pgtable.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. #ifndef _PARISC_PGTABLE_H
  2. #define _PARISC_PGTABLE_H
  3. #include <asm-generic/4level-fixup.h>
  4. #include <linux/config.h>
  5. #include <asm/fixmap.h>
  6. #ifndef __ASSEMBLY__
  7. /*
  8. * we simulate an x86-style page table for the linux mm code
  9. */
  10. #include <linux/spinlock.h>
  11. #include <linux/mm.h> /* for vm_area_struct */
  12. #include <asm/processor.h>
  13. #include <asm/cache.h>
  14. #include <asm/bitops.h>
  15. /*
  16. * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
  17. * memory. For the return value to be meaningful, ADDR must be >=
  18. * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
  19. * require a hash-, or multi-level tree-lookup or something of that
  20. * sort) but it guarantees to return TRUE only if accessing the page
  21. * at that address does not cause an error. Note that there may be
  22. * addresses for which kern_addr_valid() returns FALSE even though an
  23. * access would not cause an error (e.g., this is typically true for
  24. * memory mapped I/O regions.
  25. *
  26. * XXX Need to implement this for parisc.
  27. */
  28. #define kern_addr_valid(addr) (1)
  29. /* Certain architectures need to do special things when PTEs
  30. * within a page table are directly modified. Thus, the following
  31. * hook is made available.
  32. */
  33. #define set_pte(pteptr, pteval) \
  34. do{ \
  35. *(pteptr) = (pteval); \
  36. } while(0)
  37. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  38. #endif /* !__ASSEMBLY__ */
  39. #define pte_ERROR(e) \
  40. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  41. #define pmd_ERROR(e) \
  42. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
  43. #define pgd_ERROR(e) \
  44. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
  45. /* Note: If you change ISTACK_SIZE, you need to change the corresponding
  46. * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also,
  47. * the "order" and size need to agree.
  48. */
  49. #define ISTACK_SIZE 32768 /* Interrupt Stack Size */
  50. #define ISTACK_ORDER 3
  51. /* This is the size of the initially mapped kernel memory (i.e. currently
  52. * 0 to 1<<23 == 8MB */
  53. #ifdef CONFIG_64BIT
  54. #define KERNEL_INITIAL_ORDER 24
  55. #else
  56. #define KERNEL_INITIAL_ORDER 23
  57. #endif
  58. #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
  59. #ifdef CONFIG_64BIT
  60. #define PT_NLEVELS 3
  61. #define PGD_ORDER 1 /* Number of pages per pgd */
  62. #define PMD_ORDER 1 /* Number of pages per pmd */
  63. #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
  64. #else
  65. #define PT_NLEVELS 2
  66. #define PGD_ORDER 1 /* Number of pages per pgd */
  67. #define PGD_ALLOC_ORDER PGD_ORDER
  68. #endif
  69. /* Definitions for 3rd level (we use PLD here for Page Lower directory
  70. * because PTE_SHIFT is used lower down to mean shift that has to be
  71. * done to get usable bits out of the PTE) */
  72. #define PLD_SHIFT PAGE_SHIFT
  73. #define PLD_SIZE PAGE_SIZE
  74. #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
  75. #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
  76. /* Definitions for 2nd level */
  77. #define pgtable_cache_init() do { } while (0)
  78. #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
  79. #define PMD_SIZE (1UL << PMD_SHIFT)
  80. #define PMD_MASK (~(PMD_SIZE-1))
  81. #if PT_NLEVELS == 3
  82. #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
  83. #else
  84. #define BITS_PER_PMD 0
  85. #endif
  86. #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
  87. /* Definitions for 1st level */
  88. #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
  89. #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
  90. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  91. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  92. #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
  93. #define USER_PTRS_PER_PGD PTRS_PER_PGD
  94. #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
  95. #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
  96. #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
  97. /* This calculates the number of initial pages we need for the initial
  98. * page tables */
  99. #define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
  100. /*
  101. * pgd entries used up by user/kernel:
  102. */
  103. #define FIRST_USER_ADDRESS 0
  104. #ifndef __ASSEMBLY__
  105. extern void *vmalloc_start;
  106. #define PCXL_DMA_MAP_SIZE (8*1024*1024)
  107. #define VMALLOC_START ((unsigned long)vmalloc_start)
  108. /* this is a fixmap remnant, see fixmap.h */
  109. #define VMALLOC_END (KERNEL_MAP_END)
  110. #endif
  111. /* NB: The tlb miss handlers make certain assumptions about the order */
  112. /* of the following bits, so be careful (One example, bits 25-31 */
  113. /* are moved together in one instruction). */
  114. #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
  115. #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
  116. #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
  117. #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
  118. #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
  119. #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
  120. #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */
  121. #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
  122. #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
  123. #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
  124. #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
  125. #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */
  126. /* for cache flushing only */
  127. #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
  128. /* N.B. The bits are defined in terms of a 32 bit word above, so the */
  129. /* following macro is ok for both 32 and 64 bit. */
  130. #define xlate_pabit(x) (31 - x)
  131. /* this defines the shift to the usable bits in the PTE it is set so
  132. * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
  133. * to zero */
  134. #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
  135. /* this is how many bits may be used by the file functions */
  136. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
  137. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
  138. #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
