sn_sal.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143
  1. #ifndef _ASM_IA64_SN_SN_SAL_H
  2. #define _ASM_IA64_SN_SN_SAL_H
  3. /*
  4. * System Abstraction Layer definitions for IA64
  5. *
  6. * This file is subject to the terms and conditions of the GNU General Public
  7. * License. See the file "COPYING" in the main directory of this archive
  8. * for more details.
  9. *
  10. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved.
  11. */
  12. #include <linux/config.h>
  13. #include <asm/sal.h>
  14. #include <asm/sn/sn_cpuid.h>
  15. #include <asm/sn/arch.h>
  16. #include <asm/sn/geo.h>
  17. #include <asm/sn/nodepda.h>
  18. #include <asm/sn/shub_mmr.h>
  19. // SGI Specific Calls
  20. #define SN_SAL_POD_MODE 0x02000001
  21. #define SN_SAL_SYSTEM_RESET 0x02000002
  22. #define SN_SAL_PROBE 0x02000003
  23. #define SN_SAL_GET_MASTER_NASID 0x02000004
  24. #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
  25. #define SN_SAL_LOG_CE 0x02000006
  26. #define SN_SAL_REGISTER_CE 0x02000007
  27. #define SN_SAL_GET_PARTITION_ADDR 0x02000009
  28. #define SN_SAL_XP_ADDR_REGION 0x0200000f
  29. #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
  30. #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
  31. #define SN_SAL_PRINT_ERROR 0x02000012
  32. #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
  33. #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
  34. #define SN_SAL_GET_SAPIC_INFO 0x0200001d
  35. #define SN_SAL_GET_SN_INFO 0x0200001e
  36. #define SN_SAL_CONSOLE_PUTC 0x02000021
  37. #define SN_SAL_CONSOLE_GETC 0x02000022
  38. #define SN_SAL_CONSOLE_PUTS 0x02000023
  39. #define SN_SAL_CONSOLE_GETS 0x02000024
  40. #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
  41. #define SN_SAL_CONSOLE_POLL 0x02000026
  42. #define SN_SAL_CONSOLE_INTR 0x02000027
  43. #define SN_SAL_CONSOLE_PUTB 0x02000028
  44. #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
  45. #define SN_SAL_CONSOLE_READC 0x0200002b
  46. #define SN_SAL_SYSCTL_OP 0x02000030
  47. #define SN_SAL_SYSCTL_MODID_GET 0x02000031
  48. #define SN_SAL_SYSCTL_GET 0x02000032
  49. #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
  50. #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
  51. #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
  52. #define SN_SAL_BUS_CONFIG 0x02000037
  53. #define SN_SAL_SYS_SERIAL_GET 0x02000038
  54. #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
  55. #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
  56. #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
  57. #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
  58. #define SN_SAL_COHERENCE 0x0200003d
  59. #define SN_SAL_MEMPROTECT 0x0200003e
  60. #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
  61. #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
  62. #define SN_SAL_IROUTER_OP 0x02000043
  63. #define SN_SAL_SYSCTL_EVENT 0x02000044
  64. #define SN_SAL_IOIF_INTERRUPT 0x0200004a
  65. #define SN_SAL_HWPERF_OP 0x02000050 // lock
  66. #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
  67. #define SN_SAL_IOIF_PCI_SAFE 0x02000052
  68. #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
  69. #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
  70. #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
  71. #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
  72. #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
  73. #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
  74. #define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
  75. #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
  76. #define SN_SAL_BTE_RECOVER 0x02000061
  77. #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
  78. #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
  79. #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
  80. #define SN_SAL_SET_OS_FEATURE_SET 0x02000066
  81. /*
  82. * Service-specific constants
  83. */
  84. /* Console interrupt manipulation */
  85. /* action codes */
  86. #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
  87. #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
  88. #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
  89. /* interrupt specification & status return codes */
  90. #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
  91. #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
  92. /* interrupt handling */
  93. #define SAL_INTR_ALLOC 1
  94. #define SAL_INTR_FREE 2
  95. /*
  96. * operations available on the generic SN_SAL_SYSCTL_OP
  97. * runtime service
  98. */
  99. #define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
  100. #define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
  101. /*
  102. * IRouter (i.e. generalized system controller) operations
  103. */
  104. #define SAL_IROUTER_OPEN 0 /* open a subchannel */
  105. #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
  106. #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
  107. #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
  108. #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
  109. * an open subchannel
  110. */
  111. #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
  112. #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
  113. #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
  114. /* IRouter interrupt mask bits */
  115. #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
  116. #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
  117. /*
  118. * Error Handling Features
  119. */
  120. #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
  121. #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
  122. #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
  123. #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
  124. /*
  125. * SAL Error Codes
  126. */
  127. #define SALRET_MORE_PASSES 1
  128. #define SALRET_OK 0
  129. #define SALRET_NOT_IMPLEMENTED (-1)
  130. #define SALRET_INVALID_ARG (-2)
  131. #define SALRET_ERROR (-3)
  132. #define SN_SAL_FAKE_PROM 0x02009999
  133. /**
  134. * sn_sal_revision - get the SGI SAL revision number
  135. *
  136. * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
  137. * This routine simply extracts the major and minor values and
  138. * presents them in a u32 format.
