bcm43xx_main.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973
  1. /*
  2. Broadcom BCM43xx wireless driver
  3. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  4. Stefano Brivio <st3@riseup.net>
  5. Michael Buesch <mbuesch@freenet.de>
  6. Danny van Dyk <kugelfang@gentoo.org>
  7. Andreas Jaggi <andreas.jaggi@waterwave.ch>
  8. Some parts of the code in this file are derived from the ipw2200
  9. driver Copyright(c) 2003 - 2004 Intel Corporation.
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; see the file COPYING. If not, write to
  20. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  21. Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/version.h>
  29. #include <linux/firmware.h>
  30. #include <linux/wireless.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/dma-mapping.h>
  34. #include <net/iw_handler.h>
  35. #include "bcm43xx.h"
  36. #include "bcm43xx_main.h"
  37. #include "bcm43xx_debugfs.h"
  38. #include "bcm43xx_radio.h"
  39. #include "bcm43xx_phy.h"
  40. #include "bcm43xx_dma.h"
  41. #include "bcm43xx_pio.h"
  42. #include "bcm43xx_power.h"
  43. #include "bcm43xx_wx.h"
  44. #include "bcm43xx_ethtool.h"
  45. #include "bcm43xx_xmit.h"
  46. MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
  47. MODULE_AUTHOR("Martin Langer");
  48. MODULE_AUTHOR("Stefano Brivio");
  49. MODULE_AUTHOR("Michael Buesch");
  50. MODULE_LICENSE("GPL");
  51. #ifdef CONFIG_BCM947XX
  52. extern char *nvram_get(char *name);
  53. #endif
  54. #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
  55. static int modparam_pio;
  56. module_param_named(pio, modparam_pio, int, 0444);
  57. MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
  58. #elif defined(CONFIG_BCM43XX_DMA)
  59. # define modparam_pio 0
  60. #elif defined(CONFIG_BCM43XX_PIO)
  61. # define modparam_pio 1
  62. #endif
  63. static int modparam_bad_frames_preempt;
  64. module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
  65. MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
  66. static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
  67. module_param_named(short_retry, modparam_short_retry, int, 0444);
  68. MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
  69. static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
  70. module_param_named(long_retry, modparam_long_retry, int, 0444);
  71. MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
  72. static int modparam_locale = -1;
  73. module_param_named(locale, modparam_locale, int, 0444);
  74. MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
  75. static int modparam_noleds;
  76. module_param_named(noleds, modparam_noleds, int, 0444);
  77. MODULE_PARM_DESC(noleds, "Turn off all LED activity");
  78. #ifdef CONFIG_BCM43XX_DEBUG
  79. static char modparam_fwpostfix[64];
  80. module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
  81. MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging.");
  82. #else
  83. # define modparam_fwpostfix ""
  84. #endif /* CONFIG_BCM43XX_DEBUG*/
  85. /* If you want to debug with just a single device, enable this,
  86. * where the string is the pci device ID (as given by the kernel's
  87. * pci_name function) of the device to be used.
  88. */
  89. //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
  90. /* If you want to enable printing of each MMIO access, enable this. */
  91. //#define DEBUG_ENABLE_MMIO_PRINT
  92. /* If you want to enable printing of MMIO access within
  93. * ucode/pcm upload, initvals write, enable this.
  94. */
  95. //#define DEBUG_ENABLE_UCODE_MMIO_PRINT
  96. /* If you want to enable printing of PCI Config Space access, enable this */
  97. //#define DEBUG_ENABLE_PCILOG
  98. /* Detailed list maintained at:
  99. * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
  100. */
  101. static struct pci_device_id bcm43xx_pci_tbl[] = {
  102. /* Broadcom 4303 802.11b */
  103. { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  104. /* Broadcom 4307 802.11b */
  105. { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  106. /* Broadcom 4318 802.11b/g */
  107. { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  108. /* Broadcom 4306 802.11b/g */
  109. { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  110. /* Broadcom 4306 802.11a */
  111. // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  112. /* Broadcom 4309 802.11a/b/g */
  113. { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  114. /* Broadcom 43XG 802.11b/g */
  115. { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  116. #ifdef CONFIG_BCM947XX
  117. /* SB bus on BCM947xx */
  118. { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  119. #endif
  120. { 0 },
  121. };
  122. MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
  123. static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
  124. {
  125. u32 status;
  126. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  127. if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
  128. val = swab32(val);
  129. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
  130. mmiowb();
  131. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
  132. }
  133. static inline
  134. void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
  135. u16 routing, u16 offset)
  136. {
  137. u32 control;
  138. /* "offset" is the WORD offset. */
  139. control = routing;
  140. control <<= 16;
  141. control |= offset;
  142. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
  143. }
  144. u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
  145. u16 routing, u16 offset)
  146. {
  147. u32 ret;
  148. if (routing == BCM43xx_SHM_SHARED) {
  149. if (offset & 0x0003) {
  150. /* Unaligned access */
  151. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  152. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  153. ret <<= 16;
  154. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  155. ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  156. return ret;
  157. }
  158. offset >>= 2;
  159. }
  160. bcm43xx_shm_control_word(bcm, routing, offset);
  161. ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
  162. return ret;
  163. }
  164. u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
  165. u16 routing, u16 offset)
  166. {
  167. u16 ret;
  168. if (routing == BCM43xx_SHM_SHARED) {
  169. if (offset & 0x0003) {
  170. /* Unaligned access */
  171. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  172. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  173. return ret;
  174. }
  175. offset >>= 2;
  176. }
  177. bcm43xx_shm_control_word(bcm, routing, offset);
  178. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  179. return ret;
  180. }
  181. void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
  182. u16 routing, u16 offset,
  183. u32 value)
  184. {
  185. if (routing == BCM43xx_SHM_SHARED) {
  186. if (offset & 0x0003) {
  187. /* Unaligned access */
  188. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  189. mmiowb();
  190. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  191. (value >> 16) & 0xffff);
  192. mmiowb();
  193. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  194. mmiowb();
  195. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
  196. value & 0xffff);
  197. return;
  198. }
  199. offset >>= 2;
  200. }
  201. bcm43xx_shm_control_word(bcm, routing, offset);
  202. mmiowb();
  203. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
  204. }
  205. void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
  206. u16 routing, u16 offset,
  207. u16 value)
  208. {
  209. if (routing == BCM43xx_SHM_SHARED) {
  210. if (offset & 0x0003) {
  211. /* Unaligned access */
  212. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  213. mmiowb();
  214. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  215. value);
  216. return;
  217. }
  218. offset >>= 2;
  219. }
  220. bcm43xx_shm_control_word(bcm, routing, offset);
  221. mmiowb();
  222. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
  223. }
  224. void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
  225. {
  226. /* We need to be careful. As we read the TSF from multiple
  227. * registers, we should take care of register overflows.
  228. * In theory, the whole tsf read process should be atomic.
  229. * We try to be atomic here, by restaring the read process,
  230. * if any of the high registers changed (overflew).
  231. */
  232. if (bcm->current_core->rev >= 3) {
  233. u32 low, high, high2;
  234. do {
  235. high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  236. low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
  237. high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  238. } while (unlikely(high != high2));
  239. *tsf = high;
  240. *tsf <<= 32;
  241. *tsf |= low;
  242. } else {
  243. u64 tmp;
  244. u16 v0, v1, v2, v3;
  245. u16 test1, test2, test3;
  246. do {
  247. v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  248. v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  249. v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  250. v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
  251. test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  252. test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  253. test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  254. } while (v3 != test3 || v2 != test2 || v1 != test1);
  255. *tsf = v3;
  256. *tsf <<= 48;
  257. tmp = v2;
  258. tmp <<= 32;
  259. *tsf |= tmp;
  260. tmp = v1;
  261. tmp <<= 16;
  262. *tsf |= tmp;
  263. *tsf |= v0;
  264. }
  265. }
  266. void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
  267. {
  268. u32 status;
  269. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  270. status |= BCM43xx_SBF_TIME_UPDATE;
  271. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  272. mmiowb();
  273. /* Be careful with the in-progress timer.
  274. * First zero out the low register, so we have a full
  275. * register-overflow duration to complete the operation.
  276. */
  277. if (bcm->current_core->rev >= 3) {
  278. u32 lo = (tsf & 0x00000000FFFFFFFFULL);
  279. u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
  280. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
  281. mmiowb();
  282. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
  283. mmiowb();
  284. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
  285. } else {
  286. u16 v0 = (tsf & 0x000000000000FFFFULL);
  287. u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
  288. u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
  289. u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
  290. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
  291. mmiowb();
  292. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
  293. mmiowb();
  294. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
  295. mmiowb();
  296. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
  297. mmiowb();
  298. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
  299. }
  300. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  301. status &= ~BCM43xx_SBF_TIME_UPDATE;
  302. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  303. }
  304. static
  305. void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
  306. u16 offset,
  307. const u8 *mac)
  308. {
  309. u16 data;
  310. offset |= 0x0020;
  311. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
  312. data = mac[0];
  313. data |= mac[1] << 8;
  314. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  315. data = mac[2];
  316. data |= mac[3] << 8;
  317. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  318. data = mac[4];
  319. data |= mac[5] << 8;
  320. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  321. }
  322. static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
  323. u16 offset)
  324. {
  325. const u8 zero_addr[ETH_ALEN] = { 0 };
  326. bcm43xx_macfilter_set(bcm, offset, zero_addr);
  327. }
  328. static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
  329. {
  330. const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
  331. const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
  332. u8 mac_bssid[ETH_ALEN * 2];
  333. int i;
  334. memcpy(mac_bssid, mac, ETH_ALEN);
  335. memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
  336. /* Write our MAC address and BSSID to template ram */
  337. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  338. bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
  339. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  340. bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
  341. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  342. bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
  343. }
  344. //FIXME: Well, we should probably call them from somewhere.
  345. #if 0
  346. static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
  347. {
  348. /* slot_time is in usec. */
  349. if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
  350. return;
  351. bcm43xx_write16(bcm, 0x684, 510 + slot_time);
  352. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
  353. }
  354. static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
  355. {
  356. bcm43xx_set_slot_time(bcm, 9);
  357. }
  358. static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
  359. {
  360. bcm43xx_set_slot_time(bcm, 20);
  361. }
  362. #endif
  363. /* FIXME: To get the MAC-filter working, we need to implement the
  364. * following functions (and rename them :)
  365. */
  366. #if 0
  367. static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
  368. {
  369. bcm43xx_mac_suspend(bcm);
  370. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  371. bcm43xx_ram_write(bcm, 0x0026, 0x0000);
  372. bcm43xx_ram_write(bcm, 0x0028, 0x0000);
  373. bcm43xx_ram_write(bcm, 0x007E, 0x0000);
  374. bcm43xx_ram_write(bcm, 0x0080, 0x0000);
  375. bcm43xx_ram_write(bcm, 0x047E, 0x0000);
  376. bcm43xx_ram_write(bcm, 0x0480, 0x0000);
  377. if (bcm->current_core->rev < 3) {
  378. bcm43xx_write16(bcm, 0x0610, 0x8000);
  379. bcm43xx_write16(bcm, 0x060E, 0x0000);
  380. } else
  381. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  382. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  383. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
  384. ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
  385. bcm43xx_short_slot_timing_enable(bcm);
  386. bcm43xx_mac_enable(bcm);
  387. }
  388. static void bcm43xx_associate(struct bcm43xx_private *bcm,
  389. const u8 *mac)
  390. {
  391. memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
  392. bcm43xx_mac_suspend(bcm);
  393. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
  394. bcm43xx_write_mac_bssid_templates(bcm);
  395. bcm43xx_mac_enable(bcm);
  396. }
  397. #endif
  398. /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
  399. * Returns the _previously_ enabled IRQ mask.
  400. */
  401. static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
  402. {
  403. u32 old_mask;
  404. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  405. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
  406. return old_mask;
  407. }
  408. /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
  409. * Returns the _previously_ enabled IRQ mask.
