pgtable.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. #ifndef _ASM_POWERPC_PGTABLE_H
  2. #define _ASM_POWERPC_PGTABLE_H
  3. #ifdef __KERNEL__
  4. #ifndef CONFIG_PPC64
  5. #include <asm-ppc/pgtable.h>
  6. #else
  7. /*
  8. * This file contains the functions and defines necessary to modify and use
  9. * the ppc64 hashed page table.
  10. */
  11. #ifndef __ASSEMBLY__
  12. #include <linux/config.h>
  13. #include <linux/stddef.h>
  14. #include <asm/processor.h> /* For TASK_SIZE */
  15. #include <asm/mmu.h>
  16. #include <asm/page.h>
  17. #include <asm/tlbflush.h>
  18. struct mm_struct;
  19. #endif /* __ASSEMBLY__ */
  20. #ifdef CONFIG_PPC_64K_PAGES
  21. #include <asm/pgtable-64k.h>
  22. #else
  23. #include <asm/pgtable-4k.h>
  24. #endif
  25. #define FIRST_USER_ADDRESS 0
  26. /*
  27. * Size of EA range mapped by our pagetables.
  28. */
  29. #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  30. PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  31. #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
  32. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  33. #error TASK_SIZE_USER64 exceeds pagetable range
  34. #endif
  35. #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
  36. #error TASK_SIZE_USER64 exceeds user VSID range
  37. #endif
  38. /*
  39. * Define the address range of the vmalloc VM area.
  40. */
  41. #define VMALLOC_START (0xD000000000000000ul)
  42. #define VMALLOC_SIZE (0x80000000000UL)
  43. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  44. /*
  45. * Define the address range of the imalloc VM area.
  46. */
  47. #define PHBS_IO_BASE VMALLOC_END
  48. #define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
  49. #define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
  50. /*
  51. * Region IDs
  52. */
  53. #define REGION_SHIFT 60UL
  54. #define REGION_MASK (0xfUL << REGION_SHIFT)
  55. #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
  56. #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
  57. #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
  58. #define USER_REGION_ID (0UL)
  59. /*
  60. * Common bits in a linux-style PTE. These match the bits in the
  61. * (hardware-defined) PowerPC PTE as closely as possible. Additional
  62. * bits may be defined in pgtable-*.h
  63. */
  64. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  65. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  66. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  67. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  68. #define _PAGE_GUARDED 0x0008
  69. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  70. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  71. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  72. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  73. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  74. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  75. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  76. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  77. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  78. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  79. /* __pgprot defined in asm-powerpc/page.h */
  80. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  81. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  82. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  83. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  84. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  85. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  86. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  87. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  88. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  89. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  90. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  91. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  92. #define HAVE_PAGE_AGP
  93. /* PTEIDX nibble */
  94. #define _PTEIDX_SECONDARY 0x8
  95. #define _PTEIDX_GROUP_IX 0x7
  96. /*
  97. * POWER4 and newer have per page execute protection, older chips can only
  98. * do this on a segment (256MB) basis.
  99. *
  100. * Also, write permissions imply read permissions.
  101. * This is the closest we can get..
  102. *
  103. * Note due to the way vm flags are laid out, the bits are XWR
  104. */
  105. #define __P000 PAGE_NONE
  106. #define __P001 PAGE_READONLY
  107. #define __P010 PAGE_COPY
  108. #define __P011 PAGE_COPY
  109. #define __P100 PAGE_READONLY_X
  110. #define __P101 PAGE_READONLY_X
  111. #define __P110 PAGE_COPY_X
  112. #define __P111 PAGE_COPY_X
  113. #define __S000 PAGE_NONE
  114. #define __S001 PAGE_READONLY
  115. #define __S010 PAGE_SHARED
  116. #define __S011 PAGE_SHARED
  117. #define __S100 PAGE_READONLY_X
  118. #define __S101 PAGE_READONLY_X
  119. #define __S110 PAGE_SHARED_X
  120. #define __S111 PAGE_SHARED_X
  121. #ifndef __ASSEMBLY__
  122. /*
  123. * ZERO_PAGE is a global shared page that is always zero: used
  124. * for zero-mapped memory areas etc..
  125. */
  126. extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
  127. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  128. #endif /* __ASSEMBLY__ */
  129. #ifdef CONFIG_HUGETLB_PAGE
  130. #define HAVE_ARCH_UNMAPPED_AREA
  131. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  132. #endif
  133. #ifndef __ASSEMBLY__
  134. /*
  135. * Conversion functions: convert a page and protection to a page entry,
  136. * and a page entry and page directory to the page they refer to.
