pgtable.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /*
  2. * linux/include/asm-arm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <asm-generic/4level-fixup.h>
  13. #include <asm/memory.h>
  14. #include <asm/proc-fns.h>
  15. #include <asm/arch/vmalloc.h>
  16. /*
  17. * Just any arbitrary offset to the start of the vmalloc VM area: the
  18. * current 8MB value just means that there will be a 8MB "hole" after the
  19. * physical memory until the kernel virtual memory starts. That means that
  20. * any out-of-bounds memory accesses will hopefully be caught.
  21. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  22. * area for the same reason. ;)
  23. *
  24. * Note that platforms may override VMALLOC_START, but they must provide
  25. * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
  26. * which may not overlap IO space.
  27. */
  28. #ifndef VMALLOC_START
  29. #define VMALLOC_OFFSET (8*1024*1024)
  30. #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  31. #endif
  32. /*
  33. * Hardware-wise, we have a two level page table structure, where the first
  34. * level has 4096 entries, and the second level has 256 entries. Each entry
  35. * is one 32-bit word. Most of the bits in the second level entry are used
  36. * by hardware, and there aren't any "accessed" and "dirty" bits.
  37. *
  38. * Linux on the other hand has a three level page table structure, which can
  39. * be wrapped to fit a two level page table structure easily - using the PGD
  40. * and PTE only. However, Linux also expects one "PTE" table per page, and
  41. * at least a "dirty" bit.
  42. *
  43. * Therefore, we tweak the implementation slightly - we tell Linux that we
  44. * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  45. * hardware pointers to the second level.) The second level contains two
  46. * hardware PTE tables arranged contiguously, followed by Linux versions
  47. * which contain the state information Linux needs. We, therefore, end up
  48. * with 512 entries in the "PTE" level.
  49. *
  50. * This leads to the page tables having the following layout:
  51. *
  52. * pgd pte
  53. * | |
  54. * +--------+ +0
  55. * | |-----> +------------+ +0
  56. * +- - - - + +4 | h/w pt 0 |
  57. * | |-----> +------------+ +1024
  58. * +--------+ +8 | h/w pt 1 |
  59. * | | +------------+ +2048
  60. * +- - - - + | Linux pt 0 |
  61. * | | +------------+ +3072
  62. * +--------+ | Linux pt 1 |
  63. * | | +------------+ +4096
  64. *
  65. * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  66. * PTE_xxx for definitions of bits appearing in the "h/w pt".
  67. *
  68. * PMD_xxx definitions refer to bits in the first level page table.
  69. *
  70. * The "dirty" bit is emulated by only granting hardware write permission
  71. * iff the page is marked "writable" and "dirty" in the Linux PTE. This
  72. * means that a write to a clean page will cause a permission fault, and
  73. * the Linux MM layer will mark the page dirty via handle_pte_fault().
  74. * For the hardware to notice the permission change, the TLB entry must
  75. * be flushed, and ptep_establish() does that for us.
  76. *
  77. * The "accessed" or "young" bit is emulated by a similar method; we only
  78. * allow accesses to the page if the "young" bit is set. Accesses to the
  79. * page will cause a fault, and handle_pte_fault() will set the young bit
  80. * for us as long as the page is marked present in the corresponding Linux
  81. * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
  82. * date.
  83. *
  84. * However, when the "young" bit is cleared, we deny access to the page
  85. * by clearing the hardware PTE. Currently Linux does not flush the TLB
  86. * for us in this case, which means the TLB will retain the transation
  87. * until either the TLB entry is evicted under pressure, or a context
  88. * switch which changes the user space mapping occurs.
