sata_mv.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2005: EMC Corporation, all rights reserved.
  5. * Copyright 2005 Red Hat, Inc. All rights reserved.
  6. *
  7. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/pci.h>
  26. #include <linux/init.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/delay.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/sched.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/device.h>
  33. #include <scsi/scsi_host.h>
  34. #include <scsi/scsi_cmnd.h>
  35. #include <linux/libata.h>
  36. #include <asm/io.h>
  37. #define DRV_NAME "sata_mv"
  38. #define DRV_VERSION "0.6"
  39. enum {
  40. /* BAR's are enumerated in terms of pci_resource_start() terms */
  41. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  42. MV_IO_BAR = 2, /* offset 0x18: IO space */
  43. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  44. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  45. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  46. MV_PCI_REG_BASE = 0,
  47. MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
  48. MV_SATAHC0_REG_BASE = 0x20000,
  49. MV_FLASH_CTL = 0x1046c,
  50. MV_GPIO_PORT_CTL = 0x104f0,
  51. MV_RESET_CFG = 0x180d8,
  52. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  53. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  54. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  55. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  56. MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
  57. MV_MAX_Q_DEPTH = 32,
  58. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  59. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  60. * CRPB needs alignment on a 256B boundary. Size == 256B
  61. * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
  62. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  63. */
  64. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  65. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  66. MV_MAX_SG_CT = 176,
  67. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  68. MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
  69. MV_PORTS_PER_HC = 4,
  70. /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
  71. MV_PORT_HC_SHIFT = 2,
  72. /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
  73. MV_PORT_MASK = 3,
  74. /* Host Flags */
  75. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  76. MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
  77. MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  78. ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
  79. ATA_FLAG_NO_ATAPI),
  80. MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
  81. CRQB_FLAG_READ = (1 << 0),
  82. CRQB_TAG_SHIFT = 1,
  83. CRQB_CMD_ADDR_SHIFT = 8,
  84. CRQB_CMD_CS = (0x2 << 11),
  85. CRQB_CMD_LAST = (1 << 15),
  86. CRPB_FLAG_STATUS_SHIFT = 8,
  87. EPRD_FLAG_END_OF_TBL = (1 << 31),
  88. /* PCI interface registers */
  89. PCI_COMMAND_OFS = 0xc00,
  90. PCI_MAIN_CMD_STS_OFS = 0xd30,
  91. STOP_PCI_MASTER = (1 << 2),
  92. PCI_MASTER_EMPTY = (1 << 3),
  93. GLOB_SFT_RST = (1 << 4),
  94. MV_PCI_MODE = 0xd00,
  95. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  96. MV_PCI_DISC_TIMER = 0xd04,
  97. MV_PCI_MSI_TRIGGER = 0xc38,
  98. MV_PCI_SERR_MASK = 0xc28,
  99. MV_PCI_XBAR_TMOUT = 0x1d04,
  100. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  101. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  102. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  103. MV_PCI_ERR_COMMAND = 0x1d50,
  104. PCI_IRQ_CAUSE_OFS = 0x1d58,
  105. PCI_IRQ_MASK_OFS = 0x1d5c,
  106. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  107. HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  108. HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  109. PORT0_ERR = (1 << 0), /* shift by port # */
  110. PORT0_DONE = (1 << 1), /* shift by port # */
  111. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  112. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  113. PCI_ERR = (1 << 18),
  114. TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
  115. TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
  116. PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
  117. GPIO_INT = (1 << 22),
  118. SELF_INT = (1 << 23),
  119. TWSI_INT = (1 << 24),
  120. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  121. HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
  122. PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
  123. HC_MAIN_RSVD),
  124. /* SATAHC registers */
  125. HC_CFG_OFS = 0,
  126. HC_IRQ_CAUSE_OFS = 0x14,
  127. CRPB_DMA_DONE = (1 << 0), /* shift by port # */
  128. HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
  129. DEV_IRQ = (1 << 8), /* shift by port # */
  130. /* Shadow block registers */
  131. SHD_BLK_OFS = 0x100,
  132. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  133. /* SATA registers */
  134. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  135. SATA_ACTIVE_OFS = 0x350,
  136. PHY_MODE3 = 0x310,
  137. PHY_MODE4 = 0x314,
  138. PHY_MODE2 = 0x330,
  139. MV5_PHY_MODE = 0x74,
  140. MV5_LT_MODE = 0x30,
  141. MV5_PHY_CTL = 0x0C,
  142. SATA_INTERFACE_CTL = 0x050,
  143. MV_M2_PREAMP_MASK = 0x7e0,
  144. /* Port registers */
  145. EDMA_CFG_OFS = 0,
  146. EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
  147. EDMA_CFG_NCQ = (1 << 5),
  148. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  149. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  150. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  151. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  152. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  153. EDMA_ERR_D_PAR = (1 << 0),
  154. EDMA_ERR_PRD_PAR = (1 << 1),
  155. EDMA_ERR_DEV = (1 << 2),
  156. EDMA_ERR_DEV_DCON = (1 << 3),
  157. EDMA_ERR_DEV_CON = (1 << 4),
  158. EDMA_ERR_SERR = (1 << 5),
  159. EDMA_ERR_SELF_DIS = (1 << 7),
  160. EDMA_ERR_BIST_ASYNC = (1 << 8),
  161. EDMA_ERR_CRBQ_PAR = (1 << 9),
  162. EDMA_ERR_CRPB_PAR = (1 << 10),
  163. EDMA_ERR_INTRL_PAR = (1 << 11),
  164. EDMA_ERR_IORDY = (1 << 12),
  165. EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
  166. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
  167. EDMA_ERR_LNK_DATA_RX = (0xf << 17),
  168. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
  169. EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
  170. EDMA_ERR_TRANS_PROTO = (1 << 31),
  171. EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  172. EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
  173. EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
  174. EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
  175. EDMA_ERR_LNK_DATA_RX |
  176. EDMA_ERR_LNK_DATA_TX |
  177. EDMA_ERR_TRANS_PROTO),
  178. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  179. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  180. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  181. EDMA_REQ_Q_PTR_SHIFT = 5,
  182. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  183. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  184. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  185. EDMA_RSP_Q_PTR_SHIFT = 3,
  186. EDMA_CMD_OFS = 0x28,
  187. EDMA_EN = (1 << 0),
  188. EDMA_DS = (1 << 1),
  189. ATA_RST = (1 << 2),
  190. EDMA_IORDY_TMOUT = 0x34,
  191. EDMA_ARB_CFG = 0x38,
  192. /* Host private flags (hp_flags) */
  193. MV_HP_FLAG_MSI = (1 << 0),
  194. MV_HP_ERRATA_50XXB0 = (1 << 1),
  195. MV_HP_ERRATA_50XXB2 = (1 << 2),
  196. MV_HP_ERRATA_60X1B2 = (1 << 3),
  197. MV_HP_ERRATA_60X1C0 = (1 << 4),
  198. MV_HP_ERRATA_XX42A0 = (1 << 5),
  199. MV_HP_50XX = (1 << 6),
  200. MV_HP_GEN_IIE = (1 << 7),
  201. /* Port private flags (pp_flags) */
  202. MV_PP_FLAG_EDMA_EN = (1 << 0),
  203. MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
  204. };
  205. #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
  206. #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
  207. #define IS_GEN_I(hpriv) IS_50XX(hpriv)
  208. #define IS_GEN_II(hpriv) IS_60XX(hpriv)
  209. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  210. enum {
  211. /* Our DMA boundary is determined by an ePRD being unable to handle
  212. * anything larger than 64KB
  213. */
  214. MV_DMA_BOUNDARY = 0xffffU,
  215. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  216. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  217. };
  218. enum chip_type {
  219. chip_504x,
  220. chip_508x,
  221. chip_5080,
  222. chip_604x,
  223. chip_608x,
  224. chip_6042,
  225. chip_7042,
  226. };
  227. /* Command ReQuest Block: 32B */
  228. struct mv_crqb {
  229. u32 sg_addr;
  230. u32 sg_addr_hi;
  231. u16 ctrl_flags;
  232. u16 ata_cmd[11];
  233. };
  234. struct mv_crqb_iie {
  235. u32 addr;
  236. u32 addr_hi;
  237. u32 flags;
  238. u32 len;
  239. u32 ata_cmd[4];
  240. };
  241. /* Command ResPonse Block: 8B */
  242. struct mv_crpb {
  243. u16 id;
  244. u16 flags;
  245. u32 tmstmp;
  246. };
  247. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  248. struct mv_sg {
  249. u32 addr;
  250. u32 flags_size;
  251. u32 addr_hi;
  252. u32 reserved;
  253. };
  254. struct mv_port_priv {
  255. struct mv_crqb *crqb;
  256. dma_addr_t crqb_dma;
  257. struct mv_crpb *crpb;
  258. dma_addr_t crpb_dma;
  259. struct mv_sg *sg_tbl;
  260. dma_addr_t sg_tbl_dma;
  261. unsigned req_producer; /* cp of req_in_ptr */
  262. unsigned rsp_consumer; /* cp of rsp_out_ptr */
  263. u32 pp_flags;
  264. };
  265. struct mv_port_signal {
  266. u32 amps;
  267. u32 pre;
  268. };
  269. struct mv_host_priv;
  270. struct mv_hw_ops {
  271. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  272. unsigned int port);
  273. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  274. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  275. void __iomem *mmio);