  139. *
  140. * For example, version 4.05 would be represented at 0x0405.
  141. */
  142. static inline u32
  143. sn_sal_rev(void)
  144. {
  145. struct ia64_sal_systab *systab = __va(efi.sal_systab);
  146. return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
  147. }
  148. /*
  149. * Returns the master console nasid, if the call fails, return an illegal
  150. * value.
  151. */
  152. static inline u64
  153. ia64_sn_get_console_nasid(void)
  154. {
  155. struct ia64_sal_retval ret_stuff;
  156. ret_stuff.status = 0;
  157. ret_stuff.v0 = 0;
  158. ret_stuff.v1 = 0;
  159. ret_stuff.v2 = 0;
  160. SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
  161. if (ret_stuff.status < 0)
  162. return ret_stuff.status;
  163. /* Master console nasid is in 'v0' */
  164. return ret_stuff.v0;
  165. }
  166. /*
  167. * Returns the master baseio nasid, if the call fails, return an illegal
  168. * value.
  169. */
  170. static inline u64
  171. ia64_sn_get_master_baseio_nasid(void)
  172. {
  173. struct ia64_sal_retval ret_stuff;
  174. ret_stuff.status = 0;
  175. ret_stuff.v0 = 0;
  176. ret_stuff.v1 = 0;
  177. ret_stuff.v2 = 0;
  178. SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
  179. if (ret_stuff.status < 0)
  180. return ret_stuff.status;
  181. /* Master baseio nasid is in 'v0' */
  182. return ret_stuff.v0;
  183. }
  184. static inline void *
  185. ia64_sn_get_klconfig_addr(nasid_t nasid)
  186. {
  187. struct ia64_sal_retval ret_stuff;
  188. ret_stuff.status = 0;
  189. ret_stuff.v0 = 0;
  190. ret_stuff.v1 = 0;
  191. ret_stuff.v2 = 0;
  192. SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
  193. return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
  194. }
  195. /*
  196. * Returns the next console character.
  197. */
  198. static inline u64
  199. ia64_sn_console_getc(int *ch)
  200. {
  201. struct ia64_sal_retval ret_stuff;
  202. ret_stuff.status = 0;
  203. ret_stuff.v0 = 0;
  204. ret_stuff.v1 = 0;
  205. ret_stuff.v2 = 0;
  206. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
  207. /* character is in 'v0' */
  208. *ch = (int)ret_stuff.v0;
  209. return ret_stuff.status;
  210. }
  211. /*
  212. * Read a character from the SAL console device, after a previous interrupt
  213. * or poll operation has given us to know that a character is available
  214. * to be read.
  215. */
  216. static inline u64
  217. ia64_sn_console_readc(void)
  218. {
  219. struct ia64_sal_retval ret_stuff;
  220. ret_stuff.status = 0;
  221. ret_stuff.v0 = 0;
  222. ret_stuff.v1 = 0;
  223. ret_stuff.v2 = 0;
  224. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
  225. /* character is in 'v0' */
  226. return ret_stuff.v0;
  227. }
  228. /*
  229. * Sends the given character to the console.
  230. */
  231. static inline u64
  232. ia64_sn_console_putc(char ch)
  233. {
  234. struct ia64_sal_retval ret_stuff;
  235. ret_stuff.status = 0;
  236. ret_stuff.v0 = 0;
  237. ret_stuff.v1 = 0;
  238. ret_stuff.v2 = 0;
  239. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
  240. return ret_stuff.status;
  241. }
  242. /*
  243. * Sends the given buffer to the console.
