dscore.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. /*
  2. * dscore.c
  3. *
  4. * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
  5. *
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/usb.h>
  25. #include "dscore.h"
  26. static struct usb_device_id ds_id_table [] = {
  27. { USB_DEVICE(0x04fa, 0x2490) },
  28. { },
  29. };
  30. MODULE_DEVICE_TABLE(usb, ds_id_table);
  31. static int ds_probe(struct usb_interface *, const struct usb_device_id *);
  32. static void ds_disconnect(struct usb_interface *);
  33. int ds_touch_bit(struct ds_device *, u8, u8 *);
  34. int ds_read_byte(struct ds_device *, u8 *);
  35. int ds_read_bit(struct ds_device *, u8 *);
  36. int ds_write_byte(struct ds_device *, u8);
  37. int ds_write_bit(struct ds_device *, u8);
  38. static int ds_start_pulse(struct ds_device *, int);
  39. int ds_reset(struct ds_device *, struct ds_status *);
  40. struct ds_device * ds_get_device(void);
  41. void ds_put_device(struct ds_device *);
  42. static inline void ds_dump_status(unsigned char *, unsigned char *, int);
  43. static int ds_send_control(struct ds_device *, u16, u16);
  44. static int ds_send_control_mode(struct ds_device *, u16, u16);
  45. static int ds_send_control_cmd(struct ds_device *, u16, u16);
  46. static struct usb_driver ds_driver = {
  47. .name = "DS9490R",
  48. .probe = ds_probe,
  49. .disconnect = ds_disconnect,
  50. .id_table = ds_id_table,
  51. };
  52. static struct ds_device *ds_dev;
  53. struct ds_device * ds_get_device(void)
  54. {
  55. if (ds_dev)
  56. atomic_inc(&ds_dev->refcnt);
  57. return ds_dev;
  58. }
  59. void ds_put_device(struct ds_device *dev)
  60. {
  61. atomic_dec(&dev->refcnt);
  62. }
  63. static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
  64. {
  65. int err;
  66. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  67. CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
  68. if (err < 0) {
  69. printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
  70. value, index, err);
  71. return err;
  72. }
  73. return err;
  74. }
  75. static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
  76. {
  77. int err;
  78. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  79. MODE_CMD, 0x40, value, index, NULL, 0, 1000);
  80. if (err < 0) {
  81. printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
  82. value, index, err);
  83. return err;
  84. }
  85. return err;
  86. }
  87. static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
  88. {
  89. int err;
  90. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  91. COMM_CMD, 0x40, value, index, NULL, 0, 1000);
  92. if (err < 0) {
  93. printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
  94. value, index, err);
  95. return err;
  96. }
  97. return err;
  98. }
  99. static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
  100. {
  101. printk("%45s: %8x\n", str, buf[off]);
  102. }
  103. static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
  104. unsigned char *buf, int size)
  105. {
  106. int count, err;
  107. memset(st, 0, sizeof(st));
  108. count = 0;
  109. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
  110. if (err < 0) {
  111. printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
  112. return err;
  113. }
  114. if (count >= sizeof(*st))
  115. memcpy(st, buf, sizeof(*st));
  116. return count;
  117. }
  118. static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
  119. {
  120. unsigned char buf[64];
  121. int count, err = 0, i;
  122. memcpy(st, buf, sizeof(*st));
  123. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  124. if (count < 0)
  125. return err;
  126. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
  127. for (i=0; i<count; ++i)
  128. printk("%02x ", buf[i]);
  129. printk("\n");
  130. if (count >= 16) {
  131. ds_dump_status(buf, "enable flag", 0);
  132. ds_dump_status(buf, "1-wire speed", 1);
  133. ds_dump_status(buf, "strong pullup duration", 2);
  134. ds_dump_status(buf, "programming pulse duration", 3);
  135. ds_dump_status(buf, "pulldown slew rate control", 4);
  136. ds_dump_status(buf, "write-1 low time", 5);
  137. ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
  138. ds_dump_status(buf, "reserved (test register)", 7);
  139. ds_dump_status(buf, "device status flags", 8);
  140. ds_dump_status(buf, "communication command byte 1", 9);
  141. ds_dump_status(buf, "communication command byte 2", 10);
  142. ds_dump_status(buf, "communication command buffer status", 11);
  143. ds_dump_status(buf, "1-wire data output buffer status", 12);
  144. ds_dump_status(buf, "1-wire data input buffer status", 13);
  145. ds_dump_status(buf, "reserved", 14);
  146. ds_dump_status(buf, "reserved", 15);
  147. }
  148. memcpy(st, buf, sizeof(*st));
  149. if (st->status & ST_EPOF) {
  150. printk(KERN_INFO "Resetting device after ST_EPOF.\n");
  151. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  152. if (err)
  153. return err;
  154. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  155. if (count < 0)
  156. return err;
  157. }
  158. #if 0
  159. if (st->status & ST_IDLE) {
  160. printk(KERN_INFO "Resetting pulse after ST_IDLE.\n");
  161. err = ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  162. if (err)
  163. return err;
  164. }