  276. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  277. unsigned int n_hc);
  278. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  279. void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
  280. };
  281. struct mv_host_priv {
  282. u32 hp_flags;
  283. struct mv_port_signal signal[8];
  284. const struct mv_hw_ops *ops;
  285. };
  286. static void mv_irq_clear(struct ata_port *ap);
  287. static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
  288. static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
  289. static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
  290. static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
  291. static void mv_phy_reset(struct ata_port *ap);
  292. static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
  293. static void mv_host_stop(struct ata_host_set *host_set);
  294. static int mv_port_start(struct ata_port *ap);
  295. static void mv_port_stop(struct ata_port *ap);
  296. static void mv_qc_prep(struct ata_queued_cmd *qc);
  297. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  298. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  299. static irqreturn_t mv_interrupt(int irq, void *dev_instance,
  300. struct pt_regs *regs);
  301. static void mv_eng_timeout(struct ata_port *ap);
  302. static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
  303. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  304. unsigned int port);
  305. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  306. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  307. void __iomem *mmio);
  308. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  309. unsigned int n_hc);
  310. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  311. static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
  312. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  313. unsigned int port);
  314. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  315. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  316. void __iomem *mmio);
  317. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  318. unsigned int n_hc);
  319. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  320. static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
  321. static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
  322. unsigned int port_no);
  323. static void mv_stop_and_reset(struct ata_port *ap);
  324. static struct scsi_host_template mv_sht = {
  325. .module = THIS_MODULE,
  326. .name = DRV_NAME,
  327. .ioctl = ata_scsi_ioctl,
  328. .queuecommand = ata_scsi_queuecmd,
  329. .can_queue = MV_USE_Q_DEPTH,
  330. .this_id = ATA_SHT_THIS_ID,
  331. .sg_tablesize = MV_MAX_SG_CT / 2,
  332. .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
  333. .emulated = ATA_SHT_EMULATED,
  334. .use_clustering = ATA_SHT_USE_CLUSTERING,
  335. .proc_name = DRV_NAME,
  336. .dma_boundary = MV_DMA_BOUNDARY,
  337. .slave_configure = ata_scsi_slave_config,
  338. .bios_param = ata_std_bios_param,
  339. };
  340. static const struct ata_port_operations mv5_ops = {
  341. .port_disable = ata_port_disable,
  342. .tf_load = ata_tf_load,
  343. .tf_read = ata_tf_read,
  344. .check_status = ata_check_status,
  345. .exec_command = ata_exec_command,
  346. .dev_select = ata_std_dev_select,
  347. .phy_reset = mv_phy_reset,
  348. .qc_prep = mv_qc_prep,
  349. .qc_issue = mv_qc_issue,
  350. .eng_timeout = mv_eng_timeout,
  351. .irq_handler = mv_interrupt,
  352. .irq_clear = mv_irq_clear,
  353. .scr_read = mv5_scr_read,
  354. .scr_write = mv5_scr_write,
  355. .port_start = mv_port_start,
  356. .port_stop = mv_port_stop,
  357. .host_stop = mv_host_stop,
  358. };
  359. static const struct ata_port_operations mv6_ops = {
  360. .port_disable = ata_port_disable,
  361. .tf_load = ata_tf_load,
  362. .tf_read = ata_tf_read,
  363. .check_status = ata_check_status,
  364. .exec_command = ata_exec_command,
  365. .dev_select = ata_std_dev_select,
  366. .phy_reset = mv_phy_reset,
  367. .qc_prep = mv_qc_prep,
  368. .qc_issue = mv_qc_issue,
  369. .eng_timeout = mv_eng_timeout,
  370. .irq_handler = mv_interrupt,
  371. .irq_clear = mv_irq_clear,
  372. .scr_read = mv_scr_read,
  373. .scr_write = mv_scr_write,
  374. .port_start = mv_port_start,
  375. .port_stop = mv_port_stop,
  376. .host_stop = mv_host_stop,
  377. };
  378. static const struct ata_port_operations mv_iie_ops = {
  379. .port_disable = ata_port_disable,
  380. .tf_load = ata_tf_load,
  381. .tf_read = ata_tf_read,
  382. .check_status = ata_check_status,
  383. .exec_command = ata_exec_command,
  384. .dev_select = ata_std_dev_select,
  385. .phy_reset = mv_phy_reset,
  386. .qc_prep = mv_qc_prep_iie,
  387. .qc_issue = mv_qc_issue,
  388. .eng_timeout = mv_eng_timeout,
  389. .irq_handler = mv_interrupt,
  390. .irq_clear = mv_irq_clear,
  391. .scr_read = mv_scr_read,
  392. .scr_write = mv_scr_write,
  393. .port_start = mv_port_start,
  394. .port_stop = mv_port_stop,
  395. .host_stop = mv_host_stop,
  396. };
  397. static const struct ata_port_info mv_port_info[] = {
  398. { /* chip_504x */
  399. .sht = &mv_sht,
  400. .host_flags = MV_COMMON_FLAGS,
  401. .pio_mask = 0x1f, /* pio0-4 */
  402. .udma_mask = 0x7f, /* udma0-6 */
  403. .port_ops = &mv5_ops,
  404. },
  405. { /* chip_508x */
  406. .sht = &mv_sht,
  407. .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
  408. .pio_mask = 0x1f, /* pio0-4 */
  409. .udma_mask = 0x7f, /* udma0-6 */
  410. .port_ops = &mv5_ops,
  411. },
  412. { /* chip_5080 */
  413. .sht = &mv_sht,
  414. .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
  415. .pio_mask = 0x1f, /* pio0-4 */
  416. .udma_mask = 0x7f, /* udma0-6 */
  417. .port_ops = &mv5_ops,
  418. },
  419. { /* chip_604x */
  420. .sht = &mv_sht,
  421. .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
  422. .pio_mask = 0x1f, /* pio0-4 */
  423. .udma_mask = 0x7f, /* udma0-6 */
  424. .port_ops = &mv6_ops,
  425. },
  426. { /* chip_608x */
  427. .sht = &mv_sht,
  428. .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  429. MV_FLAG_DUAL_HC),
  430. .pio_mask = 0x1f, /* pio0-4 */
  431. .udma_mask = 0x7f, /* udma0-6 */
  432. .port_ops = &mv6_ops,
  433. },
  434. { /* chip_6042 */
  435. .sht = &mv_sht,
  436. .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
  437. .pio_mask = 0x1f, /* pio0-4 */
  438. .udma_mask = 0x7f, /* udma0-6 */
  439. .port_ops = &mv_iie_ops,
  440. },
  441. { /* chip_7042 */
  442. .sht = &mv_sht,
  443. .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  444. MV_FLAG_DUAL_HC),
  445. .pio_mask = 0x1f, /* pio0-4 */
  446. .udma_mask = 0x7f, /* udma0-6 */
  447. .port_ops = &mv_iie_ops,
  448. },
  449. };
  450. static const struct pci_device_id mv_pci_tbl[] = {
  451. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
  452. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
  453. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
  454. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
  455. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
  456. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
  457. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6042), 0, 0, chip_6042},
  458. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
  459. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
  460. {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
  461. {} /* terminate list */
  462. };
  463. static struct pci_driver mv_pci_driver = {
  464. .name = DRV_NAME,
  465. .id_table = mv_pci_tbl,
  466. .probe = mv_init_one,
  467. .remove = ata_pci_remove_one,
  468. };
  469. static const struct mv_hw_ops mv5xxx_ops = {
  470. .phy_errata = mv5_phy_errata,
  471. .enable_leds = mv5_enable_leds,
  472. .read_preamp = mv5_read_preamp,
  473. .reset_hc = mv5_reset_hc,
  474. .reset_flash = mv5_reset_flash,
  475. .reset_bus = mv5_reset_bus,
  476. };
  477. static const struct mv_hw_ops mv6xxx_ops = {
  478. .phy_errata = mv6_phy_errata,
  479. .enable_leds = mv6_enable_leds,
  480. .read_preamp = mv6_read_preamp,
  481. .reset_hc = mv6_reset_hc,
  482. .reset_flash = mv6_reset_flash,
  483. .reset_bus = mv_reset_pci_bus,
  484. };
  485. /*
  486. * module options
  487. */
  488. static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
  489. /*
  490. * Functions
  491. */
  492. static inline void writelfl(unsigned long data, void __iomem *addr)
  493. {
  494. writel(data, addr);
  495. (void) readl(addr); /* flush to avoid PCI posted write */
  496. }
  497. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  498. {
  499. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  500. }
  501. static inline unsigned int mv_hc_from_port(unsigned int port)
  502. {
  503. return port >> MV_PORT_HC_SHIFT;
  504. }
  505. static inline unsigned int mv_hardport_from_port(unsigned int port)
  506. {
  507. return port & MV_PORT_MASK;
  508. }
  509. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  510. unsigned int port)
  511. {
  512. return mv_hc_base(base, mv_hc_from_port(port));
  513. }
  514. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  515. {
  516. return mv_hc_base_from_port(base, port) +
  517. MV_SATAHC_ARBTR_REG_SZ +
  518. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  519. }
  520. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  521. {
  522. return mv_port_base(ap->host_set->mmio_base, ap->port_no);
  523. }
  524. static inline int mv_get_hc_count(unsigned long host_flags)
  525. {
  526. return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  527. }
  528. static void mv_irq_clear(struct ata_port *ap)
  529. {
  530. }
  531. /**
  532. * mv_start_dma - Enable eDMA engine
  533. * @base: port base address
  534. * @pp: port private data
  535. *
  536. * Verify the local cache of the eDMA state is accurate with a
  537. * WARN_ON.
