system.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384
  1. /* $Id: system.h,v 1.69 2002/02/09 19:49:31 davem Exp $ */
  2. #ifndef __SPARC64_SYSTEM_H
  3. #define __SPARC64_SYSTEM_H
  4. #include <linux/config.h>
  5. #include <asm/ptrace.h>
  6. #include <asm/processor.h>
  7. #include <asm/visasm.h>
  8. #ifndef __ASSEMBLY__
  9. /*
  10. * Sparc (general) CPU types
  11. */
  12. enum sparc_cpu {
  13. sun4 = 0x00,
  14. sun4c = 0x01,
  15. sun4m = 0x02,
  16. sun4d = 0x03,
  17. sun4e = 0x04,
  18. sun4u = 0x05, /* V8 ploos ploos */
  19. sun_unknown = 0x06,
  20. ap1000 = 0x07, /* almost a sun4m */
  21. };
  22. #define sparc_cpu_model sun4u
  23. /* This cannot ever be a sun4c nor sun4 :) That's just history. */
  24. #define ARCH_SUN4C_SUN4 0
  25. #define ARCH_SUN4 0
  26. /* These are here in an effort to more fully work around Spitfire Errata
  27. * #51. Essentially, if a memory barrier occurs soon after a mispredicted
  28. * branch, the chip can stop executing instructions until a trap occurs.
  29. * Therefore, if interrupts are disabled, the chip can hang forever.
  30. *
  31. * It used to be believed that the memory barrier had to be right in the
  32. * delay slot, but a case has been traced recently wherein the memory barrier
  33. * was one instruction after the branch delay slot and the chip still hung.
  34. * The offending sequence was the following in sym_wakeup_done() of the
  35. * sym53c8xx_2 driver:
  36. *
  37. * call sym_ccb_from_dsa, 0
  38. * movge %icc, 0, %l0
  39. * brz,pn %o0, .LL1303
  40. * mov %o0, %l2
  41. * membar #LoadLoad
  42. *
  43. * The branch has to be mispredicted for the bug to occur. Therefore, we put
  44. * the memory barrier explicitly into a "branch always, predicted taken"
  45. * delay slot to avoid the problem case.
  46. */
  47. #define membar_safe(type) \
  48. do { __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" \
  49. " membar " type "\n" \
  50. "1:\n" \
  51. : : : "memory"); \
  52. } while (0)
  53. #define mb() \
  54. membar_safe("#LoadLoad | #LoadStore | #StoreStore | #StoreLoad")
  55. #define rmb() \
  56. membar_safe("#LoadLoad")
  57. #define wmb() \
  58. membar_safe("#StoreStore")
  59. #define membar_storeload() \
  60. membar_safe("#StoreLoad")
  61. #define membar_storeload_storestore() \
  62. membar_safe("#StoreLoad | #StoreStore")
  63. #define membar_storeload_loadload() \
  64. membar_safe("#StoreLoad | #LoadLoad")
  65. #define membar_storestore_loadstore() \
  66. membar_safe("#StoreStore | #LoadStore")
  67. #endif
  68. #define setipl(__new_ipl) \
  69. __asm__ __volatile__("wrpr %0, %%pil" : : "r" (__new_ipl) : "memory")
  70. #define local_irq_disable() \
  71. __asm__ __volatile__("wrpr 15, %%pil" : : : "memory")
  72. #define local_irq_enable() \
  73. __asm__ __volatile__("wrpr 0, %%pil" : : : "memory")
  74. #define getipl() \
  75. ({ unsigned long retval; __asm__ __volatile__("rdpr %%pil, %0" : "=r" (retval)); retval; })
  76. #define swap_pil(__new_pil) \
  77. ({ unsigned long retval; \
  78. __asm__ __volatile__("rdpr %%pil, %0\n\t" \
  79. "wrpr %1, %%pil" \
  80. : "=&r" (retval) \
  81. : "r" (__new_pil) \
  82. : "memory"); \
  83. retval; \
  84. })
  85. #define read_pil_and_cli() \
  86. ({ unsigned long retval; \
  87. __asm__ __volatile__("rdpr %%pil, %0\n\t" \
  88. "wrpr 15, %%pil" \
  89. : "=r" (retval) \
  90. : : "memory"); \
  91. retval; \
  92. })
  93. #define local_save_flags(flags) ((flags) = getipl())
  94. #define local_irq_save(flags) ((flags) = read_pil_and_cli())
  95. #define local_irq_restore(flags) setipl((flags))
  96. /* On sparc64 IRQ flags are the PIL register. A value of zero
  97. * means all interrupt levels are enabled, any other value means
  98. * only IRQ levels greater than that value will be received.