  410. */
  411. static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
  412. {
  413. u32 old_mask;
  414. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  415. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
  416. return old_mask;
  417. }
  418. /* Make sure we don't receive more data from the device. */
  419. static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm, u32 *oldstate)
  420. {
  421. u32 old;
  422. unsigned long flags;
  423. bcm43xx_lock_mmio(bcm, flags);
  424. if (bcm43xx_is_initializing(bcm) || bcm->shutting_down) {
  425. bcm43xx_unlock_mmio(bcm, flags);
  426. return -EBUSY;
  427. }
  428. old = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  429. tasklet_disable(&bcm->isr_tasklet);
  430. bcm43xx_unlock_mmio(bcm, flags);
  431. if (oldstate)
  432. *oldstate = old;
  433. return 0;
  434. }
  435. static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
  436. {
  437. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  438. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  439. u32 radio_id;
  440. u16 manufact;
  441. u16 version;
  442. u8 revision;
  443. s8 i;
  444. if (bcm->chip_id == 0x4317) {
  445. if (bcm->chip_rev == 0x00)
  446. radio_id = 0x3205017F;
  447. else if (bcm->chip_rev == 0x01)
  448. radio_id = 0x4205017F;
  449. else
  450. radio_id = 0x5205017F;
  451. } else {
  452. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  453. radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
  454. radio_id <<= 16;
  455. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  456. radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
  457. }
  458. manufact = (radio_id & 0x00000FFF);
  459. version = (radio_id & 0x0FFFF000) >> 12;
  460. revision = (radio_id & 0xF0000000) >> 28;
  461. dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
  462. radio_id, manufact, version, revision);
  463. switch (phy->type) {
  464. case BCM43xx_PHYTYPE_A:
  465. if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
  466. goto err_unsupported_radio;
  467. break;
  468. case BCM43xx_PHYTYPE_B:
  469. if ((version & 0xFFF0) != 0x2050)
  470. goto err_unsupported_radio;
  471. break;
  472. case BCM43xx_PHYTYPE_G:
  473. if (version != 0x2050)
  474. goto err_unsupported_radio;
  475. break;
  476. }
  477. radio->manufact = manufact;
  478. radio->version = version;
  479. radio->revision = revision;
  480. /* Set default attenuation values. */
  481. radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
  482. radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
  483. radio->txctl1 = bcm43xx_default_txctl1(bcm);
  484. radio->txctl2 = 0xFFFF;
  485. if (phy->type == BCM43xx_PHYTYPE_A)
  486. radio->txpower_desired = bcm->sprom.maxpower_aphy;
  487. else
  488. radio->txpower_desired = bcm->sprom.maxpower_bgphy;
  489. /* Initialize the in-memory nrssi Lookup Table. */
  490. for (i = 0; i < 64; i++)
  491. radio->nrssi_lt[i] = i;
  492. return 0;
  493. err_unsupported_radio:
  494. printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
  495. return -ENODEV;
  496. }
  497. static const char * bcm43xx_locale_iso(u8 locale)
  498. {
  499. /* ISO 3166-1 country codes.
  500. * Note that there aren't ISO 3166-1 codes for
  501. * all or locales. (Not all locales are countries)
  502. */
  503. switch (locale) {
  504. case BCM43xx_LOCALE_WORLD:
  505. case BCM43xx_LOCALE_ALL:
  506. return "XX";
  507. case BCM43xx_LOCALE_THAILAND:
  508. return "TH";
  509. case BCM43xx_LOCALE_ISRAEL:
  510. return "IL";
  511. case BCM43xx_LOCALE_JORDAN:
  512. return "JO";
  513. case BCM43xx_LOCALE_CHINA:
  514. return "CN";
  515. case BCM43xx_LOCALE_JAPAN:
  516. case BCM43xx_LOCALE_JAPAN_HIGH:
  517. return "JP";
  518. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  519. case BCM43xx_LOCALE_USA_LOW:
  520. return "US";
  521. case BCM43xx_LOCALE_EUROPE:
  522. return "EU";
  523. case BCM43xx_LOCALE_NONE:
  524. return " ";
  525. }
  526. assert(0);
  527. return " ";
  528. }
  529. static const char * bcm43xx_locale_string(u8 locale)
  530. {
  531. switch (locale) {
  532. case BCM43xx_LOCALE_WORLD:
  533. return "World";
  534. case BCM43xx_LOCALE_THAILAND:
  535. return "Thailand";
  536. case BCM43xx_LOCALE_ISRAEL:
  537. return "Israel";
  538. case BCM43xx_LOCALE_JORDAN:
  539. return "Jordan";
  540. case BCM43xx_LOCALE_CHINA:
  541. return "China";
  542. case BCM43xx_LOCALE_JAPAN:
  543. return "Japan";
  544. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  545. return "USA/Canada/ANZ";
  546. case BCM43xx_LOCALE_EUROPE:
  547. return "Europe";
  548. case BCM43xx_LOCALE_USA_LOW:
  549. return "USAlow";
  550. case BCM43xx_LOCALE_JAPAN_HIGH:
  551. return "JapanHigh";
  552. case BCM43xx_LOCALE_ALL:
  553. return "All";
  554. case BCM43xx_LOCALE_NONE:
  555. return "None";
  556. }
  557. assert(0);
  558. return "";
  559. }
  560. static inline u8 bcm43xx_crc8(u8 crc, u8 data)
  561. {
  562. static const u8 t[] = {
  563. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  564. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  565. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  566. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  567. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  568. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  569. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  570. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  571. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  572. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  573. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  574. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  575. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  576. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  577. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  578. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  579. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  580. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  581. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  582. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  583. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  584. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  585. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  586. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  587. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  588. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  589. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  590. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  591. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  592. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  593. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  594. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  595. };
  596. return t[crc ^ data];
  597. }
  598. static u8 bcm43xx_sprom_crc(const u16 *sprom)
  599. {
  600. int word;
  601. u8 crc = 0xFF;
  602. for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
  603. crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
  604. crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  605. }
  606. crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
  607. crc ^= 0xFF;
  608. return crc;
  609. }
  610. int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
  611. {
  612. int i;
  613. u8 crc, expected_crc;
  614. for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
  615. sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
  616. /* CRC-8 check. */
  617. crc = bcm43xx_sprom_crc(sprom);
  618. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  619. if (crc != expected_crc) {
  620. printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
  621. "(0x%02X, expected: 0x%02X)\n",
  622. crc, expected_crc);
  623. return -EINVAL;
  624. }
  625. return 0;
  626. }
  627. int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
  628. {
  629. int i, err;
  630. u8 crc, expected_crc;
  631. u32 spromctl;
  632. /* CRC-8 validation of the input data. */
  633. crc = bcm43xx_sprom_crc(sprom);
  634. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  635. if (crc != expected_crc) {
  636. printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
  637. return -EINVAL;
  638. }
  639. printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  640. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
  641. if (err)
  642. goto err_ctlreg;
  643. spromctl |= 0x10; /* SPROM WRITE enable. */
  644. bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  645. if (err)
  646. goto err_ctlreg;
  647. /* We must burn lots of CPU cycles here, but that does not
  648. * really matter as one does not write the SPROM every other minute...
  649. */
  650. printk(KERN_INFO PFX "[ 0%%");
  651. mdelay(500);
  652. for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
  653. if (i == 16)
  654. printk("25%%");
  655. else if (i == 32)
  656. printk("50%%");
  657. else if (i == 48)
  658. printk("75%%");
  659. else if (i % 2)
  660. printk(".");
  661. bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
  662. mmiowb();
  663. mdelay(20);
  664. }
  665. spromctl &= ~0x10; /* SPROM WRITE enable. */
  666. bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  667. if (err)
  668. goto err_ctlreg;
  669. mdelay(500);
  670. printk("100%% ]\n");
  671. printk(KERN_INFO PFX "SPROM written.\n");
  672. bcm43xx_controller_restart(bcm, "SPROM update");
  673. return 0;
  674. err_ctlreg:
  675. printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  676. return -ENODEV;
  677. }
  678. static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
  679. {
  680. u16 value;
  681. u16 *sprom;
  682. #ifdef CONFIG_BCM947XX
  683. char *c;
  684. #endif
  685. sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
  686. GFP_KERNEL);
  687. if (!sprom) {
  688. printk(KERN_ERR PFX "sprom_extract OOM\n");
  689. return -ENOMEM;
  690. }
  691. #ifdef CONFIG_BCM947XX
  692. sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
  693. sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));
  694. if ((c = nvram_get("il0macaddr")) != NULL)
  695. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));
  696. if ((c = nvram_get("et1macaddr")) != NULL)
  697. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));
  698. sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
  699. sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
  700. sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));
  701. sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
  702. sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
  703. sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));
  704. sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
  705. #else
  706. bcm43xx_sprom_read(bcm, sprom);
  707. #endif
  708. /* boardflags2 */
  709. value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
  710. bcm->sprom.boardflags2 = value;
  711. /* il0macaddr */
  712. value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
  713. *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
  714. value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
  715. *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
  716. value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
  717. *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
  718. /* et0macaddr */
  719. value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
  720. *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
  721. value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
  722. *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
  723. value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
  724. *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
  725. /* et1macaddr */
  726. value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
  727. *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
  728. value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
  729. *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
  730. value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
  731. *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
  732. /* ethernet phy settings */
  733. value = sprom[BCM43xx_SPROM_ETHPHY];
  734. bcm->sprom.et0phyaddr = (value & 0x001F);
  735. bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
  736. bcm->sprom.et0mdcport = (value & (1 << 14)) >> 14;
  737. bcm->sprom.et1mdcport = (value & (1 << 15)) >> 15;
  738. /* boardrev, antennas, locale */
  739. value = sprom[BCM43xx_SPROM_BOARDREV];
  740. bcm->sprom.boardrev = (value & 0x00FF);
  741. bcm->sprom.locale = (value & 0x0F00) >> 8;
  742. bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
  743. bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
  744. if (modparam_locale != -1) {
  745. if (modparam_locale >= 0 && modparam_locale <= 11) {
  746. bcm->sprom.locale = modparam_locale;
  747. printk(KERN_WARNING PFX "Operating with modified "
  748. "LocaleCode %u (%s)\n",
  749. bcm->sprom.locale,
  750. bcm43xx_locale_string(bcm->sprom.locale));
  751. } else {
  752. printk(KERN_WARNING PFX "Module parameter \"locale\" "
  753. "invalid value. (0 - 11)\n");
  754. }
  755. }
  756. /* pa0b* */
  757. value = sprom[BCM43xx_SPROM_PA0B0];
  758. bcm->sprom.pa0b0 = value;
  759. value = sprom[BCM43xx_SPROM_PA0B1];
  760. bcm->sprom.pa0b1 = value;
  761. value = sprom[BCM43xx_SPROM_PA0B2];
  762. bcm->sprom.pa0b2 = value;
  763. /* wl0gpio* */
  764. value = sprom[BCM43xx_SPROM_WL0GPIO0];
  765. if (value == 0x0000)
  766. value = 0xFFFF;
  767. bcm->sprom.wl0gpio0 = value & 0x00FF;
  768. bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
  769. value = sprom[BCM43xx_SPROM_WL0GPIO2];
  770. if (value == 0x0000)
  771. value = 0xFFFF;
  772. bcm->sprom.wl0gpio2 = value & 0x00FF;
  773. bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
  774. /* maxpower */
  775. value = sprom[BCM43xx_SPROM_MAXPWR];
  776. bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
  777. bcm->sprom.maxpower_bgphy = value & 0x00FF;
  778. /* pa1b* */
  779. value = sprom[BCM43xx_SPROM_PA1B0];
  780. bcm->sprom.pa1b0 = value;
  781. value = sprom[BCM43xx_SPROM_PA1B1];
  782. bcm->sprom.pa1b1 = value;
  783. value = sprom[BCM43xx_SPROM_PA1B2];
  784. bcm->sprom.pa1b2 = value;
  785. /* idle tssi target */
  786. value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
  787. bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
  788. bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
  789. /* boardflags */
  790. value = sprom[BCM43xx_SPROM_BOARDFLAGS];
  791. if (value == 0xFFFF)
  792. value = 0x0000;
  793. bcm->sprom.boardflags = value;
  794. /* boardflags workarounds */