  538. *
  539. * LOCKING:
  540. * Inherited from caller.
  541. */
  542. static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
  543. {
  544. if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
  545. writelfl(EDMA_EN, base + EDMA_CMD_OFS);
  546. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  547. }
  548. WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
  549. }
  550. /**
  551. * mv_stop_dma - Disable eDMA engine
  552. * @ap: ATA channel to manipulate
  553. *
  554. * Verify the local cache of the eDMA state is accurate with a
  555. * WARN_ON.
  556. *
  557. * LOCKING:
  558. * Inherited from caller.
  559. */
  560. static void mv_stop_dma(struct ata_port *ap)
  561. {
  562. void __iomem *port_mmio = mv_ap_base(ap);
  563. struct mv_port_priv *pp = ap->private_data;
  564. u32 reg;
  565. int i;
  566. if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
  567. /* Disable EDMA if active. The disable bit auto clears.
  568. */
  569. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  570. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  571. } else {
  572. WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
  573. }
  574. /* now properly wait for the eDMA to stop */
  575. for (i = 1000; i > 0; i--) {
  576. reg = readl(port_mmio + EDMA_CMD_OFS);
  577. if (!(EDMA_EN & reg)) {
  578. break;
  579. }
  580. udelay(100);
  581. }
  582. if (EDMA_EN & reg) {
  583. printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
  584. /* FIXME: Consider doing a reset here to recover */
  585. }
  586. }
  587. #ifdef ATA_DEBUG
  588. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  589. {
  590. int b, w;
  591. for (b = 0; b < bytes; ) {
  592. DPRINTK("%p: ", start + b);
  593. for (w = 0; b < bytes && w < 4; w++) {
  594. printk("%08x ",readl(start + b));
  595. b += sizeof(u32);
  596. }
  597. printk("\n");
  598. }
  599. }
  600. #endif
  601. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  602. {
  603. #ifdef ATA_DEBUG
  604. int b, w;
  605. u32 dw;
  606. for (b = 0; b < bytes; ) {
  607. DPRINTK("%02x: ", b);
  608. for (w = 0; b < bytes && w < 4; w++) {
  609. (void) pci_read_config_dword(pdev,b,&dw);
  610. printk("%08x ",dw);
  611. b += sizeof(u32);
  612. }
  613. printk("\n");
  614. }
  615. #endif
  616. }
  617. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  618. struct pci_dev *pdev)
  619. {
  620. #ifdef ATA_DEBUG
  621. void __iomem *hc_base = mv_hc_base(mmio_base,
  622. port >> MV_PORT_HC_SHIFT);
  623. void __iomem *port_base;
  624. int start_port, num_ports, p, start_hc, num_hcs, hc;
  625. if (0 > port) {
  626. start_hc = start_port = 0;
  627. num_ports = 8; /* shld be benign for 4 port devs */
  628. num_hcs = 2;
  629. } else {
  630. start_hc = port >> MV_PORT_HC_SHIFT;
  631. start_port = port;
  632. num_ports = num_hcs = 1;
  633. }
  634. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  635. num_ports > 1 ? num_ports - 1 : start_port);
  636. if (NULL != pdev) {
  637. DPRINTK("PCI config space regs:\n");
  638. mv_dump_pci_cfg(pdev, 0x68);
  639. }
  640. DPRINTK("PCI regs:\n");
  641. mv_dump_mem(mmio_base+0xc00, 0x3c);
  642. mv_dump_mem(mmio_base+0xd00, 0x34);
  643. mv_dump_mem(mmio_base+0xf00, 0x4);
  644. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  645. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  646. hc_base = mv_hc_base(mmio_base, hc);
  647. DPRINTK("HC regs (HC %i):\n", hc);
  648. mv_dump_mem(hc_base, 0x1c);
  649. }
  650. for (p = start_port; p < start_port + num_ports; p++) {
  651. port_base = mv_port_base(mmio_base, p);
  652. DPRINTK("EDMA regs (port %i):\n",p);
  653. mv_dump_mem(port_base, 0x54);
  654. DPRINTK("SATA regs (port %i):\n",p);
  655. mv_dump_mem(port_base+0x300, 0x60);
  656. }
  657. #endif
  658. }
  659. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  660. {
  661. unsigned int ofs;
  662. switch (sc_reg_in) {
  663. case SCR_STATUS:
  664. case SCR_CONTROL:
  665. case SCR_ERROR:
  666. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  667. break;
  668. case SCR_ACTIVE:
  669. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  670. break;
  671. default:
  672. ofs = 0xffffffffU;
  673. break;
  674. }
  675. return ofs;
  676. }
  677. static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
  678. {
  679. unsigned int ofs = mv_scr_offset(sc_reg_in);
  680. if (0xffffffffU != ofs) {
  681. return readl(mv_ap_base(ap) + ofs);
  682. } else {
  683. return (u32) ofs;
  684. }
  685. }
  686. static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
  687. {
  688. unsigned int ofs = mv_scr_offset(sc_reg_in);
  689. if (0xffffffffU != ofs) {
  690. writelfl(val, mv_ap_base(ap) + ofs);
  691. }
  692. }
  693. /**
  694. * mv_host_stop - Host specific cleanup/stop routine.
  695. * @host_set: host data structure
  696. *
  697. * Disable ints, cleanup host memory, call general purpose
  698. * host_stop.
  699. *
  700. * LOCKING:
  701. * Inherited from caller.
  702. */
  703. static void mv_host_stop(struct ata_host_set *host_set)
  704. {
  705. struct mv_host_priv *hpriv = host_set->private_data;
  706. struct pci_dev *pdev = to_pci_dev(host_set->dev);
  707. if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
  708. pci_disable_msi(pdev);
  709. } else {
  710. pci_intx(pdev, 0);
  711. }
  712. kfree(hpriv);
  713. ata_host_stop(host_set);
  714. }
  715. static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
  716. {
  717. dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
  718. }
  719. static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
  720. {
  721. u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
  722. /* set up non-NCQ EDMA configuration */
  723. cfg &= ~0x1f; /* clear queue depth */
  724. cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
  725. cfg &= ~(1 << 9); /* disable equeue */
  726. if (IS_GEN_I(hpriv))
  727. cfg |= (1 << 8); /* enab config burst size mask */
  728. else if (IS_GEN_II(hpriv))
  729. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  730. else if (IS_GEN_IIE(hpriv)) {
  731. cfg |= (1 << 23); /* dis RX PM port mask */
  732. cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
  733. cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
  734. cfg |= (1 << 18); /* enab early completion */
  735. cfg |= (1 << 17); /* enab host q cache */
  736. cfg |= (1 << 22); /* enab cutthrough */
  737. }
  738. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  739. }
  740. /**
  741. * mv_port_start - Port specific init/start routine.
  742. * @ap: ATA channel to manipulate
  743. *
  744. * Allocate and point to DMA memory, init port private memory,
  745. * zero indices.
  746. *
  747. * LOCKING:
  748. * Inherited from caller.
  749. */
  750. static int mv_port_start(struct ata_port *ap)
  751. {
  752. struct device *dev = ap->host_set->dev;
  753. struct mv_host_priv *hpriv = ap->host_set->private_data;
  754. struct mv_port_priv *pp;
  755. void __iomem *port_mmio = mv_ap_base(ap);
  756. void *mem;
  757. dma_addr_t mem_dma;
  758. int rc = -ENOMEM;
  759. pp = kmalloc(sizeof(*pp), GFP_KERNEL);
  760. if (!pp)
  761. goto err_out;
  762. memset(pp, 0, sizeof(*pp));
  763. mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
  764. GFP_KERNEL);
  765. if (!mem)
  766. goto err_out_pp;
  767. memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
  768. rc = ata_pad_alloc(ap, dev);
  769. if (rc)
  770. goto err_out_priv;
  771. /* First item in chunk of DMA memory:
  772. * 32-slot command request table (CRQB), 32 bytes each in size
  773. */
  774. pp->crqb = mem;
  775. pp->crqb_dma = mem_dma;
  776. mem += MV_CRQB_Q_SZ;
  777. mem_dma += MV_CRQB_Q_SZ;
  778. /* Second item:
  779. * 32-slot command response table (CRPB), 8 bytes each in size
  780. */
  781. pp->crpb = mem;
  782. pp->crpb_dma = mem_dma;
  783. mem += MV_CRPB_Q_SZ;
  784. mem_dma += MV_CRPB_Q_SZ;
  785. /* Third item:
  786. * Table of scatter-gather descriptors (ePRD), 16 bytes each
  787. */
  788. pp->sg_tbl = mem;
  789. pp->sg_tbl_dma = mem_dma;
  790. mv_edma_cfg(hpriv, port_mmio);
  791. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  792. writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
  793. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  794. if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
  795. writelfl(pp->crqb_dma & 0xffffffff,
  796. port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  797. else
  798. writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  799. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  800. if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
  801. writelfl(pp->crpb_dma & 0xffffffff,
  802. port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  803. else
  804. writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  805. writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
  806. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  807. pp->req_producer = pp->rsp_consumer = 0;
  808. /* Don't turn on EDMA here...do it before DMA commands only. Else
  809. * we'll be unable to send non-data, PIO, etc due to restricted access
  810. * to shadow regs.
