urb.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. #include <linux/config.h>
  2. #include <linux/module.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/slab.h>
  6. #include <linux/init.h>
  7. #include <linux/usb.h>
  8. #include "hcd.h"
  9. #define to_urb(d) container_of(d, struct urb, kref)
  10. static void urb_destroy(struct kref *kref)
  11. {
  12. struct urb *urb = to_urb(kref);
  13. kfree(urb);
  14. }
  15. /**
  16. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  17. * @urb: pointer to the urb to initialize
  18. *
  19. * Initializes a urb so that the USB subsystem can use it properly.
  20. *
  21. * If a urb is created with a call to usb_alloc_urb() it is not
  22. * necessary to call this function. Only use this if you allocate the
  23. * space for a struct urb on your own. If you call this function, be
  24. * careful when freeing the memory for your urb that it is no longer in
  25. * use by the USB core.
  26. *
  27. * Only use this function if you _really_ understand what you are doing.
  28. */
  29. void usb_init_urb(struct urb *urb)
  30. {
  31. if (urb) {
  32. memset(urb, 0, sizeof(*urb));
  33. kref_init(&urb->kref);
  34. spin_lock_init(&urb->lock);
  35. }
  36. }
  37. /**
  38. * usb_alloc_urb - creates a new urb for a USB driver to use
  39. * @iso_packets: number of iso packets for this urb
  40. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  41. * valid options for this.
  42. *
  43. * Creates an urb for the USB driver to use, initializes a few internal
  44. * structures, incrementes the usage counter, and returns a pointer to it.
  45. *
  46. * If no memory is available, NULL is returned.
  47. *
  48. * If the driver want to use this urb for interrupt, control, or bulk
  49. * endpoints, pass '0' as the number of iso packets.
  50. *
  51. * The driver must call usb_free_urb() when it is finished with the urb.
  52. */
  53. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  54. {
  55. struct urb *urb;
  56. urb = (struct urb *)kmalloc(sizeof(struct urb) +
  57. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  58. mem_flags);
  59. if (!urb) {
  60. err("alloc_urb: kmalloc failed");
  61. return NULL;
  62. }
  63. usb_init_urb(urb);
  64. return urb;
  65. }
  66. /**
  67. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  68. * @urb: pointer to the urb to free, may be NULL
  69. *
  70. * Must be called when a user of a urb is finished with it. When the last user
  71. * of the urb calls this function, the memory of the urb is freed.
  72. *
  73. * Note: The transfer buffer associated with the urb is not freed, that must be
  74. * done elsewhere.
  75. */
  76. void usb_free_urb(struct urb *urb)
  77. {
  78. if (urb)
  79. kref_put(&urb->kref, urb_destroy);
  80. }
  81. /**
  82. * usb_get_urb - increments the reference count of the urb
  83. * @urb: pointer to the urb to modify, may be NULL
  84. *
  85. * This must be called whenever a urb is transferred from a device driver to a
  86. * host controller driver. This allows proper reference counting to happen
  87. * for urbs.
  88. *
  89. * A pointer to the urb with the incremented reference counter is returned.
  90. */
  91. struct urb * usb_get_urb(struct urb *urb)
  92. {
  93. if (urb)
  94. kref_get(&urb->kref);
  95. return urb;
  96. }
  97. /*-------------------------------------------------------------------*/
  98. /**
  99. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  100. * @urb: pointer to the urb describing the request
  101. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  102. * of valid options for this.
  103. *
  104. * This submits a transfer request, and transfers control of the URB
  105. * describing that request to the USB subsystem. Request completion will
  106. * be indicated later, asynchronously, by calling the completion handler.
  107. * The three types of completion are success, error, and unlink
  108. * (a software-induced fault, also called "request cancellation").
  109. *
  110. * URBs may be submitted in interrupt context.
  111. *
  112. * The caller must have correctly initialized the URB before submitting
  113. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  114. * available to ensure that most fields are correctly initialized, for
  115. * the particular kind of transfer, although they will not initialize
  116. * any transfer flags.
  117. *
  118. * Successful submissions return 0; otherwise this routine returns a
  119. * negative error number. If the submission is successful, the complete()
  120. * callback from the URB will be called exactly once, when the USB core and
  121. * Host Controller Driver (HCD) are finished with the URB. When the completion
  122. * function is called, control of the URB is returned to the device
  123. * driver which issued the request. The completion handler may then
  124. * immediately free or reuse that URB.
  125. *
  126. * With few exceptions, USB device drivers should never access URB fields
  127. * provided by usbcore or the HCD until its complete() is called.
