uaccess.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * include/asm-xtensa/uaccess.h
  3. *
  4. * User space memory access functions
  5. *
  6. * These routines provide basic accessing functions to the user memory
  7. * space for the kernel. This header file provides fuctions such as:
  8. *
  9. * This file is subject to the terms and conditions of the GNU General Public
  10. * License. See the file "COPYING" in the main directory of this archive
  11. * for more details.
  12. *
  13. * Copyright (C) 2001 - 2005 Tensilica Inc.
  14. */
  15. #ifndef _XTENSA_UACCESS_H
  16. #define _XTENSA_UACCESS_H
  17. #include <linux/errno.h>
  18. #define VERIFY_READ 0
  19. #define VERIFY_WRITE 1
  20. #ifdef __ASSEMBLY__
  21. #define _ASMLANGUAGE
  22. #include <asm/current.h>
  23. #include <asm/asm-offsets.h>
  24. #include <asm/processor.h>
  25. /*
  26. * These assembly macros mirror the C macros that follow below. They
  27. * should always have identical functionality. See
  28. * arch/xtensa/kernel/sys.S for usage.
  29. */
  30. #define KERNEL_DS 0
  31. #define USER_DS 1
  32. #define get_ds (KERNEL_DS)
  33. /*
  34. * get_fs reads current->thread.current_ds into a register.
  35. * On Entry:
  36. * <ad> anything
  37. * <sp> stack
  38. * On Exit:
  39. * <ad> contains current->thread.current_ds
  40. */
  41. .macro get_fs ad, sp
  42. GET_CURRENT(\ad,\sp)
  43. l32i \ad, \ad, THREAD_CURRENT_DS
  44. .endm
  45. /*
  46. * set_fs sets current->thread.current_ds to some value.
  47. * On Entry:
  48. * <at> anything (temp register)
  49. * <av> value to write
  50. * <sp> stack
  51. * On Exit:
  52. * <at> destroyed (actually, current)
  53. * <av> preserved, value to write
  54. */
  55. .macro set_fs at, av, sp
  56. GET_CURRENT(\at,\sp)
  57. s32i \av, \at, THREAD_CURRENT_DS
  58. .endm
  59. /*
  60. * kernel_ok determines whether we should bypass addr/size checking.
  61. * See the equivalent C-macro version below for clarity.
  62. * On success, kernel_ok branches to a label indicated by parameter
  63. * <success>. This implies that the macro falls through to the next
  64. * insruction on an error.
  65. *
  66. * Note that while this macro can be used independently, we designed
  67. * in for optimal use in the access_ok macro below (i.e., we fall
  68. * through on error).
  69. *
  70. * On Entry:
  71. * <at> anything (temp register)
  72. * <success> label to branch to on success; implies
  73. * fall-through macro on error
  74. * <sp> stack pointer
  75. * On Exit:
  76. * <at> destroyed (actually, current->thread.current_ds)
  77. */
  78. #if ((KERNEL_DS != 0) || (USER_DS == 0))
  79. # error Assembly macro kernel_ok fails
  80. #endif
  81. .macro kernel_ok at, sp, success
  82. get_fs \at, \sp
  83. beqz \at, \success
  84. .endm
  85. /*
  86. * user_ok determines whether the access to user-space memory is allowed.
  87. * See the equivalent C-macro version below for clarity.
  88. *
  89. * On error, user_ok branches to a label indicated by parameter
  90. * <error>. This implies that the macro falls through to the next
  91. * instruction on success.
  92. *
  93. * Note that while this macro can be used independently, we designed
  94. * in for optimal use in the access_ok macro below (i.e., we fall
  95. * through on success).
  96. *
  97. * On Entry:
  98. * <aa> register containing memory address
  99. * <as> register containing memory size
  100. * <at> temp register
  101. * <error> label to branch to on error; implies fall-through
  102. * macro on success
  103. * On Exit:
  104. * <aa> preserved
  105. * <as> preserved
  106. * <at> destroyed (actually, (TASK_SIZE + 1 - size))
  107. */
  108. .macro user_ok aa, as, at, error
  109. movi \at, (TASK_SIZE+1)
  110. bgeu \as, \at, \error
  111. sub \at, \at, \as
  112. bgeu \aa, \at, \error
  113. .endm
  114. /*
  115. * access_ok determines whether a memory access is allowed. See the
  116. * equivalent C-macro version below for clarity.