  811. */
  812. ap->private_data = pp;
  813. return 0;
  814. err_out_priv:
  815. mv_priv_free(pp, dev);
  816. err_out_pp:
  817. kfree(pp);
  818. err_out:
  819. return rc;
  820. }
  821. /**
  822. * mv_port_stop - Port specific cleanup/stop routine.
  823. * @ap: ATA channel to manipulate
  824. *
  825. * Stop DMA, cleanup port memory.
  826. *
  827. * LOCKING:
  828. * This routine uses the host_set lock to protect the DMA stop.
  829. */
  830. static void mv_port_stop(struct ata_port *ap)
  831. {
  832. struct device *dev = ap->host_set->dev;
  833. struct mv_port_priv *pp = ap->private_data;
  834. unsigned long flags;
  835. spin_lock_irqsave(&ap->host_set->lock, flags);
  836. mv_stop_dma(ap);
  837. spin_unlock_irqrestore(&ap->host_set->lock, flags);
  838. ap->private_data = NULL;
  839. ata_pad_free(ap, dev);
  840. mv_priv_free(pp, dev);
  841. kfree(pp);
  842. }
  843. /**
  844. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  845. * @qc: queued command whose SG list to source from
  846. *
  847. * Populate the SG list and mark the last entry.
  848. *
  849. * LOCKING:
  850. * Inherited from caller.
  851. */
  852. static void mv_fill_sg(struct ata_queued_cmd *qc)
  853. {
  854. struct mv_port_priv *pp = qc->ap->private_data;
  855. unsigned int i = 0;
  856. struct scatterlist *sg;
  857. ata_for_each_sg(sg, qc) {
  858. dma_addr_t addr;
  859. u32 sg_len, len, offset;
  860. addr = sg_dma_address(sg);
  861. sg_len = sg_dma_len(sg);
  862. while (sg_len) {
  863. offset = addr & MV_DMA_BOUNDARY;
  864. len = sg_len;
  865. if ((offset + sg_len) > 0x10000)
  866. len = 0x10000 - offset;
  867. pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
  868. pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
  869. pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
  870. sg_len -= len;
  871. addr += len;
  872. if (!sg_len && ata_sg_is_last(sg, qc))
  873. pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  874. i++;
  875. }
  876. }
  877. }
  878. static inline unsigned mv_inc_q_index(unsigned *index)
  879. {
  880. *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
  881. return *index;
  882. }
  883. static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
  884. {
  885. *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  886. (last ? CRQB_CMD_LAST : 0);
  887. }
  888. /**
  889. * mv_qc_prep - Host specific command preparation.
  890. * @qc: queued command to prepare
  891. *
  892. * This routine simply redirects to the general purpose routine
  893. * if command is not DMA. Else, it handles prep of the CRQB
  894. * (command request block), does some sanity checking, and calls
  895. * the SG load routine.
  896. *
  897. * LOCKING:
  898. * Inherited from caller.
  899. */
  900. static void mv_qc_prep(struct ata_queued_cmd *qc)
  901. {
  902. struct ata_port *ap = qc->ap;
  903. struct mv_port_priv *pp = ap->private_data;
  904. u16 *cw;
  905. struct ata_taskfile *tf;
  906. u16 flags = 0;
  907. if (ATA_PROT_DMA != qc->tf.protocol)
  908. return;
  909. /* the req producer index should be the same as we remember it */
  910. WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
  911. EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
  912. pp->req_producer);
  913. /* Fill in command request block
  914. */
  915. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  916. flags |= CRQB_FLAG_READ;
  917. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  918. flags |= qc->tag << CRQB_TAG_SHIFT;
  919. pp->crqb[pp->req_producer].sg_addr =
  920. cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
  921. pp->crqb[pp->req_producer].sg_addr_hi =
  922. cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
  923. pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
  924. cw = &pp->crqb[pp->req_producer].ata_cmd[0];
  925. tf = &qc->tf;
  926. /* Sadly, the CRQB cannot accomodate all registers--there are
  927. * only 11 bytes...so we must pick and choose required
  928. * registers based on the command. So, we drop feature and
  929. * hob_feature for [RW] DMA commands, but they are needed for
  930. * NCQ. NCQ will drop hob_nsect.
  931. */
  932. switch (tf->command) {
  933. case ATA_CMD_READ:
  934. case ATA_CMD_READ_EXT:
  935. case ATA_CMD_WRITE:
  936. case ATA_CMD_WRITE_EXT:
  937. case ATA_CMD_WRITE_FUA_EXT:
  938. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  939. break;
  940. #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
  941. case ATA_CMD_FPDMA_READ:
  942. case ATA_CMD_FPDMA_WRITE:
  943. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  944. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  945. break;
  946. #endif /* FIXME: remove this line when NCQ added */
  947. default:
  948. /* The only other commands EDMA supports in non-queued and
  949. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  950. * of which are defined/used by Linux. If we get here, this
  951. * driver needs work.
  952. *
  953. * FIXME: modify libata to give qc_prep a return value and
  954. * return error here.
  955. */
  956. BUG_ON(tf->command);
  957. break;
  958. }
  959. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  960. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  961. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  962. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  963. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  964. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  965. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  966. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  967. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  968. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  969. return;
  970. mv_fill_sg(qc);
  971. }
  972. /**
  973. * mv_qc_prep_iie - Host specific command preparation.
  974. * @qc: queued command to prepare
  975. *
  976. * This routine simply redirects to the general purpose routine
  977. * if command is not DMA. Else, it handles prep of the CRQB
  978. * (command request block), does some sanity checking, and calls
  979. * the SG load routine.
  980. *
  981. * LOCKING:
  982. * Inherited from caller.
  983. */
  984. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  985. {
  986. struct ata_port *ap = qc->ap;
  987. struct mv_port_priv *pp = ap->private_data;
  988. struct mv_crqb_iie *crqb;
  989. struct ata_taskfile *tf;
  990. u32 flags = 0;
  991. if (ATA_PROT_DMA != qc->tf.protocol)
  992. return;
  993. /* the req producer index should be the same as we remember it */
  994. WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
  995. EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
  996. pp->req_producer);
  997. /* Fill in Gen IIE command request block
  998. */
  999. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1000. flags |= CRQB_FLAG_READ;
  1001. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1002. flags |= qc->tag << CRQB_TAG_SHIFT;
  1003. crqb = (struct mv_crqb_iie *) &pp->crqb[pp->req_producer];
  1004. crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
  1005. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
  1006. crqb->flags = cpu_to_le32(flags);
  1007. tf = &qc->tf;
  1008. crqb->ata_cmd[0] = cpu_to_le32(
  1009. (tf->command << 16) |
  1010. (tf->feature << 24)
  1011. );
  1012. crqb->ata_cmd[1] = cpu_to_le32(
  1013. (tf->lbal << 0) |
  1014. (tf->lbam << 8) |
  1015. (tf->lbah << 16) |
  1016. (tf->device << 24)
  1017. );
  1018. crqb->ata_cmd[2] = cpu_to_le32(
  1019. (tf->hob_lbal << 0) |
  1020. (tf->hob_lbam << 8) |
  1021. (tf->hob_lbah << 16) |
  1022. (tf->hob_feature << 24)
  1023. );
  1024. crqb->ata_cmd[3] = cpu_to_le32(
  1025. (tf->nsect << 0) |
  1026. (tf->hob_nsect << 8)
  1027. );
  1028. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1029. return;
  1030. mv_fill_sg(qc);
  1031. }
  1032. /**
  1033. * mv_qc_issue - Initiate a command to the host
  1034. * @qc: queued command to start
  1035. *
  1036. * This routine simply redirects to the general purpose routine
  1037. * if command is not DMA. Else, it sanity checks our local
  1038. * caches of the request producer/consumer indices then enables
  1039. * DMA and bumps the request producer index.
  1040. *
  1041. * LOCKING:
  1042. * Inherited from caller.
  1043. */
  1044. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1045. {
  1046. void __iomem *port_mmio = mv_ap_base(qc->ap);
  1047. struct mv_port_priv *pp = qc->ap->private_data;
  1048. u32 in_ptr;
  1049. if (ATA_PROT_DMA != qc->tf.protocol) {
  1050. /* We're about to send a non-EDMA capable command to the
  1051. * port. Turn off EDMA so there won't be problems accessing
  1052. * shadow block, etc registers.
  1053. */
  1054. mv_stop_dma(qc->ap);
  1055. return ata_qc_issue_prot(qc);
  1056. }
  1057. in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1058. /* the req producer index should be the same as we remember it */
  1059. WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
  1060. pp->req_producer);
  1061. /* until we do queuing, the queue should be empty at this point */
  1062. WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
  1063. ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
  1064. EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
  1065. mv_inc_q_index(&pp->req_producer); /* now incr producer index */
  1066. mv_start_dma(port_mmio, pp);
  1067. /* and write the request in pointer to kick the EDMA to life */
  1068. in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
  1069. in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
  1070. writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1071. return 0;
  1072. }
  1073. /**
  1074. * mv_get_crpb_status - get status from most recently completed cmd
  1075. * @ap: ATA channel to manipulate
  1076. *
  1077. * This routine is for use when the port is in DMA mode, when it
  1078. * will be using the CRPB (command response block) method of
  1079. * returning command completion information. We check indices
  1080. * are good, grab status, and bump the response consumer index to
  1081. * prove that we're up to date.