  795. if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
  796. bcm->chip_id == 0x4301 &&
  797. bcm->board_revision == 0x74)
  798. bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
  799. if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
  800. bcm->board_type == 0x4E &&
  801. bcm->board_revision > 0x40)
  802. bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
  803. /* antenna gain */
  804. value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
  805. if (value == 0x0000 || value == 0xFFFF)
  806. value = 0x0202;
  807. /* convert values to Q5.2 */
  808. bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
  809. bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
  810. kfree(sprom);
  811. return 0;
  812. }
  813. static void bcm43xx_geo_init(struct bcm43xx_private *bcm)
  814. {
  815. struct ieee80211_geo geo;
  816. struct ieee80211_channel *chan;
  817. int have_a = 0, have_bg = 0;
  818. int i;
  819. u8 channel;
  820. struct bcm43xx_phyinfo *phy;
  821. const char *iso_country;
  822. memset(&geo, 0, sizeof(geo));
  823. for (i = 0; i < bcm->nr_80211_available; i++) {
  824. phy = &(bcm->core_80211_ext[i].phy);
  825. switch (phy->type) {
  826. case BCM43xx_PHYTYPE_B:
  827. case BCM43xx_PHYTYPE_G:
  828. have_bg = 1;
  829. break;
  830. case BCM43xx_PHYTYPE_A:
  831. have_a = 1;
  832. break;
  833. default:
  834. assert(0);
  835. }
  836. }
  837. iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
  838. if (have_a) {
  839. for (i = 0, channel = 0; channel < 201; channel++) {
  840. chan = &geo.a[i++];
  841. chan->freq = bcm43xx_channel_to_freq_a(channel);
  842. chan->channel = channel;
  843. }
  844. geo.a_channels = i;
  845. }
  846. if (have_bg) {
  847. for (i = 0, channel = 1; channel < 15; channel++) {
  848. chan = &geo.bg[i++];
  849. chan->freq = bcm43xx_channel_to_freq_bg(channel);
  850. chan->channel = channel;
  851. }
  852. geo.bg_channels = i;
  853. }
  854. memcpy(geo.name, iso_country, 2);
  855. if (0 /*TODO: Outdoor use only */)
  856. geo.name[2] = 'O';
  857. else if (0 /*TODO: Indoor use only */)
  858. geo.name[2] = 'I';
  859. else
  860. geo.name[2] = ' ';
  861. geo.name[3] = '\0';
  862. ieee80211_set_geo(bcm->ieee, &geo);
  863. }
  864. /* DummyTransmission function, as documented on
  865. * http://bcm-specs.sipsolutions.net/DummyTransmission
  866. */
  867. void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
  868. {
  869. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  870. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  871. unsigned int i, max_loop;
  872. u16 value = 0;
  873. u32 buffer[5] = {
  874. 0x00000000,
  875. 0x0000D400,
  876. 0x00000000,
  877. 0x00000001,
  878. 0x00000000,
  879. };
  880. switch (phy->type) {
  881. case BCM43xx_PHYTYPE_A:
  882. max_loop = 0x1E;
  883. buffer[0] = 0xCC010200;
  884. break;
  885. case BCM43xx_PHYTYPE_B:
  886. case BCM43xx_PHYTYPE_G:
  887. max_loop = 0xFA;
  888. buffer[0] = 0x6E840B00;
  889. break;
  890. default:
  891. assert(0);
  892. return;
  893. }
  894. for (i = 0; i < 5; i++)
  895. bcm43xx_ram_write(bcm, i * 4, buffer[i]);
  896. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  897. bcm43xx_write16(bcm, 0x0568, 0x0000);
  898. bcm43xx_write16(bcm, 0x07C0, 0x0000);
  899. bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
  900. bcm43xx_write16(bcm, 0x0508, 0x0000);
  901. bcm43xx_write16(bcm, 0x050A, 0x0000);
  902. bcm43xx_write16(bcm, 0x054C, 0x0000);
  903. bcm43xx_write16(bcm, 0x056A, 0x0014);
  904. bcm43xx_write16(bcm, 0x0568, 0x0826);
  905. bcm43xx_write16(bcm, 0x0500, 0x0000);
  906. bcm43xx_write16(bcm, 0x0502, 0x0030);
  907. if (radio->version == 0x2050 && radio->revision <= 0x5)
  908. bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
  909. for (i = 0x00; i < max_loop; i++) {
  910. value = bcm43xx_read16(bcm, 0x050E);
  911. if (value & 0x0080)
  912. break;
  913. udelay(10);
  914. }
  915. for (i = 0x00; i < 0x0A; i++) {
  916. value = bcm43xx_read16(bcm, 0x050E);
  917. if (value & 0x0400)
  918. break;
  919. udelay(10);
  920. }
  921. for (i = 0x00; i < 0x0A; i++) {
  922. value = bcm43xx_read16(bcm, 0x0690);
  923. if (!(value & 0x0100))
  924. break;
  925. udelay(10);
  926. }
  927. if (radio->version == 0x2050 && radio->revision <= 0x5)
  928. bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
  929. }
  930. static void key_write(struct bcm43xx_private *bcm,
  931. u8 index, u8 algorithm, const u16 *key)
  932. {
  933. unsigned int i, basic_wep = 0;
  934. u32 offset;
  935. u16 value;
  936. /* Write associated key information */
  937. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
  938. ((index << 4) | (algorithm & 0x0F)));
  939. /* The first 4 WEP keys need extra love */
  940. if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
  941. (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
  942. basic_wep = 1;
  943. /* Write key payload, 8 little endian words */
  944. offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
  945. for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
  946. value = cpu_to_le16(key[i]);
  947. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  948. offset + (i * 2), value);
  949. if (!basic_wep)
  950. continue;
  951. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  952. offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
  953. value);
  954. }
  955. }
  956. static void keymac_write(struct bcm43xx_private *bcm,
  957. u8 index, const u32 *addr)
  958. {
  959. /* for keys 0-3 there is no associated mac address */
  960. if (index < 4)
  961. return;
  962. index -= 4;
  963. if (bcm->current_core->rev >= 5) {
  964. bcm43xx_shm_write32(bcm,
  965. BCM43xx_SHM_HWMAC,
  966. index * 2,
  967. cpu_to_be32(*addr));
  968. bcm43xx_shm_write16(bcm,
  969. BCM43xx_SHM_HWMAC,
  970. (index * 2) + 1,
  971. cpu_to_be16(*((u16 *)(addr + 1))));
  972. } else {
  973. if (index < 8) {
  974. TODO(); /* Put them in the macaddress filter */
  975. } else {
  976. TODO();
  977. /* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
  978. Keep in mind to update the count of keymacs in 0x003E as well! */
  979. }
  980. }
  981. }
  982. static int bcm43xx_key_write(struct bcm43xx_private *bcm,
  983. u8 index, u8 algorithm,
  984. const u8 *_key, int key_len,
  985. const u8 *mac_addr)
  986. {
  987. u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
  988. if (index >= ARRAY_SIZE(bcm->key))
  989. return -EINVAL;
  990. if (key_len > ARRAY_SIZE(key))
  991. return -EINVAL;
  992. if (algorithm < 1 || algorithm > 5)
  993. return -EINVAL;
  994. memcpy(key, _key, key_len);
  995. key_write(bcm, index, algorithm, (const u16 *)key);
  996. keymac_write(bcm, index, (const u32 *)mac_addr);
  997. bcm->key[index].algorithm = algorithm;
  998. return 0;
  999. }
  1000. static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
  1001. {
  1002. static const u32 zero_mac[2] = { 0 };
  1003. unsigned int i,j, nr_keys = 54;
  1004. u16 offset;
  1005. if (bcm->current_core->rev < 5)
  1006. nr_keys = 16;
  1007. assert(nr_keys <= ARRAY_SIZE(bcm->key));
  1008. for (i = 0; i < nr_keys; i++) {
  1009. bcm->key[i].enabled = 0;
  1010. /* returns for i < 4 immediately */
  1011. keymac_write(bcm, i, zero_mac);
  1012. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1013. 0x100 + (i * 2), 0x0000);
  1014. for (j = 0; j < 8; j++) {
  1015. offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
  1016. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1017. offset, 0x0000);
  1018. }
  1019. }
  1020. dprintk(KERN_INFO PFX "Keys cleared\n");
  1021. }
  1022. /* Lowlevel core-switch function. This is only to be used in
  1023. * bcm43xx_switch_core() and bcm43xx_probe_cores()
  1024. */
  1025. static int _switch_core(struct bcm43xx_private *bcm, int core)
  1026. {
  1027. int err;
  1028. int attempts = 0;
  1029. u32 current_core;
  1030. assert(core >= 0);
  1031. while (1) {
  1032. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1033. (core * 0x1000) + 0x18000000);
  1034. if (unlikely(err))
  1035. goto error;
  1036. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1037. &current_core);
  1038. if (unlikely(err))
  1039. goto error;
  1040. current_core = (current_core - 0x18000000) / 0x1000;
  1041. if (current_core == core)
  1042. break;
  1043. if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
  1044. goto error;
  1045. udelay(10);
  1046. }
  1047. #ifdef CONFIG_BCM947XX
  1048. if (bcm->pci_dev->bus->number == 0)
  1049. bcm->current_core_offset = 0x1000 * core;
  1050. else
  1051. bcm->current_core_offset = 0;
  1052. #endif
  1053. return 0;
  1054. error:
  1055. printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
  1056. return -ENODEV;
  1057. }
  1058. int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
  1059. {
  1060. int err;
  1061. if (unlikely(!new_core))
  1062. return 0;
  1063. if (!new_core->available)
  1064. return -ENODEV;
  1065. if (bcm->current_core == new_core)
  1066. return 0;
  1067. err = _switch_core(bcm, new_core->index);
  1068. if (unlikely(err))
  1069. goto out;
  1070. bcm->current_core = new_core;
  1071. bcm->current_80211_core_idx = -1;
  1072. if (new_core->id == BCM43xx_COREID_80211)
  1073. bcm->current_80211_core_idx = (int)(new_core - &(bcm->core_80211[0]));
  1074. out:
  1075. return err;
  1076. }
  1077. static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
  1078. {
  1079. u32 value;
  1080. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1081. value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
  1082. | BCM43xx_SBTMSTATELOW_REJECT;
  1083. return (value == BCM43xx_SBTMSTATELOW_CLOCK);
  1084. }
  1085. /* disable current core */
  1086. static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
  1087. {
  1088. u32 sbtmstatelow;
  1089. u32 sbtmstatehigh;
  1090. int i;
  1091. /* fetch sbtmstatelow from core information registers */
  1092. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1093. /* core is already in reset */
  1094. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
  1095. goto out;
  1096. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
  1097. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1098. BCM43xx_SBTMSTATELOW_REJECT;
  1099. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1100. for (i = 0; i < 1000; i++) {
  1101. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1102. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
  1103. i = -1;
  1104. break;
  1105. }
  1106. udelay(10);
  1107. }
  1108. if (i != -1) {
  1109. printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
  1110. return -EBUSY;
  1111. }
  1112. for (i = 0; i < 1000; i++) {
  1113. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1114. if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
  1115. i = -1;
  1116. break;
  1117. }
  1118. udelay(10);
  1119. }
  1120. if (i != -1) {
  1121. printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
  1122. return -EBUSY;
  1123. }
  1124. sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1125. BCM43xx_SBTMSTATELOW_REJECT |
  1126. BCM43xx_SBTMSTATELOW_RESET |
  1127. BCM43xx_SBTMSTATELOW_CLOCK |
  1128. core_flags;
  1129. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1130. udelay(10);
  1131. }
  1132. sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
  1133. BCM43xx_SBTMSTATELOW_REJECT |
  1134. core_flags;
  1135. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1136. out:
  1137. bcm->current_core->enabled = 0;
  1138. return 0;
  1139. }
  1140. /* enable (reset) current core */
  1141. static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
  1142. {
  1143. u32 sbtmstatelow;
  1144. u32 sbtmstatehigh;
  1145. u32 sbimstate;
  1146. int err;
  1147. err = bcm43xx_core_disable(bcm, core_flags);
  1148. if (err)
  1149. goto out;
  1150. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1151. BCM43xx_SBTMSTATELOW_RESET |
  1152. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1153. core_flags;
  1154. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1155. udelay(1);
  1156. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1157. if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
  1158. sbtmstatehigh = 0x00000000;
  1159. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
  1160. }
  1161. sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
  1162. if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
  1163. sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
  1164. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
  1165. }
  1166. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1167. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1168. core_flags;
  1169. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1170. udelay(1);
  1171. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
  1172. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1173. udelay(1);
  1174. bcm->current_core->enabled = 1;
  1175. assert(err == 0);
  1176. out:
  1177. return err;
  1178. }
  1179. /* http://bcm-specs.sipsolutions.net/80211CoreReset */
  1180. void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
  1181. {
  1182. u32 flags = 0x00040000;
  1183. if ((bcm43xx_core_enabled(bcm)) &&
  1184. !bcm43xx_using_pio(bcm)) {
  1185. //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
  1186. #ifndef CONFIG_BCM947XX
  1187. /* reset all used DMA controllers. */
  1188. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1189. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
  1190. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
  1191. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1192. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1193. if (bcm->current_core->rev < 5)
  1194. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1195. #endif
  1196. }
  1197. if (bcm->shutting_down) {
  1198. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1199. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1200. & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
  1201. } else {
  1202. if (connect_phy)
  1203. flags |= 0x20000000;
  1204. bcm43xx_phy_connect(bcm, connect_phy);
  1205. bcm43xx_core_enable(bcm, flags);
  1206. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  1207. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1208. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1209. | BCM43xx_SBF_400);
  1210. }
  1211. }
  1212. static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
  1213. {
  1214. bcm43xx_radio_turn_off(bcm);
  1215. bcm43xx_write16(bcm, 0x03E6, 0x00F4);
  1216. bcm43xx_core_disable(bcm, 0);
  1217. }
  1218. /* Mark the current 80211 core inactive.
  1219. * "active_80211_core" is the other 80211 core, which is used.