  99. * Consequently this means that the lowest IRQ level is one.
  100. */
  101. #define irqs_disabled() \
  102. ({ unsigned long flags; \
  103. local_save_flags(flags);\
  104. (flags > 0); \
  105. })
  106. #define nop() __asm__ __volatile__ ("nop")
  107. #define read_barrier_depends() do { } while(0)
  108. #define set_mb(__var, __value) \
  109. do { __var = __value; membar_storeload_storestore(); } while(0)
  110. #define set_wmb(__var, __value) \
  111. do { __var = __value; wmb(); } while(0)
  112. #ifdef CONFIG_SMP
  113. #define smp_mb() mb()
  114. #define smp_rmb() rmb()
  115. #define smp_wmb() wmb()
  116. #define smp_read_barrier_depends() read_barrier_depends()
  117. #else
  118. #define smp_mb() __asm__ __volatile__("":::"memory")
  119. #define smp_rmb() __asm__ __volatile__("":::"memory")
  120. #define smp_wmb() __asm__ __volatile__("":::"memory")
  121. #define smp_read_barrier_depends() do { } while(0)
  122. #endif
  123. #define flushi(addr) __asm__ __volatile__ ("flush %0" : : "r" (addr) : "memory")
  124. #define flushw_all() __asm__ __volatile__("flushw")
  125. /* Performance counter register access. */
  126. #define read_pcr(__p) __asm__ __volatile__("rd %%pcr, %0" : "=r" (__p))
  127. #define write_pcr(__p) __asm__ __volatile__("wr %0, 0x0, %%pcr" : : "r" (__p))
  128. #define read_pic(__p) __asm__ __volatile__("rd %%pic, %0" : "=r" (__p))
  129. /* Blackbird errata workaround. See commentary in
  130. * arch/sparc64/kernel/smp.c:smp_percpu_timer_interrupt()
  131. * for more information.
  132. */
  133. #define reset_pic() \
  134. __asm__ __volatile__("ba,pt %xcc, 99f\n\t" \
  135. ".align 64\n" \
  136. "99:wr %g0, 0x0, %pic\n\t" \
  137. "rd %pic, %g0")
  138. #ifndef __ASSEMBLY__
  139. extern void sun_do_break(void);
  140. extern int serial_console;
  141. extern int stop_a_enabled;
  142. static __inline__ int con_is_present(void)
  143. {
  144. return serial_console ? 0 : 1;
  145. }
  146. extern void synchronize_user_stack(void);
  147. extern void __flushw_user(void);
  148. #define flushw_user() __flushw_user()
  149. #define flush_user_windows flushw_user
  150. #define flush_register_windows flushw_all
  151. /* Don't hold the runqueue lock over context switch */
  152. #define __ARCH_WANT_UNLOCKED_CTXSW
  153. #define prepare_arch_switch(next) \
  154. do { \
  155. flushw_all(); \
  156. } while (0)
  157. /* See what happens when you design the chip correctly?