  1082. *
  1083. * LOCKING:
  1084. * Inherited from caller.
  1085. */
  1086. static u8 mv_get_crpb_status(struct ata_port *ap)
  1087. {
  1088. void __iomem *port_mmio = mv_ap_base(ap);
  1089. struct mv_port_priv *pp = ap->private_data;
  1090. u32 out_ptr;
  1091. u8 ata_status;
  1092. out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  1093. /* the response consumer index should be the same as we remember it */
  1094. WARN_ON(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
  1095. pp->rsp_consumer);
  1096. ata_status = pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT;
  1097. /* increment our consumer index... */
  1098. pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
  1099. /* and, until we do NCQ, there should only be 1 CRPB waiting */
  1100. WARN_ON(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
  1101. EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
  1102. pp->rsp_consumer);
  1103. /* write out our inc'd consumer index so EDMA knows we're caught up */
  1104. out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
  1105. out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
  1106. writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  1107. /* Return ATA status register for completed CRPB */
  1108. return ata_status;
  1109. }
  1110. /**
  1111. * mv_err_intr - Handle error interrupts on the port
  1112. * @ap: ATA channel to manipulate
  1113. *
  1114. * In most cases, just clear the interrupt and move on. However,
  1115. * some cases require an eDMA reset, which is done right before
  1116. * the COMRESET in mv_phy_reset(). The SERR case requires a
  1117. * clear of pending errors in the SATA SERROR register. Finally,
  1118. * if the port disabled DMA, update our cached copy to match.
  1119. *
  1120. * LOCKING:
  1121. * Inherited from caller.
  1122. */
  1123. static void mv_err_intr(struct ata_port *ap)
  1124. {
  1125. void __iomem *port_mmio = mv_ap_base(ap);
  1126. u32 edma_err_cause, serr = 0;
  1127. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1128. if (EDMA_ERR_SERR & edma_err_cause) {
  1129. serr = scr_read(ap, SCR_ERROR);
  1130. scr_write_flush(ap, SCR_ERROR, serr);
  1131. }
  1132. if (EDMA_ERR_SELF_DIS & edma_err_cause) {
  1133. struct mv_port_priv *pp = ap->private_data;
  1134. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1135. }
  1136. DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
  1137. "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
  1138. /* Clear EDMA now that SERR cleanup done */
  1139. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1140. /* check for fatal here and recover if needed */
  1141. if (EDMA_ERR_FATAL & edma_err_cause) {
  1142. mv_stop_and_reset(ap);
  1143. }
  1144. }
  1145. /**
  1146. * mv_host_intr - Handle all interrupts on the given host controller
  1147. * @host_set: host specific structure
  1148. * @relevant: port error bits relevant to this host controller
  1149. * @hc: which host controller we're to look at
  1150. *
  1151. * Read then write clear the HC interrupt status then walk each
  1152. * port connected to the HC and see if it needs servicing. Port
  1153. * success ints are reported in the HC interrupt status reg, the
  1154. * port error ints are reported in the higher level main
  1155. * interrupt status register and thus are passed in via the
  1156. * 'relevant' argument.
  1157. *
  1158. * LOCKING:
  1159. * Inherited from caller.
  1160. */
  1161. static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
  1162. unsigned int hc)
  1163. {
  1164. void __iomem *mmio = host_set->mmio_base;
  1165. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1166. struct ata_queued_cmd *qc;
  1167. u32 hc_irq_cause;
  1168. int shift, port, port0, hard_port, handled;
  1169. unsigned int err_mask;
  1170. if (hc == 0) {
  1171. port0 = 0;
  1172. } else {
  1173. port0 = MV_PORTS_PER_HC;
  1174. }
  1175. /* we'll need the HC success int register in most cases */
  1176. hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
  1177. if (hc_irq_cause) {
  1178. writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  1179. }
  1180. VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
  1181. hc,relevant,hc_irq_cause);
  1182. for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
  1183. u8 ata_status = 0;
  1184. struct ata_port *ap = host_set->ports[port];
  1185. struct mv_port_priv *pp = ap->private_data;
  1186. hard_port = port & MV_PORT_MASK; /* range 0-3 */
  1187. handled = 0; /* ensure ata_status is set if handled++ */
  1188. /* Note that DEV_IRQ might happen spuriously during EDMA,
  1189. * and should be ignored in such cases. We could mask it,
  1190. * but it's pretty rare and may not be worth the overhead.
  1191. */
  1192. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  1193. /* EDMA: check for response queue interrupt */
  1194. if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
  1195. ata_status = mv_get_crpb_status(ap);
  1196. handled = 1;
  1197. }
  1198. } else {
  1199. /* PIO: check for device (drive) interrupt */
  1200. if ((DEV_IRQ << hard_port) & hc_irq_cause) {
  1201. ata_status = readb((void __iomem *)
  1202. ap->ioaddr.status_addr);
  1203. handled = 1;
  1204. }
  1205. }
  1206. if (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))
  1207. continue;
  1208. err_mask = ac_err_mask(ata_status);
  1209. shift = port << 1; /* (port * 2) */
  1210. if (port >= MV_PORTS_PER_HC) {
  1211. shift++; /* skip bit 8 in the HC Main IRQ reg */
  1212. }
  1213. if ((PORT0_ERR << shift) & relevant) {
  1214. mv_err_intr(ap);
  1215. err_mask |= AC_ERR_OTHER;
  1216. handled = 1;
  1217. }
  1218. if (handled) {
  1219. qc = ata_qc_from_tag(ap, ap->active_tag);
  1220. if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
  1221. VPRINTK("port %u IRQ found for qc, "
  1222. "ata_status 0x%x\n", port,ata_status);
  1223. /* mark qc status appropriately */
  1224. if (!(qc->tf.ctl & ATA_NIEN)) {
  1225. qc->err_mask |= err_mask;
  1226. ata_qc_complete(qc);
  1227. }
  1228. }
  1229. }
  1230. }
  1231. VPRINTK("EXIT\n");
  1232. }
  1233. /**
  1234. * mv_interrupt -
  1235. * @irq: unused
  1236. * @dev_instance: private data; in this case the host structure
  1237. * @regs: unused
  1238. *
  1239. * Read the read only register to determine if any host
  1240. * controllers have pending interrupts. If so, call lower level
  1241. * routine to handle. Also check for PCI errors which are only
  1242. * reported here.
  1243. *
  1244. * LOCKING:
  1245. * This routine holds the host_set lock while processing pending
  1246. * interrupts.