  1220. */
  1221. static int bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm,
  1222. struct bcm43xx_coreinfo *active_80211_core)
  1223. {
  1224. u32 sbtmstatelow;
  1225. struct bcm43xx_coreinfo *old_core;
  1226. int err = 0;
  1227. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1228. bcm43xx_radio_turn_off(bcm);
  1229. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1230. sbtmstatelow &= ~0x200a0000;
  1231. sbtmstatelow |= 0xa0000;
  1232. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1233. udelay(1);
  1234. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1235. sbtmstatelow &= ~0xa0000;
  1236. sbtmstatelow |= 0x80000;
  1237. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1238. udelay(1);
  1239. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G) {
  1240. old_core = bcm->current_core;
  1241. err = bcm43xx_switch_core(bcm, active_80211_core);
  1242. if (err)
  1243. goto out;
  1244. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1245. sbtmstatelow &= ~0x20000000;
  1246. sbtmstatelow |= 0x20000000;
  1247. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1248. err = bcm43xx_switch_core(bcm, old_core);
  1249. }
  1250. out:
  1251. return err;
  1252. }
  1253. static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
  1254. {
  1255. u32 v0, v1;
  1256. u16 tmp;
  1257. struct bcm43xx_xmitstatus stat;
  1258. while (1) {
  1259. v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1260. if (!v0)
  1261. break;
  1262. v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1263. stat.cookie = (v0 >> 16) & 0x0000FFFF;
  1264. tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
  1265. stat.flags = tmp & 0xFF;
  1266. stat.cnt1 = (tmp & 0x0F00) >> 8;
  1267. stat.cnt2 = (tmp & 0xF000) >> 12;
  1268. stat.seq = (u16)(v1 & 0xFFFF);
  1269. stat.unknown = (u16)((v1 >> 16) & 0xFF);
  1270. bcm43xx_debugfs_log_txstat(bcm, &stat);
  1271. if (stat.flags & BCM43xx_TXSTAT_FLAG_IGNORE)
  1272. continue;
  1273. if (!(stat.flags & BCM43xx_TXSTAT_FLAG_ACK)) {
  1274. //TODO: packet was not acked (was lost)
  1275. }
  1276. //TODO: There are more (unknown) flags to test. see bcm43xx_main.h
  1277. if (bcm43xx_using_pio(bcm))
  1278. bcm43xx_pio_handle_xmitstatus(bcm, &stat);
  1279. else
  1280. bcm43xx_dma_handle_xmitstatus(bcm, &stat);
  1281. }
  1282. }
  1283. static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
  1284. {
  1285. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
  1286. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
  1287. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1288. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
  1289. assert(bcm->noisecalc.core_at_start == bcm->current_core);
  1290. assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
  1291. }
  1292. static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
  1293. {
  1294. /* Top half of Link Quality calculation. */
  1295. if (bcm->noisecalc.calculation_running)
  1296. return;
  1297. bcm->noisecalc.core_at_start = bcm->current_core;
  1298. bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
  1299. bcm->noisecalc.calculation_running = 1;
  1300. bcm->noisecalc.nr_samples = 0;
  1301. bcm43xx_generate_noise_sample(bcm);
  1302. }
  1303. static void handle_irq_noise(struct bcm43xx_private *bcm)
  1304. {
  1305. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  1306. u16 tmp;
  1307. u8 noise[4];
  1308. u8 i, j;
  1309. s32 average;
  1310. /* Bottom half of Link Quality calculation. */
  1311. assert(bcm->noisecalc.calculation_running);
  1312. if (bcm->noisecalc.core_at_start != bcm->current_core ||
  1313. bcm->noisecalc.channel_at_start != radio->channel)
  1314. goto drop_calculation;
  1315. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
  1316. noise[0] = (tmp & 0x00FF);
  1317. noise[1] = (tmp & 0xFF00) >> 8;
  1318. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
  1319. noise[2] = (tmp & 0x00FF);
  1320. noise[3] = (tmp & 0xFF00) >> 8;
  1321. if (noise[0] == 0x7F || noise[1] == 0x7F ||
  1322. noise[2] == 0x7F || noise[3] == 0x7F)
  1323. goto generate_new;
  1324. /* Get the noise samples. */
  1325. assert(bcm->noisecalc.nr_samples <= 8);
  1326. i = bcm->noisecalc.nr_samples;
  1327. noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1328. noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1329. noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1330. noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1331. bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
  1332. bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
  1333. bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
  1334. bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
  1335. bcm->noisecalc.nr_samples++;
  1336. if (bcm->noisecalc.nr_samples == 8) {
  1337. /* Calculate the Link Quality by the noise samples. */
  1338. average = 0;
  1339. for (i = 0; i < 8; i++) {
  1340. for (j = 0; j < 4; j++)
  1341. average += bcm->noisecalc.samples[i][j];
  1342. }
  1343. average /= (8 * 4);
  1344. average *= 125;
  1345. average += 64;
  1346. average /= 128;
  1347. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
  1348. tmp = (tmp / 128) & 0x1F;
  1349. if (tmp >= 8)
  1350. average += 2;
  1351. else
  1352. average -= 25;
  1353. if (tmp == 8)
  1354. average -= 72;
  1355. else
  1356. average -= 48;
  1357. /* FIXME: This is wrong, but people want fancy stats. well... */
  1358. bcm->stats.noise = average;
  1359. if (average > -65)
  1360. bcm->stats.link_quality = 0;
  1361. else if (average > -75)
  1362. bcm->stats.link_quality = 1;
  1363. else if (average > -85)
  1364. bcm->stats.link_quality = 2;
  1365. else
  1366. bcm->stats.link_quality = 3;
  1367. // dprintk(KERN_INFO PFX "Link Quality: %u (avg was %d)\n", bcm->stats.link_quality, average);
  1368. drop_calculation:
  1369. bcm->noisecalc.calculation_running = 0;
  1370. return;
  1371. }
  1372. generate_new:
  1373. bcm43xx_generate_noise_sample(bcm);
  1374. }
  1375. static void handle_irq_ps(struct bcm43xx_private *bcm)
  1376. {
  1377. if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
  1378. ///TODO: PS TBTT
  1379. } else {
  1380. if (1/*FIXME: the last PSpoll frame was sent successfully */)
  1381. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1382. }
  1383. if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
  1384. bcm->reg124_set_0x4 = 1;
  1385. //FIXME else set to false?
  1386. }
  1387. static void handle_irq_reg124(struct bcm43xx_private *bcm)
  1388. {
  1389. if (!bcm->reg124_set_0x4)
  1390. return;
  1391. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1392. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
  1393. | 0x4);
  1394. //FIXME: reset reg124_set_0x4 to false?
  1395. }
  1396. static void handle_irq_pmq(struct bcm43xx_private *bcm)
  1397. {
  1398. u32 tmp;
  1399. //TODO: AP mode.
  1400. while (1) {
  1401. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
  1402. if (!(tmp & 0x00000008))
  1403. break;
  1404. }
  1405. /* 16bit write is odd, but correct. */
  1406. bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
  1407. }
  1408. static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
  1409. u16 ram_offset, u16 shm_size_offset)
  1410. {
  1411. u32 value;
  1412. u16 size = 0;
  1413. /* Timestamp. */
  1414. //FIXME: assumption: The chip sets the timestamp
  1415. value = 0;
  1416. bcm43xx_ram_write(bcm, ram_offset++, value);
  1417. bcm43xx_ram_write(bcm, ram_offset++, value);
  1418. size += 8;
  1419. /* Beacon Interval / Capability Information */
  1420. value = 0x0000;//FIXME: Which interval?
  1421. value |= (1 << 0) << 16; /* ESS */
  1422. value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
  1423. value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
  1424. if (!bcm->ieee->open_wep)
  1425. value |= (1 << 4) << 16; /* Privacy */
  1426. bcm43xx_ram_write(bcm, ram_offset++, value);
  1427. size += 4;
  1428. /* SSID */
  1429. //TODO
  1430. /* FH Parameter Set */
  1431. //TODO
  1432. /* DS Parameter Set */
  1433. //TODO
  1434. /* CF Parameter Set */
  1435. //TODO
  1436. /* TIM */
  1437. //TODO
  1438. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
  1439. }
  1440. static void handle_irq_beacon(struct bcm43xx_private *bcm)
  1441. {
  1442. u32 status;
  1443. bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
  1444. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
  1445. if ((status & 0x1) && (status & 0x2)) {
  1446. /* ACK beacon IRQ. */
  1447. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1448. BCM43xx_IRQ_BEACON);
  1449. bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
  1450. return;
  1451. }
  1452. if (!(status & 0x1)) {
  1453. bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
  1454. status |= 0x1;
  1455. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1456. }
  1457. if (!(status & 0x2)) {
  1458. bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
  1459. status |= 0x2;
  1460. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1461. }
  1462. }
  1463. /* Interrupt handler bottom-half */
  1464. static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
  1465. {
  1466. u32 reason;
  1467. u32 dma_reason[4];
  1468. int activity = 0;
  1469. unsigned long flags;
  1470. #ifdef CONFIG_BCM43XX_DEBUG
  1471. u32 _handled = 0x00000000;
  1472. # define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
  1473. #else
  1474. # define bcmirq_handled(irq) do { /* nothing */ } while (0)
  1475. #endif /* CONFIG_BCM43XX_DEBUG*/
  1476. bcm43xx_lock_mmio(bcm, flags);
  1477. reason = bcm->irq_reason;
  1478. dma_reason[0] = bcm->dma_reason[0];
  1479. dma_reason[1] = bcm->dma_reason[1];
  1480. dma_reason[2] = bcm->dma_reason[2];
  1481. dma_reason[3] = bcm->dma_reason[3];
  1482. if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
  1483. /* TX error. We get this when Template Ram is written in wrong endianess
  1484. * in dummy_tx(). We also get this if something is wrong with the TX header
  1485. * on DMA or PIO queues.
  1486. * Maybe we get this in other error conditions, too.
  1487. */
  1488. printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
  1489. bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
  1490. }
  1491. if (unlikely((dma_reason[0] & BCM43xx_DMAIRQ_FATALMASK) |
  1492. (dma_reason[1] & BCM43xx_DMAIRQ_FATALMASK) |
  1493. (dma_reason[2] & BCM43xx_DMAIRQ_FATALMASK) |
  1494. (dma_reason[3] & BCM43xx_DMAIRQ_FATALMASK))) {
  1495. printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
  1496. "0x%08X, 0x%08X, 0x%08X, 0x%08X\n",
  1497. dma_reason[0], dma_reason[1],
  1498. dma_reason[2], dma_reason[3]);
  1499. bcm43xx_controller_restart(bcm, "DMA error");
  1500. bcm43xx_unlock_mmio(bcm, flags);
  1501. return;
  1502. }
  1503. if (unlikely((dma_reason[0] & BCM43xx_DMAIRQ_NONFATALMASK) |
  1504. (dma_reason[1] & BCM43xx_DMAIRQ_NONFATALMASK) |
  1505. (dma_reason[2] & BCM43xx_DMAIRQ_NONFATALMASK) |
  1506. (dma_reason[3] & BCM43xx_DMAIRQ_NONFATALMASK))) {
  1507. printkl(KERN_ERR PFX "DMA error: "
  1508. "0x%08X, 0x%08X, 0x%08X, 0x%08X\n",
  1509. dma_reason[0], dma_reason[1],
  1510. dma_reason[2], dma_reason[3]);
  1511. }
  1512. if (reason & BCM43xx_IRQ_PS) {
  1513. handle_irq_ps(bcm);
  1514. bcmirq_handled(BCM43xx_IRQ_PS);
  1515. }
  1516. if (reason & BCM43xx_IRQ_REG124) {
  1517. handle_irq_reg124(bcm);
  1518. bcmirq_handled(BCM43xx_IRQ_REG124);
  1519. }
  1520. if (reason & BCM43xx_IRQ_BEACON) {
  1521. if (bcm->ieee->iw_mode == IW_MODE_MASTER)
  1522. handle_irq_beacon(bcm);
  1523. bcmirq_handled(BCM43xx_IRQ_BEACON);
  1524. }
  1525. if (reason & BCM43xx_IRQ_PMQ) {
  1526. handle_irq_pmq(bcm);
  1527. bcmirq_handled(BCM43xx_IRQ_PMQ);
  1528. }
  1529. if (reason & BCM43xx_IRQ_SCAN) {
  1530. /*TODO*/
  1531. //bcmirq_handled(BCM43xx_IRQ_SCAN);
  1532. }
  1533. if (reason & BCM43xx_IRQ_NOISE) {
  1534. handle_irq_noise(bcm);
  1535. bcmirq_handled(BCM43xx_IRQ_NOISE);
  1536. }
  1537. /* Check the DMA reason registers for received data. */
  1538. assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
  1539. assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
  1540. if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
  1541. if (bcm43xx_using_pio(bcm))
  1542. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
  1543. else
  1544. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
  1545. /* We intentionally don't set "activity" to 1, here. */
  1546. }
  1547. if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
  1548. if (bcm43xx_using_pio(bcm))
  1549. bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
  1550. else
  1551. bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring1);
  1552. activity = 1;
  1553. }
  1554. bcmirq_handled(BCM43xx_IRQ_RX);
  1555. if (reason & BCM43xx_IRQ_XMIT_STATUS) {
  1556. handle_irq_transmit_status(bcm);
  1557. activity = 1;
  1558. //TODO: In AP mode, this also causes sending of powersave responses.