  158. *
  159. * We tell gcc we clobber all non-fixed-usage registers except
  160. * for l0/l1. It will use one for 'next' and the other to hold
  161. * the output value of 'last'. 'next' is not referenced again
  162. * past the invocation of switch_to in the scheduler, so we need
  163. * not preserve it's value. Hairy, but it lets us remove 2 loads
  164. * and 2 stores in this critical code path. -DaveM
  165. */
  166. #define EXTRA_CLOBBER ,"%l1"
  167. #define switch_to(prev, next, last) \
  168. do { if (test_thread_flag(TIF_PERFCTR)) { \
  169. unsigned long __tmp; \
  170. read_pcr(__tmp); \
  171. current_thread_info()->pcr_reg = __tmp; \
  172. read_pic(__tmp); \
  173. current_thread_info()->kernel_cntd0 += (unsigned int)(__tmp);\
  174. current_thread_info()->kernel_cntd1 += ((__tmp) >> 32); \
  175. } \
  176. flush_tlb_pending(); \
  177. save_and_clear_fpu(); \
  178. /* If you are tempted to conditionalize the following */ \
  179. /* so that ASI is only written if it changes, think again. */ \
  180. __asm__ __volatile__("wr %%g0, %0, %%asi" \
  181. : : "r" (__thread_flag_byte_ptr(task_thread_info(next))[TI_FLAG_BYTE_CURRENT_DS]));\
  182. trap_block[current_thread_info()->cpu].thread = \
  183. task_thread_info(next); \
  184. __asm__ __volatile__( \
  185. "mov %%g4, %%g7\n\t" \
  186. "stx %%i6, [%%sp + 2047 + 0x70]\n\t" \
  187. "stx %%i7, [%%sp + 2047 + 0x78]\n\t" \
  188. "rdpr %%wstate, %%o5\n\t" \
  189. "stx %%o6, [%%g6 + %3]\n\t" \
  190. "stb %%o5, [%%g6 + %2]\n\t" \
  191. "rdpr %%cwp, %%o5\n\t" \
  192. "stb %%o5, [%%g6 + %5]\n\t" \
  193. "mov %1, %%g6\n\t" \
  194. "ldub [%1 + %5], %%g1\n\t" \
  195. "wrpr %%g1, %%cwp\n\t" \
  196. "ldx [%%g6 + %3], %%o6\n\t" \
  197. "ldub [%%g6 + %2], %%o5\n\t" \
  198. "ldub [%%g6 + %4], %%o7\n\t" \
  199. "wrpr %%o5, 0x0, %%wstate\n\t" \
  200. "ldx [%%sp + 2047 + 0x70], %%i6\n\t" \
  201. "ldx [%%sp + 2047 + 0x78], %%i7\n\t" \
  202. "ldx [%%g6 + %6], %%g4\n\t" \
  203. "brz,pt %%o7, 1f\n\t" \
  204. " mov %%g7, %0\n\t" \
  205. "b,a ret_from_syscall\n\t" \
  206. "1:\n\t" \
  207. : "=&r" (last) \
  208. : "0" (task_thread_info(next)), \
  209. "i" (TI_WSTATE), "i" (TI_KSP), "i" (TI_NEW_CHILD), \
  210. "i" (TI_CWP), "i" (TI_TASK) \
  211. : "cc", \
  212. "g1", "g2", "g3", "g7", \
  213. "l2", "l3", "l4", "l5", "l6", "l7", \
  214. "i0", "i1", "i2", "i3", "i4", "i5", \
  215. "o0", "o1", "o2", "o3", "o4", "o5", "o7" EXTRA_CLOBBER);\
  216. /* If you fuck with this, update ret_from_syscall code too. */ \
  217. if (test_thread_flag(TIF_PERFCTR)) { \
  218. write_pcr(current_thread_info()->pcr_reg); \
  219. reset_pic(); \
  220. } \
  221. } while(0)
  222. /*
  223. * On SMP systems, when the scheduler does migration-cost autodetection,
  224. * it needs a way to flush as much of the CPU's caches as possible.
  225. *
  226. * TODO: fill this in!