  139. #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
  140. #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
  141. #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
  142. #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
  143. #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
  144. #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
  145. #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
  146. #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
  147. #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
  148. #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
  149. #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
  150. #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT))
  151. #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
  152. #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT))
  153. #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
  154. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  155. #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
  156. /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
  157. * are page-aligned, we don't care about the PAGE_OFFSET bits, except
  158. * for a few meta-information bits, so we shift the address to be
  159. * able to effectively address 40-bits of physical address space. */
  160. #define _PxD_PRESENT_BIT 31
  161. #define _PxD_ATTACHED_BIT 30
  162. #define _PxD_VALID_BIT 29
  163. #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
  164. #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
  165. #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
  166. #define PxD_FLAG_MASK (0xf)
  167. #define PxD_FLAG_SHIFT (4)
  168. #define PxD_VALUE_SHIFT (8)
  169. #ifndef __ASSEMBLY__
  170. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  171. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
  172. /* Others seem to make this executable, I don't know if that's correct
  173. or not. The stack is mapped this way though so this is necessary
  174. in the short term - dhd@linuxcare.com, 2000-08-08 */
  175. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
  176. #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
  177. #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
  178. #define PAGE_COPY PAGE_EXECREAD
  179. #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
  180. #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
  181. #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
  182. #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
  183. #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
  184. #define PAGE_FLUSH __pgprot(_PAGE_FLUSH)
  185. /*
  186. * We could have an execute only page using "gateway - promote to priv
  187. * level 3", but that is kind of silly. So, the way things are defined
  188. * now, we must always have read permission for pages with execute
  189. * permission. For the fun of it we'll go ahead and support write only
  190. * pages.
  191. */
  192. /*xwr*/
  193. #define __P000 PAGE_NONE
  194. #define __P001 PAGE_READONLY
  195. #define __P010 __P000 /* copy on write */
  196. #define __P011 __P001 /* copy on write */
  197. #define __P100 PAGE_EXECREAD
  198. #define __P101 PAGE_EXECREAD
  199. #define __P110 __P100 /* copy on write */
  200. #define __P111 __P101 /* copy on write */
  201. #define __S000 PAGE_NONE
  202. #define __S001 PAGE_READONLY
  203. #define __S010 PAGE_WRITEONLY
  204. #define __S011 PAGE_SHARED
  205. #define __S100 PAGE_EXECREAD
  206. #define __S101 PAGE_EXECREAD
  207. #define __S110 PAGE_RWX
  208. #define __S111 PAGE_RWX
  209. extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
  210. /* initial page tables for 0-8MB for kernel */
  211. extern pte_t pg0[];
  212. /* zero page used for uninitialized stuff */
  213. extern unsigned long *empty_zero_page;
  214. /*
  215. * ZERO_PAGE is a global shared page that is always zero: used
  216. * for zero-mapped memory areas etc..
  217. */
  218. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  219. #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH))
  220. #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
  221. #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
  222. #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
  223. #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
  224. #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
  225. #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
  226. #ifdef CONFIG_64BIT
  227. /* The first entry of the permanent pmd is not there if it contains
  228. * the gateway marker */
  229. #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
  230. #else
  231. #define pmd_none(x) (!pmd_val(x))
  232. #endif
  233. #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
  234. #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
  235. static inline void pmd_clear(pmd_t *pmd) {
  236. #ifdef CONFIG_64BIT
  237. if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
  238. /* This is the entry pointing to the permanent pmd
  239. * attached to the pgd; cannot clear it */
  240. __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
  241. else
  242. #endif
  243. __pmd_val_set(*pmd, 0);
  244. }
  245. #if PT_NLEVELS == 3
  246. #define pgd_page(pgd) ((unsigned long) __va(pgd_address(pgd)))
  247. /* For 64 bit we have three level tables */
  248. #define pgd_none(x) (!pgd_val(x))
  249. #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
  250. #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
  251. static inline void pgd_clear(pgd_t *pgd) {
  252. #ifdef CONFIG_64BIT
  253. if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
  254. /* This is the permanent pmd attached to the pgd; cannot
  255. * free it */
  256. return;
  257. #endif
  258. __pgd_val_set(*pgd, 0);
  259. }
  260. #else
  261. /*
  262. * The "pgd_xxx()" functions here are trivial for a folded two-level
  263. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  264. * into the pgd entry)
  265. */
  266. extern inline int pgd_none(pgd_t pgd) { return 0; }
  267. extern inline int pgd_bad(pgd_t pgd) { return 0; }
  268. extern inline int pgd_present(pgd_t pgd) { return 1; }
  269. extern inline void pgd_clear(pgd_t * pgdp) { }
  270. #endif
  271. /*
  272. * The following only work if pte_present() is true.
  273. * Undefined behaviour if not..
