file.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342
  1. /*
  2. * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
  3. *
  4. * Copyright (c) 2001-2006 Anton Altaparmakov
  5. *
  6. * This program/include file is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program/include file is distributed in the hope that it will be
  12. * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program (in the main directory of the Linux-NTFS
  18. * distribution in the file COPYING); if not, write to the Free Software
  19. * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/buffer_head.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/pagevec.h>
  24. #include <linux/sched.h>
  25. #include <linux/swap.h>
  26. #include <linux/uio.h>
  27. #include <linux/writeback.h>
  28. #include <asm/page.h>
  29. #include <asm/uaccess.h>
  30. #include "attrib.h"
  31. #include "bitmap.h"
  32. #include "inode.h"
  33. #include "debug.h"
  34. #include "lcnalloc.h"
  35. #include "malloc.h"
  36. #include "mft.h"
  37. #include "ntfs.h"
  38. /**
  39. * ntfs_file_open - called when an inode is about to be opened
  40. * @vi: inode to be opened
  41. * @filp: file structure describing the inode
  42. *
  43. * Limit file size to the page cache limit on architectures where unsigned long
  44. * is 32-bits. This is the most we can do for now without overflowing the page
  45. * cache page index. Doing it this way means we don't run into problems because
  46. * of existing too large files. It would be better to allow the user to read
  47. * the beginning of the file but I doubt very much anyone is going to hit this
  48. * check on a 32-bit architecture, so there is no point in adding the extra
  49. * complexity required to support this.
  50. *
  51. * On 64-bit architectures, the check is hopefully optimized away by the
  52. * compiler.
  53. *
  54. * After the check passes, just call generic_file_open() to do its work.
  55. */
  56. static int ntfs_file_open(struct inode *vi, struct file *filp)
  57. {
  58. if (sizeof(unsigned long) < 8) {
  59. if (i_size_read(vi) > MAX_LFS_FILESIZE)
  60. return -EFBIG;
  61. }
  62. return generic_file_open(vi, filp);
  63. }
  64. #ifdef NTFS_RW
  65. /**
  66. * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  67. * @ni: ntfs inode of the attribute to extend
  68. * @new_init_size: requested new initialized size in bytes
  69. * @cached_page: store any allocated but unused page here
  70. * @lru_pvec: lru-buffering pagevec of the caller
  71. *
  72. * Extend the initialized size of an attribute described by the ntfs inode @ni
  73. * to @new_init_size bytes. This involves zeroing any non-sparse space between
  74. * the old initialized size and @new_init_size both in the page cache and on
  75. * disk (if relevant complete pages are already uptodate in the page cache then
  76. * these are simply marked dirty).
  77. *
  78. * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  79. * in the resident attribute case, it is tied to the initialized size and, in
  80. * the non-resident attribute case, it may not fall below the initialized size.
  81. *
  82. * Note that if the attribute is resident, we do not need to touch the page
  83. * cache at all. This is because if the page cache page is not uptodate we
  84. * bring it uptodate later, when doing the write to the mft record since we
  85. * then already have the page mapped. And if the page is uptodate, the
  86. * non-initialized region will already have been zeroed when the page was
  87. * brought uptodate and the region may in fact already have been overwritten
  88. * with new data via mmap() based writes, so we cannot just zero it. And since
  89. * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  90. * is unspecified, we choose not to do zeroing and thus we do not need to touch
  91. * the page at all. For a more detailed explanation see ntfs_truncate() in
  92. * fs/ntfs/inode.c.
  93. *
  94. * @cached_page and @lru_pvec are just optimizations for dealing with multiple
  95. * pages.
  96. *
  97. * Return 0 on success and -errno on error. In the case that an error is
  98. * encountered it is possible that the initialized size will already have been
  99. * incremented some way towards @new_init_size but it is guaranteed that if
  100. * this is the case, the necessary zeroing will also have happened and that all
  101. * metadata is self-consistent.
  102. *
  103. * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
  104. * held by the caller.
  105. */
  106. static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
  107. struct page **cached_page, struct pagevec *lru_pvec)
  108. {
  109. s64 old_init_size;
  110. loff_t old_i_size;
  111. pgoff_t index, end_index;
  112. unsigned long flags;
  113. struct inode *vi = VFS_I(ni);
  114. ntfs_inode *base_ni;
  115. MFT_RECORD *m = NULL;
  116. ATTR_RECORD *a;
  117. ntfs_attr_search_ctx *ctx = NULL;
  118. struct address_space *mapping;
  119. struct page *page = NULL;
  120. u8 *kattr;
  121. int err;
  122. u32 attr_len;
  123. read_lock_irqsave(&ni->size_lock, flags);
  124. old_init_size = ni->initialized_size;
  125. old_i_size = i_size_read(vi);
  126. BUG_ON(new_init_size > ni->allocated_size);
  127. read_unlock_irqrestore(&ni->size_lock, flags);
  128. ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
  129. "old_initialized_size 0x%llx, "
  130. "new_initialized_size 0x%llx, i_size 0x%llx.",
  131. vi->i_ino, (unsigned)le32_to_cpu(ni->type),
  132. (unsigned long long)old_init_size,
  133. (unsigned long long)new_init_size, old_i_size);
  134. if (!NInoAttr(ni))
  135. base_ni = ni;
  136. else
  137. base_ni = ni->ext.base_ntfs_ino;
  138. /* Use goto to reduce indentation and we need the label below anyway. */
  139. if (NInoNonResident(ni))
  140. goto do_non_resident_extend;
  141. BUG_ON(old_init_size != old_i_size);
  142. m = map_mft_record(base_ni);
  143. if (IS_ERR(m)) {
  144. err = PTR_ERR(m);
  145. m = NULL;
  146. goto err_out;
  147. }
  148. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  149. if (unlikely(!ctx)) {
  150. err = -ENOMEM;
  151. goto err_out;
  152. }
  153. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  154. CASE_SENSITIVE, 0, NULL, 0, ctx);
  155. if (unlikely(err)) {
  156. if (err == -ENOENT)
  157. err = -EIO;
  158. goto err_out;
  159. }
  160. m = ctx->mrec;
  161. a = ctx->attr;
  162. BUG_ON(a->non_resident);
  163. /* The total length of the attribute value. */
  164. attr_len = le32_to_cpu(a->data.resident.value_length);
  165. BUG_ON(old_i_size != (loff_t)attr_len);
  166. /*
  167. * Do the zeroing in the mft record and update the attribute size in
  168. * the mft record.
  169. */
  170. kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
  171. memset(kattr + attr_len, 0, new_init_size - attr_len);
  172. a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
  173. /* Finally, update the sizes in the vfs and ntfs inodes. */
  174. write_lock_irqsave(&ni->size_lock, flags);
  175. i_size_write(vi, new_init_size);
  176. ni->initialized_size = new_init_size;
  177. write_unlock_irqrestore(&ni->size_lock, flags);
  178. goto done;
  179. do_non_resident_extend:
  180. /*
  181. * If the new initialized size @new_init_size exceeds the current file
  182. * size (vfs inode->i_size), we need to extend the file size to the
  183. * new initialized size.
  184. */
  185. if (new_init_size > old_i_size) {
  186. m = map_mft_record(base_ni);
  187. if (IS_ERR(m)) {
  188. err = PTR_ERR(m);
  189. m = NULL;
  190. goto err_out;
  191. }
  192. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  193. if (unlikely(!ctx)) {
  194. err = -ENOMEM;
  195. goto err_out;
  196. }
  197. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  198. CASE_SENSITIVE, 0, NULL, 0, ctx);
  199. if (unlikely(err)) {
  200. if (err == -ENOENT)
  201. err = -EIO;
  202. goto err_out;
  203. }
  204. m = ctx->mrec;
  205. a = ctx->attr;
  206. BUG_ON(!a->non_resident);
  207. BUG_ON(old_i_size != (loff_t)
  208. sle64_to_cpu(a->data.non_resident.data_size));
  209. a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
  210. flush_dcache_mft_record_page(ctx->ntfs_ino);
  211. mark_mft_record_dirty(ctx->ntfs_ino);
  212. /* Update the file size in the vfs inode. */
  213. i_size_write(vi, new_init_size);
  214. ntfs_attr_put_search_ctx(ctx);
  215. ctx = NULL;
  216. unmap_mft_record(base_ni);
  217. m = NULL;
  218. }
  219. mapping = vi->i_mapping;
  220. index = old_init_size >> PAGE_CACHE_SHIFT;
  221. end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  222. do {
  223. /*
  224. * Read the page. If the page is not present, this will zero
  225. * the uninitialized regions for us.
  226. */
  227. page = read_cache_page(mapping, index,
  228. (filler_t*)mapping->a_ops->readpage, NULL);
  229. if (IS_ERR(page)) {
  230. err = PTR_ERR(page);
  231. goto init_err_out;
  232. }
  233. wait_on_page_locked(page);
  234. if (unlikely(!PageUptodate(page) || PageError(page))) {
  235. page_cache_release(page);
  236. err = -EIO;
  237. goto init_err_out;
  238. }
  239. /*
  240. * Update the initialized size in the ntfs inode. This is
  241. * enough to make ntfs_writepage() work.
  242. */
  243. write_lock_irqsave(&ni->size_lock, flags);
  244. ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
  245. if (ni->initialized_size > new_init_size)
  246. ni->initialized_size = new_init_size;
  247. write_unlock_irqrestore(&ni->size_lock, flags);
  248. /* Set the page dirty so it gets written out. */
  249. set_page_dirty(page);
  250. page_cache_release(page);
  251. /*
  252. * Play nice with the vm and the rest of the system. This is
  253. * very much needed as we can potentially be modifying the
  254. * initialised size from a very small value to a really huge
  255. * value, e.g.
  256. * f = open(somefile, O_TRUNC);
  257. * truncate(f, 10GiB);
  258. * seek(f, 10GiB);
  259. * write(f, 1);
  260. * And this would mean we would be marking dirty hundreds of
  261. * thousands of pages or as in the above example more than
  262. * two and a half million pages!
  263. *
  264. * TODO: For sparse pages could optimize this workload by using
  265. * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
  266. * would be set in readpage for sparse pages and here we would
  267. * not need to mark dirty any pages which have this bit set.
  268. * The only caveat is that we have to clear the bit everywhere
  269. * where we allocate any clusters that lie in the page or that
  270. * contain the page.
  271. *
  272. * TODO: An even greater optimization would be for us to only
  273. * call readpage() on pages which are not in sparse regions as
  274. * determined from the runlist. This would greatly reduce the
  275. * number of pages we read and make dirty in the case of sparse
  276. * files.