  227. */
  228. static inline void sched_cacheflush(void)
  229. {
  230. }
  231. static inline unsigned long xchg32(__volatile__ unsigned int *m, unsigned int val)
  232. {
  233. unsigned long tmp1, tmp2;
  234. __asm__ __volatile__(
  235. " membar #StoreLoad | #LoadLoad\n"
  236. " mov %0, %1\n"
  237. "1: lduw [%4], %2\n"
  238. " cas [%4], %2, %0\n"
  239. " cmp %2, %0\n"
  240. " bne,a,pn %%icc, 1b\n"
  241. " mov %1, %0\n"
  242. " membar #StoreLoad | #StoreStore\n"
  243. : "=&r" (val), "=&r" (tmp1), "=&r" (tmp2)
  244. : "0" (val), "r" (m)
  245. : "cc", "memory");
  246. return val;
  247. }
  248. static inline unsigned long xchg64(__volatile__ unsigned long *m, unsigned long val)
  249. {
  250. unsigned long tmp1, tmp2;
  251. __asm__ __volatile__(
  252. " membar #StoreLoad | #LoadLoad\n"
  253. " mov %0, %1\n"
  254. "1: ldx [%4], %2\n"
  255. " casx [%4], %2, %0\n"
  256. " cmp %2, %0\n"
  257. " bne,a,pn %%xcc, 1b\n"
  258. " mov %1, %0\n"
  259. " membar #StoreLoad | #StoreStore\n"
  260. : "=&r" (val), "=&r" (tmp1), "=&r" (tmp2)
  261. : "0" (val), "r" (m)
  262. : "cc", "memory");
  263. return val;
  264. }
  265. #define xchg(ptr,x) ((__typeof__(*(ptr)))__xchg((unsigned long)(x),(ptr),sizeof(*(ptr))))
  266. #define tas(ptr) (xchg((ptr),1))
  267. extern void __xchg_called_with_bad_pointer(void);
  268. static __inline__ unsigned long __xchg(unsigned long x, __volatile__ void * ptr,
  269. int size)
  270. {
  271. switch (size) {
  272. case 4:
  273. return xchg32(ptr, x);
  274. case 8:
  275. return xchg64(ptr, x);
  276. };
  277. __xchg_called_with_bad_pointer();
  278. return x;
  279. }
  280. extern void die_if_kernel(char *str, struct pt_regs *regs) __attribute__ ((noreturn));
  281. /*
  282. * Atomic compare and exchange. Compare OLD with MEM, if identical,
  283. * store NEW in MEM. Return the initial value in MEM. Success is
  284. * indicated by comparing RETURN with OLD.
  285. */
  286. #define __HAVE_ARCH_CMPXCHG 1
  287. static __inline__ unsigned long
  288. __cmpxchg_u32(volatile int *m, int old, int new)
  289. {
  290. __asm__ __volatile__("membar #StoreLoad | #LoadLoad\n"
  291. "cas [%2], %3, %0\n\t"
  292. "membar #StoreLoad | #StoreStore"
  293. : "=&r" (new)
  294. : "0" (new), "r" (m), "r" (old)
  295. : "memory");
  296. return new;
  297. }
  298. static __inline__ unsigned long
  299. __cmpxchg_u64(volatile long *m, unsigned long old, unsigned long new)
  300. {
  301. __asm__ __volatile__("membar #StoreLoad | #LoadLoad\n"
  302. "casx [%2], %3, %0\n\t"
  303. "membar #StoreLoad | #StoreStore"
  304. : "=&r" (new)
  305. : "0" (new), "r" (m), "r" (old)
  306. : "memory");
  307. return new;
  308. }
  309. /* This function doesn't exist, so you'll get a linker error
  310. if something tries to do an invalid cmpxchg(). */
  311. extern void __cmpxchg_called_with_bad_pointer(void);
  312. static __inline__ unsigned long
  313. __cmpxchg(volatile void *ptr, unsigned long old, unsigned long new, int size)
  314. {
  315. switch (size) {
  316. case 4:
  317. return __cmpxchg_u32(ptr, old, new);
  318. case 8:
  319. return __cmpxchg_u64(ptr, old, new);
  320. }
  321. __cmpxchg_called_with_bad_pointer();
  322. return old;
  323. }
  324. #define cmpxchg(ptr,o,n) \
  325. ({ \
  326. __typeof__(*(ptr)) _o_ = (o); \
  327. __typeof__(*(ptr)) _n_ = (n); \
  328. (__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \
  329. (unsigned long)_n_, sizeof(*(ptr))); \
  330. })
  331. #endif /* !(__ASSEMBLY__) */
  332. #define arch_align_stack(x) (x)
  333. #endif /* !(__SPARC64_SYSTEM_H) */