uaccess.h 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. #ifndef __PARISC_UACCESS_H
  2. #define __PARISC_UACCESS_H
  3. /*
  4. * User space memory access functions
  5. */
  6. #include <linux/sched.h>
  7. #include <asm/page.h>
  8. #include <asm/system.h>
  9. #include <asm/cache.h>
  10. #include <asm-generic/uaccess.h>
  11. #define VERIFY_READ 0
  12. #define VERIFY_WRITE 1
  13. #define KERNEL_DS ((mm_segment_t){0})
  14. #define USER_DS ((mm_segment_t){1})
  15. #define segment_eq(a,b) ((a).seg == (b).seg)
  16. #define get_ds() (KERNEL_DS)
  17. #define get_fs() (current_thread_info()->addr_limit)
  18. #define set_fs(x) (current_thread_info()->addr_limit = (x))
  19. /*
  20. * Note that since kernel addresses are in a separate address space on
  21. * parisc, we don't need to do anything for access_ok().
  22. * We just let the page fault handler do the right thing. This also means
  23. * that put_user is the same as __put_user, etc.
  24. */
  25. extern int __get_kernel_bad(void);
  26. extern int __get_user_bad(void);
  27. extern int __put_kernel_bad(void);
  28. extern int __put_user_bad(void);
  29. static inline long access_ok(int type, const void __user * addr,
  30. unsigned long size)
  31. {
  32. return 1;
  33. }
  34. #define put_user __put_user
  35. #define get_user __get_user
  36. #if BITS_PER_LONG == 32
  37. #define LDD_KERNEL(ptr) __get_kernel_bad();
  38. #define LDD_USER(ptr) __get_user_bad();
  39. #define STD_KERNEL(x, ptr) __put_kernel_asm64(x,ptr)
  40. #define STD_USER(x, ptr) __put_user_asm64(x,ptr)
  41. #else
  42. #define LDD_KERNEL(ptr) __get_kernel_asm("ldd",ptr)
  43. #define LDD_USER(ptr) __get_user_asm("ldd",ptr)
  44. #define STD_KERNEL(x, ptr) __put_kernel_asm("std",x,ptr)
  45. #define STD_USER(x, ptr) __put_user_asm("std",x,ptr)
  46. #endif
  47. /*
  48. * The exception table contains two values: the first is an address
  49. * for an instruction that is allowed to fault, and the second is
  50. * the address to the fixup routine.
  51. */
  52. struct exception_table_entry {
  53. unsigned long insn; /* address of insn that is allowed to fault. */
  54. long fixup; /* fixup routine */
  55. };
  56. /*
  57. * The page fault handler stores, in a per-cpu area, the following information
  58. * if a fixup routine is available.
  59. */
  60. struct exception_data {
  61. unsigned long fault_ip;
  62. unsigned long fault_space;
  63. unsigned long fault_addr;
  64. };
  65. #define __get_user(x,ptr) \
  66. ({ \
  67. register long __gu_err __asm__ ("r8") = 0; \
  68. register long __gu_val __asm__ ("r9") = 0; \
  69. \
  70. if (segment_eq(get_fs(),KERNEL_DS)) { \
  71. switch (sizeof(*(ptr))) { \
  72. case 1: __get_kernel_asm("ldb",ptr); break; \
  73. case 2: __get_kernel_asm("ldh",ptr); break; \
  74. case 4: __get_kernel_asm("ldw",ptr); break; \