  1247. */
  1248. static irqreturn_t mv_interrupt(int irq, void *dev_instance,
  1249. struct pt_regs *regs)
  1250. {
  1251. struct ata_host_set *host_set = dev_instance;
  1252. unsigned int hc, handled = 0, n_hcs;
  1253. void __iomem *mmio = host_set->mmio_base;
  1254. u32 irq_stat;
  1255. irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
  1256. /* check the cases where we either have nothing pending or have read
  1257. * a bogus register value which can indicate HW removal or PCI fault
  1258. */
  1259. if (!irq_stat || (0xffffffffU == irq_stat)) {
  1260. return IRQ_NONE;
  1261. }
  1262. n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
  1263. spin_lock(&host_set->lock);
  1264. for (hc = 0; hc < n_hcs; hc++) {
  1265. u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
  1266. if (relevant) {
  1267. mv_host_intr(host_set, relevant, hc);
  1268. handled++;
  1269. }
  1270. }
  1271. if (PCI_ERR & irq_stat) {
  1272. printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
  1273. readl(mmio + PCI_IRQ_CAUSE_OFS));
  1274. DPRINTK("All regs @ PCI error\n");
  1275. mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
  1276. writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
  1277. handled++;
  1278. }
  1279. spin_unlock(&host_set->lock);
  1280. return IRQ_RETVAL(handled);
  1281. }
  1282. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  1283. {
  1284. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  1285. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  1286. return hc_mmio + ofs;
  1287. }
  1288. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  1289. {
  1290. unsigned int ofs;
  1291. switch (sc_reg_in) {
  1292. case SCR_STATUS:
  1293. case SCR_ERROR:
  1294. case SCR_CONTROL:
  1295. ofs = sc_reg_in * sizeof(u32);
  1296. break;
  1297. default:
  1298. ofs = 0xffffffffU;
  1299. break;
  1300. }
  1301. return ofs;
  1302. }
  1303. static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
  1304. {
  1305. void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
  1306. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1307. if (ofs != 0xffffffffU)
  1308. return readl(mmio + ofs);
  1309. else
  1310. return (u32) ofs;
  1311. }
  1312. static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
  1313. {
  1314. void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
  1315. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1316. if (ofs != 0xffffffffU)
  1317. writelfl(val, mmio + ofs);
  1318. }
  1319. static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
  1320. {
  1321. u8 rev_id;
  1322. int early_5080;
  1323. pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
  1324. early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
  1325. if (!early_5080) {
  1326. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1327. tmp |= (1 << 0);
  1328. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1329. }
  1330. mv_reset_pci_bus(pdev, mmio);
  1331. }
  1332. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  1333. {
  1334. writel(0x0fcfffff, mmio + MV_FLASH_CTL);
  1335. }
  1336. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  1337. void __iomem *mmio)
  1338. {
  1339. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  1340. u32 tmp;
  1341. tmp = readl(phy_mmio + MV5_PHY_MODE);
  1342. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  1343. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  1344. }
  1345. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  1346. {
  1347. u32 tmp;
  1348. writel(0, mmio + MV_GPIO_PORT_CTL);
  1349. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  1350. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1351. tmp |= ~(1 << 0);
  1352. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1353. }
  1354. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  1355. unsigned int port)
  1356. {
  1357. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  1358. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  1359. u32 tmp;
  1360. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  1361. if (fix_apm_sq) {
  1362. tmp = readl(phy_mmio + MV5_LT_MODE);
  1363. tmp |= (1 << 19);
  1364. writel(tmp, phy_mmio + MV5_LT_MODE);
  1365. tmp = readl(phy_mmio + MV5_PHY_CTL);
  1366. tmp &= ~0x3;
  1367. tmp |= 0x1;
  1368. writel(tmp, phy_mmio + MV5_PHY_CTL);
  1369. }
  1370. tmp = readl(phy_mmio + MV5_PHY_MODE);
  1371. tmp &= ~mask;
  1372. tmp |= hpriv->signal[port].pre;
  1373. tmp |= hpriv->signal[port].amps;
  1374. writel(tmp, phy_mmio + MV5_PHY_MODE);
  1375. }
  1376. #undef ZERO
  1377. #define ZERO(reg) writel(0, port_mmio + (reg))
  1378. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  1379. unsigned int port)
  1380. {
  1381. void __iomem *port_mmio = mv_port_base(mmio, port);
  1382. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  1383. mv_channel_reset(hpriv, mmio, port);
  1384. ZERO(0x028); /* command */
  1385. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  1386. ZERO(0x004); /* timer */
  1387. ZERO(0x008); /* irq err cause */
  1388. ZERO(0x00c); /* irq err mask */
  1389. ZERO(0x010); /* rq bah */
  1390. ZERO(0x014); /* rq inp */
  1391. ZERO(0x018); /* rq outp */
  1392. ZERO(0x01c); /* respq bah */
  1393. ZERO(0x024); /* respq outp */
  1394. ZERO(0x020); /* respq inp */
  1395. ZERO(0x02c); /* test control */
  1396. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  1397. }
  1398. #undef ZERO
  1399. #define ZERO(reg) writel(0, hc_mmio + (reg))
  1400. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1401. unsigned int hc)
  1402. {
  1403. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1404. u32 tmp;
  1405. ZERO(0x00c);
  1406. ZERO(0x010);
  1407. ZERO(0x014);
  1408. ZERO(0x018);
  1409. tmp = readl(hc_mmio + 0x20);
  1410. tmp &= 0x1c1c1c1c;
  1411. tmp |= 0x03030303;
  1412. writel(tmp, hc_mmio + 0x20);
  1413. }
  1414. #undef ZERO
  1415. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1416. unsigned int n_hc)
  1417. {
  1418. unsigned int hc, port;
  1419. for (hc = 0; hc < n_hc; hc++) {
  1420. for (port = 0; port < MV_PORTS_PER_HC; port++)
  1421. mv5_reset_hc_port(hpriv, mmio,
  1422. (hc * MV_PORTS_PER_HC) + port);
  1423. mv5_reset_one_hc(hpriv, mmio, hc);
  1424. }
  1425. return 0;
  1426. }
  1427. #undef ZERO
  1428. #define ZERO(reg) writel(0, mmio + (reg))
  1429. static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
  1430. {
  1431. u32 tmp;
  1432. tmp = readl(mmio + MV_PCI_MODE);
  1433. tmp &= 0xff00ffff;
  1434. writel(tmp, mmio + MV_PCI_MODE);
  1435. ZERO(MV_PCI_DISC_TIMER);
  1436. ZERO(MV_PCI_MSI_TRIGGER);
  1437. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  1438. ZERO(HC_MAIN_IRQ_MASK_OFS);
  1439. ZERO(MV_PCI_SERR_MASK);
  1440. ZERO(PCI_IRQ_CAUSE_OFS);
  1441. ZERO(PCI_IRQ_MASK_OFS);
  1442. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  1443. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  1444. ZERO(MV_PCI_ERR_ATTRIBUTE);
  1445. ZERO(MV_PCI_ERR_COMMAND);
  1446. }
  1447. #undef ZERO
  1448. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  1449. {
  1450. u32 tmp;
  1451. mv5_reset_flash(hpriv, mmio);
  1452. tmp = readl(mmio + MV_GPIO_PORT_CTL);
  1453. tmp &= 0x3;
  1454. tmp |= (1 << 5) | (1 << 6);
  1455. writel(tmp, mmio + MV_GPIO_PORT_CTL);
  1456. }
  1457. /**
  1458. * mv6_reset_hc - Perform the 6xxx global soft reset
  1459. * @mmio: base address of the HBA
  1460. *
  1461. * This routine only applies to 6xxx parts.
  1462. *
  1463. * LOCKING:
  1464. * Inherited from caller.
  1465. */
  1466. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1467. unsigned int n_hc)
  1468. {
  1469. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  1470. int i, rc = 0;
  1471. u32 t;
  1472. /* Following procedure defined in PCI "main command and status
  1473. * register" table.
  1474. */
  1475. t = readl(reg);
  1476. writel(t | STOP_PCI_MASTER, reg);
  1477. for (i = 0; i < 1000; i++) {
  1478. udelay(1);
  1479. t = readl(reg);
  1480. if (PCI_MASTER_EMPTY & t) {
  1481. break;
  1482. }
  1483. }
  1484. if (!(PCI_MASTER_EMPTY & t)) {
  1485. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  1486. rc = 1;
  1487. goto done;
  1488. }
  1489. /* set reset */
  1490. i = 5;
  1491. do {
  1492. writel(t | GLOB_SFT_RST, reg);
  1493. t = readl(reg);
  1494. udelay(1);
  1495. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  1496. if (!(GLOB_SFT_RST & t)) {
  1497. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  1498. rc = 1;
  1499. goto done;
  1500. }
  1501. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  1502. i = 5;
  1503. do {
  1504. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  1505. t = readl(reg);
  1506. udelay(1);
  1507. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  1508. if (GLOB_SFT_RST & t) {
  1509. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  1510. rc = 1;
  1511. }
  1512. done:
  1513. return rc;
  1514. }
  1515. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  1516. void __iomem *mmio)
  1517. {
  1518. void __iomem *port_mmio;
  1519. u32 tmp;
  1520. tmp = readl(mmio + MV_RESET_CFG);
  1521. if ((tmp & (1 << 0)) == 0) {
  1522. hpriv->signal[idx].amps = 0x7 << 8;
  1523. hpriv->signal[idx].pre = 0x1 << 5;
  1524. return;
  1525. }
  1526. port_mmio = mv_port_base(mmio, idx);
  1527. tmp = readl(port_mmio + PHY_MODE2);
  1528. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  1529. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  1530. }
  1531. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  1532. {
  1533. writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
  1534. }
  1535. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  1536. unsigned int port)
  1537. {
  1538. void __iomem *port_mmio = mv_port_base(mmio, port);
  1539. u32 hp_flags = hpriv->hp_flags;
  1540. int fix_phy_mode2 =
  1541. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  1542. int fix_phy_mode4 =
  1543. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  1544. u32 m2, tmp;
  1545. if (fix_phy_mode2) {
  1546. m2 = readl(port_mmio + PHY_MODE2);
  1547. m2 &= ~(1 << 16);
  1548. m2 |= (1 << 31);
  1549. writel(m2, port_mmio + PHY_MODE2);
  1550. udelay(200);
  1551. m2 = readl(port_mmio + PHY_MODE2);
  1552. m2 &= ~((1 << 16) | (1 << 31));
  1553. writel(m2, port_mmio + PHY_MODE2);
  1554. udelay(200);
  1555. }
  1556. /* who knows what this magic does */
  1557. tmp = readl(port_mmio + PHY_MODE3);
  1558. tmp &= ~0x7F800000;
  1559. tmp |= 0x2A800000;
  1560. writel(tmp, port_mmio + PHY_MODE3);
  1561. if (fix_phy_mode4) {
  1562. u32 m4;
  1563. m4 = readl(port_mmio + PHY_MODE4);
  1564. if (hp_flags & MV_HP_ERRATA_60X1B2)
  1565. tmp = readl(port_mmio + 0x310);
  1566. m4 = (m4 & ~(1 << 1)) | (1 << 0);
  1567. writel(m4, port_mmio + PHY_MODE4);
  1568. if (hp_flags & MV_HP_ERRATA_60X1B2)
  1569. writel(tmp, port_mmio + 0x310);
  1570. }
  1571. /* Revert values of pre-emphasis and signal amps to the saved ones */
  1572. m2 = readl(port_mmio + PHY_MODE2);
  1573. m2 &= ~MV_M2_PREAMP_MASK;
  1574. m2 |= hpriv->signal[port].amps;
  1575. m2 |= hpriv->signal[port].pre;
  1576. m2 &= ~(1 << 16);
  1577. /* according to mvSata 3.6.1, some IIE values are fixed */
  1578. if (IS_GEN_IIE(hpriv)) {
  1579. m2 &= ~0xC30FF01F;
  1580. m2 |= 0x0000900F;
  1581. }
  1582. writel(m2, port_mmio + PHY_MODE2);
  1583. }
  1584. static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
  1585. unsigned int port_no)
  1586. {
  1587. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  1588. writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
  1589. if (IS_60XX(hpriv)) {
  1590. u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
  1591. ifctl |= (1 << 12) | (1 << 7);
  1592. writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
  1593. }
  1594. udelay(25); /* allow reset propagation */
  1595. /* Spec never mentions clearing the bit. Marvell's driver does
  1596. * clear the bit, however.