  128. * The exceptions relate to periodic transfer scheduling. For both
  129. * interrupt and isochronous urbs, as part of successful URB submission
  130. * urb->interval is modified to reflect the actual transfer period used
  131. * (normally some power of two units). And for isochronous urbs,
  132. * urb->start_frame is modified to reflect when the URB's transfers were
  133. * scheduled to start. Not all isochronous transfer scheduling policies
  134. * will work, but most host controller drivers should easily handle ISO
  135. * queues going from now until 10-200 msec into the future.
  136. *
  137. * For control endpoints, the synchronous usb_control_msg() call is
  138. * often used (in non-interrupt context) instead of this call.
  139. * That is often used through convenience wrappers, for the requests
  140. * that are standardized in the USB 2.0 specification. For bulk
  141. * endpoints, a synchronous usb_bulk_msg() call is available.
  142. *
  143. * Request Queuing:
  144. *
  145. * URBs may be submitted to endpoints before previous ones complete, to
  146. * minimize the impact of interrupt latencies and system overhead on data
  147. * throughput. With that queuing policy, an endpoint's queue would never
  148. * be empty. This is required for continuous isochronous data streams,
  149. * and may also be required for some kinds of interrupt transfers. Such
  150. * queuing also maximizes bandwidth utilization by letting USB controllers
  151. * start work on later requests before driver software has finished the
  152. * completion processing for earlier (successful) requests.
  153. *
  154. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  155. * than one. This was previously a HCD-specific behavior, except for ISO
  156. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  157. * after faults (transfer errors or cancellation).
  158. *
  159. * Reserved Bandwidth Transfers:
  160. *
  161. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  162. * using the interval specified in the urb. Submitting the first urb to
  163. * the endpoint reserves the bandwidth necessary to make those transfers.
  164. * If the USB subsystem can't allocate sufficient bandwidth to perform
  165. * the periodic request, submitting such a periodic request should fail.
  166. *
  167. * Device drivers must explicitly request that repetition, by ensuring that
  168. * some URB is always on the endpoint's queue (except possibly for short
  169. * periods during completion callacks). When there is no longer an urb
  170. * queued, the endpoint's bandwidth reservation is canceled. This means
  171. * drivers can use their completion handlers to ensure they keep bandwidth
  172. * they need, by reinitializing and resubmitting the just-completed urb
  173. * until the driver longer needs that periodic bandwidth.
  174. *
  175. * Memory Flags:
  176. *
  177. * The general rules for how to decide which mem_flags to use
  178. * are the same as for kmalloc. There are four
  179. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  180. * GFP_ATOMIC.
  181. *
  182. * GFP_NOFS is not ever used, as it has not been implemented yet.
  183. *
  184. * GFP_ATOMIC is used when
  185. * (a) you are inside a completion handler, an interrupt, bottom half,
  186. * tasklet or timer, or
  187. * (b) you are holding a spinlock or rwlock (does not apply to
  188. * semaphores), or
  189. * (c) current->state != TASK_RUNNING, this is the case only after
  190. * you've changed it.
  191. *
  192. * GFP_NOIO is used in the block io path and error handling of storage
  193. * devices.
  194. *
  195. * All other situations use GFP_KERNEL.
  196. *
  197. * Some more specific rules for mem_flags can be inferred, such as
  198. * (1) start_xmit, timeout, and receive methods of network drivers must
  199. * use GFP_ATOMIC (they are called with a spinlock held);
  200. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  201. * called with a spinlock held);
  202. * (3) If you use a kernel thread with a network driver you must use
  203. * GFP_NOIO, unless (b) or (c) apply;
  204. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  205. * apply or your are in a storage driver's block io path;
  206. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  207. * (6) changing firmware on a running storage or net device uses
  208. * GFP_NOIO, unless b) or c) apply
  209. *
  210. */
  211. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  212. {
  213. int pipe, temp, max;
  214. struct usb_device *dev;
  215. struct usb_operations *op;
  216. int is_out;
  217. if (!urb || urb->hcpriv || !urb->complete)
  218. return -EINVAL;
  219. if (!(dev = urb->dev) ||
  220. (dev->state < USB_STATE_DEFAULT) ||
  221. (!dev->bus) || (dev->devnum <= 0))
  222. return -ENODEV;
  223. if (dev->bus->controller->power.power_state.event != PM_EVENT_ON
  224. || dev->state == USB_STATE_SUSPENDED)
  225. return -EHOSTUNREACH;
  226. if (!(op = dev->bus->op) || !op->submit_urb)
  227. return -ENODEV;
  228. urb->status = -EINPROGRESS;
  229. urb->actual_length = 0;
  230. urb->bandwidth = 0;
  231. /* Lots of sanity checks, so HCDs can rely on clean data
  232. * and don't need to duplicate tests
  233. */
  234. pipe = urb->pipe;
  235. temp = usb_pipetype (pipe);
  236. is_out = usb_pipeout (pipe);
  237. if (!usb_pipecontrol (pipe) && dev->state < USB_STATE_CONFIGURED)
  238. return -ENODEV;
  239. /* FIXME there should be a sharable lock protecting us against
  240. * config/altsetting changes and disconnects, kicking in here.