  137. *
  138. * mk_pte takes a (struct page *) as input
  139. */
  140. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  141. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  142. {
  143. pte_t pte;
  144. pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
  145. return pte;
  146. }
  147. #define pte_modify(_pte, newprot) \
  148. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  149. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  150. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  151. /* pte_clear moved to later in this file */
  152. #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
  153. #define pte_page(x) pfn_to_page(pte_pfn(x))
  154. #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
  155. #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
  156. #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
  157. #define pmd_none(pmd) (!pmd_val(pmd))
  158. #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
  159. || (pmd_val(pmd) & PMD_BAD_BITS))
  160. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  161. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  162. #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
  163. #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
  164. #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
  165. #define pud_none(pud) (!pud_val(pud))
  166. #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
  167. || (pud_val(pud) & PUD_BAD_BITS))
  168. #define pud_present(pud) (pud_val(pud) != 0)
  169. #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
  170. #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
  171. #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
  172. /*
  173. * Find an entry in a page-table-directory. We combine the address region
  174. * (the high order N bits) and the pgd portion of the address.
  175. */
  176. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  177. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
  178. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  179. #define pmd_offset(pudp,addr) \
  180. (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  181. #define pte_offset_kernel(dir,addr) \
  182. (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  183. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  184. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  185. #define pte_unmap(pte) do { } while(0)
  186. #define pte_unmap_nested(pte) do { } while(0)
  187. /* to find an entry in a kernel page-table-directory */
  188. /* This now only contains the vmalloc pages */
  189. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  190. /*
  191. * The following only work if pte_present() is true.
  192. * Undefined behaviour if not..
  193. */
  194. static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
  195. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  196. static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
  197. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  198. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  199. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  200. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  201. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  202. static inline pte_t pte_rdprotect(pte_t pte) {
  203. pte_val(pte) &= ~_PAGE_USER; return pte; }
  204. static inline pte_t pte_exprotect(pte_t pte) {
  205. pte_val(pte) &= ~_PAGE_EXEC; return pte; }
  206. static inline pte_t pte_wrprotect(pte_t pte) {
  207. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  208. static inline pte_t pte_mkclean(pte_t pte) {
  209. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  210. static inline pte_t pte_mkold(pte_t pte) {
  211. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  212. static inline pte_t pte_mkread(pte_t pte) {
  213. pte_val(pte) |= _PAGE_USER; return pte; }
  214. static inline pte_t pte_mkexec(pte_t pte) {
  215. pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
  216. static inline pte_t pte_mkwrite(pte_t pte) {
  217. pte_val(pte) |= _PAGE_RW; return pte; }
  218. static inline pte_t pte_mkdirty(pte_t pte) {
  219. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  220. static inline pte_t pte_mkyoung(pte_t pte) {
  221. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  222. static inline pte_t pte_mkhuge(pte_t pte) {
  223. return pte; }
  224. /* Atomic PTE updates */
  225. static inline unsigned long pte_update(pte_t *p, unsigned long clr)
  226. {
  227. unsigned long old, tmp;
  228. __asm__ __volatile__(
  229. "1: ldarx %0,0,%3 # pte_update\n\
  230. andi. %1,%0,%6\n\
  231. bne- 1b \n\
  232. andc %1,%0,%4 \n\
  233. stdcx. %1,0,%3 \n\
  234. bne- 1b"
  235. : "=&r" (old), "=&r" (tmp), "=m" (*p)
  236. : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
  237. : "cc" );
  238. return old;
  239. }
  240. /* PTE updating functions, this function puts the PTE in the
  241. * batch, doesn't actually triggers the hash flush immediately,
  242. * you need to call flush_tlb_pending() to do that.
  243. * Pass -1 for "normal" size (4K or 64K)
  244. */
  245. extern void hpte_update(struct mm_struct *mm, unsigned long addr,
  246. pte_t *ptep, unsigned long pte, int huge);
  247. static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
  248. unsigned long addr, pte_t *ptep)
  249. {
  250. unsigned long old;
  251. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  252. return 0;
  253. old = pte_update(ptep, _PAGE_ACCESSED);
  254. if (old & _PAGE_HASHPTE) {
  255. hpte_update(mm, addr, ptep, old, 0);
  256. flush_tlb_pending();
  257. }
  258. return (old & _PAGE_ACCESSED) != 0;
  259. }
  260. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  261. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  262. ({ \
  263. int __r; \
  264. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  265. __r; \
  266. })
  267. /*
  268. * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
  269. * moment we always flush but we need to fix hpte_update and test if the
  270. * optimisation is worth it.
  271. */
  272. static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
  273. unsigned long addr, pte_t *ptep)
  274. {
  275. unsigned long old;
  276. if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
  277. return 0;
  278. old = pte_update(ptep, _PAGE_DIRTY);
  279. if (old & _PAGE_HASHPTE)
  280. hpte_update(mm, addr, ptep, old, 0);
  281. return (old & _PAGE_DIRTY) != 0;
  282. }
  283. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  284. #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
  285. ({ \
  286. int __r; \
  287. __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
  288. __r; \
  289. })
  290. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  291. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
  292. pte_t *ptep)
  293. {
  294. unsigned long old;
  295. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  296. return;
  297. old = pte_update(ptep, _PAGE_RW);
  298. if (old & _PAGE_HASHPTE)
  299. hpte_update(mm, addr, ptep, old, 0);
  300. }
  301. /*
  302. * We currently remove entries from the hashtable regardless of whether
  303. * the entry was young or dirty. The generic routines only flush if the
  304. * entry was young or dirty which is not good enough.