  277. */
  278. balance_dirty_pages_ratelimited(mapping);
  279. cond_resched();
  280. } while (++index < end_index);
  281. read_lock_irqsave(&ni->size_lock, flags);
  282. BUG_ON(ni->initialized_size != new_init_size);
  283. read_unlock_irqrestore(&ni->size_lock, flags);
  284. /* Now bring in sync the initialized_size in the mft record. */
  285. m = map_mft_record(base_ni);
  286. if (IS_ERR(m)) {
  287. err = PTR_ERR(m);
  288. m = NULL;
  289. goto init_err_out;
  290. }
  291. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  292. if (unlikely(!ctx)) {
  293. err = -ENOMEM;
  294. goto init_err_out;
  295. }
  296. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  297. CASE_SENSITIVE, 0, NULL, 0, ctx);
  298. if (unlikely(err)) {
  299. if (err == -ENOENT)
  300. err = -EIO;
  301. goto init_err_out;
  302. }
  303. m = ctx->mrec;
  304. a = ctx->attr;
  305. BUG_ON(!a->non_resident);
  306. a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
  307. done:
  308. flush_dcache_mft_record_page(ctx->ntfs_ino);
  309. mark_mft_record_dirty(ctx->ntfs_ino);
  310. if (ctx)
  311. ntfs_attr_put_search_ctx(ctx);
  312. if (m)
  313. unmap_mft_record(base_ni);
  314. ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
  315. (unsigned long long)new_init_size, i_size_read(vi));
  316. return 0;
  317. init_err_out:
  318. write_lock_irqsave(&ni->size_lock, flags);
  319. ni->initialized_size = old_init_size;
  320. write_unlock_irqrestore(&ni->size_lock, flags);
  321. err_out:
  322. if (ctx)
  323. ntfs_attr_put_search_ctx(ctx);
  324. if (m)
  325. unmap_mft_record(base_ni);
  326. ntfs_debug("Failed. Returning error code %i.", err);
  327. return err;
  328. }
  329. /**
  330. * ntfs_fault_in_pages_readable -
  331. *
  332. * Fault a number of userspace pages into pagetables.
  333. *
  334. * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
  335. * with more than two userspace pages as well as handling the single page case
  336. * elegantly.
  337. *
  338. * If you find this difficult to understand, then think of the while loop being
  339. * the following code, except that we do without the integer variable ret:
  340. *
  341. * do {
  342. * ret = __get_user(c, uaddr);
  343. * uaddr += PAGE_SIZE;
  344. * } while (!ret && uaddr < end);
  345. *
  346. * Note, the final __get_user() may well run out-of-bounds of the user buffer,
  347. * but _not_ out-of-bounds of the page the user buffer belongs to, and since
  348. * this is only a read and not a write, and since it is still in the same page,
  349. * it should not matter and this makes the code much simpler.
  350. */
  351. static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
  352. int bytes)
  353. {
  354. const char __user *end;
  355. volatile char c;
  356. /* Set @end to the first byte outside the last page we care about. */
  357. end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
  358. while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
  359. ;
  360. }
  361. /**
  362. * ntfs_fault_in_pages_readable_iovec -
  363. *
  364. * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
  365. */
  366. static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
  367. size_t iov_ofs, int bytes)
  368. {
  369. do {
  370. const char __user *buf;
  371. unsigned len;
  372. buf = iov->iov_base + iov_ofs;
  373. len = iov->iov_len - iov_ofs;
  374. if (len > bytes)
  375. len = bytes;
  376. ntfs_fault_in_pages_readable(buf, len);
  377. bytes -= len;
  378. iov++;
  379. iov_ofs = 0;
  380. } while (bytes);
  381. }
  382. /**
  383. * __ntfs_grab_cache_pages - obtain a number of locked pages
  384. * @mapping: address space mapping from which to obtain page cache pages
  385. * @index: starting index in @mapping at which to begin obtaining pages
  386. * @nr_pages: number of page cache pages to obtain
  387. * @pages: array of pages in which to return the obtained page cache pages
  388. * @cached_page: allocated but as yet unused page
  389. * @lru_pvec: lru-buffering pagevec of caller
  390. *
  391. * Obtain @nr_pages locked page cache pages from the mapping @maping and
  392. * starting at index @index.
  393. *
  394. * If a page is newly created, increment its refcount and add it to the
  395. * caller's lru-buffering pagevec @lru_pvec.
  396. *
  397. * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
  398. * are obtained at once instead of just one page and that 0 is returned on
  399. * success and -errno on error.
  400. *
  401. * Note, the page locks are obtained in ascending page index order.
  402. */
  403. static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
  404. pgoff_t index, const unsigned nr_pages, struct page **pages,
  405. struct page **cached_page, struct pagevec *lru_pvec)
  406. {
  407. int err, nr;
  408. BUG_ON(!nr_pages);
  409. err = nr = 0;
  410. do {
  411. pages[nr] = find_lock_page(mapping, index);
  412. if (!pages[nr]) {
  413. if (!*cached_page) {
  414. *cached_page = page_cache_alloc(mapping);
  415. if (unlikely(!*cached_page)) {
  416. err = -ENOMEM;
  417. goto err_out;
  418. }
  419. }
  420. err = add_to_page_cache(*cached_page, mapping, index,
  421. GFP_KERNEL);
  422. if (unlikely(err)) {
  423. if (err == -EEXIST)
  424. continue;
  425. goto err_out;
  426. }
  427. pages[nr] = *cached_page;
  428. page_cache_get(*cached_page);
  429. if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
  430. __pagevec_lru_add(lru_pvec);
  431. *cached_page = NULL;
  432. }
  433. index++;
  434. nr++;
  435. } while (nr < nr_pages);
  436. out:
  437. return err;
  438. err_out:
  439. while (nr > 0) {
  440. unlock_page(pages[--nr]);
  441. page_cache_release(pages[nr]);
  442. }
  443. goto out;
  444. }
  445. static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
  446. {
  447. lock_buffer(bh);
  448. get_bh(bh);
  449. bh->b_end_io = end_buffer_read_sync;
  450. return submit_bh(READ, bh);
  451. }
  452. /**
  453. * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
  454. * @pages: array of destination pages
  455. * @nr_pages: number of pages in @pages
  456. * @pos: byte position in file at which the write begins
  457. * @bytes: number of bytes to be written
  458. *
  459. * This is called for non-resident attributes from ntfs_file_buffered_write()
  460. * with i_mutex held on the inode (@pages[0]->mapping->host). There are
  461. * @nr_pages pages in @pages which are locked but not kmap()ped. The source
  462. * data has not yet been copied into the @pages.
  463. *
  464. * Need to fill any holes with actual clusters, allocate buffers if necessary,
  465. * ensure all the buffers are mapped, and bring uptodate any buffers that are
  466. * only partially being written to.
  467. *
  468. * If @nr_pages is greater than one, we are guaranteed that the cluster size is
  469. * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
  470. * the same cluster and that they are the entirety of that cluster, and that
  471. * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
  472. *
  473. * i_size is not to be modified yet.
  474. *
  475. * Return 0 on success or -errno on error.
  476. */
  477. static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
  478. unsigned nr_pages, s64 pos, size_t bytes)
  479. {
  480. VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
  481. LCN lcn;
  482. s64 bh_pos, vcn_len, end, initialized_size;
  483. sector_t lcn_block;
  484. struct page *page;
  485. struct inode *vi;
  486. ntfs_inode *ni, *base_ni = NULL;
  487. ntfs_volume *vol;
  488. runlist_element *rl, *rl2;
  489. struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
  490. ntfs_attr_search_ctx *ctx = NULL;
  491. MFT_RECORD *m = NULL;
  492. ATTR_RECORD *a = NULL;
  493. unsigned long flags;
  494. u32 attr_rec_len = 0;
  495. unsigned blocksize, u;
  496. int err, mp_size;
  497. BOOL rl_write_locked, was_hole, is_retry;
  498. unsigned char blocksize_bits;
  499. struct {
  500. u8 runlist_merged:1;
  501. u8 mft_attr_mapped:1;
  502. u8 mp_rebuilt:1;
  503. u8 attr_switched:1;
  504. } status = { 0, 0, 0, 0 };
  505. BUG_ON(!nr_pages);
  506. BUG_ON(!pages);
  507. BUG_ON(!*pages);
  508. vi = pages[0]->mapping->host;
  509. ni = NTFS_I(vi);
  510. vol = ni->vol;
  511. ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
  512. "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
  513. vi->i_ino, ni->type, pages[0]->index, nr_pages,
  514. (long long)pos, bytes);
  515. blocksize = vol->sb->s_blocksize;
  516. blocksize_bits = vol->sb->s_blocksize_bits;
  517. u = 0;
  518. do {
  519. struct page *page = pages[u];
  520. /*
  521. * create_empty_buffers() will create uptodate/dirty buffers if
  522. * the page is uptodate/dirty.
  523. */
  524. if (!page_has_buffers(page)) {
  525. create_empty_buffers(page, blocksize, 0);
  526. if (unlikely(!page_has_buffers(page)))
  527. return -ENOMEM;
  528. }
  529. } while (++u < nr_pages);
  530. rl_write_locked = FALSE;
  531. rl = NULL;
  532. err = 0;
  533. vcn = lcn = -1;
  534. vcn_len = 0;
  535. lcn_block = -1;
  536. was_hole = FALSE;
  537. cpos = pos >> vol->cluster_size_bits;
  538. end = pos + bytes;
  539. cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
  540. /*
  541. * Loop over each page and for each page over each buffer. Use goto to
  542. * reduce indentation.
  543. */
  544. u = 0;
  545. do_next_page:
  546. page = pages[u];
  547. bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
  548. bh = head = page_buffers(page);
  549. do {
  550. VCN cdelta;
  551. s64 bh_end;
  552. unsigned bh_cofs;
  553. /* Clear buffer_new on all buffers to reinitialise state. */
  554. if (buffer_new(bh))
  555. clear_buffer_new(bh);
  556. bh_end = bh_pos + blocksize;
  557. bh_cpos = bh_pos >> vol->cluster_size_bits;
  558. bh_cofs = bh_pos & vol->cluster_size_mask;
  559. if (buffer_mapped(bh)) {
  560. /*
  561. * The buffer is already mapped. If it is uptodate,
  562. * ignore it.
  563. */
  564. if (buffer_uptodate(bh))
  565. continue;
  566. /*
  567. * The buffer is not uptodate. If the page is uptodate
  568. * set the buffer uptodate and otherwise ignore it.
  569. */
  570. if (PageUptodate(page)) {
  571. set_buffer_uptodate(bh);
  572. continue;
  573. }
  574. /*
  575. * Neither the page nor the buffer are uptodate. If
  576. * the buffer is only partially being written to, we
  577. * need to read it in before the write, i.e. now.
  578. */
  579. if ((bh_pos < pos && bh_end > pos) ||
  580. (bh_pos < end && bh_end > end)) {
  581. /*
  582. * If the buffer is fully or partially within
  583. * the initialized size, do an actual read.
  584. * Otherwise, simply zero the buffer.
