btree.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * linux/fs/hfsplus/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include "hfsplus_fs.h"
  13. #include "hfsplus_raw.h"
  14. /* Get a reference to a B*Tree and do some initial checks */
  15. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
  16. {
  17. struct hfs_btree *tree;
  18. struct hfs_btree_header_rec *head;
  19. struct address_space *mapping;
  20. struct page *page;
  21. unsigned int size;
  22. tree = kmalloc(sizeof(*tree), GFP_KERNEL);
  23. if (!tree)
  24. return NULL;
  25. memset(tree, 0, sizeof(*tree));
  26. init_MUTEX(&tree->tree_lock);
  27. spin_lock_init(&tree->hash_lock);
  28. tree->sb = sb;
  29. tree->cnid = id;
  30. tree->inode = iget(sb, id);
  31. if (!tree->inode)
  32. goto free_tree;
  33. mapping = tree->inode->i_mapping;
  34. page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage, NULL);
  35. if (IS_ERR(page))
  36. goto free_tree;
  37. /* Load the header */
  38. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  39. tree->root = be32_to_cpu(head->root);
  40. tree->leaf_count = be32_to_cpu(head->leaf_count);
  41. tree->leaf_head = be32_to_cpu(head->leaf_head);
  42. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  43. tree->node_count = be32_to_cpu(head->node_count);
  44. tree->free_nodes = be32_to_cpu(head->free_nodes);
  45. tree->attributes = be32_to_cpu(head->attributes);
  46. tree->node_size = be16_to_cpu(head->node_size);
  47. tree->max_key_len = be16_to_cpu(head->max_key_len);
  48. tree->depth = be16_to_cpu(head->depth);
  49. /* Set the correct compare function */
  50. if (id == HFSPLUS_EXT_CNID) {
  51. tree->keycmp = hfsplus_ext_cmp_key;
  52. } else if (id == HFSPLUS_CAT_CNID) {
  53. if ((HFSPLUS_SB(sb).flags & HFSPLUS_SB_HFSX) &&
  54. (head->key_type == HFSPLUS_KEY_BINARY))
  55. tree->keycmp = hfsplus_cat_bin_cmp_key;
  56. else
  57. tree->keycmp = hfsplus_cat_case_cmp_key;
  58. } else {
  59. printk(KERN_ERR "hfs: unknown B*Tree requested\n");
  60. goto fail_page;
  61. }
  62. size = tree->node_size;
  63. if (!size || size & (size - 1))
  64. goto fail_page;
  65. if (!tree->node_count)
  66. goto fail_page;
  67. tree->node_size_shift = ffs(size) - 1;
  68. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  69. kunmap(page);
  70. page_cache_release(page);
  71. return tree;
  72. fail_page:
  73. tree->inode->i_mapping->a_ops = &hfsplus_aops;
  74. page_cache_release(page);
  75. free_tree:
  76. iput(tree->inode);
  77. kfree(tree);
  78. return NULL;
  79. }
  80. /* Release resources used by a btree */
  81. void hfs_btree_close(struct hfs_btree *tree)
  82. {
  83. struct hfs_bnode *node;
  84. int i;
  85. if (!tree)
  86. return;
  87. for (i = 0; i < NODE_HASH_SIZE; i++) {
  88. while ((node = tree->node_hash[i])) {
  89. tree->node_hash[i] = node->next_hash;
  90. if (atomic_read(&node->refcnt))
  91. printk(KERN_CRIT "hfs: node %d:%d still has %d user(s)!\n",
  92. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  93. hfs_bnode_free(node);
  94. tree->node_hash_cnt--;
  95. }
  96. }
  97. iput(tree->inode);
  98. kfree(tree);
  99. }
  100. void hfs_btree_write(struct hfs_btree *tree)
  101. {
  102. struct hfs_btree_header_rec *head;
  103. struct hfs_bnode *node;
  104. struct page *page;
  105. node = hfs_bnode_find(tree, 0);
  106. if (IS_ERR(node))
  107. /* panic? */
  108. return;
  109. /* Load the header */
  110. page = node->page[0];
  111. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  112. head->root = cpu_to_be32(tree->root);
  113. head->leaf_count = cpu_to_be32(tree->leaf_count);
  114. head->leaf_head = cpu_to_be32(tree->leaf_head);
  115. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  116. head->node_count = cpu_to_be32(tree->node_count);
  117. head->free_nodes = cpu_to_be32(tree->free_nodes);
  118. head->attributes = cpu_to_be32(tree->attributes);
  119. head->depth = cpu_to_be16(tree->depth);
  120. kunmap(page);
  121. set_page_dirty(page);
  122. hfs_bnode_put(node);
  123. }
  124. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  125. {
  126. struct hfs_btree *tree = prev->tree;
  127. struct hfs_bnode *node;
  128. struct hfs_bnode_desc desc;
  129. __be32 cnid;
  130. node = hfs_bnode_create(tree, idx);
  131. if (IS_ERR(node))
  132. return node;
  133. tree->free_nodes--;
  134. prev->next = idx;
  135. cnid = cpu_to_be32(idx);