  89. */
  90. #define PTRS_PER_PTE 512
  91. #define PTRS_PER_PMD 1
  92. #define PTRS_PER_PGD 2048
  93. /*
  94. * PMD_SHIFT determines the size of the area a second-level page table can map
  95. * PGDIR_SHIFT determines what a third-level page table entry can map
  96. */
  97. #define PMD_SHIFT 21
  98. #define PGDIR_SHIFT 21
  99. #define LIBRARY_TEXT_START 0x0c000000
  100. #ifndef __ASSEMBLY__
  101. extern void __pte_error(const char *file, int line, unsigned long val);
  102. extern void __pmd_error(const char *file, int line, unsigned long val);
  103. extern void __pgd_error(const char *file, int line, unsigned long val);
  104. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
  105. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
  106. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
  107. #endif /* !__ASSEMBLY__ */
  108. #define PMD_SIZE (1UL << PMD_SHIFT)
  109. #define PMD_MASK (~(PMD_SIZE-1))
  110. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  111. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  112. /*
  113. * This is the lowest virtual address we can permit any user space
  114. * mapping to be mapped at. This is particularly important for
  115. * non-high vector CPUs.
  116. */
  117. #define FIRST_USER_ADDRESS PAGE_SIZE
  118. #define FIRST_USER_PGD_NR 1
  119. #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
  120. /*
  121. * ARMv6 supersection address mask and size definitions.
  122. */
  123. #define SUPERSECTION_SHIFT 24
  124. #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
  125. #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
  126. /*
  127. * "Linux" PTE definitions.
  128. *
  129. * We keep two sets of PTEs - the hardware and the linux version.
  130. * This allows greater flexibility in the way we map the Linux bits
  131. * onto the hardware tables, and allows us to have YOUNG and DIRTY
  132. * bits.
  133. *
  134. * The PTE table pointer refers to the hardware entries; the "Linux"
  135. * entries are stored 1024 bytes below.
  136. */
  137. #define L_PTE_PRESENT (1 << 0)
  138. #define L_PTE_FILE (1 << 1) /* only when !PRESENT */
  139. #define L_PTE_YOUNG (1 << 1)
  140. #define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
  141. #define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
  142. #define L_PTE_USER (1 << 4)
  143. #define L_PTE_WRITE (1 << 5)
  144. #define L_PTE_EXEC (1 << 6)
  145. #define L_PTE_DIRTY (1 << 7)
  146. #define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */
  147. #define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
  148. #define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
  149. #ifndef __ASSEMBLY__
  150. /*
  151. * The following macros handle the cache and bufferable bits...
  152. */
  153. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
  154. #define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
  155. extern pgprot_t pgprot_kernel;
  156. #define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
  157. #define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
  158. #define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
  159. #define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
  160. #define PAGE_KERNEL pgprot_kernel
  161. #endif /* __ASSEMBLY__ */
  162. /*
  163. * The table below defines the page protection levels that we insert into our
  164. * Linux page table version. These get translated into the best that the
  165. * architecture can perform. Note that on most ARM hardware:
  166. * 1) We cannot do execute protection
  167. * 2) If we could do execute protection, then read is implied
  168. * 3) write implies read permissions
  169. */
  170. #define __P000 PAGE_NONE
  171. #define __P001 PAGE_READONLY
  172. #define __P010 PAGE_COPY
  173. #define __P011 PAGE_COPY
  174. #define __P100 PAGE_READONLY
  175. #define __P101 PAGE_READONLY
  176. #define __P110 PAGE_COPY
  177. #define __P111 PAGE_COPY
  178. #define __S000 PAGE_NONE
  179. #define __S001 PAGE_READONLY
  180. #define __S010 PAGE_SHARED
  181. #define __S011 PAGE_SHARED
  182. #define __S100 PAGE_READONLY
  183. #define __S101 PAGE_READONLY
  184. #define __S110 PAGE_SHARED
  185. #define __S111 PAGE_SHARED
  186. #ifndef __ASSEMBLY__
  187. /*
  188. * ZERO_PAGE is a global shared page that is always zero: used
  189. * for zero-mapped memory areas etc..
  190. */
  191. extern struct page *empty_zero_page;
  192. #define ZERO_PAGE(vaddr) (empty_zero_page)
  193. #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
  194. #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
  195. #define pte_none(pte) (!pte_val(pte))
  196. #define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
  197. #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
  198. #define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
  199. #define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
  200. #define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
  201. #define pte_unmap(pte) do { } while (0)
  202. #define pte_unmap_nested(pte) do { } while (0)
  203. #define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
  204. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  205. /*
  206. * The following only work if pte_present() is true.