  585. */
  586. read_lock_irqsave(&ni->size_lock, flags);
  587. initialized_size = ni->initialized_size;
  588. read_unlock_irqrestore(&ni->size_lock, flags);
  589. if (bh_pos < initialized_size) {
  590. ntfs_submit_bh_for_read(bh);
  591. *wait_bh++ = bh;
  592. } else {
  593. u8 *kaddr = kmap_atomic(page, KM_USER0);
  594. memset(kaddr + bh_offset(bh), 0,
  595. blocksize);
  596. kunmap_atomic(kaddr, KM_USER0);
  597. flush_dcache_page(page);
  598. set_buffer_uptodate(bh);
  599. }
  600. }
  601. continue;
  602. }
  603. /* Unmapped buffer. Need to map it. */
  604. bh->b_bdev = vol->sb->s_bdev;
  605. /*
  606. * If the current buffer is in the same clusters as the map
  607. * cache, there is no need to check the runlist again. The
  608. * map cache is made up of @vcn, which is the first cached file
  609. * cluster, @vcn_len which is the number of cached file
  610. * clusters, @lcn is the device cluster corresponding to @vcn,
  611. * and @lcn_block is the block number corresponding to @lcn.
  612. */
  613. cdelta = bh_cpos - vcn;
  614. if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
  615. map_buffer_cached:
  616. BUG_ON(lcn < 0);
  617. bh->b_blocknr = lcn_block +
  618. (cdelta << (vol->cluster_size_bits -
  619. blocksize_bits)) +
  620. (bh_cofs >> blocksize_bits);
  621. set_buffer_mapped(bh);
  622. /*
  623. * If the page is uptodate so is the buffer. If the
  624. * buffer is fully outside the write, we ignore it if
  625. * it was already allocated and we mark it dirty so it
  626. * gets written out if we allocated it. On the other
  627. * hand, if we allocated the buffer but we are not
  628. * marking it dirty we set buffer_new so we can do
  629. * error recovery.
  630. */
  631. if (PageUptodate(page)) {
  632. if (!buffer_uptodate(bh))
  633. set_buffer_uptodate(bh);
  634. if (unlikely(was_hole)) {
  635. /* We allocated the buffer. */
  636. unmap_underlying_metadata(bh->b_bdev,
  637. bh->b_blocknr);
  638. if (bh_end <= pos || bh_pos >= end)
  639. mark_buffer_dirty(bh);
  640. else
  641. set_buffer_new(bh);
  642. }
  643. continue;
  644. }
  645. /* Page is _not_ uptodate. */
  646. if (likely(!was_hole)) {
  647. /*
  648. * Buffer was already allocated. If it is not
  649. * uptodate and is only partially being written
  650. * to, we need to read it in before the write,
  651. * i.e. now.
  652. */
  653. if (!buffer_uptodate(bh) && bh_pos < end &&
  654. bh_end > pos &&
  655. (bh_pos < pos ||
  656. bh_end > end)) {
  657. /*
  658. * If the buffer is fully or partially
  659. * within the initialized size, do an
  660. * actual read. Otherwise, simply zero
  661. * the buffer.
  662. */
  663. read_lock_irqsave(&ni->size_lock,
  664. flags);
  665. initialized_size = ni->initialized_size;
  666. read_unlock_irqrestore(&ni->size_lock,
  667. flags);
  668. if (bh_pos < initialized_size) {
  669. ntfs_submit_bh_for_read(bh);
  670. *wait_bh++ = bh;
  671. } else {
  672. u8 *kaddr = kmap_atomic(page,
  673. KM_USER0);
  674. memset(kaddr + bh_offset(bh),
  675. 0, blocksize);
  676. kunmap_atomic(kaddr, KM_USER0);
  677. flush_dcache_page(page);
  678. set_buffer_uptodate(bh);
  679. }
  680. }
  681. continue;
  682. }
  683. /* We allocated the buffer. */
  684. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  685. /*
  686. * If the buffer is fully outside the write, zero it,
  687. * set it uptodate, and mark it dirty so it gets
  688. * written out. If it is partially being written to,
  689. * zero region surrounding the write but leave it to
  690. * commit write to do anything else. Finally, if the
  691. * buffer is fully being overwritten, do nothing.
  692. */
  693. if (bh_end <= pos || bh_pos >= end) {
  694. if (!buffer_uptodate(bh)) {
  695. u8 *kaddr = kmap_atomic(page, KM_USER0);
  696. memset(kaddr + bh_offset(bh), 0,
  697. blocksize);
  698. kunmap_atomic(kaddr, KM_USER0);
  699. flush_dcache_page(page);
  700. set_buffer_uptodate(bh);
  701. }
  702. mark_buffer_dirty(bh);
  703. continue;
  704. }
  705. set_buffer_new(bh);
  706. if (!buffer_uptodate(bh) &&
  707. (bh_pos < pos || bh_end > end)) {
  708. u8 *kaddr;
  709. unsigned pofs;
  710. kaddr = kmap_atomic(page, KM_USER0);
  711. if (bh_pos < pos) {
  712. pofs = bh_pos & ~PAGE_CACHE_MASK;
  713. memset(kaddr + pofs, 0, pos - bh_pos);
  714. }
  715. if (bh_end > end) {
  716. pofs = end & ~PAGE_CACHE_MASK;
  717. memset(kaddr + pofs, 0, bh_end - end);
  718. }
  719. kunmap_atomic(kaddr, KM_USER0);
  720. flush_dcache_page(page);
  721. }
  722. continue;
  723. }
  724. /*
  725. * Slow path: this is the first buffer in the cluster. If it
  726. * is outside allocated size and is not uptodate, zero it and
  727. * set it uptodate.
  728. */
  729. read_lock_irqsave(&ni->size_lock, flags);
  730. initialized_size = ni->allocated_size;
  731. read_unlock_irqrestore(&ni->size_lock, flags);
  732. if (bh_pos > initialized_size) {
  733. if (PageUptodate(page)) {
  734. if (!buffer_uptodate(bh))
  735. set_buffer_uptodate(bh);
  736. } else if (!buffer_uptodate(bh)) {
  737. u8 *kaddr = kmap_atomic(page, KM_USER0);
  738. memset(kaddr + bh_offset(bh), 0, blocksize);
  739. kunmap_atomic(kaddr, KM_USER0);
  740. flush_dcache_page(page);
  741. set_buffer_uptodate(bh);
  742. }
  743. continue;
  744. }
  745. is_retry = FALSE;
  746. if (!rl) {
  747. down_read(&ni->runlist.lock);
  748. retry_remap:
  749. rl = ni->runlist.rl;
  750. }
  751. if (likely(rl != NULL)) {
  752. /* Seek to element containing target cluster. */
  753. while (rl->length && rl[1].vcn <= bh_cpos)
  754. rl++;
  755. lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
  756. if (likely(lcn >= 0)) {
  757. /*
  758. * Successful remap, setup the map cache and
  759. * use that to deal with the buffer.
  760. */
  761. was_hole = FALSE;
  762. vcn = bh_cpos;
  763. vcn_len = rl[1].vcn - vcn;
  764. lcn_block = lcn << (vol->cluster_size_bits -
  765. blocksize_bits);
  766. cdelta = 0;
  767. /*
  768. * If the number of remaining clusters touched
  769. * by the write is smaller or equal to the
  770. * number of cached clusters, unlock the
  771. * runlist as the map cache will be used from
  772. * now on.
  773. */
  774. if (likely(vcn + vcn_len >= cend)) {
  775. if (rl_write_locked) {
  776. up_write(&ni->runlist.lock);
  777. rl_write_locked = FALSE;
  778. } else
  779. up_read(&ni->runlist.lock);
  780. rl = NULL;
  781. }
  782. goto map_buffer_cached;
  783. }
  784. } else
  785. lcn = LCN_RL_NOT_MAPPED;
  786. /*
  787. * If it is not a hole and not out of bounds, the runlist is
  788. * probably unmapped so try to map it now.
  789. */
  790. if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
  791. if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
  792. /* Attempt to map runlist. */
  793. if (!rl_write_locked) {
  794. /*
  795. * We need the runlist locked for
  796. * writing, so if it is locked for
  797. * reading relock it now and retry in
  798. * case it changed whilst we dropped
  799. * the lock.
  800. */
  801. up_read(&ni->runlist.lock);
  802. down_write(&ni->runlist.lock);
  803. rl_write_locked = TRUE;
  804. goto retry_remap;
  805. }
  806. err = ntfs_map_runlist_nolock(ni, bh_cpos,
  807. NULL);
  808. if (likely(!err)) {
  809. is_retry = TRUE;
  810. goto retry_remap;
  811. }
  812. /*
  813. * If @vcn is out of bounds, pretend @lcn is
  814. * LCN_ENOENT. As long as the buffer is out
  815. * of bounds this will work fine.
  816. */
  817. if (err == -ENOENT) {
  818. lcn = LCN_ENOENT;
  819. err = 0;
  820. goto rl_not_mapped_enoent;
  821. }
  822. } else
  823. err = -EIO;
  824. /* Failed to map the buffer, even after retrying. */
  825. bh->b_blocknr = -1;
  826. ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
  827. "attribute type 0x%x, vcn 0x%llx, "
  828. "vcn offset 0x%x, because its "
  829. "location on disk could not be "
  830. "determined%s (error code %i).",
  831. ni->mft_no, ni->type,
  832. (unsigned long long)bh_cpos,
  833. (unsigned)bh_pos &
  834. vol->cluster_size_mask,
  835. is_retry ? " even after retrying" : "",
  836. err);
  837. break;
  838. }
  839. rl_not_mapped_enoent:
  840. /*
  841. * The buffer is in a hole or out of bounds. We need to fill
  842. * the hole, unless the buffer is in a cluster which is not
  843. * touched by the write, in which case we just leave the buffer
  844. * unmapped. This can only happen when the cluster size is
  845. * less than the page cache size.
  846. */
  847. if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
  848. bh_cend = (bh_end + vol->cluster_size - 1) >>
  849. vol->cluster_size_bits;
  850. if ((bh_cend <= cpos || bh_cpos >= cend)) {
  851. bh->b_blocknr = -1;
  852. /*
  853. * If the buffer is uptodate we skip it. If it
  854. * is not but the page is uptodate, we can set
  855. * the buffer uptodate. If the page is not
  856. * uptodate, we can clear the buffer and set it
  857. * uptodate. Whether this is worthwhile is
  858. * debatable and this could be removed.
  859. */
  860. if (PageUptodate(page)) {
  861. if (!buffer_uptodate(bh))
  862. set_buffer_uptodate(bh);
  863. } else if (!buffer_uptodate(bh)) {
  864. u8 *kaddr = kmap_atomic(page, KM_USER0);
  865. memset(kaddr + bh_offset(bh), 0,
  866. blocksize);
  867. kunmap_atomic(kaddr, KM_USER0);
  868. flush_dcache_page(page);
  869. set_buffer_uptodate(bh);
  870. }
  871. continue;
  872. }
  873. }
  874. /*
  875. * Out of bounds buffer is invalid if it was not really out of
  876. * bounds.
  877. */
  878. BUG_ON(lcn != LCN_HOLE);
  879. /*
  880. * We need the runlist locked for writing, so if it is locked
  881. * for reading relock it now and retry in case it changed
  882. * whilst we dropped the lock.