  305. *
  306. * We should be more intelligent about this but for the moment we override
  307. * these functions and force a tlb flush unconditionally
  308. */
  309. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  310. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  311. ({ \
  312. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  313. __ptep); \
  314. __young; \
  315. })
  316. #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
  317. #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
  318. ({ \
  319. int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
  320. __ptep); \
  321. flush_tlb_page(__vma, __address); \
  322. __dirty; \
  323. })
  324. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  325. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  326. unsigned long addr, pte_t *ptep)
  327. {
  328. unsigned long old = pte_update(ptep, ~0UL);
  329. if (old & _PAGE_HASHPTE)
  330. hpte_update(mm, addr, ptep, old, 0);
  331. return __pte(old);
  332. }
  333. static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
  334. pte_t * ptep)
  335. {
  336. unsigned long old = pte_update(ptep, ~0UL);
  337. if (old & _PAGE_HASHPTE)
  338. hpte_update(mm, addr, ptep, old, 0);
  339. }
  340. /*
  341. * set_pte stores a linux PTE into the linux page table.
  342. */
  343. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  344. pte_t *ptep, pte_t pte)
  345. {
  346. if (pte_present(*ptep)) {
  347. pte_clear(mm, addr, ptep);
  348. flush_tlb_pending();
  349. }
  350. pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  351. #ifdef CONFIG_PPC_64K_PAGES
  352. if (mmu_virtual_psize != MMU_PAGE_64K)
  353. pte = __pte(pte_val(pte) | _PAGE_COMBO);
  354. #endif /* CONFIG_PPC_64K_PAGES */
  355. *ptep = pte;
  356. }
  357. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  358. * function doesn't need to flush the hash entry
  359. */
  360. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  361. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  362. {
  363. unsigned long bits = pte_val(entry) &
  364. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  365. unsigned long old, tmp;
  366. __asm__ __volatile__(
  367. "1: ldarx %0,0,%4\n\
  368. andi. %1,%0,%6\n\
  369. bne- 1b \n\
  370. or %0,%3,%0\n\
  371. stdcx. %0,0,%4\n\
  372. bne- 1b"
  373. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  374. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  375. :"cc");
  376. }
  377. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  378. do { \
  379. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  380. flush_tlb_page_nohash(__vma, __address); \
  381. } while(0)
  382. /*
  383. * Macro to mark a page protection value as "uncacheable".
  384. */
  385. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  386. struct file;
  387. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  388. unsigned long size, pgprot_t vma_prot);
  389. #define __HAVE_PHYS_MEM_ACCESS_PROT
  390. #define __HAVE_ARCH_PTE_SAME
  391. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  392. #define pte_ERROR(e) \
  393. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  394. #define pmd_ERROR(e) \
  395. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
  396. #define pgd_ERROR(e) \
  397. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  398. extern pgd_t swapper_pg_dir[];
  399. extern void paging_init(void);
  400. /*
  401. * This gets called at the end of handling a page fault, when
  402. * the kernel has put a new PTE into the page table for the process.
  403. * We use it to put a corresponding HPTE into the hash table
  404. * ahead of time, instead of waiting for the inevitable extra
  405. * hash-table miss exception.
  406. */
  407. struct vm_area_struct;
  408. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  409. /* Encode and de-code a swap entry */
  410. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  411. #define __swp_offset(entry) ((entry).val >> 8)
  412. #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
  413. #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
  414. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
  415. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
  416. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
  417. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
  418. /*
  419. * kern_addr_valid is intended to indicate whether an address is a valid
  420. * kernel address. Most 32-bit archs define it as always true (like this)
  421. * but most 64-bit archs actually perform a test. What should we do here?
  422. * The only use is in fs/ncpfs/dir.c
  423. */
  424. #define kern_addr_valid(addr) (1)
  425. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  426. remap_pfn_range(vma, vaddr, pfn, size, prot)
  427. void pgtable_cache_init(void);
  428. /*
  429. * find_linux_pte returns the address of a linux pte for a given
  430. * effective address and directory. If not found, it returns zero.
  431. */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  432. {
  433. pgd_t *pg;
  434. pud_t *pu;
  435. pmd_t *pm;
  436. pte_t *pt = NULL;
  437. pg = pgdir + pgd_index(ea);
  438. if (!pgd_none(*pg)) {
  439. pu = pud_offset(pg, ea);
  440. if (!pud_none(*pu)) {
  441. pm = pmd_offset(pu, ea);
  442. if (pmd_present(*pm))
  443. pt = pte_offset_kernel(pm, ea);
  444. }
  445. }
  446. return pt;
  447. }
  448. #include <asm-generic/pgtable.h>
  449. #endif /* __ASSEMBLY__ */
  450. #endif /* CONFIG_PPC64 */
  451. #endif /* __KERNEL__ */
  452. #endif /* _ASM_POWERPC_PGTABLE_H */