  1559. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
  1560. }
  1561. /* IRQ_PIO_WORKAROUND is handled in the top-half. */
  1562. bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
  1563. #ifdef CONFIG_BCM43XX_DEBUG
  1564. if (unlikely(reason & ~_handled)) {
  1565. printkl(KERN_WARNING PFX
  1566. "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
  1567. "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  1568. reason, (reason & ~_handled),
  1569. dma_reason[0], dma_reason[1],
  1570. dma_reason[2], dma_reason[3]);
  1571. }
  1572. #endif
  1573. #undef bcmirq_handled
  1574. if (!modparam_noleds)
  1575. bcm43xx_leds_update(bcm, activity);
  1576. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  1577. bcm43xx_unlock_mmio(bcm, flags);
  1578. }
  1579. static void pio_irq_workaround(struct bcm43xx_private *bcm,
  1580. u16 base, int queueidx)
  1581. {
  1582. u16 rxctl;
  1583. rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
  1584. if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
  1585. bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
  1586. else
  1587. bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
  1588. }
  1589. static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
  1590. {
  1591. if (bcm43xx_using_pio(bcm) &&
  1592. (bcm->current_core->rev < 3) &&
  1593. (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
  1594. /* Apply a PIO specific workaround to the dma_reasons */
  1595. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
  1596. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
  1597. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
  1598. pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
  1599. }
  1600. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
  1601. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
  1602. bcm->dma_reason[0]);
  1603. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
  1604. bcm->dma_reason[1]);
  1605. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
  1606. bcm->dma_reason[2]);
  1607. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
  1608. bcm->dma_reason[3]);
  1609. }
  1610. /* Interrupt handler top-half */
  1611. static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id, struct pt_regs *regs)
  1612. {
  1613. irqreturn_t ret = IRQ_HANDLED;
  1614. struct bcm43xx_private *bcm = dev_id;
  1615. u32 reason;
  1616. if (!bcm)
  1617. return IRQ_NONE;
  1618. spin_lock(&bcm->_lock);
  1619. reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1620. if (reason == 0xffffffff) {
  1621. /* irq not for us (shared irq) */
  1622. ret = IRQ_NONE;
  1623. goto out;
  1624. }
  1625. reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  1626. if (!reason)
  1627. goto out;
  1628. bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
  1629. & 0x0001dc00;
  1630. bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
  1631. & 0x0000dc00;
  1632. bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
  1633. & 0x0000dc00;
  1634. bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
  1635. & 0x0001dc00;
  1636. bcm43xx_interrupt_ack(bcm, reason);
  1637. /* Only accept IRQs, if we are initialized properly.
  1638. * This avoids an RX race while initializing.
  1639. * We should probably not enable IRQs before we are initialized
  1640. * completely, but some careful work is needed to fix this. I think it
  1641. * is best to stay with this cheap workaround for now... .
  1642. */
  1643. if (likely(bcm->initialized)) {
  1644. /* disable all IRQs. They are enabled again in the bottom half. */
  1645. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1646. /* save the reason code and call our bottom half. */
  1647. bcm->irq_reason = reason;
  1648. tasklet_schedule(&bcm->isr_tasklet);
  1649. }
  1650. out:
  1651. mmiowb();
  1652. spin_unlock(&bcm->_lock);
  1653. return ret;
  1654. }
  1655. static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
  1656. {
  1657. if (bcm->firmware_norelease && !force)
  1658. return; /* Suspending or controller reset. */
  1659. release_firmware(bcm->ucode);
  1660. bcm->ucode = NULL;
  1661. release_firmware(bcm->pcm);
  1662. bcm->pcm = NULL;
  1663. release_firmware(bcm->initvals0);
  1664. bcm->initvals0 = NULL;
  1665. release_firmware(bcm->initvals1);
  1666. bcm->initvals1 = NULL;
  1667. }
  1668. static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
  1669. {
  1670. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  1671. u8 rev = bcm->current_core->rev;
  1672. int err = 0;
  1673. int nr;
  1674. char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
  1675. if (!bcm->ucode) {
  1676. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
  1677. (rev >= 5 ? 5 : rev),
  1678. modparam_fwpostfix);
  1679. err = request_firmware(&bcm->ucode, buf, &bcm->pci_dev->dev);
  1680. if (err) {
  1681. printk(KERN_ERR PFX
  1682. "Error: Microcode \"%s\" not available or load failed.\n",
  1683. buf);
  1684. goto error;
  1685. }
  1686. }
  1687. if (!bcm->pcm) {
  1688. snprintf(buf, ARRAY_SIZE(buf),
  1689. "bcm43xx_pcm%d%s.fw",
  1690. (rev < 5 ? 4 : 5),
  1691. modparam_fwpostfix);
  1692. err = request_firmware(&bcm->pcm, buf, &bcm->pci_dev->dev);
  1693. if (err) {
  1694. printk(KERN_ERR PFX
  1695. "Error: PCM \"%s\" not available or load failed.\n",
  1696. buf);
  1697. goto error;
  1698. }
  1699. }
  1700. if (!bcm->initvals0) {
  1701. if (rev == 2 || rev == 4) {
  1702. switch (phy->type) {
  1703. case BCM43xx_PHYTYPE_A:
  1704. nr = 3;
  1705. break;
  1706. case BCM43xx_PHYTYPE_B:
  1707. case BCM43xx_PHYTYPE_G:
  1708. nr = 1;
  1709. break;
  1710. default:
  1711. goto err_noinitval;
  1712. }
  1713. } else if (rev >= 5) {
  1714. switch (phy->type) {
  1715. case BCM43xx_PHYTYPE_A:
  1716. nr = 7;
  1717. break;
  1718. case BCM43xx_PHYTYPE_B:
  1719. case BCM43xx_PHYTYPE_G:
  1720. nr = 5;
  1721. break;
  1722. default:
  1723. goto err_noinitval;
  1724. }
  1725. } else
  1726. goto err_noinitval;
  1727. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1728. nr, modparam_fwpostfix);
  1729. err = request_firmware(&bcm->initvals0, buf, &bcm->pci_dev->dev);
  1730. if (err) {
  1731. printk(KERN_ERR PFX
  1732. "Error: InitVals \"%s\" not available or load failed.\n",
  1733. buf);
  1734. goto error;
  1735. }
  1736. if (bcm->initvals0->size % sizeof(struct bcm43xx_initval)) {
  1737. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1738. goto error;
  1739. }
  1740. }
  1741. if (!bcm->initvals1) {
  1742. if (rev >= 5) {
  1743. u32 sbtmstatehigh;
  1744. switch (phy->type) {
  1745. case BCM43xx_PHYTYPE_A:
  1746. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1747. if (sbtmstatehigh & 0x00010000)
  1748. nr = 9;
  1749. else
  1750. nr = 10;
  1751. break;
  1752. case BCM43xx_PHYTYPE_B:
  1753. case BCM43xx_PHYTYPE_G:
  1754. nr = 6;
  1755. break;
  1756. default:
  1757. goto err_noinitval;
  1758. }
  1759. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1760. nr, modparam_fwpostfix);
  1761. err = request_firmware(&bcm->initvals1, buf, &bcm->pci_dev->dev);
  1762. if (err) {
  1763. printk(KERN_ERR PFX
  1764. "Error: InitVals \"%s\" not available or load failed.\n",
  1765. buf);
  1766. goto error;
  1767. }
  1768. if (bcm->initvals1->size % sizeof(struct bcm43xx_initval)) {
  1769. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1770. goto error;
  1771. }
  1772. }
  1773. }
  1774. out:
  1775. return err;
  1776. error:
  1777. bcm43xx_release_firmware(bcm, 1);
  1778. goto out;
  1779. err_noinitval:
  1780. printk(KERN_ERR PFX "Error: No InitVals available!\n");
  1781. err = -ENOENT;
  1782. goto error;
  1783. }
  1784. static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
  1785. {
  1786. const u32 *data;
  1787. unsigned int i, len;
  1788. /* Upload Microcode. */
  1789. data = (u32 *)(bcm->ucode->data);
  1790. len = bcm->ucode->size / sizeof(u32);
  1791. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
  1792. for (i = 0; i < len; i++) {
  1793. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1794. be32_to_cpu(data[i]));
  1795. udelay(10);
  1796. }
  1797. /* Upload PCM data. */
  1798. data = (u32 *)(bcm->pcm->data);
  1799. len = bcm->pcm->size / sizeof(u32);
  1800. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
  1801. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
  1802. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
  1803. for (i = 0; i < len; i++) {
  1804. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1805. be32_to_cpu(data[i]));
  1806. udelay(10);
  1807. }
  1808. }
  1809. static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
  1810. const struct bcm43xx_initval *data,
  1811. const unsigned int len)
  1812. {
  1813. u16 offset, size;
  1814. u32 value;
  1815. unsigned int i;
  1816. for (i = 0; i < len; i++) {
  1817. offset = be16_to_cpu(data[i].offset);
  1818. size = be16_to_cpu(data[i].size);
  1819. value = be32_to_cpu(data[i].value);
  1820. if (unlikely(offset >= 0x1000))
  1821. goto err_format;
  1822. if (size == 2) {
  1823. if (unlikely(value & 0xFFFF0000))
  1824. goto err_format;
  1825. bcm43xx_write16(bcm, offset, (u16)value);
  1826. } else if (size == 4) {
  1827. bcm43xx_write32(bcm, offset, value);
  1828. } else
  1829. goto err_format;
  1830. }
  1831. return 0;
  1832. err_format:
  1833. printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
  1834. "Please fix your bcm43xx firmware files.\n");
  1835. return -EPROTO;
  1836. }
  1837. static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
  1838. {
  1839. int err;
  1840. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)bcm->initvals0->data,
  1841. bcm->initvals0->size / sizeof(struct bcm43xx_initval));
  1842. if (err)
  1843. goto out;
  1844. if (bcm->initvals1) {
  1845. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)bcm->initvals1->data,
  1846. bcm->initvals1->size / sizeof(struct bcm43xx_initval));
  1847. if (err)
  1848. goto out;
  1849. }
  1850. out:
  1851. return err;
  1852. }
  1853. static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
  1854. {
  1855. int res;
  1856. unsigned int i;
  1857. u32 data;
  1858. bcm->irq = bcm->pci_dev->irq;
  1859. #ifdef CONFIG_BCM947XX
  1860. if (bcm->pci_dev->bus->number == 0) {
  1861. struct pci_dev *d = NULL;
  1862. /* FIXME: we will probably need more device IDs here... */
  1863. d = pci_find_device(PCI_VENDOR_ID_BROADCOM, 0x4324, NULL);
  1864. if (d != NULL) {
  1865. bcm->irq = d->irq;
  1866. }
  1867. }
  1868. #endif
  1869. res = request_irq(bcm->irq, bcm43xx_interrupt_handler,
  1870. SA_SHIRQ, KBUILD_MODNAME, bcm);
  1871. if (res) {
  1872. printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
  1873. return -ENODEV;
  1874. }
  1875. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xffffffff);
  1876. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
  1877. i = 0;
  1878. while (1) {
  1879. data = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1880. if (data == BCM43xx_IRQ_READY)
  1881. break;
  1882. i++;
  1883. if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
  1884. printk(KERN_ERR PFX "Card IRQ register not responding. "
  1885. "Giving up.\n");
  1886. free_irq(bcm->irq, bcm);
  1887. return -ENODEV;
  1888. }
  1889. udelay(10);
  1890. }
  1891. // dummy read
  1892. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1893. return 0;
  1894. }
  1895. /* Switch to the core used to write the GPIO register.
  1896. * This is either the ChipCommon, or the PCI core.
  1897. */
  1898. static int switch_to_gpio_core(struct bcm43xx_private *bcm)
  1899. {
  1900. int err;
  1901. /* Where to find the GPIO register depends on the chipset.
  1902. * If it has a ChipCommon, its register at offset 0x6c is the GPIO
  1903. * control register. Otherwise the register at offset 0x6c in the
  1904. * PCI core is the GPIO control register.