  883. */
  884. BUG_ON(!rl);
  885. if (!rl_write_locked) {
  886. up_read(&ni->runlist.lock);
  887. down_write(&ni->runlist.lock);
  888. rl_write_locked = TRUE;
  889. goto retry_remap;
  890. }
  891. /* Find the previous last allocated cluster. */
  892. BUG_ON(rl->lcn != LCN_HOLE);
  893. lcn = -1;
  894. rl2 = rl;
  895. while (--rl2 >= ni->runlist.rl) {
  896. if (rl2->lcn >= 0) {
  897. lcn = rl2->lcn + rl2->length;
  898. break;
  899. }
  900. }
  901. rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
  902. FALSE);
  903. if (IS_ERR(rl2)) {
  904. err = PTR_ERR(rl2);
  905. ntfs_debug("Failed to allocate cluster, error code %i.",
  906. err);
  907. break;
  908. }
  909. lcn = rl2->lcn;
  910. rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
  911. if (IS_ERR(rl)) {
  912. err = PTR_ERR(rl);
  913. if (err != -ENOMEM)
  914. err = -EIO;
  915. if (ntfs_cluster_free_from_rl(vol, rl2)) {
  916. ntfs_error(vol->sb, "Failed to release "
  917. "allocated cluster in error "
  918. "code path. Run chkdsk to "
  919. "recover the lost cluster.");
  920. NVolSetErrors(vol);
  921. }
  922. ntfs_free(rl2);
  923. break;
  924. }
  925. ni->runlist.rl = rl;
  926. status.runlist_merged = 1;
  927. ntfs_debug("Allocated cluster, lcn 0x%llx.",
  928. (unsigned long long)lcn);
  929. /* Map and lock the mft record and get the attribute record. */
  930. if (!NInoAttr(ni))
  931. base_ni = ni;
  932. else
  933. base_ni = ni->ext.base_ntfs_ino;
  934. m = map_mft_record(base_ni);
  935. if (IS_ERR(m)) {
  936. err = PTR_ERR(m);
  937. break;
  938. }
  939. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  940. if (unlikely(!ctx)) {
  941. err = -ENOMEM;
  942. unmap_mft_record(base_ni);
  943. break;
  944. }
  945. status.mft_attr_mapped = 1;
  946. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  947. CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
  948. if (unlikely(err)) {
  949. if (err == -ENOENT)
  950. err = -EIO;
  951. break;
  952. }
  953. m = ctx->mrec;
  954. a = ctx->attr;
  955. /*
  956. * Find the runlist element with which the attribute extent
  957. * starts. Note, we cannot use the _attr_ version because we
  958. * have mapped the mft record. That is ok because we know the
  959. * runlist fragment must be mapped already to have ever gotten
  960. * here, so we can just use the _rl_ version.
  961. */
  962. vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
  963. rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
  964. BUG_ON(!rl2);
  965. BUG_ON(!rl2->length);
  966. BUG_ON(rl2->lcn < LCN_HOLE);
  967. highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
  968. /*
  969. * If @highest_vcn is zero, calculate the real highest_vcn
  970. * (which can really be zero).
  971. */
  972. if (!highest_vcn)
  973. highest_vcn = (sle64_to_cpu(
  974. a->data.non_resident.allocated_size) >>
  975. vol->cluster_size_bits) - 1;
  976. /*
  977. * Determine the size of the mapping pairs array for the new
  978. * extent, i.e. the old extent with the hole filled.
  979. */
  980. mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
  981. highest_vcn);
  982. if (unlikely(mp_size <= 0)) {
  983. if (!(err = mp_size))
  984. err = -EIO;
  985. ntfs_debug("Failed to get size for mapping pairs "
  986. "array, error code %i.", err);
  987. break;
  988. }
  989. /*
  990. * Resize the attribute record to fit the new mapping pairs
  991. * array.
  992. */
  993. attr_rec_len = le32_to_cpu(a->length);
  994. err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
  995. a->data.non_resident.mapping_pairs_offset));
  996. if (unlikely(err)) {
  997. BUG_ON(err != -ENOSPC);
  998. // TODO: Deal with this by using the current attribute
  999. // and fill it with as much of the mapping pairs
  1000. // array as possible. Then loop over each attribute
  1001. // extent rewriting the mapping pairs arrays as we go
  1002. // along and if when we reach the end we have not
  1003. // enough space, try to resize the last attribute
  1004. // extent and if even that fails, add a new attribute
  1005. // extent.
  1006. // We could also try to resize at each step in the hope
  1007. // that we will not need to rewrite every single extent.
  1008. // Note, we may need to decompress some extents to fill
  1009. // the runlist as we are walking the extents...
  1010. ntfs_error(vol->sb, "Not enough space in the mft "
  1011. "record for the extended attribute "
  1012. "record. This case is not "
  1013. "implemented yet.");
  1014. err = -EOPNOTSUPP;
  1015. break ;
  1016. }
  1017. status.mp_rebuilt = 1;
  1018. /*
  1019. * Generate the mapping pairs array directly into the attribute
  1020. * record.
  1021. */
  1022. err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
  1023. a->data.non_resident.mapping_pairs_offset),
  1024. mp_size, rl2, vcn, highest_vcn, NULL);
  1025. if (unlikely(err)) {
  1026. ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
  1027. "attribute type 0x%x, because building "
  1028. "the mapping pairs failed with error "
  1029. "code %i.", vi->i_ino,
  1030. (unsigned)le32_to_cpu(ni->type), err);
  1031. err = -EIO;
  1032. break;
  1033. }
  1034. /* Update the highest_vcn but only if it was not set. */
  1035. if (unlikely(!a->data.non_resident.highest_vcn))
  1036. a->data.non_resident.highest_vcn =
  1037. cpu_to_sle64(highest_vcn);
  1038. /*
  1039. * If the attribute is sparse/compressed, update the compressed
  1040. * size in the ntfs_inode structure and the attribute record.
  1041. */
  1042. if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
  1043. /*
  1044. * If we are not in the first attribute extent, switch
  1045. * to it, but first ensure the changes will make it to
  1046. * disk later.
  1047. */
  1048. if (a->data.non_resident.lowest_vcn) {
  1049. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1050. mark_mft_record_dirty(ctx->ntfs_ino);
  1051. ntfs_attr_reinit_search_ctx(ctx);
  1052. err = ntfs_attr_lookup(ni->type, ni->name,
  1053. ni->name_len, CASE_SENSITIVE,
  1054. 0, NULL, 0, ctx);
  1055. if (unlikely(err)) {
  1056. status.attr_switched = 1;
  1057. break;
  1058. }
  1059. /* @m is not used any more so do not set it. */
  1060. a = ctx->attr;
  1061. }
  1062. write_lock_irqsave(&ni->size_lock, flags);
  1063. ni->itype.compressed.size += vol->cluster_size;
  1064. a->data.non_resident.compressed_size =
  1065. cpu_to_sle64(ni->itype.compressed.size);
  1066. write_unlock_irqrestore(&ni->size_lock, flags);
  1067. }
  1068. /* Ensure the changes make it to disk. */
  1069. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1070. mark_mft_record_dirty(ctx->ntfs_ino);
  1071. ntfs_attr_put_search_ctx(ctx);
  1072. unmap_mft_record(base_ni);
  1073. /* Successfully filled the hole. */
  1074. status.runlist_merged = 0;
  1075. status.mft_attr_mapped = 0;
  1076. status.mp_rebuilt = 0;
  1077. /* Setup the map cache and use that to deal with the buffer. */
  1078. was_hole = TRUE;
  1079. vcn = bh_cpos;
  1080. vcn_len = 1;
  1081. lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
  1082. cdelta = 0;
  1083. /*
  1084. * If the number of remaining clusters in the @pages is smaller
  1085. * or equal to the number of cached clusters, unlock the
  1086. * runlist as the map cache will be used from now on.
  1087. */
  1088. if (likely(vcn + vcn_len >= cend)) {
  1089. up_write(&ni->runlist.lock);
  1090. rl_write_locked = FALSE;
  1091. rl = NULL;
  1092. }
  1093. goto map_buffer_cached;
  1094. } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
  1095. /* If there are no errors, do the next page. */
  1096. if (likely(!err && ++u < nr_pages))
  1097. goto do_next_page;
  1098. /* If there are no errors, release the runlist lock if we took it. */
  1099. if (likely(!err)) {
  1100. if (unlikely(rl_write_locked)) {
  1101. up_write(&ni->runlist.lock);
  1102. rl_write_locked = FALSE;
  1103. } else if (unlikely(rl))
  1104. up_read(&ni->runlist.lock);
  1105. rl = NULL;
  1106. }
  1107. /* If we issued read requests, let them complete. */
  1108. read_lock_irqsave(&ni->size_lock, flags);
  1109. initialized_size = ni->initialized_size;
  1110. read_unlock_irqrestore(&ni->size_lock, flags);
  1111. while (wait_bh > wait) {
  1112. bh = *--wait_bh;
  1113. wait_on_buffer(bh);
  1114. if (likely(buffer_uptodate(bh))) {
  1115. page = bh->b_page;
  1116. bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
  1117. bh_offset(bh);
  1118. /*
  1119. * If the buffer overflows the initialized size, need
  1120. * to zero the overflowing region.
  1121. */
  1122. if (unlikely(bh_pos + blocksize > initialized_size)) {
  1123. u8 *kaddr;
  1124. int ofs = 0;
  1125. if (likely(bh_pos < initialized_size))
  1126. ofs = initialized_size - bh_pos;
  1127. kaddr = kmap_atomic(page, KM_USER0);
  1128. memset(kaddr + bh_offset(bh) + ofs, 0,
  1129. blocksize - ofs);
  1130. kunmap_atomic(kaddr, KM_USER0);
  1131. flush_dcache_page(page);
  1132. }
  1133. } else /* if (unlikely(!buffer_uptodate(bh))) */
  1134. err = -EIO;
  1135. }
  1136. if (likely(!err)) {
  1137. /* Clear buffer_new on all buffers. */
  1138. u = 0;
  1139. do {
  1140. bh = head = page_buffers(pages[u]);
  1141. do {
  1142. if (buffer_new(bh))
  1143. clear_buffer_new(bh);
  1144. } while ((bh = bh->b_this_page) != head);
  1145. } while (++u < nr_pages);
  1146. ntfs_debug("Done.");
  1147. return err;
  1148. }
  1149. if (status.attr_switched) {
  1150. /* Get back to the attribute extent we modified. */
  1151. ntfs_attr_reinit_search_ctx(ctx);
  1152. if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  1153. CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
  1154. ntfs_error(vol->sb, "Failed to find required "
  1155. "attribute extent of attribute in "
  1156. "error code path. Run chkdsk to "
  1157. "recover.");
  1158. write_lock_irqsave(&ni->size_lock, flags);
  1159. ni->itype.compressed.size += vol->cluster_size;
  1160. write_unlock_irqrestore(&ni->size_lock, flags);
  1161. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1162. mark_mft_record_dirty(ctx->ntfs_ino);
  1163. /*
  1164. * The only thing that is now wrong is the compressed
  1165. * size of the base attribute extent which chkdsk
  1166. * should be able to fix.