  274. */
  275. extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
  276. extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
  277. extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
  278. extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
  279. extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
  280. extern inline int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
  281. extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; }
  282. extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
  283. extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  284. extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
  285. extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; }
  286. extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
  287. extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  288. extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
  289. /*
  290. * Conversion functions: convert a page and protection to a page entry,
  291. * and a page entry and page directory to the page they refer to.
  292. */
  293. #define __mk_pte(addr,pgprot) \
  294. ({ \
  295. pte_t __pte; \
  296. \
  297. pte_val(__pte) = ((addr)+pgprot_val(pgprot)); \
  298. \
  299. __pte; \
  300. })
  301. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  302. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  303. {
  304. pte_t pte;
  305. pte_val(pte) = (pfn << PAGE_SHIFT) | pgprot_val(pgprot);
  306. return pte;
  307. }
  308. /* This takes a physical page address that is used by the remapping functions */
  309. #define mk_pte_phys(physpage, pgprot) \
  310. ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
  311. extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  312. { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
  313. /* Permanent address of a page. On parisc we don't have highmem. */
  314. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  315. #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
  316. #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_address(pmd)))
  317. #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
  318. #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
  319. #define pgd_index(address) ((address) >> PGDIR_SHIFT)
  320. /* to find an entry in a page-table-directory */
  321. #define pgd_offset(mm, address) \
  322. ((mm)->pgd + ((address) >> PGDIR_SHIFT))
  323. /* to find an entry in a kernel page-table-directory */
  324. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  325. /* Find an entry in the second-level page table.. */
  326. #if PT_NLEVELS == 3
  327. #define pmd_offset(dir,address) \
  328. ((pmd_t *) pgd_page(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
  329. #else
  330. #define pmd_offset(dir,addr) ((pmd_t *) dir)
  331. #endif
  332. /* Find an entry in the third-level page table.. */
  333. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  334. #define pte_offset_kernel(pmd, address) \
  335. ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address))
  336. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  337. #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
  338. #define pte_unmap(pte) do { } while (0)
  339. #define pte_unmap_nested(pte) do { } while (0)
  340. #define pte_unmap(pte) do { } while (0)
  341. #define pte_unmap_nested(pte) do { } while (0)
  342. extern void paging_init (void);
  343. /* Used for deferring calls to flush_dcache_page() */
  344. #define PG_dcache_dirty PG_arch_1
  345. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  346. /* Encode and de-code a swap entry */
  347. #define __swp_type(x) ((x).val & 0x1f)
  348. #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
  349. (((x).val >> 8) & ~0x7) )
  350. #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
  351. ((offset & 0x7) << 6) | \
  352. ((offset & ~0x7) << 8) })
  353. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  354. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  355. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
  356. {
  357. #ifdef CONFIG_SMP
  358. if (!pte_young(*ptep))
  359. return 0;
  360. return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep));
  361. #else
  362. pte_t pte = *ptep;
  363. if (!pte_young(pte))
  364. return 0;
  365. set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
  366. return 1;
  367. #endif
  368. }
  369. static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
  370. {
  371. #ifdef CONFIG_SMP
  372. if (!pte_dirty(*ptep))
  373. return 0;
  374. return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep));
  375. #else
  376. pte_t pte = *ptep;
  377. if (!pte_dirty(pte))
  378. return 0;
  379. set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
  380. return 1;
  381. #endif
  382. }
  383. extern spinlock_t pa_dbit_lock;
  384. struct mm_struct;
  385. static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  386. {
  387. pte_t old_pte;
  388. pte_t pte;
  389. spin_lock(&pa_dbit_lock);
  390. pte = old_pte = *ptep;
  391. pte_val(pte) &= ~_PAGE_PRESENT;
  392. pte_val(pte) |= _PAGE_FLUSH;
  393. set_pte_at(mm,addr,ptep,pte);
  394. spin_unlock(&pa_dbit_lock);
  395. return old_pte;
  396. }
  397. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  398. {
  399. #ifdef CONFIG_SMP
  400. unsigned long new, old;
  401. do {
  402. old = pte_val(*ptep);
  403. new = pte_val(pte_wrprotect(__pte (old)));
  404. } while (cmpxchg((unsigned long *) ptep, old, new) != old);
  405. #else
  406. pte_t old_pte = *ptep;
  407. set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
  408. #endif
  409. }
  410. #define pte_same(A,B) (pte_val(A) == pte_val(B))
  411. #endif /* !__ASSEMBLY__ */
  412. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  413. remap_pfn_range(vma, vaddr, pfn, size, prot)
  414. #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
  415. #define MK_IOSPACE_PFN(space, pfn) (pfn)
  416. #define GET_IOSPACE(pfn) 0
  417. #define GET_PFN(pfn) (pfn)
  418. /* We provide our own get_unmapped_area to provide cache coherency */
  419. #define HAVE_ARCH_UNMAPPED_AREA
  420. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  421. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  422. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  423. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  424. #define __HAVE_ARCH_PTE_SAME
  425. #include <asm-generic/pgtable.h>
  426. #endif /* _PARISC_PGTABLE_H */