  1597. */
  1598. writelfl(0, port_mmio + EDMA_CMD_OFS);
  1599. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  1600. if (IS_50XX(hpriv))
  1601. mdelay(1);
  1602. }
  1603. static void mv_stop_and_reset(struct ata_port *ap)
  1604. {
  1605. struct mv_host_priv *hpriv = ap->host_set->private_data;
  1606. void __iomem *mmio = ap->host_set->mmio_base;
  1607. mv_stop_dma(ap);
  1608. mv_channel_reset(hpriv, mmio, ap->port_no);
  1609. __mv_phy_reset(ap, 0);
  1610. }
  1611. static inline void __msleep(unsigned int msec, int can_sleep)
  1612. {
  1613. if (can_sleep)
  1614. msleep(msec);
  1615. else
  1616. mdelay(msec);
  1617. }
  1618. /**
  1619. * __mv_phy_reset - Perform eDMA reset followed by COMRESET
  1620. * @ap: ATA channel to manipulate
  1621. *
  1622. * Part of this is taken from __sata_phy_reset and modified to
  1623. * not sleep since this routine gets called from interrupt level.
  1624. *
  1625. * LOCKING:
  1626. * Inherited from caller. This is coded to safe to call at
  1627. * interrupt level, i.e. it does not sleep.
  1628. */
  1629. static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
  1630. {
  1631. struct mv_port_priv *pp = ap->private_data;
  1632. struct mv_host_priv *hpriv = ap->host_set->private_data;
  1633. void __iomem *port_mmio = mv_ap_base(ap);
  1634. struct ata_taskfile tf;
  1635. struct ata_device *dev = &ap->device[0];
  1636. unsigned long timeout;
  1637. int retry = 5;
  1638. u32 sstatus;
  1639. VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
  1640. DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
  1641. "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
  1642. mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
  1643. /* Issue COMRESET via SControl */
  1644. comreset_retry:
  1645. scr_write_flush(ap, SCR_CONTROL, 0x301);
  1646. __msleep(1, can_sleep);
  1647. scr_write_flush(ap, SCR_CONTROL, 0x300);
  1648. __msleep(20, can_sleep);
  1649. timeout = jiffies + msecs_to_jiffies(200);
  1650. do {
  1651. sstatus = scr_read(ap, SCR_STATUS) & 0x3;
  1652. if ((sstatus == 3) || (sstatus == 0))
  1653. break;
  1654. __msleep(1, can_sleep);
  1655. } while (time_before(jiffies, timeout));
  1656. /* work around errata */
  1657. if (IS_60XX(hpriv) &&
  1658. (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
  1659. (retry-- > 0))
  1660. goto comreset_retry;
  1661. DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
  1662. "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
  1663. mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
  1664. if (sata_dev_present(ap)) {
  1665. ata_port_probe(ap);
  1666. } else {
  1667. printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
  1668. ap->id, scr_read(ap, SCR_STATUS));
  1669. ata_port_disable(ap);
  1670. return;
  1671. }
  1672. ap->cbl = ATA_CBL_SATA;
  1673. /* even after SStatus reflects that device is ready,
  1674. * it seems to take a while for link to be fully
  1675. * established (and thus Status no longer 0x80/0x7F),
  1676. * so we poll a bit for that, here.
  1677. */
  1678. retry = 20;
  1679. while (1) {
  1680. u8 drv_stat = ata_check_status(ap);
  1681. if ((drv_stat != 0x80) && (drv_stat != 0x7f))
  1682. break;
  1683. __msleep(500, can_sleep);
  1684. if (retry-- <= 0)
  1685. break;
  1686. }
  1687. tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
  1688. tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
  1689. tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
  1690. tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
  1691. dev->class = ata_dev_classify(&tf);
  1692. if (!ata_dev_present(dev)) {
  1693. VPRINTK("Port disabled post-sig: No device present.\n");
  1694. ata_port_disable(ap);
  1695. }
  1696. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1697. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1698. VPRINTK("EXIT\n");
  1699. }
  1700. static void mv_phy_reset(struct ata_port *ap)
  1701. {
  1702. __mv_phy_reset(ap, 1);
  1703. }
  1704. /**
  1705. * mv_eng_timeout - Routine called by libata when SCSI times out I/O
  1706. * @ap: ATA channel to manipulate
  1707. *
  1708. * Intent is to clear all pending error conditions, reset the
  1709. * chip/bus, fail the command, and move on.
  1710. *
  1711. * LOCKING:
  1712. * This routine holds the host_set lock while failing the command.
  1713. */
  1714. static void mv_eng_timeout(struct ata_port *ap)
  1715. {
  1716. struct ata_queued_cmd *qc;
  1717. printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
  1718. DPRINTK("All regs @ start of eng_timeout\n");
  1719. mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
  1720. to_pci_dev(ap->host_set->dev));
  1721. qc = ata_qc_from_tag(ap, ap->active_tag);
  1722. printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
  1723. ap->host_set->mmio_base, ap, qc, qc->scsicmd,
  1724. &qc->scsicmd->cmnd);
  1725. mv_err_intr(ap);
  1726. mv_stop_and_reset(ap);
  1727. qc->err_mask |= AC_ERR_TIMEOUT;
  1728. ata_eh_qc_complete(qc);
  1729. }
  1730. /**
  1731. * mv_port_init - Perform some early initialization on a single port.
  1732. * @port: libata data structure storing shadow register addresses
  1733. * @port_mmio: base address of the port
  1734. *
  1735. * Initialize shadow register mmio addresses, clear outstanding
  1736. * interrupts on the port, and unmask interrupts for the future
  1737. * start of the port.
  1738. *
  1739. * LOCKING:
  1740. * Inherited from caller.
  1741. */
  1742. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  1743. {
  1744. unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
  1745. unsigned serr_ofs;
  1746. /* PIO related setup
  1747. */
  1748. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  1749. port->error_addr =
  1750. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  1751. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  1752. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  1753. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  1754. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  1755. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  1756. port->status_addr =
  1757. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  1758. /* special case: control/altstatus doesn't have ATA_REG_ address */
  1759. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  1760. /* unused: */
  1761. port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
  1762. /* Clear any currently outstanding port interrupt conditions */
  1763. serr_ofs = mv_scr_offset(SCR_ERROR);
  1764. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  1765. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1766. /* unmask all EDMA error interrupts */
  1767. writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  1768. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  1769. readl(port_mmio + EDMA_CFG_OFS),
  1770. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  1771. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  1772. }
  1773. static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
  1774. unsigned int board_idx)
  1775. {
  1776. u8 rev_id;
  1777. u32 hp_flags = hpriv->hp_flags;
  1778. pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
  1779. switch(board_idx) {
  1780. case chip_5080:
  1781. hpriv->ops = &mv5xxx_ops;
  1782. hp_flags |= MV_HP_50XX;
  1783. switch (rev_id) {
  1784. case 0x1:
  1785. hp_flags |= MV_HP_ERRATA_50XXB0;
  1786. break;
  1787. case 0x3:
  1788. hp_flags |= MV_HP_ERRATA_50XXB2;
  1789. break;
  1790. default:
  1791. dev_printk(KERN_WARNING, &pdev->dev,
  1792. "Applying 50XXB2 workarounds to unknown rev\n");
  1793. hp_flags |= MV_HP_ERRATA_50XXB2;
  1794. break;
  1795. }
  1796. break;
  1797. case chip_504x:
  1798. case chip_508x:
  1799. hpriv->ops = &mv5xxx_ops;
  1800. hp_flags |= MV_HP_50XX;
  1801. switch (rev_id) {
  1802. case 0x0:
  1803. hp_flags |= MV_HP_ERRATA_50XXB0;
  1804. break;
  1805. case 0x3:
  1806. hp_flags |= MV_HP_ERRATA_50XXB2;
  1807. break;
  1808. default:
  1809. dev_printk(KERN_WARNING, &pdev->dev,
  1810. "Applying B2 workarounds to unknown rev\n");
  1811. hp_flags |= MV_HP_ERRATA_50XXB2;
  1812. break;
  1813. }
  1814. break;
  1815. case chip_604x:
  1816. case chip_608x:
  1817. hpriv->ops = &mv6xxx_ops;
  1818. switch (rev_id) {
  1819. case 0x7:
  1820. hp_flags |= MV_HP_ERRATA_60X1B2;
  1821. break;
  1822. case 0x9:
  1823. hp_flags |= MV_HP_ERRATA_60X1C0;
  1824. break;
  1825. default:
  1826. dev_printk(KERN_WARNING, &pdev->dev,
  1827. "Applying B2 workarounds to unknown rev\n");
  1828. hp_flags |= MV_HP_ERRATA_60X1B2;
  1829. break;
  1830. }
  1831. break;
  1832. case chip_7042:
  1833. case chip_6042:
  1834. hpriv->ops = &mv6xxx_ops;
  1835. hp_flags |= MV_HP_GEN_IIE;
  1836. switch (rev_id) {
  1837. case 0x0:
  1838. hp_flags |= MV_HP_ERRATA_XX42A0;
  1839. break;
  1840. case 0x1:
  1841. hp_flags |= MV_HP_ERRATA_60X1C0;
  1842. break;
  1843. default:
  1844. dev_printk(KERN_WARNING, &pdev->dev,
  1845. "Applying 60X1C0 workarounds to unknown rev\n");
  1846. hp_flags |= MV_HP_ERRATA_60X1C0;
  1847. break;
  1848. }
  1849. break;
  1850. default:
  1851. printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
  1852. return 1;
  1853. }
  1854. hpriv->hp_flags = hp_flags;
  1855. return 0;
  1856. }
  1857. /**
  1858. * mv_init_host - Perform some early initialization of the host.