  1167. */
  1168. NVolSetErrors(vol);
  1169. } else {
  1170. m = ctx->mrec;
  1171. a = ctx->attr;
  1172. status.attr_switched = 0;
  1173. }
  1174. }
  1175. /*
  1176. * If the runlist has been modified, need to restore it by punching a
  1177. * hole into it and we then need to deallocate the on-disk cluster as
  1178. * well. Note, we only modify the runlist if we are able to generate a
  1179. * new mapping pairs array, i.e. only when the mapped attribute extent
  1180. * is not switched.
  1181. */
  1182. if (status.runlist_merged && !status.attr_switched) {
  1183. BUG_ON(!rl_write_locked);
  1184. /* Make the file cluster we allocated sparse in the runlist. */
  1185. if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
  1186. ntfs_error(vol->sb, "Failed to punch hole into "
  1187. "attribute runlist in error code "
  1188. "path. Run chkdsk to recover the "
  1189. "lost cluster.");
  1190. NVolSetErrors(vol);
  1191. } else /* if (success) */ {
  1192. status.runlist_merged = 0;
  1193. /*
  1194. * Deallocate the on-disk cluster we allocated but only
  1195. * if we succeeded in punching its vcn out of the
  1196. * runlist.
  1197. */
  1198. down_write(&vol->lcnbmp_lock);
  1199. if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
  1200. ntfs_error(vol->sb, "Failed to release "
  1201. "allocated cluster in error "
  1202. "code path. Run chkdsk to "
  1203. "recover the lost cluster.");
  1204. NVolSetErrors(vol);
  1205. }
  1206. up_write(&vol->lcnbmp_lock);
  1207. }
  1208. }
  1209. /*
  1210. * Resize the attribute record to its old size and rebuild the mapping
  1211. * pairs array. Note, we only can do this if the runlist has been
  1212. * restored to its old state which also implies that the mapped
  1213. * attribute extent is not switched.
  1214. */
  1215. if (status.mp_rebuilt && !status.runlist_merged) {
  1216. if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
  1217. ntfs_error(vol->sb, "Failed to restore attribute "
  1218. "record in error code path. Run "
  1219. "chkdsk to recover.");
  1220. NVolSetErrors(vol);
  1221. } else /* if (success) */ {
  1222. if (ntfs_mapping_pairs_build(vol, (u8*)a +
  1223. le16_to_cpu(a->data.non_resident.
  1224. mapping_pairs_offset), attr_rec_len -
  1225. le16_to_cpu(a->data.non_resident.
  1226. mapping_pairs_offset), ni->runlist.rl,
  1227. vcn, highest_vcn, NULL)) {
  1228. ntfs_error(vol->sb, "Failed to restore "
  1229. "mapping pairs array in error "
  1230. "code path. Run chkdsk to "
  1231. "recover.");
  1232. NVolSetErrors(vol);
  1233. }
  1234. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1235. mark_mft_record_dirty(ctx->ntfs_ino);
  1236. }
  1237. }
  1238. /* Release the mft record and the attribute. */
  1239. if (status.mft_attr_mapped) {
  1240. ntfs_attr_put_search_ctx(ctx);
  1241. unmap_mft_record(base_ni);
  1242. }
  1243. /* Release the runlist lock. */
  1244. if (rl_write_locked)
  1245. up_write(&ni->runlist.lock);
  1246. else if (rl)
  1247. up_read(&ni->runlist.lock);
  1248. /*
  1249. * Zero out any newly allocated blocks to avoid exposing stale data.
  1250. * If BH_New is set, we know that the block was newly allocated above
  1251. * and that it has not been fully zeroed and marked dirty yet.
  1252. */
  1253. nr_pages = u;
  1254. u = 0;
  1255. end = bh_cpos << vol->cluster_size_bits;
  1256. do {
  1257. page = pages[u];
  1258. bh = head = page_buffers(page);
  1259. do {
  1260. if (u == nr_pages &&
  1261. ((s64)page->index << PAGE_CACHE_SHIFT) +
  1262. bh_offset(bh) >= end)
  1263. break;
  1264. if (!buffer_new(bh))
  1265. continue;
  1266. clear_buffer_new(bh);
  1267. if (!buffer_uptodate(bh)) {
  1268. if (PageUptodate(page))
  1269. set_buffer_uptodate(bh);
  1270. else {
  1271. u8 *kaddr = kmap_atomic(page, KM_USER0);
  1272. memset(kaddr + bh_offset(bh), 0,
  1273. blocksize);
  1274. kunmap_atomic(kaddr, KM_USER0);
  1275. flush_dcache_page(page);
  1276. set_buffer_uptodate(bh);
  1277. }
  1278. }
  1279. mark_buffer_dirty(bh);
  1280. } while ((bh = bh->b_this_page) != head);
  1281. } while (++u <= nr_pages);
  1282. ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
  1283. return err;
  1284. }
  1285. /*
  1286. * Copy as much as we can into the pages and return the number of bytes which
  1287. * were sucessfully copied. If a fault is encountered then clear the pages
  1288. * out to (ofs + bytes) and return the number of bytes which were copied.
  1289. */
  1290. static inline size_t ntfs_copy_from_user(struct page **pages,
  1291. unsigned nr_pages, unsigned ofs, const char __user *buf,
  1292. size_t bytes)
  1293. {
  1294. struct page **last_page = pages + nr_pages;
  1295. char *kaddr;
  1296. size_t total = 0;
  1297. unsigned len;
  1298. int left;
  1299. do {
  1300. len = PAGE_CACHE_SIZE - ofs;
  1301. if (len > bytes)
  1302. len = bytes;
  1303. kaddr = kmap_atomic(*pages, KM_USER0);
  1304. left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
  1305. kunmap_atomic(kaddr, KM_USER0);
  1306. if (unlikely(left)) {
  1307. /* Do it the slow way. */
  1308. kaddr = kmap(*pages);
  1309. left = __copy_from_user(kaddr + ofs, buf, len);
  1310. kunmap(*pages);
  1311. if (unlikely(left))
  1312. goto err_out;
  1313. }
  1314. total += len;
  1315. bytes -= len;
  1316. if (!bytes)
  1317. break;
  1318. buf += len;
  1319. ofs = 0;
  1320. } while (++pages < last_page);
  1321. out:
  1322. return total;
  1323. err_out:
  1324. total += len - left;
  1325. /* Zero the rest of the target like __copy_from_user(). */
  1326. while (++pages < last_page) {
  1327. bytes -= len;
  1328. if (!bytes)
  1329. break;
  1330. len = PAGE_CACHE_SIZE;
  1331. if (len > bytes)
  1332. len = bytes;
  1333. kaddr = kmap_atomic(*pages, KM_USER0);
  1334. memset(kaddr, 0, len);
  1335. kunmap_atomic(kaddr, KM_USER0);
  1336. }
  1337. goto out;
  1338. }
  1339. static size_t __ntfs_copy_from_user_iovec(char *vaddr,
  1340. const struct iovec *iov, size_t iov_ofs, size_t bytes)
  1341. {
  1342. size_t total = 0;
  1343. while (1) {
  1344. const char __user *buf = iov->iov_base + iov_ofs;
  1345. unsigned len;
  1346. size_t left;
  1347. len = iov->iov_len - iov_ofs;
  1348. if (len > bytes)
  1349. len = bytes;
  1350. left = __copy_from_user_inatomic(vaddr, buf, len);
  1351. total += len;
  1352. bytes -= len;
  1353. vaddr += len;
  1354. if (unlikely(left)) {
  1355. /*
  1356. * Zero the rest of the target like __copy_from_user().
  1357. */
  1358. memset(vaddr, 0, bytes);
  1359. total -= left;
  1360. break;
  1361. }
  1362. if (!bytes)
  1363. break;
  1364. iov++;
  1365. iov_ofs = 0;
  1366. }
  1367. return total;
  1368. }
  1369. static inline void ntfs_set_next_iovec(const struct iovec **iovp,
  1370. size_t *iov_ofsp, size_t bytes)
  1371. {
  1372. const struct iovec *iov = *iovp;
  1373. size_t iov_ofs = *iov_ofsp;
  1374. while (bytes) {
  1375. unsigned len;
  1376. len = iov->iov_len - iov_ofs;
  1377. if (len > bytes)
  1378. len = bytes;
  1379. bytes -= len;
  1380. iov_ofs += len;
  1381. if (iov->iov_len == iov_ofs) {
  1382. iov++;
  1383. iov_ofs = 0;
  1384. }
  1385. }
  1386. *iovp = iov;
  1387. *iov_ofsp = iov_ofs;
  1388. }
  1389. /*
  1390. * This has the same side-effects and return value as ntfs_copy_from_user().
  1391. * The difference is that on a fault we need to memset the remainder of the
  1392. * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
  1393. * single-segment behaviour.
  1394. *
  1395. * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
  1396. * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
  1397. * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
  1398. * fact, the only difference between __copy_from_user_inatomic() and
  1399. * __copy_from_user() is that the latter calls might_sleep(). And on many
  1400. * architectures __copy_from_user_inatomic() is just defined to
  1401. * __copy_from_user() so it makes no difference at all on those architectures.
  1402. */
  1403. static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
  1404. unsigned nr_pages, unsigned ofs, const struct iovec **iov,
  1405. size_t *iov_ofs, size_t bytes)
  1406. {
  1407. struct page **last_page = pages + nr_pages;
  1408. char *kaddr;
  1409. size_t copied, len, total = 0;
  1410. do {
  1411. len = PAGE_CACHE_SIZE - ofs;
  1412. if (len > bytes)
  1413. len = bytes;
  1414. kaddr = kmap_atomic(*pages, KM_USER0);
  1415. copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
  1416. *iov, *iov_ofs, len);
  1417. kunmap_atomic(kaddr, KM_USER0);
  1418. if (unlikely(copied != len)) {
  1419. /* Do it the slow way. */
  1420. kaddr = kmap(*pages);
  1421. copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
  1422. *iov, *iov_ofs, len);
  1423. kunmap(*pages);
  1424. if (unlikely(copied != len))
  1425. goto err_out;
  1426. }
  1427. total += len;
  1428. bytes -= len;
  1429. if (!bytes)
  1430. break;
  1431. ntfs_set_next_iovec(iov, iov_ofs, len);
  1432. ofs = 0;
  1433. } while (++pages < last_page);
  1434. out:
  1435. return total;
  1436. err_out:
  1437. total += copied;
  1438. /* Zero the rest of the target like __copy_from_user(). */
  1439. while (++pages < last_page) {
  1440. bytes -= len;
  1441. if (!bytes)
  1442. break;
  1443. len = PAGE_CACHE_SIZE;
  1444. if (len > bytes)
  1445. len = bytes;
  1446. kaddr = kmap_atomic(*pages, KM_USER0);
  1447. memset(kaddr, 0, len);
  1448. kunmap_atomic(kaddr, KM_USER0);
  1449. }
  1450. goto out;
  1451. }
  1452. static inline void ntfs_flush_dcache_pages(struct page **pages,
  1453. unsigned nr_pages)
  1454. {
  1455. BUG_ON(!nr_pages);
  1456. do {
  1457. /*
  1458. * Warning: Do not do the decrement at the same time as the
  1459. * call because flush_dcache_page() is a NULL macro on i386
  1460. * and hence the decrement never happens.