  244. */
  245. static inline u64
  246. ia64_sn_console_putb(const char *buf, int len)
  247. {
  248. struct ia64_sal_retval ret_stuff;
  249. ret_stuff.status = 0;
  250. ret_stuff.v0 = 0;
  251. ret_stuff.v1 = 0;
  252. ret_stuff.v2 = 0;
  253. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
  254. if ( ret_stuff.status == 0 ) {
  255. return ret_stuff.v0;
  256. }
  257. return (u64)0;
  258. }
  259. /*
  260. * Print a platform error record
  261. */
  262. static inline u64
  263. ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
  264. {
  265. struct ia64_sal_retval ret_stuff;
  266. ret_stuff.status = 0;
  267. ret_stuff.v0 = 0;
  268. ret_stuff.v1 = 0;
  269. ret_stuff.v2 = 0;
  270. SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
  271. return ret_stuff.status;
  272. }
  273. /*
  274. * Check for Platform errors
  275. */
  276. static inline u64
  277. ia64_sn_plat_cpei_handler(void)
  278. {
  279. struct ia64_sal_retval ret_stuff;
  280. ret_stuff.status = 0;
  281. ret_stuff.v0 = 0;
  282. ret_stuff.v1 = 0;
  283. ret_stuff.v2 = 0;
  284. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
  285. return ret_stuff.status;
  286. }
  287. /*
  288. * Set Error Handling Features (Obsolete)
  289. */
  290. static inline u64
  291. ia64_sn_plat_set_error_handling_features(void)
  292. {
  293. struct ia64_sal_retval ret_stuff;
  294. ret_stuff.status = 0;
  295. ret_stuff.v0 = 0;
  296. ret_stuff.v1 = 0;
  297. ret_stuff.v2 = 0;
  298. SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
  299. (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES),
  300. 0, 0, 0, 0, 0, 0);
  301. return ret_stuff.status;
  302. }
  303. /*
  304. * Checks for console input.
  305. */
  306. static inline u64
  307. ia64_sn_console_check(int *result)
  308. {
  309. struct ia64_sal_retval ret_stuff;
  310. ret_stuff.status = 0;
  311. ret_stuff.v0 = 0;
  312. ret_stuff.v1 = 0;
  313. ret_stuff.v2 = 0;
  314. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
  315. /* result is in 'v0' */
  316. *result = (int)ret_stuff.v0;
  317. return ret_stuff.status;
  318. }
  319. /*
  320. * Checks console interrupt status
  321. */
  322. static inline u64
  323. ia64_sn_console_intr_status(void)
  324. {
  325. struct ia64_sal_retval ret_stuff;
  326. ret_stuff.status = 0;
  327. ret_stuff.v0 = 0;
  328. ret_stuff.v1 = 0;
  329. ret_stuff.v2 = 0;
  330. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
  331. 0, SAL_CONSOLE_INTR_STATUS,
  332. 0, 0, 0, 0, 0);
  333. if (ret_stuff.status == 0) {
  334. return ret_stuff.v0;
  335. }
  336. return 0;
  337. }
  338. /*
  339. * Enable an interrupt on the SAL console device.
  340. */
  341. static inline void
  342. ia64_sn_console_intr_enable(u64 intr)
  343. {
  344. struct ia64_sal_retval ret_stuff;
  345. ret_stuff.status = 0;
  346. ret_stuff.v0 = 0;
  347. ret_stuff.v1 = 0;
  348. ret_stuff.v2 = 0;
  349. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
  350. intr, SAL_CONSOLE_INTR_ON,
  351. 0, 0, 0, 0, 0);
  352. }
  353. /*
  354. * Disable an interrupt on the SAL console device.
  355. */
  356. static inline void
  357. ia64_sn_console_intr_disable(u64 intr)
  358. {
  359. struct ia64_sal_retval ret_stuff;
  360. ret_stuff.status = 0;
  361. ret_stuff.v0 = 0;
  362. ret_stuff.v1 = 0;
  363. ret_stuff.v2 = 0;
  364. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
  365. intr, SAL_CONSOLE_INTR_OFF,
  366. 0, 0, 0, 0, 0);
  367. }
  368. /*
  369. * Sends a character buffer to the console asynchronously.