  1905. */
  1906. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  1907. if (err == -ENODEV) {
  1908. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  1909. if (unlikely(err == -ENODEV)) {
  1910. printk(KERN_ERR PFX "gpio error: "
  1911. "Neither ChipCommon nor PCI core available!\n");
  1912. }
  1913. }
  1914. return err;
  1915. }
  1916. /* Initialize the GPIOs
  1917. * http://bcm-specs.sipsolutions.net/GPIO
  1918. */
  1919. static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
  1920. {
  1921. struct bcm43xx_coreinfo *old_core;
  1922. int err;
  1923. u32 mask, set;
  1924. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1925. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1926. & 0xFFFF3FFF);
  1927. bcm43xx_leds_switch_all(bcm, 0);
  1928. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1929. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
  1930. mask = 0x0000001F;
  1931. set = 0x0000000F;
  1932. if (bcm->chip_id == 0x4301) {
  1933. mask |= 0x0060;
  1934. set |= 0x0060;
  1935. }
  1936. if (0 /* FIXME: conditional unknown */) {
  1937. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1938. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1939. | 0x0100);
  1940. mask |= 0x0180;
  1941. set |= 0x0180;
  1942. }
  1943. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
  1944. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  1945. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
  1946. | 0x0200);
  1947. mask |= 0x0200;
  1948. set |= 0x0200;
  1949. }
  1950. if (bcm->current_core->rev >= 2)
  1951. mask |= 0x0010; /* FIXME: This is redundant. */
  1952. old_core = bcm->current_core;
  1953. err = switch_to_gpio_core(bcm);
  1954. if (err)
  1955. goto out;
  1956. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
  1957. (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
  1958. err = bcm43xx_switch_core(bcm, old_core);
  1959. out:
  1960. return err;
  1961. }
  1962. /* Turn off all GPIO stuff. Call this on module unload, for example. */
  1963. static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
  1964. {
  1965. struct bcm43xx_coreinfo *old_core;
  1966. int err;
  1967. old_core = bcm->current_core;
  1968. err = switch_to_gpio_core(bcm);
  1969. if (err)
  1970. return err;
  1971. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
  1972. err = bcm43xx_switch_core(bcm, old_core);
  1973. assert(err == 0);
  1974. return 0;
  1975. }
  1976. /* http://bcm-specs.sipsolutions.net/EnableMac */
  1977. void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
  1978. {
  1979. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1980. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1981. | BCM43xx_SBF_MAC_ENABLED);
  1982. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
  1983. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  1984. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1985. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1986. }
  1987. /* http://bcm-specs.sipsolutions.net/SuspendMAC */
  1988. void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
  1989. {
  1990. int i;
  1991. u32 tmp;
  1992. bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
  1993. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1994. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1995. & ~BCM43xx_SBF_MAC_ENABLED);
  1996. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  1997. for (i = 100000; i; i--) {
  1998. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1999. if (tmp & BCM43xx_IRQ_READY)
  2000. return;
  2001. udelay(10);
  2002. }
  2003. printkl(KERN_ERR PFX "MAC suspend failed\n");
  2004. }
  2005. void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
  2006. int iw_mode)
  2007. {
  2008. unsigned long flags;
  2009. struct net_device *net_dev = bcm->net_dev;
  2010. u32 status;
  2011. u16 value;
  2012. spin_lock_irqsave(&bcm->ieee->lock, flags);
  2013. bcm->ieee->iw_mode = iw_mode;
  2014. spin_unlock_irqrestore(&bcm->ieee->lock, flags);
  2015. if (iw_mode == IW_MODE_MONITOR)
  2016. net_dev->type = ARPHRD_IEEE80211;
  2017. else
  2018. net_dev->type = ARPHRD_ETHER;
  2019. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2020. /* Reset status to infrastructured mode */
  2021. status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
  2022. status &= ~BCM43xx_SBF_MODE_PROMISC;
  2023. status |= BCM43xx_SBF_MODE_NOTADHOC;
  2024. /* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
  2025. status |= BCM43xx_SBF_MODE_PROMISC;
  2026. switch (iw_mode) {
  2027. case IW_MODE_MONITOR:
  2028. status |= BCM43xx_SBF_MODE_MONITOR;
  2029. status |= BCM43xx_SBF_MODE_PROMISC;
  2030. break;
  2031. case IW_MODE_ADHOC:
  2032. status &= ~BCM43xx_SBF_MODE_NOTADHOC;
  2033. break;
  2034. case IW_MODE_MASTER:
  2035. status |= BCM43xx_SBF_MODE_AP;
  2036. break;
  2037. case IW_MODE_SECOND:
  2038. case IW_MODE_REPEAT:
  2039. TODO(); /* TODO */
  2040. break;
  2041. case IW_MODE_INFRA:
  2042. /* nothing to be done here... */
  2043. break;
  2044. default:
  2045. dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
  2046. }
  2047. if (net_dev->flags & IFF_PROMISC)
  2048. status |= BCM43xx_SBF_MODE_PROMISC;
  2049. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  2050. value = 0x0002;
  2051. if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
  2052. if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
  2053. value = 0x0064;
  2054. else
  2055. value = 0x0032;
  2056. }
  2057. bcm43xx_write16(bcm, 0x0612, value);
  2058. }
  2059. /* This is the opposite of bcm43xx_chip_init() */
  2060. static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
  2061. {
  2062. bcm43xx_radio_turn_off(bcm);
  2063. if (!modparam_noleds)
  2064. bcm43xx_leds_exit(bcm);
  2065. bcm43xx_gpio_cleanup(bcm);
  2066. free_irq(bcm->irq, bcm);
  2067. bcm43xx_release_firmware(bcm, 0);
  2068. }
  2069. /* Initialize the chip
  2070. * http://bcm-specs.sipsolutions.net/ChipInit
  2071. */
  2072. static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
  2073. {
  2074. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2075. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2076. int err;
  2077. int tmp;
  2078. u32 value32;
  2079. u16 value16;
  2080. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2081. BCM43xx_SBF_CORE_READY
  2082. | BCM43xx_SBF_400);
  2083. err = bcm43xx_request_firmware(bcm);
  2084. if (err)
  2085. goto out;
  2086. bcm43xx_upload_microcode(bcm);
  2087. err = bcm43xx_initialize_irq(bcm);
  2088. if (err)
  2089. goto err_release_fw;
  2090. err = bcm43xx_gpio_init(bcm);
  2091. if (err)
  2092. goto err_free_irq;
  2093. err = bcm43xx_upload_initvals(bcm);
  2094. if (err)
  2095. goto err_gpio_cleanup;
  2096. bcm43xx_radio_turn_on(bcm);
  2097. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  2098. err = bcm43xx_phy_init(bcm);
  2099. if (err)
  2100. goto err_radio_off;
  2101. /* Select initial Interference Mitigation. */
  2102. tmp = radio->interfmode;
  2103. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2104. bcm43xx_radio_set_interference_mitigation(bcm, tmp);
  2105. bcm43xx_phy_set_antenna_diversity(bcm);
  2106. bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
  2107. if (phy->type == BCM43xx_PHYTYPE_B) {
  2108. value16 = bcm43xx_read16(bcm, 0x005E);
  2109. value16 |= 0x0004;
  2110. bcm43xx_write16(bcm, 0x005E, value16);
  2111. }
  2112. bcm43xx_write32(bcm, 0x0100, 0x01000000);
  2113. if (bcm->current_core->rev < 5)
  2114. bcm43xx_write32(bcm, 0x010C, 0x01000000);
  2115. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2116. value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
  2117. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2118. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2119. value32 |= BCM43xx_SBF_MODE_NOTADHOC;
  2120. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2121. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2122. value32 |= 0x100000;
  2123. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2124. if (bcm43xx_using_pio(bcm)) {
  2125. bcm43xx_write32(bcm, 0x0210, 0x00000100);
  2126. bcm43xx_write32(bcm, 0x0230, 0x00000100);
  2127. bcm43xx_write32(bcm, 0x0250, 0x00000100);
  2128. bcm43xx_write32(bcm, 0x0270, 0x00000100);
  2129. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
  2130. }
  2131. /* Probe Response Timeout value */
  2132. /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
  2133. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
  2134. /* Initially set the wireless operation mode. */
  2135. bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
  2136. if (bcm->current_core->rev < 3) {
  2137. bcm43xx_write16(bcm, 0x060E, 0x0000);
  2138. bcm43xx_write16(bcm, 0x0610, 0x8000);
  2139. bcm43xx_write16(bcm, 0x0604, 0x0000);
  2140. bcm43xx_write16(bcm, 0x0606, 0x0200);
  2141. } else {
  2142. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  2143. bcm43xx_write32(bcm, 0x018C, 0x02000000);
  2144. }
  2145. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
  2146. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0001DC00);
  2147. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
  2148. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0000DC00);
  2149. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0001DC00);
  2150. value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  2151. value32 |= 0x00100000;
  2152. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
  2153. bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
  2154. assert(err == 0);
  2155. dprintk(KERN_INFO PFX "Chip initialized\n");
  2156. out:
  2157. return err;
  2158. err_radio_off:
  2159. bcm43xx_radio_turn_off(bcm);
  2160. err_gpio_cleanup:
  2161. bcm43xx_gpio_cleanup(bcm);
  2162. err_free_irq:
  2163. free_irq(bcm->irq, bcm);
  2164. err_release_fw:
  2165. bcm43xx_release_firmware(bcm, 1);
  2166. goto out;
  2167. }
  2168. /* Validate chip access
  2169. * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
  2170. static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
  2171. {
  2172. u32 value;
  2173. u32 shm_backup;
  2174. shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
  2175. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
  2176. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
  2177. goto error;
  2178. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
  2179. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
  2180. goto error;
  2181. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
  2182. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2183. if ((value | 0x80000000) != 0x80000400)
  2184. goto error;
  2185. value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2186. if (value != 0x00000000)
  2187. goto error;
  2188. return 0;
  2189. error:
  2190. printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
  2191. return -ENODEV;
  2192. }
  2193. static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
  2194. {
  2195. /* Initialize a "phyinfo" structure. The structure is already
  2196. * zeroed out.
  2197. */
  2198. phy->antenna_diversity = 0xFFFF;
  2199. phy->savedpctlreg = 0xFFFF;
  2200. phy->minlowsig[0] = 0xFFFF;
  2201. phy->minlowsig[1] = 0xFFFF;
  2202. spin_lock_init(&phy->lock);
  2203. }
  2204. static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
  2205. {
  2206. /* Initialize a "radioinfo" structure. The structure is already
  2207. * zeroed out.
