i, incr);
  198. if (i >= eidx)
  199. break;
  200. if (test_bit(i, bdata->node_bootmem_map))
  201. continue;
  202. for (j = i + 1; j < i + areasize; ++j) {
  203. if (j >= eidx)
  204. goto fail_block;
  205. if (test_bit (j, bdata->node_bootmem_map))
  206. goto fail_block;
  207. }
  208. start = i;
  209. goto found;
  210. fail_block:
  211. i = ALIGN(j, incr);
  212. }
  213. if (preferred > offset) {
  214. preferred = offset;
  215. goto restart_scan;
  216. }
  217. return NULL;
  218. found:
  219. bdata->last_success = start << PAGE_SHIFT;
  220. BUG_ON(start >= eidx);
  221. /*
  222. * Is the next page of the previous allocation-end the start
  223. * of this allocation's buffer? If yes then we can 'merge'
  224. * the previous partial page with this allocation.
  225. */
  226. if (align < PAGE_SIZE &&
  227. bdata->last_offset && bdata->last_pos+1 == start) {
  228. offset = ALIGN(bdata->last_offset, align);
  229. BUG_ON(offset > PAGE_SIZE);
  230. remaining_size = PAGE_SIZE-offset;
  231. if (size < remaining_size) {
  232. areasize = 0;
  233. /* last_pos unchanged */
  234. bdata->last_offset = offset+size;
  235. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  236. bdata->node_boot_start);
  237. } else {
  238. remaining_size = size - remaining_size;
  239. areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
  240. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  241. bdata->node_boot_start);
  242. bdata->last_pos = start+areasize-1;
  243. bdata->last_offset = remaining_size;
  244. }
  245. bdata->last_offset &= ~PAGE_MASK;
  246. } else {
  247. bdata->last_pos = start + areasize - 1;
  248. bdata->last_offset = size & ~PAGE_MASK;
  249. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  250. }
  251. /*
  252. * Reserve the area now:
  253. */
  254. for (i = start; i < start+areasize; i++)
  255. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  256. BUG();
  257. memset(ret, 0, size);
  258. return ret;
  259. }
  260. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  261. {
  262. struct page *page;
  263. unsigned long pfn;
  264. bootmem_data_t *bdata = pgdat->bdata;
  265. unsigned long i, count, total = 0;
  266. unsigned long idx;
  267. unsigned long *map;
  268. int gofast = 0;
  269. BUG_ON(!bdata->node_bootmem_map);
  270. count = 0;
  271. /* first extant page of the node */
  272. pfn = bdata->node_boot_start >> PAGE_SHIFT;
  273. idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  274. map = bdata->node_bootmem_map;
  275. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  276. if (bdata->node_boot_start == 0 ||
  277. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  278. gofast = 1;
  279. for (i = 0; i < idx; ) {
  280. unsigned long v = ~map[i / BITS_PER_LONG];
  281. if (gofast && v == ~0UL) {
  282. int order;
  283. page = pfn_to_page(pfn);
  284. count += BITS_PER_LONG;
  285. order = ffs(BITS_PER_LONG) - 1;
  286. __free_pages_bootmem(page, order);
  287. i += BITS_PER_LONG;
  288. page += BITS_PER_LONG;
  289. } else if (v) {
  290. unsigned long m;
  291. page = pfn_to_page(pfn);
  292. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  293. if (v & m) {
  294. count++;
  295. __free_pages_bootmem(page, 0);
  296. }
  297. }
  298. } else {
  299. i+=BITS_PER_LONG;
  300. }
  301. pfn += BITS_PER_LONG;
  302. }
  303. total += count;
  304. /*
  305. * Now free the allocator bitmap itself, it's not
  306. * needed anymore:
  307. */
  308. page = virt_to_page(bdata->node_bootmem_map);
  309. count = 0;
  310. for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
  311. count++;
  312. __free_pages_bootmem(page, 0);
  313. }
  314. total += count;
  315. bdata->node_bootmem_map = NULL;
  316. return total;
  317. }
  318. unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
  319. {
  320. return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
  321. }
  322. void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  323. {
  324. reserve_bootmem_core(pgdat->bdata, physaddr, size);
  325. }
  326. void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  327. {
  328. free_bootmem_core(pgdat->bdata, physaddr, size);
  329. }
  330. unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
  331. {
  332. return(free_all_bootmem_core(pgdat));
  333. }
  334. unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
  335. {
  336. max_low_pfn = pages;
  337. min_low_pfn = start;
  338. return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
  339. }
  340. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  341. void __init reserve_bootmem (unsigned long addr, unsigned long size)
  342. {
  343. reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  344. }
  345. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  346. void __init free_bootmem (unsigned long addr, unsigned long size)
  347. {
  348. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  349. }
  350. unsigned long __init free_all_bootmem (void)
  351. {
  352. return(free_all_bootmem_core(NODE_DATA(0)));
  353. }
  354. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal)
  355. {
  356. bootmem_data_t *bdata;
  357. void *ptr;
  358. list_for_each_entry(bdata, &bdata_list, list)
  359. if ((ptr = __alloc_bootmem_core(bdata, size, align, goal, 0)))
  360. return(ptr);
  361. return NULL;
  362. }
  363. void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal)
  364. {
  365. void *mem = __alloc_bootmem_nopanic(size,align,goal);
  366. if (mem)
  367. return mem;
  368. /*
  369. * Whoops, we cannot satisfy the allocation request.
  370. */
  371. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  372. panic("Out of memory");
  373. return NULL;
  374. }
  375. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, unsigned long align,
  376. unsigned long goal)
  377. {
  378. void *ptr;
  379. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
  380. if (ptr)
  381. return (ptr);
  382. return __alloc_bootmem(size, align, goal);
  383. }
  384. #define LOW32LIMIT 0xffffffff
  385. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, unsigned long goal)
  386. {
  387. bootmem_data_t *bdata;
  388. void *ptr;
  389. list_for_each_entry(bdata, &bdata_list, list)
  390. if ((ptr = __alloc_bootmem_core(bdata, size,
  391. align, goal, LOW32LIMIT)))
  392. return(ptr);
  393. /*
  394. * Whoops, we cannot satisfy the allocation request.
  395. */
  396. printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
  397. panic("Out of low memory");
  398. return NULL;
  399. }
  400. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  401. unsigned long align, unsigned long goal)
  402. {
  403. return __alloc_bootmem_core(pgdat->bdata, size, align, goal, LOW32LIMIT);
  404. }