  117. *
  118. * On error, access_ok branches to a label indicated by parameter
  119. * <error>. This implies that the macro falls through to the next
  120. * instruction on success.
  121. *
  122. * Note that we assume success is the common case, and we optimize the
  123. * branch fall-through case on success.
  124. *
  125. * On Entry:
  126. * <aa> register containing memory address
  127. * <as> register containing memory size
  128. * <at> temp register
  129. * <sp>
  130. * <error> label to branch to on error; implies fall-through
  131. * macro on success
  132. * On Exit:
  133. * <aa> preserved
  134. * <as> preserved
  135. * <at> destroyed
  136. */
  137. .macro access_ok aa, as, at, sp, error
  138. kernel_ok \at, \sp, .Laccess_ok_\@
  139. user_ok \aa, \as, \at, \error
  140. .Laccess_ok_\@:
  141. .endm
  142. /*
  143. * verify_area determines whether a memory access is allowed. It's
  144. * mostly an unnecessary wrapper for access_ok, but we provide it as a
  145. * duplicate of the verify_area() C inline function below. See the
  146. * equivalent C version below for clarity.
  147. *
  148. * On error, verify_area branches to a label indicated by parameter
  149. * <error>. This implies that the macro falls through to the next
  150. * instruction on success.
  151. *
  152. * Note that we assume success is the common case, and we optimize the
  153. * branch fall-through case on success.
  154. *
  155. * On Entry:
  156. * <aa> register containing memory address
  157. * <as> register containing memory size
  158. * <at> temp register
  159. * <error> label to branch to on error; implies fall-through
  160. * macro on success
  161. * On Exit:
  162. * <aa> preserved
  163. * <as> preserved
  164. * <at> destroyed
  165. */
  166. .macro verify_area aa, as, at, sp, error
  167. access_ok \at, \aa, \as, \sp, \error
  168. .endm
  169. #else /* __ASSEMBLY__ not defined */
  170. #include <linux/sched.h>
  171. #include <asm/types.h>
  172. /*
  173. * The fs value determines whether argument validity checking should
  174. * be performed or not. If get_fs() == USER_DS, checking is
  175. * performed, with get_fs() == KERNEL_DS, checking is bypassed.
  176. *
  177. * For historical reasons (Data Segment Register?), these macros are
  178. * grossly misnamed.
  179. */
  180. #define KERNEL_DS ((mm_segment_t) { 0 })
  181. #define USER_DS ((mm_segment_t) { 1 })
  182. #define get_ds() (KERNEL_DS)
  183. #define get_fs() (current->thread.current_ds)
  184. #define set_fs(val) (current->thread.current_ds = (val))
  185. #define segment_eq(a,b) ((a).seg == (b).seg)
  186. #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
  187. #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
  188. #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
  189. #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
  190. static inline int verify_area(int type, const void * addr, unsigned long size)
  191. {
  192. return access_ok(type,addr,size) ? 0 : -EFAULT;
  193. }
  194. /*
  195. * These are the main single-value transfer routines. They
  196. * automatically use the right size if we just have the right pointer
  197. * type.
  198. *
  199. * This gets kind of ugly. We want to return _two_ values in
  200. * "get_user()" and yet we don't want to do any pointers, because that
  201. * is too much of a performance impact. Thus we have a few rather ugly
  202. * macros here, and hide all the uglyness from the user.
  203. *
  204. * Careful to not
  205. * (a) re-use the arguments for side effects (sizeof is ok)
  206. * (b) require any knowledge of processes at this stage
  207. */
  208. #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
  209. #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
  210. /*
  211. * The "__xxx" versions of the user access functions are versions that
  212. * do not verify the address space, that must have been done previously
  213. * with a separate "access_ok()" call (this is used when we do multiple
  214. * accesses to the same area of user memory).