  75. case 8: LDD_KERNEL(ptr); break; \
  76. default: __get_kernel_bad(); break; \
  77. } \
  78. } \
  79. else { \
  80. switch (sizeof(*(ptr))) { \
  81. case 1: __get_user_asm("ldb",ptr); break; \
  82. case 2: __get_user_asm("ldh",ptr); break; \
  83. case 4: __get_user_asm("ldw",ptr); break; \
  84. case 8: LDD_USER(ptr); break; \
  85. default: __get_user_bad(); break; \
  86. } \
  87. } \
  88. \
  89. (x) = (__typeof__(*(ptr))) __gu_val; \
  90. __gu_err; \
  91. })
  92. #ifdef __LP64__
  93. #define __get_kernel_asm(ldx,ptr) \
  94. __asm__("\n1:\t" ldx "\t0(%2),%0\n" \
  95. "\t.section __ex_table,\"aw\"\n" \
  96. "\t.dword\t1b,fixup_get_user_skip_1\n" \
  97. "\t.previous" \
  98. : "=r"(__gu_val), "=r"(__gu_err) \
  99. : "r"(ptr), "1"(__gu_err) \
  100. : "r1");
  101. #define __get_user_asm(ldx,ptr) \
  102. __asm__("\n1:\t" ldx "\t0(%%sr3,%2),%0\n" \
  103. "\t.section __ex_table,\"aw\"\n" \
  104. "\t.dword\t1b,fixup_get_user_skip_1\n" \
  105. "\t.previous" \
  106. : "=r"(__gu_val), "=r"(__gu_err) \
  107. : "r"(ptr), "1"(__gu_err) \
  108. : "r1");
  109. #else
  110. #define __get_kernel_asm(ldx,ptr) \
  111. __asm__("\n1:\t" ldx "\t0(%2),%0\n" \
  112. "\t.section __ex_table,\"aw\"\n" \
  113. "\t.word\t1b,fixup_get_user_skip_1\n" \
  114. "\t.previous" \
  115. : "=r"(__gu_val), "=r"(__gu_err) \
  116. : "r"(ptr), "1"(__gu_err) \
  117. : "r1");
  118. #define __get_user_asm(ldx,ptr) \
  119. __asm__("\n1:\t" ldx "\t0(%%sr3,%2),%0\n" \
  120. "\t.section __ex_table,\"aw\"\n" \
  121. "\t.word\t1b,fixup_get_user_skip_1\n" \
  122. "\t.previous" \
  123. : "=r"(__gu_val), "=r"(__gu_err) \
  124. : "r"(ptr), "1"(__gu_err) \
  125. : "r1");
  126. #endif /* !__LP64__ */
  127. #define __put_user(x,ptr) \
  128. ({ \
  129. register long __pu_err __asm__ ("r8") = 0; \
  130. __typeof__(*(ptr)) __x = (__typeof__(*(ptr)))(x); \
  131. \
  132. if (segment_eq(get_fs(),KERNEL_DS)) { \
  133. switch (sizeof(*(ptr))) { \
  134. case 1: __put_kernel_asm("stb",__x,ptr); break; \
  135. case 2: __put_kernel_asm("sth",__x,ptr); break; \
  136. case 4: __put_kernel_asm("stw",__x,ptr); break; \
  137. case 8: STD_KERNEL(__x,ptr); break; \
  138. default: __put_kernel_bad(); break; \
  139. } \
  140. } \
  141. else { \
  142. switch (sizeof(*(ptr))) { \
  143. case 1: __put_user_asm("stb",__x,ptr); break; \
  144. case 2: __put_user_asm("sth",__x,ptr); break; \
  145. case 4: __put_user_asm("stw",__x,ptr); break; \
  146. case 8: STD_USER(__x,ptr); break; \
  147. default: __put_user_bad(); break; \
  148. } \
  149. } \
  150. \
  151. __pu_err; \
  152. })
  153. /*
  154. * The "__put_user/kernel_asm()" macros tell gcc they read from memory
  155. * instead of writing. This is because they do not write to any memory
  156. * gcc knows about, so there are no aliasing issues.