  370. */
  371. static inline u64
  372. ia64_sn_console_xmit_chars(char *buf, int len)
  373. {
  374. struct ia64_sal_retval ret_stuff;
  375. ret_stuff.status = 0;
  376. ret_stuff.v0 = 0;
  377. ret_stuff.v1 = 0;
  378. ret_stuff.v2 = 0;
  379. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
  380. (u64)buf, (u64)len,
  381. 0, 0, 0, 0, 0);
  382. if (ret_stuff.status == 0) {
  383. return ret_stuff.v0;
  384. }
  385. return 0;
  386. }
  387. /*
  388. * Returns the iobrick module Id
  389. */
  390. static inline u64
  391. ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
  392. {
  393. struct ia64_sal_retval ret_stuff;
  394. ret_stuff.status = 0;
  395. ret_stuff.v0 = 0;
  396. ret_stuff.v1 = 0;
  397. ret_stuff.v2 = 0;
  398. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
  399. /* result is in 'v0' */
  400. *result = (int)ret_stuff.v0;
  401. return ret_stuff.status;
  402. }
  403. /**
  404. * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
  405. *
  406. * SN_SAL_POD_MODE actually takes an argument, but it's always
  407. * 0 when we call it from the kernel, so we don't have to expose
  408. * it to the caller.
  409. */
  410. static inline u64
  411. ia64_sn_pod_mode(void)
  412. {
  413. struct ia64_sal_retval isrv;
  414. SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
  415. if (isrv.status)
  416. return 0;
  417. return isrv.v0;
  418. }
  419. /**
  420. * ia64_sn_probe_mem - read from memory safely
  421. * @addr: address to probe
  422. * @size: number bytes to read (1,2,4,8)
  423. * @data_ptr: address to store value read by probe (-1 returned if probe fails)
  424. *
  425. * Call into the SAL to do a memory read. If the read generates a machine
  426. * check, this routine will recover gracefully and return -1 to the caller.
  427. * @addr is usually a kernel virtual address in uncached space (i.e. the
  428. * address starts with 0xc), but if called in physical mode, @addr should
  429. * be a physical address.
  430. *
  431. * Return values:
  432. * 0 - probe successful
  433. * 1 - probe failed (generated MCA)
  434. * 2 - Bad arg
  435. * <0 - PAL error
  436. */
  437. static inline u64
  438. ia64_sn_probe_mem(long addr, long size, void *data_ptr)
  439. {
  440. struct ia64_sal_retval isrv;
  441. SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
  442. if (data_ptr) {
  443. switch (size) {
  444. case 1:
  445. *((u8*)data_ptr) = (u8)isrv.v0;
  446. break;
  447. case 2:
  448. *((u16*)data_ptr) = (u16)isrv.v0;
  449. break;
  450. case 4:
  451. *((u32*)data_ptr) = (u32)isrv.v0;
  452. break;
  453. case 8:
  454. *((u64*)data_ptr) = (u64)isrv.v0;
  455. break;
  456. default:
  457. isrv.status = 2;
  458. }
  459. }
  460. return isrv.status;
  461. }
  462. /*
  463. * Retrieve the system serial number as an ASCII string.
  464. */
  465. static inline u64
  466. ia64_sn_sys_serial_get(char *buf)
  467. {
  468. struct ia64_sal_retval ret_stuff;
  469. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
  470. return ret_stuff.status;
  471. }
  472. extern char sn_system_serial_number_string[];
  473. extern u64 sn_partition_serial_number;
  474. static inline char *
  475. sn_system_serial_number(void) {
  476. if (sn_system_serial_number_string[0]) {
  477. return(sn_system_serial_number_string);
  478. } else {
  479. ia64_sn_sys_serial_get(sn_system_serial_number_string);
  480. return(sn_system_serial_number_string);
  481. }
  482. }
  483. /*
  484. * Returns a unique id number for this system and partition (suitable for
  485. * use with license managers), based in part on the system serial number.
  486. */
  487. static inline u64
  488. ia64_sn_partition_serial_get(void)
  489. {
  490. struct ia64_sal_retval ret_stuff;
  491. ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
  492. 0, 0, 0, 0, 0, 0);
  493. if (ret_stuff.status != 0)
  494. return 0;
  495. return ret_stuff.v0;
  496. }
  497. static inline u64
  498. sn_partition_serial_number_val(void) {
  499. if (unlikely(sn_partition_serial_number == 0)) {
  500. sn_partition_serial_number = ia64_sn_partition_serial_get();
  501. }
  502. return sn_partition_serial_number;
  503. }
  504. /*
  505. * Returns the partition id of the nasid passed in as an argument,
  506. * or INVALID_PARTID if the partition id cannot be retrieved.