  207. * Undefined behaviour if not..
  208. */
  209. #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
  210. #define pte_read(pte) (pte_val(pte) & L_PTE_USER)
  211. #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
  212. #define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
  213. #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
  214. #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
  215. /*
  216. * The following only works if pte_present() is not true.
  217. */
  218. #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
  219. #define pte_to_pgoff(x) (pte_val(x) >> 2)
  220. #define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
  221. #define PTE_FILE_MAX_BITS 30
  222. #define PTE_BIT_FUNC(fn,op) \
  223. static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
  224. /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
  225. /*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
  226. PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
  227. PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
  228. PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
  229. PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
  230. PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
  231. PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
  232. PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
  233. PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
  234. /*
  235. * Mark the prot value as uncacheable and unbufferable.
  236. */
  237. #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
  238. #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
  239. #define pmd_none(pmd) (!pmd_val(pmd))
  240. #define pmd_present(pmd) (pmd_val(pmd))
  241. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  242. #define copy_pmd(pmdpd,pmdps) \
  243. do { \
  244. pmdpd[0] = pmdps[0]; \
  245. pmdpd[1] = pmdps[1]; \
  246. flush_pmd_entry(pmdpd); \
  247. } while (0)
  248. #define pmd_clear(pmdp) \
  249. do { \
  250. pmdp[0] = __pmd(0); \
  251. pmdp[1] = __pmd(0); \
  252. clean_pmd_entry(pmdp); \
  253. } while (0)
  254. static inline pte_t *pmd_page_kernel(pmd_t pmd)
  255. {
  256. unsigned long ptr;
  257. ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
  258. ptr += PTRS_PER_PTE * sizeof(void *);
  259. return __va(ptr);
  260. }
  261. #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
  262. /*
  263. * Permanent address of a page. We never have highmem, so this is trivial.
  264. */
  265. #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
  266. /*
  267. * Conversion functions: convert a page and protection to a page entry,
  268. * and a page entry and page directory to the page they refer to.
  269. */
  270. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
  271. /*
  272. * The "pgd_xxx()" functions here are trivial for a folded two-level
  273. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  274. * into the pgd entry)
  275. */
  276. #define pgd_none(pgd) (0)
  277. #define pgd_bad(pgd) (0)
  278. #define pgd_present(pgd) (1)
  279. #define pgd_clear(pgdp) do { } while (0)
  280. #define set_pgd(pgd,pgdp) do { } while (0)
  281. /* to find an entry in a page-table-directory */
  282. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  283. #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
  284. /* to find an entry in a kernel page-table-directory */
  285. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  286. /* Find an entry in the second-level page table.. */
  287. #define pmd_offset(dir, addr) ((pmd_t *)(dir))
  288. /* Find an entry in the third-level page table.. */
  289. #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  290. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  291. {
  292. const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
  293. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  294. return pte;
  295. }
  296. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  297. /* Encode and decode a swap entry.
  298. *
  299. * We support up to 32GB of swap on 4k machines
  300. */
  301. #define __swp_type(x) (((x).val >> 2) & 0x7f)
  302. #define __swp_offset(x) ((x).val >> 9)
  303. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
  304. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  305. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  306. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  307. /* FIXME: this is not correct */
  308. #define kern_addr_valid(addr) (1)
  309. #include <asm-generic/pgtable.h>
  310. /*
  311. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  312. */
  313. #define HAVE_ARCH_UNMAPPED_AREA
  314. /*
  315. * remap a physical page `pfn' of size `size' with page protection `prot'
  316. * into virtual address `from'
  317. */
  318. #define io_remap_pfn_range(vma,from,pfn,size,prot) \
  319. remap_pfn_range(vma, from, pfn, size, prot)
  320. #define MK_IOSPACE_PFN(space, pfn) (pfn)
  321. #define GET_IOSPACE(pfn) 0
  322. #define GET_PFN(pfn) (pfn)
  323. #define pgtable_cache_init() do { } while (0)
  324. #endif /* !__ASSEMBLY__ */
  325. #endif /* _ASMARM_PGTABLE_H */