  2208. */
  2209. radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2210. radio->channel = 0xFF;
  2211. radio->initial_channel = 0xFF;
  2212. radio->lofcal = 0xFFFF;
  2213. radio->initval = 0xFFFF;
  2214. radio->nrssi[0] = -1000;
  2215. radio->nrssi[1] = -1000;
  2216. }
  2217. static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
  2218. {
  2219. int err, i;
  2220. int current_core;
  2221. u32 core_vendor, core_id, core_rev;
  2222. u32 sb_id_hi, chip_id_32 = 0;
  2223. u16 pci_device, chip_id_16;
  2224. u8 core_count;
  2225. memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
  2226. memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
  2227. memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
  2228. * BCM43xx_MAX_80211_CORES);
  2229. memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
  2230. * BCM43xx_MAX_80211_CORES);
  2231. bcm->current_80211_core_idx = -1;
  2232. bcm->nr_80211_available = 0;
  2233. bcm->current_core = NULL;
  2234. bcm->active_80211_core = NULL;
  2235. /* map core 0 */
  2236. err = _switch_core(bcm, 0);
  2237. if (err)
  2238. goto out;
  2239. /* fetch sb_id_hi from core information registers */
  2240. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2241. core_id = (sb_id_hi & 0xFFF0) >> 4;
  2242. core_rev = (sb_id_hi & 0xF);
  2243. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2244. /* if present, chipcommon is always core 0; read the chipid from it */
  2245. if (core_id == BCM43xx_COREID_CHIPCOMMON) {
  2246. chip_id_32 = bcm43xx_read32(bcm, 0);
  2247. chip_id_16 = chip_id_32 & 0xFFFF;
  2248. bcm->core_chipcommon.available = 1;
  2249. bcm->core_chipcommon.id = core_id;
  2250. bcm->core_chipcommon.rev = core_rev;
  2251. bcm->core_chipcommon.index = 0;
  2252. /* While we are at it, also read the capabilities. */
  2253. bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
  2254. } else {
  2255. /* without a chipCommon, use a hard coded table. */
  2256. pci_device = bcm->pci_dev->device;
  2257. if (pci_device == 0x4301)
  2258. chip_id_16 = 0x4301;
  2259. else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
  2260. chip_id_16 = 0x4307;
  2261. else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
  2262. chip_id_16 = 0x4402;
  2263. else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
  2264. chip_id_16 = 0x4610;
  2265. else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
  2266. chip_id_16 = 0x4710;
  2267. #ifdef CONFIG_BCM947XX
  2268. else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
  2269. chip_id_16 = 0x4309;
  2270. #endif
  2271. else {
  2272. printk(KERN_ERR PFX "Could not determine Chip ID\n");
  2273. return -ENODEV;
  2274. }
  2275. }
  2276. /* ChipCommon with Core Rev >=4 encodes number of cores,
  2277. * otherwise consult hardcoded table */
  2278. if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
  2279. core_count = (chip_id_32 & 0x0F000000) >> 24;
  2280. } else {
  2281. switch (chip_id_16) {
  2282. case 0x4610:
  2283. case 0x4704:
  2284. case 0x4710:
  2285. core_count = 9;
  2286. break;
  2287. case 0x4310:
  2288. core_count = 8;
  2289. break;
  2290. case 0x5365:
  2291. core_count = 7;
  2292. break;
  2293. case 0x4306:
  2294. core_count = 6;
  2295. break;
  2296. case 0x4301:
  2297. case 0x4307:
  2298. core_count = 5;
  2299. break;
  2300. case 0x4402:
  2301. core_count = 3;
  2302. break;
  2303. default:
  2304. /* SOL if we get here */
  2305. assert(0);
  2306. core_count = 1;
  2307. }
  2308. }
  2309. bcm->chip_id = chip_id_16;
  2310. bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16;
  2311. bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20;
  2312. dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
  2313. bcm->chip_id, bcm->chip_rev);
  2314. dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
  2315. if (bcm->core_chipcommon.available) {
  2316. dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
  2317. core_id, core_rev, core_vendor,
  2318. bcm43xx_core_enabled(bcm) ? "enabled" : "disabled");
  2319. }
  2320. if (bcm->core_chipcommon.available)
  2321. current_core = 1;
  2322. else
  2323. current_core = 0;
  2324. for ( ; current_core < core_count; current_core++) {
  2325. struct bcm43xx_coreinfo *core;
  2326. struct bcm43xx_coreinfo_80211 *ext_80211;
  2327. err = _switch_core(bcm, current_core);
  2328. if (err)
  2329. goto out;
  2330. /* Gather information */
  2331. /* fetch sb_id_hi from core information registers */
  2332. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2333. /* extract core_id, core_rev, core_vendor */
  2334. core_id = (sb_id_hi & 0xFFF0) >> 4;
  2335. core_rev = (sb_id_hi & 0xF);
  2336. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2337. dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
  2338. current_core, core_id, core_rev, core_vendor,
  2339. bcm43xx_core_enabled(bcm) ? "enabled" : "disabled" );
  2340. core = NULL;
  2341. switch (core_id) {
  2342. case BCM43xx_COREID_PCI:
  2343. core = &bcm->core_pci;
  2344. if (core->available) {
  2345. printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
  2346. continue;
  2347. }
  2348. break;
  2349. case BCM43xx_COREID_80211:
  2350. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2351. core = &(bcm->core_80211[i]);
  2352. ext_80211 = &(bcm->core_80211_ext[i]);
  2353. if (!core->available)
  2354. break;
  2355. core = NULL;
  2356. }
  2357. if (!core) {
  2358. printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
  2359. BCM43xx_MAX_80211_CORES);
  2360. continue;
  2361. }
  2362. if (i != 0) {
  2363. /* More than one 80211 core is only supported
  2364. * by special chips.
  2365. * There are chips with two 80211 cores, but with
  2366. * dangling pins on the second core. Be careful
  2367. * and ignore these cores here.
  2368. */
  2369. if (bcm->pci_dev->device != 0x4324) {
  2370. dprintk(KERN_INFO PFX "Ignoring additional 802.11 core.\n");
  2371. continue;
  2372. }
  2373. }
  2374. switch (core_rev) {
  2375. case 2:
  2376. case 4:
  2377. case 5:
  2378. case 6:
  2379. case 7:
  2380. case 9:
  2381. break;
  2382. default:
  2383. printk(KERN_ERR PFX "Error: Unsupported 80211 core revision %u\n",
  2384. core_rev);
  2385. err = -ENODEV;
  2386. goto out;
  2387. }
  2388. bcm->nr_80211_available++;
  2389. bcm43xx_init_struct_phyinfo(&ext_80211->phy);
  2390. bcm43xx_init_struct_radioinfo(&ext_80211->radio);
  2391. break;
  2392. case BCM43xx_COREID_CHIPCOMMON:
  2393. printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
  2394. break;
  2395. }
  2396. if (core) {
  2397. core->available = 1;
  2398. core->id = core_id;
  2399. core->rev = core_rev;
  2400. core->index = current_core;
  2401. }
  2402. }
  2403. if (!bcm->core_80211[0].available) {
  2404. printk(KERN_ERR PFX "Error: No 80211 core found!\n");
  2405. err = -ENODEV;
  2406. goto out;
  2407. }
  2408. err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2409. assert(err == 0);
  2410. out:
  2411. return err;
  2412. }
  2413. static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
  2414. {
  2415. const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
  2416. u8 *bssid = bcm->ieee->bssid;
  2417. switch (bcm->ieee->iw_mode) {
  2418. case IW_MODE_ADHOC:
  2419. random_ether_addr(bssid);
  2420. break;
  2421. case IW_MODE_MASTER:
  2422. case IW_MODE_INFRA:
  2423. case IW_MODE_REPEAT:
  2424. case IW_MODE_SECOND:
  2425. case IW_MODE_MONITOR:
  2426. memcpy(bssid, mac, ETH_ALEN);
  2427. break;
  2428. default:
  2429. assert(0);
  2430. }
  2431. }
  2432. static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
  2433. u16 rate,
  2434. int is_ofdm)
  2435. {
  2436. u16 offset;
  2437. if (is_ofdm) {
  2438. offset = 0x480;
  2439. offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
  2440. }
  2441. else {
  2442. offset = 0x4C0;
  2443. offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
  2444. }
  2445. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
  2446. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
  2447. }
  2448. static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
  2449. {
  2450. switch (bcm43xx_current_phy(bcm)->type) {
  2451. case BCM43xx_PHYTYPE_A:
  2452. case BCM43xx_PHYTYPE_G:
  2453. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
  2454. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
  2455. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
  2456. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
  2457. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
  2458. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
  2459. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
  2460. case BCM43xx_PHYTYPE_B:
  2461. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
  2462. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
  2463. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
  2464. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
  2465. break;
  2466. default:
  2467. assert(0);
  2468. }
  2469. }
  2470. static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
  2471. {
  2472. bcm43xx_chip_cleanup(bcm);
  2473. bcm43xx_pio_free(bcm);
  2474. bcm43xx_dma_free(bcm);
  2475. bcm->current_core->initialized = 0;
  2476. }
  2477. /* http://bcm-specs.sipsolutions.net/80211Init */
  2478. static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm)
  2479. {
  2480. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2481. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2482. u32 ucodeflags;
  2483. int err;
  2484. u32 sbimconfiglow;
  2485. u8 limit;
  2486. if (bcm->chip_rev < 5) {
  2487. sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2488. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2489. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2490. if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
  2491. sbimconfiglow |= 0x32;
  2492. else if (bcm->bustype == BCM43xx_BUSTYPE_SB)
  2493. sbimconfiglow |= 0x53;
  2494. else
  2495. assert(0);
  2496. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
  2497. }
  2498. bcm43xx_phy_calibrate(bcm);
  2499. err = bcm43xx_chip_init(bcm);
  2500. if (err)
  2501. goto out;
  2502. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
  2503. ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
  2504. if (0 /*FIXME: which condition has to be used here? */)
  2505. ucodeflags |= 0x00000010;
  2506. /* HW decryption needs to be set now */
  2507. ucodeflags |= 0x40000000;
  2508. if (phy->type == BCM43xx_PHYTYPE_G) {
  2509. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2510. if (phy->rev == 1)
  2511. ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
  2512. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
  2513. ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
  2514. } else if (phy->type == BCM43xx_PHYTYPE_B) {
  2515. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2516. if (phy->rev >= 2 && radio->version == 0x2050)
  2517. ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
  2518. }
  2519. if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
  2520. BCM43xx_UCODEFLAGS_OFFSET)) {
  2521. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
  2522. BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
  2523. }
  2524. /* Short/Long Retry Limit.
  2525. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
  2526. * the chip-internal counter.
  2527. */
  2528. limit = limit_value(modparam_short_retry, 0, 0xF);
  2529. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
  2530. limit = limit_value(modparam_long_retry, 0, 0xF);
  2531. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
  2532. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
  2533. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
  2534. bcm43xx_rate_memory_init(bcm);
  2535. /* Minimum Contention Window */
  2536. if (phy->type == BCM43xx_PHYTYPE_B)
  2537. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
  2538. else
  2539. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
  2540. /* Maximum Contention Window */
  2541. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  2542. bcm43xx_gen_bssid(bcm);
  2543. bcm43xx_write_mac_bssid_templates(bcm);
  2544. if (bcm->current_core->rev >= 5)
  2545. bcm43xx_write16(bcm, 0x043C, 0x000C);
  2546. if (bcm43xx_using_pio(bcm))
  2547. err = bcm43xx_pio_init(bcm);
  2548. else
  2549. err = bcm43xx_dma_init(bcm);
  2550. if (err)
  2551. goto err_chip_cleanup;
  2552. bcm43xx_write16(bcm, 0x0612, 0x0050);
  2553. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
  2554. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
  2555. bcm43xx_mac_enable(bcm);
  2556. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  2557. bcm->current_core->initialized = 1;
  2558. out:
  2559. return err;
  2560. err_chip_cleanup:
  2561. bcm43xx_chip_cleanup(bcm);
  2562. goto out;
  2563. }
  2564. static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
  2565. {
  2566. int err;
  2567. u16 pci_status;
  2568. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2569. if (err)
  2570. goto out;
  2571. bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
  2572. bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
  2573. out:
  2574. return err;
  2575. }
  2576. static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
  2577. {
  2578. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  2579. bcm43xx_pctl_set_crystal(bcm, 0);
  2580. }
  2581. static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
  2582. u32 address,
  2583. u32 data)
  2584. {
  2585. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
  2586. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
  2587. }
  2588. static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
  2589. {
  2590. int err;
  2591. struct bcm43xx_coreinfo *old_core;
  2592. old_core = bcm->current_core;
  2593. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2594. if (err)
  2595. goto out;
  2596. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2597. bcm43xx_switch_core(bcm, old_core);
  2598. assert(err == 0);
  2599. out:
  2600. return err;
  2601. }
  2602. /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
  2603. * To enable core 0, pass a core_mask of 1<<0
  2604. */
  2605. static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
  2606. u32 core_mask)
  2607. {
  2608. u32 backplane_flag_nr;
  2609. u32 value;
  2610. struct bcm43xx_coreinfo *old_core;
  2611. int err = 0;
  2612. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
  2613. backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
  2614. old_core = bcm->current_core;
  2615. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2616. if (err)
  2617. goto out;
  2618. if (bcm->core_pci.rev < 6) {
  2619. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
  2620. value |= (1 << backplane_flag_nr);
  2621. bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
  2622. } else {
  2623. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
  2624. if (err) {
  2625. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2626. goto out_switch_back;
  2627. }
  2628. value |= core_mask << 8;
  2629. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
  2630. if (err) {
  2631. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2632. goto out_switch_back;
  2633. }
  2634. }
  2635. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2636. value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
  2637. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2638. if (bcm->core_pci.rev < 5) {
  2639. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2640. value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
  2641. & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2642. value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
  2643. & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2644. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
  2645. err = bcm43xx_pcicore_commit_settings(bcm);
  2646. assert(err == 0);
  2647. }
  2648. out_switch_back:
  2649. err = bcm43xx_switch_core(bcm, old_core);
  2650. out:
  2651. return err;
  2652. }
  2653. static void bcm43xx_softmac_init(struct bcm43xx_private *bcm)
  2654. {
  2655. ieee80211softmac_start(bcm->net_dev);
  2656. }
  2657. static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
  2658. {
  2659. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2660. if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
  2661. return;
  2662. bcm43xx_mac_suspend(bcm);
  2663. bcm43xx_phy_lo_g_measure(bcm);
  2664. bcm43xx_mac_enable(bcm);
  2665. }
  2666. static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
  2667. {
  2668. bcm43xx_phy_lo_mark_all_unused(bcm);
  2669. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  2670. bcm43xx_mac_suspend(bcm);
  2671. bcm43xx_calc_nrssi_slope(bcm);
  2672. bcm43xx_mac_enable(bcm);
  2673. }
  2674. }
  2675. static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
  2676. {
  2677. /* Update device statistics. */
  2678. bcm43xx_calculate_link_quality(bcm);
  2679. }
  2680. static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
  2681. {
  2682. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2683. struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
  2684. if (phy->type == BCM43xx_PHYTYPE_G) {
  2685. //TODO: update_aci_moving_average
  2686. if (radio->aci_enable && radio->aci_wlan_automatic) {
  2687. bcm43xx_mac_suspend(bcm);
  2688. if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
  2689. if (0 /*TODO: bunch of conditions*/) {
  2690. bcm43xx_radio_set_interference_mitigation(bcm,
  2691. BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
  2692. }
  2693. } else if (1/*TODO*/) {
  2694. /*
  2695. if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
  2696. bcm43xx_radio_set_interference_mitigation(bcm,
  2697. BCM43xx_RADIO_INTERFMODE_NONE);
  2698. }
  2699. */
  2700. }
  2701. bcm43xx_mac_enable(bcm);
  2702. } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
  2703. phy->rev == 1) {
  2704. //TODO: implement rev1 workaround
  2705. }
  2706. }
  2707. bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
  2708. //TODO for APHY (temperature?)