  507. */
  508. static inline partid_t
  509. ia64_sn_sysctl_partition_get(nasid_t nasid)
  510. {
  511. struct ia64_sal_retval ret_stuff;
  512. SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
  513. 0, 0, 0, 0, 0, 0);
  514. if (ret_stuff.status != 0)
  515. return -1;
  516. return ((partid_t)ret_stuff.v0);
  517. }
  518. /*
  519. * Returns the physical address of the partition's reserved page through
  520. * an iterative number of calls.
  521. *
  522. * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
  523. * set to the nasid of the partition whose reserved page's address is
  524. * being sought.
  525. * On subsequent calls, pass the values, that were passed back on the
  526. * previous call.
  527. *
  528. * While the return status equals SALRET_MORE_PASSES, keep calling
  529. * this function after first copying 'len' bytes starting at 'addr'
  530. * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
  531. * be the physical address of the partition's reserved page. If the
  532. * return status equals neither of these, an error as occurred.
  533. */
  534. static inline s64
  535. sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
  536. {
  537. struct ia64_sal_retval rv;
  538. ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
  539. *addr, buf, *len, 0, 0, 0);
  540. *cookie = rv.v0;
  541. *addr = rv.v1;
  542. *len = rv.v2;
  543. return rv.status;
  544. }
  545. /*
  546. * Register or unregister a physical address range being referenced across
  547. * a partition boundary for which certain SAL errors should be scanned for,
  548. * cleaned up and ignored. This is of value for kernel partitioning code only.
  549. * Values for the operation argument:
  550. * 1 = register this address range with SAL
  551. * 0 = unregister this address range with SAL
  552. *
  553. * SAL maintains a reference count on an address range in case it is registered
  554. * multiple times.
  555. *
  556. * On success, returns the reference count of the address range after the SAL
  557. * call has performed the current registration/unregistration. Returns a
  558. * negative value if an error occurred.
  559. */
  560. static inline int
  561. sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
  562. {
  563. struct ia64_sal_retval ret_stuff;
  564. ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
  565. (u64)operation, 0, 0, 0, 0);
  566. return ret_stuff.status;
  567. }
  568. /*
  569. * Register or unregister an instruction range for which SAL errors should
  570. * be ignored. If an error occurs while in the registered range, SAL jumps
  571. * to return_addr after ignoring the error. Values for the operation argument:
  572. * 1 = register this instruction range with SAL
  573. * 0 = unregister this instruction range with SAL
  574. *
  575. * Returns 0 on success, or a negative value if an error occurred.
  576. */
  577. static inline int
  578. sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
  579. int virtual, int operation)
  580. {
  581. struct ia64_sal_retval ret_stuff;
  582. u64 call;
  583. if (virtual) {
  584. call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
  585. } else {
  586. call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
  587. }
  588. ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
  589. (u64)1, 0, 0, 0);
  590. return ret_stuff.status;
  591. }
  592. /*
  593. * Change or query the coherence domain for this partition. Each cpu-based
  594. * nasid is represented by a bit in an array of 64-bit words:
  595. * 0 = not in this partition's coherency domain
  596. * 1 = in this partition's coherency domain
  597. *
  598. * It is not possible for the local system's nasids to be removed from
  599. * the coherency domain. Purpose of the domain arguments:
  600. * new_domain = set the coherence domain to the given nasids
  601. * old_domain = return the current coherence domain
  602. *
  603. * Returns 0 on success, or a negative value if an error occurred.
  604. */
  605. static inline int
  606. sn_change_coherence(u64 *new_domain, u64 *old_domain)
  607. {
  608. struct ia64_sal_retval ret_stuff;
  609. ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
  610. (u64)old_domain, 0, 0, 0, 0, 0);
  611. return ret_stuff.status;
  612. }
  613. /*
  614. * Change memory access protections for a physical address range.
  615. * nasid_array is not used on Altix, but may be in future architectures.
  616. * Available memory protection access classes are defined after the function.