  1859. * @pdev: host PCI device
  1860. * @probe_ent: early data struct representing the host
  1861. *
  1862. * If possible, do an early global reset of the host. Then do
  1863. * our port init and clear/unmask all/relevant host interrupts.
  1864. *
  1865. * LOCKING:
  1866. * Inherited from caller.
  1867. */
  1868. static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
  1869. unsigned int board_idx)
  1870. {
  1871. int rc = 0, n_hc, port, hc;
  1872. void __iomem *mmio = probe_ent->mmio_base;
  1873. struct mv_host_priv *hpriv = probe_ent->private_data;
  1874. /* global interrupt mask */
  1875. writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
  1876. rc = mv_chip_id(pdev, hpriv, board_idx);
  1877. if (rc)
  1878. goto done;
  1879. n_hc = mv_get_hc_count(probe_ent->host_flags);
  1880. probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
  1881. for (port = 0; port < probe_ent->n_ports; port++)
  1882. hpriv->ops->read_preamp(hpriv, port, mmio);
  1883. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  1884. if (rc)
  1885. goto done;
  1886. hpriv->ops->reset_flash(hpriv, mmio);
  1887. hpriv->ops->reset_bus(pdev, mmio);
  1888. hpriv->ops->enable_leds(hpriv, mmio);
  1889. for (port = 0; port < probe_ent->n_ports; port++) {
  1890. if (IS_60XX(hpriv)) {
  1891. void __iomem *port_mmio = mv_port_base(mmio, port);
  1892. u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
  1893. ifctl |= (1 << 12);
  1894. writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
  1895. }
  1896. hpriv->ops->phy_errata(hpriv, mmio, port);
  1897. }
  1898. for (port = 0; port < probe_ent->n_ports; port++) {
  1899. void __iomem *port_mmio = mv_port_base(mmio, port);
  1900. mv_port_init(&probe_ent->port[port], port_mmio);
  1901. }
  1902. for (hc = 0; hc < n_hc; hc++) {
  1903. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1904. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  1905. "(before clear)=0x%08x\n", hc,
  1906. readl(hc_mmio + HC_CFG_OFS),
  1907. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  1908. /* Clear any currently outstanding hc interrupt conditions */
  1909. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  1910. }
  1911. /* Clear any currently outstanding host interrupt conditions */
  1912. writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
  1913. /* and unmask interrupt generation for host regs */
  1914. writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
  1915. writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
  1916. VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
  1917. "PCI int cause/mask=0x%08x/0x%08x\n",
  1918. readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
  1919. readl(mmio + HC_MAIN_IRQ_MASK_OFS),
  1920. readl(mmio + PCI_IRQ_CAUSE_OFS),
  1921. readl(mmio + PCI_IRQ_MASK_OFS));
  1922. done:
  1923. return rc;
  1924. }
  1925. /**
  1926. * mv_print_info - Dump key info to kernel log for perusal.
  1927. * @probe_ent: early data struct representing the host
  1928. *
  1929. * FIXME: complete this.
  1930. *
  1931. * LOCKING:
  1932. * Inherited from caller.
  1933. */
  1934. static void mv_print_info(struct ata_probe_ent *probe_ent)
  1935. {
  1936. struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
  1937. struct mv_host_priv *hpriv = probe_ent->private_data;
  1938. u8 rev_id, scc;
  1939. const char *scc_s;
  1940. /* Use this to determine the HW stepping of the chip so we know
  1941. * what errata to workaround
  1942. */
  1943. pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
  1944. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  1945. if (scc == 0)
  1946. scc_s = "SCSI";
  1947. else if (scc == 0x01)
  1948. scc_s = "RAID";
  1949. else
  1950. scc_s = "unknown";
  1951. dev_printk(KERN_INFO, &pdev->dev,
  1952. "%u slots %u ports %s mode IRQ via %s\n",
  1953. (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
  1954. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  1955. }
  1956. /**
  1957. * mv_init_one - handle a positive probe of a Marvell host
  1958. * @pdev: PCI device found
  1959. * @ent: PCI device ID entry for the matched host
  1960. *
  1961. * LOCKING:
  1962. * Inherited from caller.
  1963. */
  1964. static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  1965. {
  1966. static int printed_version = 0;
  1967. struct ata_probe_ent *probe_ent = NULL;
  1968. struct mv_host_priv *hpriv;
  1969. unsigned int board_idx = (unsigned int)ent->driver_data;
  1970. void __iomem *mmio_base;
  1971. int pci_dev_busy = 0, rc;
  1972. if (!printed_version++)
  1973. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  1974. rc = pci_enable_device(pdev);
  1975. if (rc) {
  1976. return rc;
  1977. }
  1978. rc = pci_request_regions(pdev, DRV_NAME);
  1979. if (rc) {
  1980. pci_dev_busy = 1;
  1981. goto err_out;
  1982. }
  1983. probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
  1984. if (probe_ent == NULL) {
  1985. rc = -ENOMEM;
  1986. goto err_out_regions;
  1987. }
  1988. memset(probe_ent, 0, sizeof(*probe_ent));
  1989. probe_ent->dev = pci_dev_to_dev(pdev);
  1990. INIT_LIST_HEAD(&probe_ent->node);
  1991. mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
  1992. if (mmio_base == NULL) {
  1993. rc = -ENOMEM;
  1994. goto err_out_free_ent;
  1995. }
  1996. hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
  1997. if (!hpriv) {
  1998. rc = -ENOMEM;
  1999. goto err_out_iounmap;
  2000. }
  2001. memset(hpriv, 0, sizeof(*hpriv));
  2002. probe_ent->sht = mv_port_info[board_idx].sht;
  2003. probe_ent->host_flags = mv_port_info[board_idx].host_flags;
  2004. probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
  2005. probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
  2006. probe_ent->port_ops = mv_port_info[board_idx].port_ops;
  2007. probe_ent->irq = pdev->irq;
  2008. probe_ent->irq_flags = SA_SHIRQ;
  2009. probe_ent->mmio_base = mmio_base;
  2010. probe_ent->private_data = hpriv;
  2011. /* initialize adapter */
  2012. rc = mv_init_host(pdev, probe_ent, board_idx);
  2013. if (rc) {
  2014. goto err_out_hpriv;
  2015. }
  2016. /* Enable interrupts */
  2017. if (msi && pci_enable_msi(pdev) == 0) {
  2018. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  2019. } else {
  2020. pci_intx(pdev, 1);
  2021. }
  2022. mv_dump_pci_cfg(pdev, 0x68);
  2023. mv_print_info(probe_ent);
  2024. if (ata_device_add(probe_ent) == 0) {
  2025. rc = -ENODEV; /* No devices discovered */
  2026. goto err_out_dev_add;
  2027. }
  2028. kfree(probe_ent);
  2029. return 0;
  2030. err_out_dev_add:
  2031. if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
  2032. pci_disable_msi(pdev);
  2033. } else {
  2034. pci_intx(pdev, 0);
  2035. }
  2036. err_out_hpriv:
  2037. kfree(hpriv);
  2038. err_out_iounmap:
  2039. pci_iounmap(pdev, mmio_base);
  2040. err_out_free_ent:
  2041. kfree(probe_ent);
  2042. err_out_regions:
  2043. pci_release_regions(pdev);
  2044. err_out:
  2045. if (!pci_dev_busy) {
  2046. pci_disable_device(pdev);
  2047. }
  2048. return rc;
  2049. }
  2050. static int __init mv_init(void)
  2051. {
  2052. return pci_module_init(&mv_pci_driver);
  2053. }
  2054. static void __exit mv_exit(void)
  2055. {
  2056. pci_unregister_driver(&mv_pci_driver);
  2057. }
  2058. MODULE_AUTHOR("Brett Russ");
  2059. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  2060. MODULE_LICENSE("GPL");
  2061. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  2062. MODULE_VERSION(DRV_VERSION);
  2063. module_param(msi, int, 0444);
  2064. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  2065. module_init(mv_init);
  2066. module_exit(mv_exit);