  241. * (here == before maxpacket, and eventually endpoint type,
  242. * checks get made.)
  243. */
  244. max = usb_maxpacket (dev, pipe, is_out);
  245. if (max <= 0) {
  246. dev_dbg(&dev->dev,
  247. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  248. usb_pipeendpoint (pipe), is_out ? "out" : "in",
  249. __FUNCTION__, max);
  250. return -EMSGSIZE;
  251. }
  252. /* periodic transfers limit size per frame/uframe,
  253. * but drivers only control those sizes for ISO.
  254. * while we're checking, initialize return status.
  255. */
  256. if (temp == PIPE_ISOCHRONOUS) {
  257. int n, len;
  258. /* "high bandwidth" mode, 1-3 packets/uframe? */
  259. if (dev->speed == USB_SPEED_HIGH) {
  260. int mult = 1 + ((max >> 11) & 0x03);
  261. max &= 0x07ff;
  262. max *= mult;
  263. }
  264. if (urb->number_of_packets <= 0)
  265. return -EINVAL;
  266. for (n = 0; n < urb->number_of_packets; n++) {
  267. len = urb->iso_frame_desc [n].length;
  268. if (len < 0 || len > max)
  269. return -EMSGSIZE;
  270. urb->iso_frame_desc [n].status = -EXDEV;
  271. urb->iso_frame_desc [n].actual_length = 0;
  272. }
  273. }
  274. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  275. if (urb->transfer_buffer_length < 0)
  276. return -EMSGSIZE;
  277. #ifdef DEBUG
  278. /* stuff that drivers shouldn't do, but which shouldn't
  279. * cause problems in HCDs if they get it wrong.
  280. */
  281. {
  282. unsigned int orig_flags = urb->transfer_flags;
  283. unsigned int allowed;
  284. /* enforce simple/standard policy */
  285. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  286. URB_NO_INTERRUPT);
  287. switch (temp) {
  288. case PIPE_BULK:
  289. if (is_out)
  290. allowed |= URB_ZERO_PACKET;
  291. /* FALLTHROUGH */
  292. case PIPE_CONTROL:
  293. allowed |= URB_NO_FSBR; /* only affects UHCI */
  294. /* FALLTHROUGH */
  295. default: /* all non-iso endpoints */
  296. if (!is_out)
  297. allowed |= URB_SHORT_NOT_OK;
  298. break;
  299. case PIPE_ISOCHRONOUS:
  300. allowed |= URB_ISO_ASAP;
  301. break;
  302. }
  303. urb->transfer_flags &= allowed;
  304. /* fail if submitter gave bogus flags */
  305. if (urb->transfer_flags != orig_flags) {
  306. err ("BOGUS urb flags, %x --> %x",
  307. orig_flags, urb->transfer_flags);
  308. return -EINVAL;
  309. }
  310. }
  311. #endif
  312. /*
  313. * Force periodic transfer intervals to be legal values that are
  314. * a power of two (so HCDs don't need to).
  315. *
  316. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  317. * supports different values... this uses EHCI/UHCI defaults (and
  318. * EHCI can use smaller non-default values).
  319. */
  320. switch (temp) {
  321. case PIPE_ISOCHRONOUS:
  322. case PIPE_INTERRUPT:
  323. /* too small? */
  324. if (urb->interval <= 0)
  325. return -EINVAL;
  326. /* too big? */
  327. switch (dev->speed) {
  328. case USB_SPEED_HIGH: /* units are microframes */
  329. // NOTE usb handles 2^15
  330. if (urb->interval > (1024 * 8))
  331. urb->interval = 1024 * 8;
  332. temp = 1024 * 8;
  333. break;
  334. case USB_SPEED_FULL: /* units are frames/msec */
  335. case USB_SPEED_LOW:
  336. if (temp == PIPE_INTERRUPT) {
  337. if (urb->interval > 255)
  338. return -EINVAL;
  339. // NOTE ohci only handles up to 32
  340. temp = 128;
  341. } else {
  342. if (urb->interval > 1024)
  343. urb->interval = 1024;
  344. // NOTE usb and ohci handle up to 2^15
  345. temp = 1024;
  346. }
  347. break;
  348. default:
  349. return -EINVAL;
  350. }
  351. /* power of two? */
  352. while (temp > urb->interval)
  353. temp >>= 1;
  354. urb->interval = temp;
  355. }
  356. return op->submit_urb (urb, mem_flags);
  357. }
  358. /*-------------------------------------------------------------------*/
  359. /**
  360. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  361. * @urb: pointer to urb describing a previously submitted request,
  362. * may be NULL
  363. *
  364. * This routine cancels an in-progress request. URBs complete only
  365. * once per submission, and may be canceled only once per submission.