  215. */
  216. #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
  217. #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
  218. extern long __put_user_bad(void);
  219. #define __put_user_nocheck(x,ptr,size) \
  220. ({ \
  221. long __pu_err; \
  222. __put_user_size((x),(ptr),(size),__pu_err); \
  223. __pu_err; \
  224. })
  225. #define __put_user_check(x,ptr,size) \
  226. ({ \
  227. long __pu_err = -EFAULT; \
  228. __typeof__(*(ptr)) *__pu_addr = (ptr); \
  229. if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
  230. __put_user_size((x),__pu_addr,(size),__pu_err); \
  231. __pu_err; \
  232. })
  233. #define __put_user_size(x,ptr,size,retval) \
  234. do { \
  235. retval = 0; \
  236. switch (size) { \
  237. case 1: __put_user_asm(x,ptr,retval,1,"s8i"); break; \
  238. case 2: __put_user_asm(x,ptr,retval,2,"s16i"); break; \
  239. case 4: __put_user_asm(x,ptr,retval,4,"s32i"); break; \
  240. case 8: { \
  241. __typeof__(*ptr) __v64 = x; \
  242. retval = __copy_to_user(ptr,&__v64,8); \
  243. break; \
  244. } \
  245. default: __put_user_bad(); \
  246. } \
  247. } while (0)
  248. /*
  249. * Consider a case of a user single load/store would cause both an
  250. * unaligned exception and an MMU-related exception (unaligned
  251. * exceptions happen first):
  252. *
  253. * User code passes a bad variable ptr to a system call.
  254. * Kernel tries to access the variable.
  255. * Unaligned exception occurs.
  256. * Unaligned exception handler tries to make aligned accesses.
  257. * Double exception occurs for MMU-related cause (e.g., page not mapped).
  258. * do_page_fault() thinks the fault address belongs to the kernel, not the
  259. * user, and panics.
  260. *
  261. * The kernel currently prohibits user unaligned accesses. We use the
  262. * __check_align_* macros to check for unaligned addresses before
  263. * accessing user space so we don't crash the kernel. Both
  264. * __put_user_asm and __get_user_asm use these alignment macros, so
  265. * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
  266. * sync.
  267. */
  268. #define __check_align_1 ""
  269. #define __check_align_2 \
  270. " _bbci.l %2, 0, 1f \n" \
  271. " movi %0, %3 \n" \
  272. " _j 2f \n"
  273. #define __check_align_4 \
  274. " _bbsi.l %2, 0, 0f \n" \
  275. " _bbci.l %2, 1, 1f \n" \
  276. "0: movi %0, %3 \n" \
  277. " _j 2f \n"
  278. /*
  279. * We don't tell gcc that we are accessing memory, but this is OK
  280. * because we do not write to any memory gcc knows about, so there
  281. * are no aliasing issues.
  282. *
  283. * WARNING: If you modify this macro at all, verify that the
  284. * __check_align_* macros still work.
  285. */
  286. #define __put_user_asm(x, addr, err, align, insn) \
  287. __asm__ __volatile__( \
  288. __check_align_##align \
  289. "1: "insn" %1, %2, 0 \n" \
  290. "2: \n" \
  291. " .section .fixup,\"ax\" \n" \
  292. " .align 4 \n" \
  293. "4: \n" \
  294. " .long 2b \n" \
  295. "5: \n" \
  296. " l32r %2, 4b \n" \
  297. " movi %0, %3 \n" \
  298. " jx %2 \n" \
  299. " .previous \n" \
  300. " .section __ex_table,\"a\" \n" \
  301. " .long 1b, 5b \n" \
  302. " .previous" \
  303. :"=r" (err) \
  304. :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
  305. #define __get_user_nocheck(x,ptr,size) \
  306. ({ \
  307. long __gu_err, __gu_val; \
  308. __get_user_size(__gu_val,(ptr),(size),__gu_err); \
  309. (x) = (__typeof__(*(ptr)))__gu_val; \
  310. __gu_err; \
  311. })
  312. #define __get_user_check(x,ptr,size) \
  313. ({ \
  314. long __gu_err = -EFAULT, __gu_val = 0; \
  315. const __typeof__(*(ptr)) *__gu_addr = (ptr); \
  316. if (access_ok(VERIFY_READ,__gu_addr,size)) \
  317. __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
  318. (x) = (__typeof__(*(ptr)))__gu_val; \
  319. __gu_err; \
  320. })
  321. extern long __get_user_bad(void);
  322. #define __get_user_size(x,ptr,size,retval) \
  323. do { \
  324. retval = 0; \
  325. switch (size) { \
  326. case 1: __get_user_asm(x,ptr,retval,1,"l8ui"); break; \
  327. case 2: __get_user_asm(x,ptr,retval,2,"l16ui"); break; \
  328. case 4: __get_user_asm(x,ptr,retval,4,"l32i"); break; \
  329. case 8: retval = __copy_from_user(&x,ptr,8); break; \
  330. default: (x) = __get_user_bad(); \
  331. } \
  332. } while (0)
  333. /*
  334. * WARNING: If you modify this macro at all, verify that the
  335. * __check_align_* macros still work.