  157. */
  158. #ifdef __LP64__
  159. #define __put_kernel_asm(stx,x,ptr) \
  160. __asm__ __volatile__ ( \
  161. "\n1:\t" stx "\t%2,0(%1)\n" \
  162. "\t.section __ex_table,\"aw\"\n" \
  163. "\t.dword\t1b,fixup_put_user_skip_1\n" \
  164. "\t.previous" \
  165. : "=r"(__pu_err) \
  166. : "r"(ptr), "r"(x), "0"(__pu_err))
  167. #define __put_user_asm(stx,x,ptr) \
  168. __asm__ __volatile__ ( \
  169. "\n1:\t" stx "\t%2,0(%%sr3,%1)\n" \
  170. "\t.section __ex_table,\"aw\"\n" \
  171. "\t.dword\t1b,fixup_put_user_skip_1\n" \
  172. "\t.previous" \
  173. : "=r"(__pu_err) \
  174. : "r"(ptr), "r"(x), "0"(__pu_err) \
  175. : "r1")
  176. #else
  177. #define __put_kernel_asm(stx,x,ptr) \
  178. __asm__ __volatile__ ( \
  179. "\n1:\t" stx "\t%2,0(%1)\n" \
  180. "\t.section __ex_table,\"aw\"\n" \
  181. "\t.word\t1b,fixup_put_user_skip_1\n" \
  182. "\t.previous" \
  183. : "=r"(__pu_err) \
  184. : "r"(ptr), "r"(x), "0"(__pu_err) \
  185. : "r1")
  186. #define __put_user_asm(stx,x,ptr) \
  187. __asm__ __volatile__ ( \
  188. "\n1:\t" stx "\t%2,0(%%sr3,%1)\n" \
  189. "\t.section __ex_table,\"aw\"\n" \
  190. "\t.word\t1b,fixup_put_user_skip_1\n" \
  191. "\t.previous" \
  192. : "=r"(__pu_err) \
  193. : "r"(ptr), "r"(x), "0"(__pu_err) \
  194. : "r1")
  195. #define __put_kernel_asm64(__val,ptr) do { \
  196. u64 __val64 = (u64)(__val); \
  197. u32 hi = (__val64) >> 32; \
  198. u32 lo = (__val64) & 0xffffffff; \
  199. __asm__ __volatile__ ( \
  200. "\n1:\tstw %2,0(%1)\n" \
  201. "\n2:\tstw %3,4(%1)\n" \
  202. "\t.section __ex_table,\"aw\"\n" \
  203. "\t.word\t1b,fixup_put_user_skip_2\n" \
  204. "\t.word\t2b,fixup_put_user_skip_1\n" \
  205. "\t.previous" \
  206. : "=r"(__pu_err) \
  207. : "r"(ptr), "r"(hi), "r"(lo), "0"(__pu_err) \
  208. : "r1"); \
  209. } while (0)
  210. #define __put_user_asm64(__val,ptr) do { \
  211. u64 __val64 = (u64)__val; \
  212. u32 hi = (__val64) >> 32; \
  213. u32 lo = (__val64) & 0xffffffff; \
  214. __asm__ __volatile__ ( \
  215. "\n1:\tstw %2,0(%%sr3,%1)\n" \
  216. "\n2:\tstw %3,4(%%sr3,%1)\n" \
  217. "\t.section __ex_table,\"aw\"\n" \
  218. "\t.word\t1b,fixup_get_user_skip_2\n" \
  219. "\t.word\t2b,fixup_get_user_skip_1\n" \
  220. "\t.previous" \
  221. : "=r"(__pu_err) \
  222. : "r"(ptr), "r"(hi), "r"(lo), "0"(__pu_err) \
  223. : "r1"); \
  224. } while (0)
  225. #endif /* !__LP64__ */
  226. /*
  227. * Complex access routines -- external declarations
  228. */
  229. extern unsigned long lcopy_to_user(void __user *, const void *, unsigned long);
  230. extern unsigned long lcopy_from_user(void *, const void __user *, unsigned long);
  231. extern unsigned long lcopy_in_user(void __user *, const void __user *, unsigned long);
  232. extern long lstrncpy_from_user(char *, const char __user *, long);
  233. extern unsigned lclear_user(void __user *,unsigned long);
  234. extern long lstrnlen_user(const char __user *,long);
  235. /*
  236. * Complex access routines -- macros
  237. */
  238. #define strncpy_from_user lstrncpy_from_user
  239. #define strnlen_user lstrnlen_user
  240. #define strlen_user(str) lstrnlen_user(str, 0x7fffffffL)
  241. #define clear_user lclear_user
  242. #define __clear_user lclear_user
  243. unsigned long copy_to_user(void __user *dst, const void *src, unsigned long len);
  244. #define __copy_to_user copy_to_user
  245. unsigned long copy_from_user(void *dst, const void __user *src, unsigned long len);
  246. #define __copy_from_user copy_from_user
  247. unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len);
  248. #define __copy_in_user copy_in_user
  249. #define __copy_to_user_inatomic __copy_to_user
  250. #define __copy_from_user_inatomic __copy_from_user
  251. #endif /* __PARISC_UACCESS_H */