  1461. */
  1462. flush_dcache_page(pages[nr_pages]);
  1463. } while (--nr_pages > 0);
  1464. }
  1465. /**
  1466. * ntfs_commit_pages_after_non_resident_write - commit the received data
  1467. * @pages: array of destination pages
  1468. * @nr_pages: number of pages in @pages
  1469. * @pos: byte position in file at which the write begins
  1470. * @bytes: number of bytes to be written
  1471. *
  1472. * See description of ntfs_commit_pages_after_write(), below.
  1473. */
  1474. static inline int ntfs_commit_pages_after_non_resident_write(
  1475. struct page **pages, const unsigned nr_pages,
  1476. s64 pos, size_t bytes)
  1477. {
  1478. s64 end, initialized_size;
  1479. struct inode *vi;
  1480. ntfs_inode *ni, *base_ni;
  1481. struct buffer_head *bh, *head;
  1482. ntfs_attr_search_ctx *ctx;
  1483. MFT_RECORD *m;
  1484. ATTR_RECORD *a;
  1485. unsigned long flags;
  1486. unsigned blocksize, u;
  1487. int err;
  1488. vi = pages[0]->mapping->host;
  1489. ni = NTFS_I(vi);
  1490. blocksize = vi->i_sb->s_blocksize;
  1491. end = pos + bytes;
  1492. u = 0;
  1493. do {
  1494. s64 bh_pos;
  1495. struct page *page;
  1496. BOOL partial;
  1497. page = pages[u];
  1498. bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
  1499. bh = head = page_buffers(page);
  1500. partial = FALSE;
  1501. do {
  1502. s64 bh_end;
  1503. bh_end = bh_pos + blocksize;
  1504. if (bh_end <= pos || bh_pos >= end) {
  1505. if (!buffer_uptodate(bh))
  1506. partial = TRUE;
  1507. } else {
  1508. set_buffer_uptodate(bh);
  1509. mark_buffer_dirty(bh);
  1510. }
  1511. } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
  1512. /*
  1513. * If all buffers are now uptodate but the page is not, set the
  1514. * page uptodate.
  1515. */
  1516. if (!partial && !PageUptodate(page))
  1517. SetPageUptodate(page);
  1518. } while (++u < nr_pages);
  1519. /*
  1520. * Finally, if we do not need to update initialized_size or i_size we
  1521. * are finished.
  1522. */
  1523. read_lock_irqsave(&ni->size_lock, flags);
  1524. initialized_size = ni->initialized_size;
  1525. read_unlock_irqrestore(&ni->size_lock, flags);
  1526. if (end <= initialized_size) {
  1527. ntfs_debug("Done.");
  1528. return 0;
  1529. }
  1530. /*
  1531. * Update initialized_size/i_size as appropriate, both in the inode and
  1532. * the mft record.
  1533. */
  1534. if (!NInoAttr(ni))
  1535. base_ni = ni;
  1536. else
  1537. base_ni = ni->ext.base_ntfs_ino;
  1538. /* Map, pin, and lock the mft record. */
  1539. m = map_mft_record(base_ni);
  1540. if (IS_ERR(m)) {
  1541. err = PTR_ERR(m);
  1542. m = NULL;
  1543. ctx = NULL;
  1544. goto err_out;
  1545. }
  1546. BUG_ON(!NInoNonResident(ni));
  1547. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  1548. if (unlikely(!ctx)) {
  1549. err = -ENOMEM;
  1550. goto err_out;
  1551. }
  1552. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  1553. CASE_SENSITIVE, 0, NULL, 0, ctx);
  1554. if (unlikely(err)) {
  1555. if (err == -ENOENT)
  1556. err = -EIO;
  1557. goto err_out;
  1558. }
  1559. a = ctx->attr;
  1560. BUG_ON(!a->non_resident);
  1561. write_lock_irqsave(&ni->size_lock, flags);
  1562. BUG_ON(end > ni->allocated_size);
  1563. ni->initialized_size = end;
  1564. a->data.non_resident.initialized_size = cpu_to_sle64(end);
  1565. if (end > i_size_read(vi)) {
  1566. i_size_write(vi, end);
  1567. a->data.non_resident.data_size =
  1568. a->data.non_resident.initialized_size;
  1569. }
  1570. write_unlock_irqrestore(&ni->size_lock, flags);
  1571. /* Mark the mft record dirty, so it gets written back. */
  1572. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1573. mark_mft_record_dirty(ctx->ntfs_ino);
  1574. ntfs_attr_put_search_ctx(ctx);
  1575. unmap_mft_record(base_ni);
  1576. ntfs_debug("Done.");
  1577. return 0;
  1578. err_out:
  1579. if (ctx)
  1580. ntfs_attr_put_search_ctx(ctx);
  1581. if (m)
  1582. unmap_mft_record(base_ni);
  1583. ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
  1584. "code %i).", err);
  1585. if (err != -ENOMEM)
  1586. NVolSetErrors(ni->vol);
  1587. return err;
  1588. }
  1589. /**
  1590. * ntfs_commit_pages_after_write - commit the received data
  1591. * @pages: array of destination pages
  1592. * @nr_pages: number of pages in @pages
  1593. * @pos: byte position in file at which the write begins
  1594. * @bytes: number of bytes to be written
  1595. *
  1596. * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
  1597. * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
  1598. * locked but not kmap()ped. The source data has already been copied into the
  1599. * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
  1600. * the data was copied (for non-resident attributes only) and it returned
  1601. * success.
  1602. *
  1603. * Need to set uptodate and mark dirty all buffers within the boundary of the
  1604. * write. If all buffers in a page are uptodate we set the page uptodate, too.
  1605. *
  1606. * Setting the buffers dirty ensures that they get written out later when
  1607. * ntfs_writepage() is invoked by the VM.
  1608. *
  1609. * Finally, we need to update i_size and initialized_size as appropriate both
  1610. * in the inode and the mft record.
  1611. *
  1612. * This is modelled after fs/buffer.c::generic_commit_write(), which marks
  1613. * buffers uptodate and dirty, sets the page uptodate if all buffers in the
  1614. * page are uptodate, and updates i_size if the end of io is beyond i_size. In
  1615. * that case, it also marks the inode dirty.
  1616. *
  1617. * If things have gone as outlined in
  1618. * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
  1619. * content modifications here for non-resident attributes. For resident
  1620. * attributes we need to do the uptodate bringing here which we combine with
  1621. * the copying into the mft record which means we save one atomic kmap.
  1622. *
  1623. * Return 0 on success or -errno on error.
  1624. */
  1625. static int ntfs_commit_pages_after_write(struct page **pages,
  1626. const unsigned nr_pages, s64 pos, size_t bytes)
  1627. {
  1628. s64 end, initialized_size;
  1629. loff_t i_size;
  1630. struct inode *vi;
  1631. ntfs_inode *ni, *base_ni;
  1632. struct page *page;
  1633. ntfs_attr_search_ctx *ctx;
  1634. MFT_RECORD *m;
  1635. ATTR_RECORD *a;
  1636. char *kattr, *kaddr;
  1637. unsigned long flags;
  1638. u32 attr_len;
  1639. int err;
  1640. BUG_ON(!nr_pages);
  1641. BUG_ON(!pages);
  1642. page = pages[0];
  1643. BUG_ON(!page);
  1644. vi = page->mapping->host;
  1645. ni = NTFS_I(vi);
  1646. ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
  1647. "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
  1648. vi->i_ino, ni->type, page->index, nr_pages,
  1649. (long long)pos, bytes);
  1650. if (NInoNonResident(ni))
  1651. return ntfs_commit_pages_after_non_resident_write(pages,
  1652. nr_pages, pos, bytes);
  1653. BUG_ON(nr_pages > 1);
  1654. /*
  1655. * Attribute is resident, implying it is not compressed, encrypted, or
  1656. * sparse.
  1657. */
  1658. if (!NInoAttr(ni))
  1659. base_ni = ni;
  1660. else
  1661. base_ni = ni->ext.base_ntfs_ino;
  1662. BUG_ON(NInoNonResident(ni));
  1663. /* Map, pin, and lock the mft record. */
  1664. m = map_mft_record(base_ni);
  1665. if (IS_ERR(m)) {
  1666. err = PTR_ERR(m);
  1667. m = NULL;
  1668. ctx = NULL;
  1669. goto err_out;
  1670. }
  1671. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  1672. if (unlikely(!ctx)) {
  1673. err = -ENOMEM;
  1674. goto err_out;
  1675. }
  1676. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  1677. CASE_SENSITIVE, 0, NULL, 0, ctx);
  1678. if (unlikely(err)) {
  1679. if (err == -ENOENT)
  1680. err = -EIO;
  1681. goto err_out;
  1682. }
  1683. a = ctx->attr;
  1684. BUG_ON(a->non_resident);
  1685. /* The total length of the attribute value. */
  1686. attr_len = le32_to_cpu(a->data.resident.value_length);
  1687. i_size = i_size_read(vi);
  1688. BUG_ON(attr_len != i_size);
  1689. BUG_ON(pos > attr_len);
  1690. end = pos + bytes;
  1691. BUG_ON(end > le32_to_cpu(a->length) -
  1692. le16_to_cpu(a->data.resident.value_offset));
  1693. kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
  1694. kaddr = kmap_atomic(page, KM_USER0);
  1695. /* Copy the received data from the page to the mft record. */
  1696. memcpy(kattr + pos, kaddr + pos, bytes);
  1697. /* Update the attribute length if necessary. */
  1698. if (end > attr_len) {
  1699. attr_len = end;
  1700. a->data.resident.value_length = cpu_to_le32(attr_len);
  1701. }
  1702. /*
  1703. * If the page is not uptodate, bring the out of bounds area(s)
  1704. * uptodate by copying data from the mft record to the page.
  1705. */
  1706. if (!PageUptodate(page)) {
  1707. if (pos > 0)
  1708. memcpy(kaddr, kattr, pos);
  1709. if (end < attr_len)
  1710. memcpy(kaddr + end, kattr + end, attr_len - end);
  1711. /* Zero the region outside the end of the attribute value. */
  1712. memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
  1713. flush_dcache_page(page);
  1714. SetPageUptodate(page);
  1715. }
  1716. kunmap_atomic(kaddr, KM_USER0);
  1717. /* Update initialized_size/i_size if necessary. */
  1718. read_lock_irqsave(&ni->size_lock, flags);
  1719. initialized_size = ni->initialized_size;
  1720. BUG_ON(end > ni->allocated_size);
  1721. read_unlock_irqrestore(&ni->size_lock, flags);
  1722. BUG_ON(initialized_size != i_size);
  1723. if (end > initialized_size) {
  1724. unsigned long flags;
  1725. write_lock_irqsave(&ni->size_lock, flags);
  1726. ni->initialized_size = end;
  1727. i_size_write(vi, end);
  1728. write_unlock_irqrestore(&ni->size_lock, flags);
  1729. }
  1730. /* Mark the mft record dirty, so it gets written back. */
  1731. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1732. mark_mft_record_dirty(ctx->ntfs_ino);
  1733. ntfs_attr_put_search_ctx(ctx);
  1734. unmap_mft_record(base_ni);
  1735. ntfs_debug("Done.");
  1736. return 0;
  1737. err_out:
  1738. if (err == -ENOMEM) {
  1739. ntfs_warning(vi->i_sb, "Error allocating memory required to "
  1740. "commit the write.");
  1741. if (PageUptodate(page)) {
  1742. ntfs_warning(vi->i_sb, "Page is uptodate, setting "
  1743. "dirty so the write will be retried "
  1744. "later on by the VM.");
  1745. /*
  1746. * Put the page on mapping->dirty_pages, but leave its
  1747. * buffers' dirty state as-is.