  165. #endif
  166. return err;
  167. }
  168. static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
  169. {
  170. int count, err;
  171. struct ds_status st;
  172. count = 0;
  173. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
  174. buf, size, &count, 1000);
  175. if (err < 0) {
  176. printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
  177. usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
  178. ds_recv_status(dev, &st);
  179. return err;
  180. }
  181. #if 0
  182. {
  183. int i;
  184. printk("%s: count=%d: ", __func__, count);
  185. for (i=0; i<count; ++i)
  186. printk("%02x ", buf[i]);
  187. printk("\n");
  188. }
  189. #endif
  190. return count;
  191. }
  192. static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
  193. {
  194. int count, err;
  195. count = 0;
  196. err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
  197. if (err < 0) {
  198. printk(KERN_ERR "Failed to read 1-wire data from 0x02: err=%d.\n", err);
  199. return err;
  200. }
  201. return err;
  202. }
  203. #if 0
  204. int ds_stop_pulse(struct ds_device *dev, int limit)
  205. {
  206. struct ds_status st;
  207. int count = 0, err = 0;
  208. u8 buf[0x20];
  209. do {
  210. err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
  211. if (err)
  212. break;
  213. err = ds_send_control(dev, CTL_RESUME_EXE, 0);
  214. if (err)
  215. break;
  216. err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  217. if (err)
  218. break;
  219. if ((st.status & ST_SPUA) == 0) {
  220. err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
  221. if (err)
  222. break;
  223. }
  224. } while(++count < limit);
  225. return err;
  226. }
  227. int ds_detect(struct ds_device *dev, struct ds_status *st)
  228. {
  229. int err;
  230. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  231. if (err)
  232. return err;
  233. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
  234. if (err)
  235. return err;
  236. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
  237. if (err)
  238. return err;
  239. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
  240. if (err)
  241. return err;
  242. err = ds_recv_status(dev, st);
  243. return err;
  244. }
  245. #endif /* 0 */
  246. static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
  247. {
  248. u8 buf[0x20];
  249. int err, count = 0;
  250. do {
  251. err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  252. #if 0
  253. if (err >= 0) {
  254. int i;
  255. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
  256. for (i=0; i<err; ++i)
  257. printk("%02x ", buf[i]);
  258. printk("\n");
  259. }
  260. #endif
  261. } while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
  262. if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
  263. ds_recv_status(dev, st);
  264. return -1;
  265. } else
  266. return 0;
  267. }
  268. int ds_reset(struct ds_device *dev, struct ds_status *st)
  269. {
  270. int err;
  271. //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
  272. err = ds_send_control(dev, 0x43, SPEED_NORMAL);
  273. if (err)
  274. return err;
  275. ds_wait_status(dev, st);
  276. #if 0
  277. if (st->command_buffer_status) {
  278. printk(KERN_INFO "Short circuit.\n");
  279. return -EIO;
  280. }
  281. #endif
  282. return 0;
  283. }
  284. #if 0
  285. int ds_set_speed(struct ds_device *dev, int speed)
  286. {
  287. int err;
  288. if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
  289. return -EINVAL;
  290. if (speed != SPEED_OVERDRIVE)
  291. speed = SPEED_FLEXIBLE;
  292. speed &= 0xff;
  293. err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
  294. if (err)
  295. return err;
  296. return err;
  297. }
  298. #endif /* 0 */
  299. static int ds_start_pulse(struct ds_device *dev, int delay)
  300. {
  301. int err;
  302. u8 del = 1 + (u8)(delay >> 4);
  303. struct ds_status st;
  304. #if 0
  305. err = ds_stop_pulse(dev, 10);
  306. if (err)
  307. return err;
  308. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
  309. if (err)
  310. return err;
  311. #endif
  312. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
  313. if (err)
  314. return err;
  315. err = ds_send_control(dev, COMM_PULSE | COMM_IM | COMM_F, 0);
  316. if (err)
  317. return err;
  318. mdelay(delay);
  319. ds_wait_status(dev, &st);
  320. return err;
  321. }
  322. int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
  323. {
  324. int err, count;
  325. struct ds_status st;
  326. u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0);
  327. u16 cmd;
  328. err = ds_send_control(dev, value, 0);
  329. if (err)
  330. return err;
  331. count = 0;
  332. do {
  333. err = ds_wait_status(dev, &st);
  334. if (err)
  335. return err;
  336. cmd = st.command0 | (st.command1 << 8);
  337. } while (cmd != value && ++count < 10);
  338. if (err < 0 || count >= 10) {
  339. printk(KERN_ERR "Failed to obtain status.\n");
  340. return -EINVAL;
  341. }
  342. err = ds_recv_data(dev, tbit, sizeof(*tbit));
  343. if (err < 0)
  344. return err;
  345. return 0;
  346. }
  347. int ds_write_bit(struct ds_device *dev, u8 bit)
  348. {
  349. int err;
  350. struct ds_status st;
  351. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit) ? COMM_D : 0, 0);
  352. if (err)
  353. return err;