  136. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  137. node->type = HFS_NODE_MAP;
  138. node->num_recs = 1;
  139. hfs_bnode_clear(node, 0, tree->node_size);
  140. desc.next = 0;
  141. desc.prev = 0;
  142. desc.type = HFS_NODE_MAP;
  143. desc.height = 0;
  144. desc.num_recs = cpu_to_be16(1);
  145. desc.reserved = 0;
  146. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  147. hfs_bnode_write_u16(node, 14, 0x8000);
  148. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  149. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  150. return node;
  151. }
  152. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  153. {
  154. struct hfs_bnode *node, *next_node;
  155. struct page **pagep;
  156. u32 nidx, idx;
  157. u16 off, len;
  158. u8 *data, byte, m;
  159. int i;
  160. while (!tree->free_nodes) {
  161. struct inode *inode = tree->inode;
  162. u32 count;
  163. int res;
  164. res = hfsplus_file_extend(inode);
  165. if (res)
  166. return ERR_PTR(res);
  167. HFSPLUS_I(inode).phys_size = inode->i_size =
  168. (loff_t)HFSPLUS_I(inode).alloc_blocks <<
  169. HFSPLUS_SB(tree->sb).alloc_blksz_shift;
  170. HFSPLUS_I(inode).fs_blocks = HFSPLUS_I(inode).alloc_blocks <<
  171. HFSPLUS_SB(tree->sb).fs_shift;
  172. inode_set_bytes(inode, inode->i_size);
  173. count = inode->i_size >> tree->node_size_shift;
  174. tree->free_nodes = count - tree->node_count;
  175. tree->node_count = count;
  176. }
  177. nidx = 0;
  178. node = hfs_bnode_find(tree, nidx);
  179. if (IS_ERR(node))
  180. return node;
  181. len = hfs_brec_lenoff(node, 2, &off);
  182. off += node->page_offset;
  183. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  184. data = kmap(*pagep);
  185. off &= ~PAGE_CACHE_MASK;
  186. idx = 0;
  187. for (;;) {
  188. while (len) {
  189. byte = data[off];
  190. if (byte != 0xff) {
  191. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  192. if (!(byte & m)) {
  193. idx += i;
  194. data[off] |= m;
  195. set_page_dirty(*pagep);
  196. kunmap(*pagep);
  197. tree->free_nodes--;
  198. mark_inode_dirty(tree->inode);
  199. hfs_bnode_put(node);
  200. return hfs_bnode_create(tree, idx);
  201. }
  202. }
  203. }
  204. if (++off >= PAGE_CACHE_SIZE) {
  205. kunmap(*pagep);
  206. data = kmap(*++pagep);
  207. off = 0;
  208. }
  209. idx += 8;
  210. len--;
  211. }
  212. kunmap(*pagep);
  213. nidx = node->next;
  214. if (!nidx) {
  215. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  216. next_node = hfs_bmap_new_bmap(node, idx);
  217. } else
  218. next_node = hfs_bnode_find(tree, nidx);
  219. hfs_bnode_put(node);
  220. if (IS_ERR(next_node))
  221. return next_node;
  222. node = next_node;
  223. len = hfs_brec_lenoff(node, 0, &off);
  224. off += node->page_offset;
  225. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  226. data = kmap(*pagep);
  227. off &= ~PAGE_CACHE_MASK;
  228. }
  229. }
  230. void hfs_bmap_free(struct hfs_bnode *node)
  231. {
  232. struct hfs_btree *tree;
  233. struct page *page;
  234. u16 off, len;
  235. u32 nidx;
  236. u8 *data, byte, m;
  237. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  238. BUG_ON(!node->this);
  239. tree = node->tree;
  240. nidx = node->this;
  241. node = hfs_bnode_find(tree, 0);
  242. if (IS_ERR(node))
  243. return;
  244. len = hfs_brec_lenoff(node, 2, &off);
  245. while (nidx >= len * 8) {
  246. u32 i;
  247. nidx -= len * 8;
  248. i = node->next;
  249. hfs_bnode_put(node);
  250. if (!i) {
  251. /* panic */;
  252. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  253. return;
  254. }
  255. node = hfs_bnode_find(tree, i);
  256. if (IS_ERR(node))
  257. return;
  258. if (node->type != HFS_NODE_MAP) {
  259. /* panic */;
  260. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  261. hfs_bnode_put(node);
  262. return;
  263. }
  264. len = hfs_brec_lenoff(node, 0, &off);
  265. }
  266. off += node->page_offset + nidx / 8;
  267. page = node->page[off >> PAGE_CACHE_SHIFT];
  268. data = kmap(page);
  269. off &= ~PAGE_CACHE_MASK;
  270. m = 1 << (~nidx & 7);
  271. byte = data[off];
  272. if (!(byte & m)) {
  273. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  274. kunmap(page);
  275. hfs_bnode_put(node);
  276. return;
  277. }
  278. data[off] = byte & ~m;
  279. set_page_dirty(page);
  280. kunmap(page);
  281. hfs_bnode_put(node);
  282. tree->free_nodes++;
  283. mark_inode_dirty(tree->inode);
  284. }