  1748. */
  1749. __set_page_dirty_nobuffers(page);
  1750. err = 0;
  1751. } else
  1752. ntfs_error(vi->i_sb, "Page is not uptodate. Written "
  1753. "data has been lost.");
  1754. } else {
  1755. ntfs_error(vi->i_sb, "Resident attribute commit write failed "
  1756. "with error %i.", err);
  1757. NVolSetErrors(ni->vol);
  1758. }
  1759. if (ctx)
  1760. ntfs_attr_put_search_ctx(ctx);
  1761. if (m)
  1762. unmap_mft_record(base_ni);
  1763. return err;
  1764. }
  1765. /**
  1766. * ntfs_file_buffered_write -
  1767. *
  1768. * Locking: The vfs is holding ->i_mutex on the inode.
  1769. */
  1770. static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
  1771. const struct iovec *iov, unsigned long nr_segs,
  1772. loff_t pos, loff_t *ppos, size_t count)
  1773. {
  1774. struct file *file = iocb->ki_filp;
  1775. struct address_space *mapping = file->f_mapping;
  1776. struct inode *vi = mapping->host;
  1777. ntfs_inode *ni = NTFS_I(vi);
  1778. ntfs_volume *vol = ni->vol;
  1779. struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
  1780. struct page *cached_page = NULL;
  1781. char __user *buf = NULL;
  1782. s64 end, ll;
  1783. VCN last_vcn;
  1784. LCN lcn;
  1785. unsigned long flags;
  1786. size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
  1787. ssize_t status, written;
  1788. unsigned nr_pages;
  1789. int err;
  1790. struct pagevec lru_pvec;
  1791. ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
  1792. "pos 0x%llx, count 0x%lx.",
  1793. vi->i_ino, (unsigned)le32_to_cpu(ni->type),
  1794. (unsigned long long)pos, (unsigned long)count);
  1795. if (unlikely(!count))
  1796. return 0;
  1797. BUG_ON(NInoMstProtected(ni));
  1798. /*
  1799. * If the attribute is not an index root and it is encrypted or
  1800. * compressed, we cannot write to it yet. Note we need to check for
  1801. * AT_INDEX_ALLOCATION since this is the type of both directory and
  1802. * index inodes.
  1803. */
  1804. if (ni->type != AT_INDEX_ALLOCATION) {
  1805. /* If file is encrypted, deny access, just like NT4. */
  1806. if (NInoEncrypted(ni)) {
  1807. /*
  1808. * Reminder for later: Encrypted files are _always_
  1809. * non-resident so that the content can always be
  1810. * encrypted.
  1811. */
  1812. ntfs_debug("Denying write access to encrypted file.");
  1813. return -EACCES;
  1814. }
  1815. if (NInoCompressed(ni)) {
  1816. /* Only unnamed $DATA attribute can be compressed. */
  1817. BUG_ON(ni->type != AT_DATA);
  1818. BUG_ON(ni->name_len);
  1819. /*
  1820. * Reminder for later: If resident, the data is not
  1821. * actually compressed. Only on the switch to non-
  1822. * resident does compression kick in. This is in
  1823. * contrast to encrypted files (see above).
  1824. */
  1825. ntfs_error(vi->i_sb, "Writing to compressed files is "
  1826. "not implemented yet. Sorry.");
  1827. return -EOPNOTSUPP;
  1828. }
  1829. }
  1830. /*
  1831. * If a previous ntfs_truncate() failed, repeat it and abort if it
  1832. * fails again.
  1833. */
  1834. if (unlikely(NInoTruncateFailed(ni))) {
  1835. down_write(&vi->i_alloc_sem);
  1836. err = ntfs_truncate(vi);
  1837. up_write(&vi->i_alloc_sem);
  1838. if (err || NInoTruncateFailed(ni)) {
  1839. if (!err)
  1840. err = -EIO;
  1841. ntfs_error(vol->sb, "Cannot perform write to inode "
  1842. "0x%lx, attribute type 0x%x, because "
  1843. "ntfs_truncate() failed (error code "
  1844. "%i).", vi->i_ino,
  1845. (unsigned)le32_to_cpu(ni->type), err);
  1846. return err;
  1847. }
  1848. }
  1849. /* The first byte after the write. */
  1850. end = pos + count;
  1851. /*
  1852. * If the write goes beyond the allocated size, extend the allocation
  1853. * to cover the whole of the write, rounded up to the nearest cluster.
  1854. */
  1855. read_lock_irqsave(&ni->size_lock, flags);
  1856. ll = ni->allocated_size;
  1857. read_unlock_irqrestore(&ni->size_lock, flags);
  1858. if (end > ll) {
  1859. /* Extend the allocation without changing the data size. */
  1860. ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
  1861. if (likely(ll >= 0)) {
  1862. BUG_ON(pos >= ll);
  1863. /* If the extension was partial truncate the write. */
  1864. if (end > ll) {
  1865. ntfs_debug("Truncating write to inode 0x%lx, "
  1866. "attribute type 0x%x, because "
  1867. "the allocation was only "
  1868. "partially extended.",
  1869. vi->i_ino, (unsigned)
  1870. le32_to_cpu(ni->type));
  1871. end = ll;
  1872. count = ll - pos;
  1873. }
  1874. } else {
  1875. err = ll;
  1876. read_lock_irqsave(&ni->size_lock, flags);
  1877. ll = ni->allocated_size;
  1878. read_unlock_irqrestore(&ni->size_lock, flags);
  1879. /* Perform a partial write if possible or fail. */
  1880. if (pos < ll) {
  1881. ntfs_debug("Truncating write to inode 0x%lx, "
  1882. "attribute type 0x%x, because "
  1883. "extending the allocation "
  1884. "failed (error code %i).",
  1885. vi->i_ino, (unsigned)
  1886. le32_to_cpu(ni->type), err);
  1887. end = ll;
  1888. count = ll - pos;
  1889. } else {
  1890. ntfs_error(vol->sb, "Cannot perform write to "
  1891. "inode 0x%lx, attribute type "
  1892. "0x%x, because extending the "
  1893. "allocation failed (error "
  1894. "code %i).", vi->i_ino,
  1895. (unsigned)
  1896. le32_to_cpu(ni->type), err);
  1897. return err;
  1898. }
  1899. }
  1900. }
  1901. pagevec_init(&lru_pvec, 0);
  1902. written = 0;
  1903. /*
  1904. * If the write starts beyond the initialized size, extend it up to the
  1905. * beginning of the write and initialize all non-sparse space between
  1906. * the old initialized size and the new one. This automatically also
  1907. * increments the vfs inode->i_size to keep it above or equal to the
  1908. * initialized_size.
  1909. */
  1910. read_lock_irqsave(&ni->size_lock, flags);
  1911. ll = ni->initialized_size;
  1912. read_unlock_irqrestore(&ni->size_lock, flags);
  1913. if (pos > ll) {
  1914. err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
  1915. &lru_pvec);
  1916. if (err < 0) {
  1917. ntfs_error(vol->sb, "Cannot perform write to inode "
  1918. "0x%lx, attribute type 0x%x, because "
  1919. "extending the initialized size "
  1920. "failed (error code %i).", vi->i_ino,
  1921. (unsigned)le32_to_cpu(ni->type), err);
  1922. status = err;
  1923. goto err_out;
  1924. }
  1925. }
  1926. /*
  1927. * Determine the number of pages per cluster for non-resident
  1928. * attributes.
  1929. */
  1930. nr_pages = 1;
  1931. if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
  1932. nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
  1933. /* Finally, perform the actual write. */
  1934. last_vcn = -1;
  1935. if (likely(nr_segs == 1))
  1936. buf = iov->iov_base;
  1937. do {
  1938. VCN vcn;
  1939. pgoff_t idx, start_idx;
  1940. unsigned ofs, do_pages, u;
  1941. size_t copied;
  1942. start_idx = idx = pos >> PAGE_CACHE_SHIFT;
  1943. ofs = pos & ~PAGE_CACHE_MASK;
  1944. bytes = PAGE_CACHE_SIZE - ofs;
  1945. do_pages = 1;
  1946. if (nr_pages > 1) {
  1947. vcn = pos >> vol->cluster_size_bits;
  1948. if (vcn != last_vcn) {
  1949. last_vcn = vcn;
  1950. /*
  1951. * Get the lcn of the vcn the write is in. If
  1952. * it is a hole, need to lock down all pages in
  1953. * the cluster.
  1954. */
  1955. down_read(&ni->runlist.lock);
  1956. lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
  1957. vol->cluster_size_bits, FALSE);
  1958. up_read(&ni->runlist.lock);
  1959. if (unlikely(lcn < LCN_HOLE)) {
  1960. status = -EIO;
  1961. if (lcn == LCN_ENOMEM)
  1962. status = -ENOMEM;
  1963. else
  1964. ntfs_error(vol->sb, "Cannot "
  1965. "perform write to "
  1966. "inode 0x%lx, "
  1967. "attribute type 0x%x, "
  1968. "because the attribute "
  1969. "is corrupt.",
  1970. vi->i_ino, (unsigned)
  1971. le32_to_cpu(ni->type));
  1972. break;
  1973. }
  1974. if (lcn == LCN_HOLE) {
  1975. start_idx = (pos & ~(s64)
  1976. vol->cluster_size_mask)
  1977. >> PAGE_CACHE_SHIFT;
  1978. bytes = vol->cluster_size - (pos &
  1979. vol->cluster_size_mask);
  1980. do_pages = nr_pages;
  1981. }
  1982. }
  1983. }
  1984. if (bytes > count)
  1985. bytes = count;
  1986. /*
  1987. * Bring in the user page(s) that we will copy from _first_.
  1988. * Otherwise there is a nasty deadlock on copying from the same
  1989. * page(s) as we are writing to, without it/them being marked
  1990. * up-to-date. Note, at present there is nothing to stop the
  1991. * pages being swapped out between us bringing them into memory
  1992. * and doing the actual copying.
  1993. */
  1994. if (likely(nr_segs == 1))
  1995. ntfs_fault_in_pages_readable(buf, bytes);
  1996. else
  1997. ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
  1998. /* Get and lock @do_pages starting at index @start_idx. */
  1999. status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
  2000. pages, &cached_page, &lru_pvec);
  2001. if (unlikely(status))
  2002. break;
  2003. /*
  2004. * For non-resident attributes, we need to fill any holes with
  2005. * actual clusters and ensure all bufferes are mapped. We also
  2006. * need to bring uptodate any buffers that are only partially
  2007. * being written to.