  336. */
  337. #define __get_user_asm(x, addr, err, align, insn) \
  338. __asm__ __volatile__( \
  339. __check_align_##align \
  340. "1: "insn" %1, %2, 0 \n" \
  341. "2: \n" \
  342. " .section .fixup,\"ax\" \n" \
  343. " .align 4 \n" \
  344. "4: \n" \
  345. " .long 2b \n" \
  346. "5: \n" \
  347. " l32r %2, 4b \n" \
  348. " movi %1, 0 \n" \
  349. " movi %0, %3 \n" \
  350. " jx %2 \n" \
  351. " .previous \n" \
  352. " .section __ex_table,\"a\" \n" \
  353. " .long 1b, 5b \n" \
  354. " .previous" \
  355. :"=r" (err), "=r" (x) \
  356. :"r" (addr), "i" (-EFAULT), "0" (err))
  357. /*
  358. * Copy to/from user space
  359. */
  360. /*
  361. * We use a generic, arbitrary-sized copy subroutine. The Xtensa
  362. * architecture would cause heavy code bloat if we tried to inline
  363. * these functions and provide __constant_copy_* equivalents like the
  364. * i386 versions. __xtensa_copy_user is quite efficient. See the
  365. * .fixup section of __xtensa_copy_user for a discussion on the
  366. * X_zeroing equivalents for Xtensa.
  367. */
  368. extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
  369. #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
  370. static inline unsigned long
  371. __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
  372. {
  373. return __copy_user(to,from,n);
  374. }
  375. static inline unsigned long
  376. __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
  377. {
  378. return __copy_user(to,from,n);
  379. }
  380. static inline unsigned long
  381. __generic_copy_to_user(void *to, const void *from, unsigned long n)
  382. {
  383. prefetch(from);
  384. if (access_ok(VERIFY_WRITE, to, n))
  385. return __copy_user(to,from,n);
  386. return n;
  387. }
  388. static inline unsigned long
  389. __generic_copy_from_user(void *to, const void *from, unsigned long n)
  390. {
  391. prefetchw(to);
  392. if (access_ok(VERIFY_READ, from, n))
  393. return __copy_user(to,from,n);
  394. else
  395. memset(to, 0, n);
  396. return n;
  397. }
  398. #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
  399. #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
  400. #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
  401. #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
  402. #define __copy_to_user_inatomic __copy_to_user
  403. #define __copy_from_user_inatomic __copy_from_user
  404. /*
  405. * We need to return the number of bytes not cleared. Our memset()
  406. * returns zero if a problem occurs while accessing user-space memory.
  407. * In that event, return no memory cleared. Otherwise, zero for
  408. * success.
  409. */
  410. static inline unsigned long
  411. __xtensa_clear_user(void *addr, unsigned long size)
  412. {
  413. if ( ! memset(addr, 0, size) )
  414. return size;
  415. return 0;
  416. }
  417. static inline unsigned long
  418. clear_user(void *addr, unsigned long size)
  419. {
  420. if (access_ok(VERIFY_WRITE, addr, size))
  421. return __xtensa_clear_user(addr, size);
  422. return size ? -EFAULT : 0;
  423. }
  424. #define __clear_user __xtensa_clear_user
  425. extern long __strncpy_user(char *, const char *, long);
  426. #define __strncpy_from_user __strncpy_user
  427. static inline long
  428. strncpy_from_user(char *dst, const char *src, long count)
  429. {
  430. if (access_ok(VERIFY_READ, src, 1))
  431. return __strncpy_from_user(dst, src, count);
  432. return -EFAULT;
  433. }
  434. #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
  435. /*
  436. * Return the size of a string (including the ending 0!)
  437. */
  438. extern long __strnlen_user(const char *, long);
  439. static inline long strnlen_user(const char *str, long len)
  440. {
  441. unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
  442. if ((unsigned long)str > top)
  443. return 0;
  444. return __strnlen_user(str, len);
  445. }
  446. struct exception_table_entry
  447. {
  448. unsigned long insn, fixup;
  449. };
  450. /* Returns 0 if exception not found and fixup.unit otherwise. */
  451. extern unsigned long search_exception_table(unsigned long addr);
  452. extern void sort_exception_table(void);
  453. /* Returns the new pc */
  454. #define fixup_exception(map_reg, fixup_unit, pc) \
  455. ({ \
  456. fixup_unit; \
  457. })
  458. #endif /* __ASSEMBLY__ */
  459. #endif /* _XTENSA_UACCESS_H */