  354. ds_wait_status(dev, &st);
  355. return 0;
  356. }
  357. int ds_write_byte(struct ds_device *dev, u8 byte)
  358. {
  359. int err;
  360. struct ds_status st;
  361. u8 rbyte;
  362. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
  363. if (err)
  364. return err;
  365. err = ds_wait_status(dev, &st);
  366. if (err)
  367. return err;
  368. err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
  369. if (err < 0)
  370. return err;
  371. ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  372. return !(byte == rbyte);
  373. }
  374. int ds_read_bit(struct ds_device *dev, u8 *bit)
  375. {
  376. int err;
  377. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
  378. if (err)
  379. return err;
  380. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_SPU | COMM_D, 0);
  381. if (err)
  382. return err;
  383. err = ds_recv_data(dev, bit, sizeof(*bit));
  384. if (err < 0)
  385. return err;
  386. return 0;
  387. }
  388. int ds_read_byte(struct ds_device *dev, u8 *byte)
  389. {
  390. int err;
  391. struct ds_status st;
  392. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
  393. if (err)
  394. return err;
  395. ds_wait_status(dev, &st);
  396. err = ds_recv_data(dev, byte, sizeof(*byte));
  397. if (err < 0)
  398. return err;
  399. return 0;
  400. }
  401. int ds_read_block(struct ds_device *dev, u8 *buf, int len)
  402. {
  403. struct ds_status st;
  404. int err;
  405. if (len > 64*1024)
  406. return -E2BIG;
  407. memset(buf, 0xFF, len);
  408. err = ds_send_data(dev, buf, len);
  409. if (err < 0)
  410. return err;
  411. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  412. if (err)
  413. return err;
  414. ds_wait_status(dev, &st);
  415. memset(buf, 0x00, len);
  416. err = ds_recv_data(dev, buf, len);
  417. return err;
  418. }
  419. int ds_write_block(struct ds_device *dev, u8 *buf, int len)
  420. {
  421. int err;
  422. struct ds_status st;
  423. err = ds_send_data(dev, buf, len);
  424. if (err < 0)
  425. return err;
  426. ds_wait_status(dev, &st);
  427. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  428. if (err)
  429. return err;
  430. ds_wait_status(dev, &st);
  431. err = ds_recv_data(dev, buf, len);
  432. if (err < 0)
  433. return err;
  434. ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  435. return !(err == len);
  436. }
  437. #if 0
  438. int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
  439. {
  440. int err;
  441. u16 value, index;
  442. struct ds_status st;
  443. memset(buf, 0, sizeof(buf));
  444. err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
  445. if (err)
  446. return err;
  447. ds_wait_status(ds_dev, &st);
  448. value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
  449. index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
  450. err = ds_send_control(ds_dev, value, index);
  451. if (err)
  452. return err;
  453. ds_wait_status(ds_dev, &st);
  454. err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
  455. if (err < 0)
  456. return err;
  457. return err/8;
  458. }
  459. int ds_match_access(struct ds_device *dev, u64 init)
  460. {
  461. int err;
  462. struct ds_status st;
  463. err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
  464. if (err)
  465. return err;
  466. ds_wait_status(dev, &st);
  467. err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
  468. if (err)
  469. return err;
  470. ds_wait_status(dev, &st);
  471. return 0;
  472. }
  473. int ds_set_path(struct ds_device *dev, u64 init)
  474. {
  475. int err;
  476. struct ds_status st;
  477. u8 buf[9];
  478. memcpy(buf, &init, 8);
  479. buf[8] = BRANCH_MAIN;
  480. err = ds_send_data(dev, buf, sizeof(buf));
  481. if (err)
  482. return err;
  483. ds_wait_status(dev, &st);
  484. err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
  485. if (err)
  486. return err;
  487. ds_wait_status(dev, &st);
  488. return 0;
  489. }
  490. #endif /* 0 */
  491. static int ds_probe(struct usb_interface *intf,
  492. const struct usb_device_id *udev_id)
  493. {
  494. struct usb_device *udev = interface_to_usbdev(intf);
  495. struct usb_endpoint_descriptor *endpoint;
  496. struct usb_host_interface *iface_desc;
  497. int i, err;
  498. ds_dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
  499. if (!ds_dev) {
  500. printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
  501. return -ENOMEM;
  502. }
  503. ds_dev->udev = usb_get_dev(udev);
  504. usb_set_intfdata(intf, ds_dev);
  505. err = usb_set_interface(ds_dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
  506. if (err) {
  507. printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
  508. intf->altsetting[0].desc.bInterfaceNumber, err);
  509. return err;
  510. }
  511. err = usb_reset_configuration(ds_dev->udev);
  512. if (err) {
  513. printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
  514. return err;
  515. }
  516. iface_desc = &intf->altsetting[0];
  517. if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
  518. printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
  519. return -ENODEV;
  520. }
  521. atomic_set(&ds_dev->refcnt, 0);
  522. memset(ds_dev->ep, 0, sizeof(ds_dev->ep));
  523. /*
  524. * This loop doesn'd show control 0 endpoint,
  525. * so we will fill only 1-3 endpoints entry.