  2008. */
  2009. if (NInoNonResident(ni)) {
  2010. status = ntfs_prepare_pages_for_non_resident_write(
  2011. pages, do_pages, pos, bytes);
  2012. if (unlikely(status)) {
  2013. loff_t i_size;
  2014. do {
  2015. unlock_page(pages[--do_pages]);
  2016. page_cache_release(pages[do_pages]);
  2017. } while (do_pages);
  2018. /*
  2019. * The write preparation may have instantiated
  2020. * allocated space outside i_size. Trim this
  2021. * off again. We can ignore any errors in this
  2022. * case as we will just be waisting a bit of
  2023. * allocated space, which is not a disaster.
  2024. */
  2025. i_size = i_size_read(vi);
  2026. if (pos + bytes > i_size)
  2027. vmtruncate(vi, i_size);
  2028. break;
  2029. }
  2030. }
  2031. u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
  2032. if (likely(nr_segs == 1)) {
  2033. copied = ntfs_copy_from_user(pages + u, do_pages - u,
  2034. ofs, buf, bytes);
  2035. buf += copied;
  2036. } else
  2037. copied = ntfs_copy_from_user_iovec(pages + u,
  2038. do_pages - u, ofs, &iov, &iov_ofs,
  2039. bytes);
  2040. ntfs_flush_dcache_pages(pages + u, do_pages - u);
  2041. status = ntfs_commit_pages_after_write(pages, do_pages, pos,
  2042. bytes);
  2043. if (likely(!status)) {
  2044. written += copied;
  2045. count -= copied;
  2046. pos += copied;
  2047. if (unlikely(copied != bytes))
  2048. status = -EFAULT;
  2049. }
  2050. do {
  2051. unlock_page(pages[--do_pages]);
  2052. mark_page_accessed(pages[do_pages]);
  2053. page_cache_release(pages[do_pages]);
  2054. } while (do_pages);
  2055. if (unlikely(status))
  2056. break;
  2057. balance_dirty_pages_ratelimited(mapping);
  2058. cond_resched();
  2059. } while (count);
  2060. err_out:
  2061. *ppos = pos;
  2062. if (cached_page)
  2063. page_cache_release(cached_page);
  2064. /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
  2065. if (likely(!status)) {
  2066. if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
  2067. if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
  2068. status = generic_osync_inode(vi, mapping,
  2069. OSYNC_METADATA|OSYNC_DATA);
  2070. }
  2071. }
  2072. pagevec_lru_add(&lru_pvec);
  2073. ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
  2074. written ? "written" : "status", (unsigned long)written,
  2075. (long)status);
  2076. return written ? written : status;
  2077. }
  2078. /**
  2079. * ntfs_file_aio_write_nolock -
  2080. */
  2081. static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
  2082. const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
  2083. {
  2084. struct file *file = iocb->ki_filp;
  2085. struct address_space *mapping = file->f_mapping;
  2086. struct inode *inode = mapping->host;
  2087. loff_t pos;
  2088. unsigned long seg;
  2089. size_t count; /* after file limit checks */
  2090. ssize_t written, err;
  2091. count = 0;
  2092. for (seg = 0; seg < nr_segs; seg++) {
  2093. const struct iovec *iv = &iov[seg];
  2094. /*
  2095. * If any segment has a negative length, or the cumulative
  2096. * length ever wraps negative then return -EINVAL.
  2097. */
  2098. count += iv->iov_len;
  2099. if (unlikely((ssize_t)(count|iv->iov_len) < 0))
  2100. return -EINVAL;
  2101. if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
  2102. continue;
  2103. if (!seg)
  2104. return -EFAULT;
  2105. nr_segs = seg;
  2106. count -= iv->iov_len; /* This segment is no good */
  2107. break;
  2108. }
  2109. pos = *ppos;
  2110. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  2111. /* We can write back this queue in page reclaim. */
  2112. current->backing_dev_info = mapping->backing_dev_info;
  2113. written = 0;
  2114. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  2115. if (err)
  2116. goto out;
  2117. if (!count)
  2118. goto out;
  2119. err = remove_suid(file->f_dentry);
  2120. if (err)
  2121. goto out;
  2122. file_update_time(file);
  2123. written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
  2124. count);
  2125. out:
  2126. current->backing_dev_info = NULL;
  2127. return written ? written : err;
  2128. }
  2129. /**
  2130. * ntfs_file_aio_write -
  2131. */
  2132. static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf,
  2133. size_t count, loff_t pos)
  2134. {
  2135. struct file *file = iocb->ki_filp;
  2136. struct address_space *mapping = file->f_mapping;
  2137. struct inode *inode = mapping->host;
  2138. ssize_t ret;
  2139. struct iovec local_iov = { .iov_base = (void __user *)buf,
  2140. .iov_len = count };
  2141. BUG_ON(iocb->ki_pos != pos);
  2142. mutex_lock(&inode->i_mutex);
  2143. ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos);
  2144. mutex_unlock(&inode->i_mutex);
  2145. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2146. int err = sync_page_range(inode, mapping, pos, ret);
  2147. if (err < 0)
  2148. ret = err;
  2149. }
  2150. return ret;
  2151. }
  2152. /**
  2153. * ntfs_file_writev -
  2154. *
  2155. * Basically the same as generic_file_writev() except that it ends up calling
  2156. * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
  2157. */
  2158. static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
  2159. unsigned long nr_segs, loff_t *ppos)
  2160. {
  2161. struct address_space *mapping = file->f_mapping;
  2162. struct inode *inode = mapping->host;
  2163. struct kiocb kiocb;
  2164. ssize_t ret;
  2165. mutex_lock(&inode->i_mutex);
  2166. init_sync_kiocb(&kiocb, file);
  2167. ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
  2168. if (ret == -EIOCBQUEUED)
  2169. ret = wait_on_sync_kiocb(&kiocb);
  2170. mutex_unlock(&inode->i_mutex);
  2171. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2172. int err = sync_page_range(inode, mapping, *ppos - ret, ret);
  2173. if (err < 0)
  2174. ret = err;
  2175. }
  2176. return ret;
  2177. }
  2178. /**
  2179. * ntfs_file_write - simple wrapper for ntfs_file_writev()
  2180. */
  2181. static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
  2182. size_t count, loff_t *ppos)
  2183. {
  2184. struct iovec local_iov = { .iov_base = (void __user *)buf,
  2185. .iov_len = count };
  2186. return ntfs_file_writev(file, &local_iov, 1, ppos);
  2187. }
  2188. /**
  2189. * ntfs_file_fsync - sync a file to disk
  2190. * @filp: file to be synced
  2191. * @dentry: dentry describing the file to sync
  2192. * @datasync: if non-zero only flush user data and not metadata
  2193. *
  2194. * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
  2195. * system calls. This function is inspired by fs/buffer.c::file_fsync().
  2196. *
  2197. * If @datasync is false, write the mft record and all associated extent mft
  2198. * records as well as the $DATA attribute and then sync the block device.
  2199. *
  2200. * If @datasync is true and the attribute is non-resident, we skip the writing
  2201. * of the mft record and all associated extent mft records (this might still
  2202. * happen due to the write_inode_now() call).
  2203. *
  2204. * Also, if @datasync is true, we do not wait on the inode to be written out
  2205. * but we always wait on the page cache pages to be written out.
  2206. *
  2207. * Note: In the past @filp could be NULL so we ignore it as we don't need it
  2208. * anyway.
  2209. *
  2210. * Locking: Caller must hold i_mutex on the inode.
  2211. *
  2212. * TODO: We should probably also write all attribute/index inodes associated
  2213. * with this inode but since we have no simple way of getting to them we ignore
  2214. * this problem for now.
  2215. */
  2216. static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
  2217. int datasync)
  2218. {
  2219. struct inode *vi = dentry->d_inode;
  2220. int err, ret = 0;
  2221. ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
  2222. BUG_ON(S_ISDIR(vi->i_mode));
  2223. if (!datasync || !NInoNonResident(NTFS_I(vi)))
  2224. ret = ntfs_write_inode(vi, 1);
  2225. write_inode_now(vi, !datasync);
  2226. /*
  2227. * NOTE: If we were to use mapping->private_list (see ext2 and
  2228. * fs/buffer.c) for dirty blocks then we could optimize the below to be
  2229. * sync_mapping_buffers(vi->i_mapping).
  2230. */
  2231. err = sync_blockdev(vi->i_sb->s_bdev);
  2232. if (unlikely(err && !ret))
  2233. ret = err;
  2234. if (likely(!ret))
  2235. ntfs_debug("Done.");
  2236. else
  2237. ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
  2238. "%u.", datasync ? "data" : "", vi->i_ino, -ret);
  2239. return ret;
  2240. }
  2241. #endif /* NTFS_RW */
  2242. const struct file_operations ntfs_file_ops = {
  2243. .llseek = generic_file_llseek, /* Seek inside file. */
  2244. .read = generic_file_read, /* Read from file. */
  2245. .aio_read = generic_file_aio_read, /* Async read from file. */
  2246. .readv = generic_file_readv, /* Read from file. */
  2247. #ifdef NTFS_RW
  2248. .write = ntfs_file_write, /* Write to file. */
  2249. .aio_write = ntfs_file_aio_write, /* Async write to file. */
  2250. .writev = ntfs_file_writev, /* Write to file. */
  2251. /*.release = ,*/ /* Last file is closed. See
  2252. fs/ext2/file.c::
  2253. ext2_release_file() for
  2254. how to use this to discard
  2255. preallocated space for
  2256. write opened files. */
  2257. .fsync = ntfs_file_fsync, /* Sync a file to disk. */
  2258. /*.aio_fsync = ,*/ /* Sync all outstanding async
  2259. i/o operations on a
  2260. kiocb. */
  2261. #endif /* NTFS_RW */
  2262. /*.ioctl = ,*/ /* Perform function on the
  2263. mounted filesystem. */
  2264. .mmap = generic_file_mmap, /* Mmap file. */
  2265. .open = ntfs_file_open, /* Open file. */
  2266. .sendfile = generic_file_sendfile, /* Zero-copy data send with
  2267. the data source being on
  2268. the ntfs partition. We do
  2269. not need to care about the
  2270. data destination. */
  2271. /*.sendpage = ,*/ /* Zero-copy data send with
  2272. the data destination being
  2273. on the ntfs partition. We
  2274. do not need to care about
  2275. the data source. */
  2276. };
  2277. struct inode_operations ntfs_file_inode_ops = {
  2278. #ifdef NTFS_RW
  2279. .truncate = ntfs_truncate_vfs,
  2280. .setattr = ntfs_setattr,
  2281. #endif /* NTFS_RW */
  2282. };
  2283. const struct file_operations ntfs_empty_file_ops = {};
  2284. struct inode_operations ntfs_empty_inode_ops = {};