  366. * Successful cancellation means the requests's completion handler will
  367. * be called with a status code indicating that the request has been
  368. * canceled (rather than any other code) and will quickly be removed
  369. * from host controller data structures.
  370. *
  371. * This request is always asynchronous.
  372. * Success is indicated by returning -EINPROGRESS,
  373. * at which time the URB will normally have been unlinked but not yet
  374. * given back to the device driver. When it is called, the completion
  375. * function will see urb->status == -ECONNRESET. Failure is indicated
  376. * by any other return value. Unlinking will fail when the URB is not
  377. * currently "linked" (i.e., it was never submitted, or it was unlinked
  378. * before, or the hardware is already finished with it), even if the
  379. * completion handler has not yet run.
  380. *
  381. * Unlinking and Endpoint Queues:
  382. *
  383. * Host Controller Drivers (HCDs) place all the URBs for a particular
  384. * endpoint in a queue. Normally the queue advances as the controller
  385. * hardware processes each request. But when an URB terminates with an
  386. * error its queue stops, at least until that URB's completion routine
  387. * returns. It is guaranteed that the queue will not restart until all
  388. * its unlinked URBs have been fully retired, with their completion
  389. * routines run, even if that's not until some time after the original
  390. * completion handler returns. Normally the same behavior and guarantees
  391. * apply when an URB terminates because it was unlinked; however if an
  392. * URB is unlinked before the hardware has started to execute it, then
  393. * its queue is not guaranteed to stop until all the preceding URBs have
  394. * completed.
  395. *
  396. * This means that USB device drivers can safely build deep queues for
  397. * large or complex transfers, and clean them up reliably after any sort
  398. * of aborted transfer by unlinking all pending URBs at the first fault.
  399. *
  400. * Note that an URB terminating early because a short packet was received
  401. * will count as an error if and only if the URB_SHORT_NOT_OK flag is set.
  402. * Also, that all unlinks performed in any URB completion handler must
  403. * be asynchronous.
  404. *
  405. * Queues for isochronous endpoints are treated differently, because they
  406. * advance at fixed rates. Such queues do not stop when an URB is unlinked.
  407. * An unlinked URB may leave a gap in the stream of packets. It is undefined
  408. * whether such gaps can be filled in.
  409. *
  410. * When a control URB terminates with an error, it is likely that the
  411. * status stage of the transfer will not take place, even if it is merely
  412. * a soft error resulting from a short-packet with URB_SHORT_NOT_OK set.
  413. */
  414. int usb_unlink_urb(struct urb *urb)
  415. {
  416. if (!urb)
  417. return -EINVAL;
  418. if (!(urb->dev && urb->dev->bus && urb->dev->bus->op))
  419. return -ENODEV;
  420. return urb->dev->bus->op->unlink_urb(urb, -ECONNRESET);
  421. }
  422. /**
  423. * usb_kill_urb - cancel a transfer request and wait for it to finish
  424. * @urb: pointer to URB describing a previously submitted request,
  425. * may be NULL
  426. *
  427. * This routine cancels an in-progress request. It is guaranteed that
  428. * upon return all completion handlers will have finished and the URB
  429. * will be totally idle and available for reuse. These features make
  430. * this an ideal way to stop I/O in a disconnect() callback or close()
  431. * function. If the request has not already finished or been unlinked
  432. * the completion handler will see urb->status == -ENOENT.
  433. *
  434. * While the routine is running, attempts to resubmit the URB will fail
  435. * with error -EPERM. Thus even if the URB's completion handler always
  436. * tries to resubmit, it will not succeed and the URB will become idle.
  437. *
  438. * This routine may not be used in an interrupt context (such as a bottom
  439. * half or a completion handler), or when holding a spinlock, or in other
  440. * situations where the caller can't schedule().
  441. */
  442. void usb_kill_urb(struct urb *urb)
  443. {
  444. might_sleep();
  445. if (!(urb && urb->dev && urb->dev->bus && urb->dev->bus->op))
  446. return;
  447. spin_lock_irq(&urb->lock);
  448. ++urb->reject;
  449. spin_unlock_irq(&urb->lock);
  450. urb->dev->bus->op->unlink_urb(urb, -ENOENT);
  451. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  452. spin_lock_irq(&urb->lock);
  453. --urb->reject;
  454. spin_unlock_irq(&urb->lock);
  455. }
  456. EXPORT_SYMBOL(usb_init_urb);
  457. EXPORT_SYMBOL(usb_alloc_urb);
  458. EXPORT_SYMBOL(usb_free_urb);
  459. EXPORT_SYMBOL(usb_get_urb);
  460. EXPORT_SYMBOL(usb_submit_urb);
  461. EXPORT_SYMBOL(usb_unlink_urb);
  462. EXPORT_SYMBOL(usb_kill_urb);