  526. */
  527. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  528. endpoint = &iface_desc->endpoint[i].desc;
  529. ds_dev->ep[i+1] = endpoint->bEndpointAddress;
  530. printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
  531. i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
  532. (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
  533. endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
  534. }
  535. #if 0
  536. {
  537. int err, i;
  538. u64 buf[3];
  539. u64 init=0xb30000002078ee81ull;
  540. struct ds_status st;
  541. ds_reset(ds_dev, &st);
  542. err = ds_search(ds_dev, init, buf, 3, 0);
  543. if (err < 0)
  544. return err;
  545. for (i=0; i<err; ++i)
  546. printk("%d: %llx\n", i, buf[i]);
  547. printk("Resetting...\n");
  548. ds_reset(ds_dev, &st);
  549. printk("Setting path for %llx.\n", init);
  550. err = ds_set_path(ds_dev, init);
  551. if (err)
  552. return err;
  553. printk("Calling MATCH_ACCESS.\n");
  554. err = ds_match_access(ds_dev, init);
  555. if (err)
  556. return err;
  557. printk("Searching the bus...\n");
  558. err = ds_search(ds_dev, init, buf, 3, 0);
  559. printk("ds_search() returned %d\n", err);
  560. if (err < 0)
  561. return err;
  562. for (i=0; i<err; ++i)
  563. printk("%d: %llx\n", i, buf[i]);
  564. return 0;
  565. }
  566. #endif
  567. return 0;
  568. }
  569. static void ds_disconnect(struct usb_interface *intf)
  570. {
  571. struct ds_device *dev;
  572. dev = usb_get_intfdata(intf);
  573. usb_set_intfdata(intf, NULL);
  574. while (atomic_read(&dev->refcnt)) {
  575. printk(KERN_INFO "Waiting for DS to become free: refcnt=%d.\n",
  576. atomic_read(&dev->refcnt));
  577. if (msleep_interruptible(1000))
  578. flush_signals(current);
  579. }
  580. usb_put_dev(dev->udev);
  581. kfree(dev);
  582. ds_dev = NULL;
  583. }
  584. static int ds_init(void)
  585. {
  586. int err;
  587. err = usb_register(&ds_driver);
  588. if (err) {
  589. printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
  590. return err;
  591. }
  592. return 0;
  593. }
  594. static void ds_fini(void)
  595. {
  596. usb_deregister(&ds_driver);
  597. }
  598. module_init(ds_init);
  599. module_exit(ds_fini);
  600. MODULE_LICENSE("GPL");
  601. MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
  602. EXPORT_SYMBOL(ds_touch_bit);
  603. EXPORT_SYMBOL(ds_read_byte);
  604. EXPORT_SYMBOL(ds_read_bit);
  605. EXPORT_SYMBOL(ds_read_block);
  606. EXPORT_SYMBOL(ds_write_byte);
  607. EXPORT_SYMBOL(ds_write_bit);
  608. EXPORT_SYMBOL(ds_write_block);
  609. EXPORT_SYMBOL(ds_reset);
  610. EXPORT_SYMBOL(ds_get_device);
  611. EXPORT_SYMBOL(ds_put_device);
  612. /*
  613. * This functions can be used for EEPROM programming,
  614. * when driver will be included into mainline this will
  615. * require uncommenting.
  616. */
  617. #if 0
  618. EXPORT_SYMBOL(ds_start_pulse);
  619. EXPORT_SYMBOL(ds_set_speed);
  620. EXPORT_SYMBOL(ds_detect);
  621. EXPORT_SYMBOL(ds_stop_pulse);
  622. EXPORT_SYMBOL(ds_search);
  623. #endif