  617. */
  618. static inline int
  619. sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
  620. {
  621. struct ia64_sal_retval ret_stuff;
  622. int cnodeid;
  623. unsigned long irq_flags;
  624. cnodeid = nasid_to_cnodeid(get_node_number(paddr));
  625. local_irq_save(irq_flags);
  626. ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
  627. (u64)nasid_array, perms, 0, 0, 0);
  628. local_irq_restore(irq_flags);
  629. return ret_stuff.status;
  630. }
  631. #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
  632. #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
  633. #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
  634. #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
  635. #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
  636. #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
  637. /*
  638. * Turns off system power.
  639. */
  640. static inline void
  641. ia64_sn_power_down(void)
  642. {
  643. struct ia64_sal_retval ret_stuff;
  644. SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
  645. while(1)
  646. cpu_relax();
  647. /* never returns */
  648. }
  649. /**
  650. * ia64_sn_fru_capture - tell the system controller to capture hw state
  651. *
  652. * This routine will call the SAL which will tell the system controller(s)
  653. * to capture hw mmr information from each SHub in the system.
  654. */
  655. static inline u64
  656. ia64_sn_fru_capture(void)
  657. {
  658. struct ia64_sal_retval isrv;
  659. SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
  660. if (isrv.status)
  661. return 0;
  662. return isrv.v0;
  663. }
  664. /*
  665. * Performs an operation on a PCI bus or slot -- power up, power down
  666. * or reset.
  667. */
  668. static inline u64
  669. ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
  670. u64 bus, char slot,
  671. u64 action)
  672. {
  673. struct ia64_sal_retval rv = {0, 0, 0, 0};
  674. SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
  675. bus, (u64) slot, 0, 0);
  676. if (rv.status)
  677. return rv.v0;
  678. return 0;
  679. }
  680. /*
  681. * Open a subchannel for sending arbitrary data to the system
  682. * controller network via the system controller device associated with
  683. * 'nasid'. Return the subchannel number or a negative error code.
  684. */
  685. static inline int
  686. ia64_sn_irtr_open(nasid_t nasid)
  687. {
  688. struct ia64_sal_retval rv;
  689. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
  690. 0, 0, 0, 0, 0);
  691. return (int) rv.v0;
  692. }
  693. /*
  694. * Close system controller subchannel 'subch' previously opened on 'nasid'.
  695. */
  696. static inline int
  697. ia64_sn_irtr_close(nasid_t nasid, int subch)
  698. {
  699. struct ia64_sal_retval rv;
  700. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
  701. (u64) nasid, (u64) subch, 0, 0, 0, 0);
  702. return (int) rv.status;
  703. }
  704. /*
  705. * Read data from system controller associated with 'nasid' on
  706. * subchannel 'subch'. The buffer to be filled is pointed to by
  707. * 'buf', and its capacity is in the integer pointed to by 'len'. The
  708. * referent of 'len' is set to the number of bytes read by the SAL
  709. * call. The return value is either SALRET_OK (for bytes read) or
  710. * SALRET_ERROR (for error or "no data available").
  711. */
  712. static inline int
  713. ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
  714. {
  715. struct ia64_sal_retval rv;
  716. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
  717. (u64) nasid, (u64) subch, (u64) buf, (u64) len,
  718. 0, 0);
  719. return (int) rv.status;
  720. }
  721. /*
  722. * Write data to the system controller network via the system
  723. * controller associated with 'nasid' on suchannel 'subch'. The
  724. * buffer to be written out is pointed to by 'buf', and 'len' is the
  725. * number of bytes to be written. The return value is either the
  726. * number of bytes written (which could be zero) or a negative error
  727. * code.
  728. */
  729. static inline int
  730. ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
  731. {
  732. struct ia64_sal_retval rv;
  733. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
  734. (u64) nasid, (u64) subch, (u64) buf, (u64) len,
  735. 0, 0);
  736. return (int) rv.v0;
  737. }
  738. /*
  739. * Check whether any interrupts are pending for the system controller
  740. * associated with 'nasid' and its subchannel 'subch'. The return
  741. * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
  742. * SAL_IROUTER_INTR_RECV).
  743. */
  744. static inline int
  745. ia64_sn_irtr_intr(nasid_t nasid, int subch)
  746. {
  747. struct ia64_sal_retval rv;
  748. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
  749. (u64) nasid, (u64) subch, 0, 0, 0, 0);
  750. return (int) rv.v0;
  751. }
  752. /*
  753. * Enable the interrupt indicated by the intr parameter (either
  754. * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
  755. */
  756. static inline int
  757. ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
  758. {
  759. struct ia64_sal_retval rv;
  760. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
  761. (u64) nasid, (u64) subch, intr, 0, 0, 0);
  762. return (int) rv.v0;
  763. }
  764. /*
  765. * Disable the interrupt indicated by the intr parameter (either
  766. * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
  767. */
  768. static inline int
  769. ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
  770. {
  771. struct ia64_sal_retval rv;
  772. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
  773. (u64) nasid, (u64) subch, intr, 0, 0, 0);
  774. return (int) rv.v0;
  775. }
  776. /*
  777. * Set up a node as the point of contact for system controller
  778. * environmental event delivery.
  779. */
  780. static inline int
  781. ia64_sn_sysctl_event_init(nasid_t nasid)
  782. {
  783. struct ia64_sal_retval rv;
  784. SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
  785. 0, 0, 0, 0, 0, 0);
  786. return (int) rv.v0;
  787. }
  788. /*
  789. * Ask the system controller on the specified nasid to reset
  790. * the CX corelet clock. Only valid on TIO nodes.
  791. */
  792. static inline int
  793. ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
  794. {
  795. struct ia64_sal_retval rv;
  796. SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
  797. nasid, 0, 0, 0, 0, 0);
  798. if (rv.status != 0)
  799. return (int)rv.status;
  800. if (rv.v0 != 0)
  801. return (int)rv.v0;
  802. return 0;
  803. }
  804. /*
  805. * Get the associated ioboard type for a given nasid.
  806. */
  807. static inline s64
  808. ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
  809. {
  810. struct ia64_sal_retval isrv;
  811. SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
  812. nasid, 0, 0, 0, 0, 0);
  813. if (isrv.v0 != 0) {
  814. *ioboard = isrv.v0;
  815. return isrv.status;
  816. }
  817. if (isrv.v1 != 0) {
  818. *ioboard = isrv.v1;
  819. return isrv.status;
  820. }
  821. return isrv.status;
  822. }
  823. /**
  824. * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
  825. * @nasid: NASID of node to read
  826. * @index: FIT entry index to be retrieved (0..n)
  827. * @fitentry: 16 byte buffer where FIT entry will be stored.
  828. * @banbuf: optional buffer for retrieving banner
  829. * @banlen: length of banner buffer
  830. *
  831. * Access to the physical PROM chips needs to be serialized since reads and
  832. * writes can't occur at the same time, so we need to call into the SAL when
  833. * we want to look at the FIT entries on the chips.
  834. *
  835. * Returns:
  836. * %SALRET_OK if ok
  837. * %SALRET_INVALID_ARG if index too big
  838. * %SALRET_NOT_IMPLEMENTED if running on older PROM
  839. * ??? if nasid invalid OR banner buffer not large enough
  840. */
  841. static inline int
  842. ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
  843. u64 banlen)
  844. {
  845. struct ia64_sal_retval rv;
  846. SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
  847. banbuf, banlen, 0, 0);
  848. return (int) rv.status;
  849. }
  850. /*
  851. * Initialize the SAL components of the system controller
  852. * communication driver; specifically pass in a sizable buffer that
  853. * can be used for allocation of subchannel queues as new subchannels
  854. * are opened. "buf" points to the buffer, and "len" specifies its
  855. * length.
  856. */
  857. static inline int
  858. ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
  859. {
  860. struct ia64_sal_retval rv;
  861. SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
  862. (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
  863. return (int) rv.status;
  864. }
  865. /*
  866. * Returns the nasid, subnode & slice corresponding to a SAPIC ID
  867. *
  868. * In:
  869. * arg0 - SN_SAL_GET_SAPIC_INFO
  870. * arg1 - sapicid (lid >> 16)
  871. * Out:
  872. * v0 - nasid
  873. * v1 - subnode
  874. * v2 - slice
  875. */
  876. static inline u64
  877. ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
  878. {
  879. struct ia64_sal_retval ret_stuff;
  880. ret_stuff.status = 0;
  881. ret_stuff.v0 = 0;
  882. ret_stuff.v1 = 0;
  883. ret_stuff.v2 = 0;
  884. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
  885. /***** BEGIN HACK - temp til old proms no longer supported ********/
  886. if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
  887. if (nasid) *nasid = sapicid & 0xfff;
  888. if (subnode) *subnode = (sapicid >> 13) & 1;
  889. if (slice) *slice = (sapicid >> 12) & 3;
  890. return 0;
  891. }
  892. /***** END HACK *******/
  893. if (ret_stuff.status < 0)
  894. return ret_stuff.status;
  895. if (nasid) *nasid = (int) ret_stuff.v0;
  896. if (subnode) *subnode = (int) ret_stuff.v1;
  897. if (slice) *slice = (int) ret_stuff.v2;
  898. return 0;
  899. }
  900. /*
  901. * Returns information about the HUB/SHUB.
  902. * In:
  903. * arg0 - SN_SAL_GET_SN_INFO
  904. * arg1 - 0 (other values reserved for future use)
  905. * Out:
  906. * v0
  907. * [7:0] - shub type (0=shub1, 1=shub2)
  908. * [15:8] - Log2 max number of nodes in entire system (includes
  909. * C-bricks, I-bricks, etc)
  910. * [23:16] - Log2 of nodes per sharing domain
  911. * [31:24] - partition ID
  912. * [39:32] - coherency_id
  913. * [47:40] - regionsize
  914. * v1
  915. * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
  916. * [23:15] - bit position of low nasid bit
  917. */
  918. static inline u64
  919. ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
  920. u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
  921. {
  922. struct ia64_sal_retval ret_stuff;
  923. ret_stuff.status = 0;
  924. ret_stuff.v0 = 0;
  925. ret_stuff.v1 = 0;
  926. ret_stuff.v2 = 0;
  927. SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
  928. /***** BEGIN HACK - temp til old proms no longer supported ********/
  929. if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
  930. int nasid = get_sapicid() & 0xfff;
  931. #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
  932. #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
  933. if (shubtype) *shubtype = 0;
  934. if (nasid_bitmask) *nasid_bitmask = 0x7ff;
  935. if (nasid_shift) *nasid_shift = 38;
  936. if (systemsize) *systemsize = 10;
  937. if (sharing_domain_size) *sharing_domain_size = 8;
  938. if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
  939. if (coher) *coher = nasid >> 9;
  940. if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
  941. SH_SHUB_ID_NODES_PER_BIT_SHFT;
  942. return 0;
  943. }
  944. /***** END HACK *******/
  945. if (ret_stuff.status < 0)
  946. return ret_stuff.status;
  947. if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
  948. if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
  949. if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
  950. if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
  951. if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
  952. if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
  953. if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
  954. if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
  955. return 0;
  956. }
  957. /*
  958. * This is the access point to the Altix PROM hardware performance
  959. * and status monitoring interface. For info on using this, see
  960. * include/asm-ia64/sn/sn2/sn_hwperf.h
  961. */
  962. static inline int
  963. ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
  964. u64 a3, u64 a4, int *v0)
  965. {
  966. struct ia64_sal_retval rv;
  967. SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
  968. opcode, a0, a1, a2, a3, a4);
  969. if (v0)
  970. *v0 = (int) rv.v0;
  971. return (int) rv.status;
  972. }
  973. static inline int
  974. ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
  975. {
  976. struct ia64_sal_retval rv;
  977. SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
  978. return (int) rv.status;
  979. }
  980. /*
  981. * BTE error recovery is implemented in SAL
  982. */
  983. static inline int
  984. ia64_sn_bte_recovery(nasid_t nasid)
  985. {
  986. struct ia64_sal_retval rv;
  987. rv.status = 0;
  988. SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
  989. if (rv.status == SALRET_NOT_IMPLEMENTED)
  990. return 0;
  991. return (int) rv.status;
  992. }
  993. static inline int
  994. ia64_sn_is_fake_prom(void)
  995. {
  996. struct ia64_sal_retval rv;
  997. SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
  998. return (rv.status == 0);
  999. }
  1000. static inline int
  1001. ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
  1002. {
  1003. struct ia64_sal_retval rv;
  1004. SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
  1005. if (rv.status != 0)
  1006. return rv.status;
  1007. *feature_set = rv.v0;
  1008. return 0;
  1009. }
  1010. static inline int
  1011. ia64_sn_set_os_feature(int feature)
  1012. {
  1013. struct ia64_sal_retval rv;
  1014. SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
  1015. return rv.status;
  1016. }
  1017. #endif /* _ASM_IA64_SN_SN_SAL_H */