  2709. }
  2710. static void bcm43xx_periodic_task_handler(unsigned long d)
  2711. {
  2712. struct bcm43xx_private *bcm = (struct bcm43xx_private *)d;
  2713. unsigned long flags;
  2714. unsigned int state;
  2715. bcm43xx_lock_mmio(bcm, flags);
  2716. assert(bcm->initialized);
  2717. state = bcm->periodic_state;
  2718. if (state % 8 == 0)
  2719. bcm43xx_periodic_every120sec(bcm);
  2720. if (state % 4 == 0)
  2721. bcm43xx_periodic_every60sec(bcm);
  2722. if (state % 2 == 0)
  2723. bcm43xx_periodic_every30sec(bcm);
  2724. bcm43xx_periodic_every15sec(bcm);
  2725. bcm->periodic_state = state + 1;
  2726. mod_timer(&bcm->periodic_tasks, jiffies + (HZ * 15));
  2727. bcm43xx_unlock_mmio(bcm, flags);
  2728. }
  2729. static void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
  2730. {
  2731. del_timer_sync(&bcm->periodic_tasks);
  2732. }
  2733. static void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
  2734. {
  2735. struct timer_list *timer = &(bcm->periodic_tasks);
  2736. assert(bcm->initialized);
  2737. setup_timer(timer,
  2738. bcm43xx_periodic_task_handler,
  2739. (unsigned long)bcm);
  2740. timer->expires = jiffies;
  2741. add_timer(timer);
  2742. }
  2743. static void bcm43xx_security_init(struct bcm43xx_private *bcm)
  2744. {
  2745. bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2746. 0x0056) * 2;
  2747. bcm43xx_clear_keys(bcm);
  2748. }
  2749. /* This is the opposite of bcm43xx_init_board() */
  2750. static void bcm43xx_free_board(struct bcm43xx_private *bcm)
  2751. {
  2752. int i, err;
  2753. unsigned long flags;
  2754. bcm43xx_sysfs_unregister(bcm);
  2755. bcm43xx_periodic_tasks_delete(bcm);
  2756. bcm43xx_lock(bcm, flags);
  2757. bcm->initialized = 0;
  2758. bcm->shutting_down = 1;
  2759. bcm43xx_unlock(bcm, flags);
  2760. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2761. if (!bcm->core_80211[i].available)
  2762. continue;
  2763. if (!bcm->core_80211[i].initialized)
  2764. continue;
  2765. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  2766. assert(err == 0);
  2767. bcm43xx_wireless_core_cleanup(bcm);
  2768. }
  2769. bcm43xx_pctl_set_crystal(bcm, 0);
  2770. bcm43xx_lock(bcm, flags);
  2771. bcm->shutting_down = 0;
  2772. bcm43xx_unlock(bcm, flags);
  2773. }
  2774. static int bcm43xx_init_board(struct bcm43xx_private *bcm)
  2775. {
  2776. int i, err;
  2777. int connect_phy;
  2778. unsigned long flags;
  2779. might_sleep();
  2780. bcm43xx_lock(bcm, flags);
  2781. bcm->initialized = 0;
  2782. bcm->shutting_down = 0;
  2783. bcm43xx_unlock(bcm, flags);
  2784. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2785. if (err)
  2786. goto out;
  2787. err = bcm43xx_pctl_init(bcm);
  2788. if (err)
  2789. goto err_crystal_off;
  2790. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
  2791. if (err)
  2792. goto err_crystal_off;
  2793. tasklet_enable(&bcm->isr_tasklet);
  2794. for (i = 0; i < bcm->nr_80211_available; i++) {
  2795. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  2796. assert(err != -ENODEV);
  2797. if (err)
  2798. goto err_80211_unwind;
  2799. /* Enable the selected wireless core.
  2800. * Connect PHY only on the first core.
  2801. */
  2802. if (!bcm43xx_core_enabled(bcm)) {
  2803. if (bcm->nr_80211_available == 1) {
  2804. connect_phy = bcm43xx_current_phy(bcm)->connected;
  2805. } else {
  2806. if (i == 0)
  2807. connect_phy = 1;
  2808. else
  2809. connect_phy = 0;
  2810. }
  2811. bcm43xx_wireless_core_reset(bcm, connect_phy);
  2812. }
  2813. if (i != 0)
  2814. bcm43xx_wireless_core_mark_inactive(bcm, &bcm->core_80211[0]);
  2815. err = bcm43xx_wireless_core_init(bcm);
  2816. if (err)
  2817. goto err_80211_unwind;
  2818. if (i != 0) {
  2819. bcm43xx_mac_suspend(bcm);
  2820. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2821. bcm43xx_radio_turn_off(bcm);
  2822. }
  2823. }
  2824. bcm->active_80211_core = &bcm->core_80211[0];
  2825. if (bcm->nr_80211_available >= 2) {
  2826. bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2827. bcm43xx_mac_enable(bcm);
  2828. }
  2829. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  2830. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
  2831. dprintk(KERN_INFO PFX "80211 cores initialized\n");
  2832. bcm43xx_security_init(bcm);
  2833. bcm43xx_softmac_init(bcm);
  2834. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
  2835. if (bcm43xx_current_radio(bcm)->initial_channel != 0xFF) {
  2836. bcm43xx_mac_suspend(bcm);
  2837. bcm43xx_radio_selectchannel(bcm, bcm43xx_current_radio(bcm)->initial_channel, 0);
  2838. bcm43xx_mac_enable(bcm);
  2839. }
  2840. /* Initialization of the board is done. Flag it as such. */
  2841. bcm43xx_lock(bcm, flags);
  2842. bcm->initialized = 1;
  2843. bcm43xx_unlock(bcm, flags);
  2844. bcm43xx_periodic_tasks_setup(bcm);
  2845. bcm43xx_sysfs_register(bcm);
  2846. //FIXME: check for bcm43xx_sysfs_register failure. This function is a bit messy regarding unwinding, though...
  2847. assert(err == 0);
  2848. out:
  2849. return err;
  2850. err_80211_unwind:
  2851. tasklet_disable(&bcm->isr_tasklet);
  2852. /* unwind all 80211 initialization */
  2853. for (i = 0; i < bcm->nr_80211_available; i++) {
  2854. if (!bcm->core_80211[i].initialized)
  2855. continue;
  2856. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  2857. bcm43xx_wireless_core_cleanup(bcm);
  2858. }
  2859. err_crystal_off:
  2860. bcm43xx_pctl_set_crystal(bcm, 0);
  2861. goto out;
  2862. }
  2863. static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
  2864. {
  2865. struct pci_dev *pci_dev = bcm->pci_dev;
  2866. int i;
  2867. bcm43xx_chipset_detach(bcm);
  2868. /* Do _not_ access the chip, after it is detached. */
  2869. iounmap(bcm->mmio_addr);
  2870. pci_release_regions(pci_dev);
  2871. pci_disable_device(pci_dev);
  2872. /* Free allocated structures/fields */
  2873. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2874. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  2875. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  2876. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  2877. }
  2878. }
  2879. static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
  2880. {
  2881. struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
  2882. u16 value;
  2883. u8 phy_version;
  2884. u8 phy_type;
  2885. u8 phy_rev;
  2886. int phy_rev_ok = 1;
  2887. void *p;
  2888. value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
  2889. phy_version = (value & 0xF000) >> 12;
  2890. phy_type = (value & 0x0F00) >> 8;
  2891. phy_rev = (value & 0x000F);
  2892. dprintk(KERN_INFO PFX "Detected PHY: Version: %x, Type %x, Revision %x\n",
  2893. phy_version, phy_type, phy_rev);
  2894. switch (phy_type) {
  2895. case BCM43xx_PHYTYPE_A:
  2896. if (phy_rev >= 4)
  2897. phy_rev_ok = 0;
  2898. /*FIXME: We need to switch the ieee->modulation, etc.. flags,
  2899. * if we switch 80211 cores after init is done.
  2900. * As we do not implement on the fly switching between
  2901. * wireless cores, I will leave this as a future task.
  2902. */
  2903. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
  2904. bcm->ieee->mode = IEEE_A;
  2905. bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
  2906. IEEE80211_24GHZ_BAND;
  2907. break;
  2908. case BCM43xx_PHYTYPE_B:
  2909. if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
  2910. phy_rev_ok = 0;
  2911. bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
  2912. bcm->ieee->mode = IEEE_B;
  2913. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  2914. break;
  2915. case BCM43xx_PHYTYPE_G:
  2916. if (phy_rev > 7)
  2917. phy_rev_ok = 0;
  2918. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
  2919. IEEE80211_CCK_MODULATION;
  2920. bcm->ieee->mode = IEEE_G;
  2921. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  2922. break;
  2923. default:
  2924. printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
  2925. phy_type);
  2926. return -ENODEV;
  2927. };
  2928. if (!phy_rev_ok) {
  2929. printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
  2930. phy_rev);
  2931. }
  2932. phy->version = phy_version;
  2933. phy->type = phy_type;
  2934. phy->rev = phy_rev;
  2935. if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
  2936. p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
  2937. GFP_KERNEL);
  2938. if (!p)
  2939. return -ENOMEM;
  2940. phy->_lo_pairs = p;
  2941. }
  2942. return 0;
  2943. }
  2944. static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
  2945. {
  2946. struct pci_dev *pci_dev = bcm->pci_dev;
  2947. struct net_device *net_dev = bcm->net_dev;
  2948. int err;
  2949. int i;
  2950. unsigned long mmio_start, mmio_flags, mmio_len;
  2951. u32 coremask;
  2952. err = pci_enable_device(pci_dev);
  2953. if (err) {
  2954. printk(KERN_ERR PFX "unable to wake up pci device (%i)\n", err);
  2955. goto out;
  2956. }
  2957. mmio_start = pci_resource_start(pci_dev, 0);
  2958. mmio_flags = pci_resource_flags(pci_dev, 0);
  2959. mmio_len = pci_resource_len(pci_dev, 0);
  2960. if (!(mmio_flags & IORESOURCE_MEM)) {
  2961. printk(KERN_ERR PFX
  2962. "%s, region #0 not an MMIO resource, aborting\n",
  2963. pci_name(pci_dev));
  2964. err = -ENODEV;
  2965. goto err_pci_disable;
  2966. }
  2967. err = pci_request_regions(pci_dev, KBUILD_MODNAME);
  2968. if (err) {
  2969. printk(KERN_ERR PFX
  2970. "could not access PCI resources (%i)\n", err);
  2971. goto err_pci_disable;
  2972. }
  2973. /* enable PCI bus-mastering */
  2974. pci_set_master(pci_dev);
  2975. bcm->mmio_addr = ioremap(mmio_start, mmio_len);
  2976. if (!bcm->mmio_addr) {
  2977. printk(KERN_ERR PFX "%s: cannot remap MMIO, aborting\n",
  2978. pci_name(pci_dev));
  2979. err = -EIO;
  2980. goto err_pci_release;
  2981. }
  2982. bcm->mmio_len = mmio_len;
  2983. net_dev->base_addr = (unsigned long)bcm->mmio_addr;
  2984. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
  2985. &bcm->board_vendor);
  2986. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
  2987. &bcm->board_type);
  2988. bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
  2989. &bcm->board_revision);
  2990. err = bcm43xx_chipset_attach(bcm);
  2991. if (err)
  2992. goto err_iounmap;
  2993. err = bcm43xx_pctl_init(bcm);
  2994. if (err)
  2995. goto err_chipset_detach;
  2996. err = bcm43xx_probe_cores(bcm);
  2997. if (err)
  2998. goto err_chipset_detach;
  2999. /* Attach all IO cores to the backplane. */
  3000. coremask = 0;
  3001. for (i = 0; i < bcm->nr_80211_available; i++)
  3002. coremask |= (1 << bcm->core_80211[i].index);
  3003. //FIXME: Also attach some non80211 cores?
  3004. err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
  3005. if (err) {
  3006. printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
  3007. goto err_chipset_detach;
  3008. }
  3009. err = bcm43xx_sprom_extract(bcm);
  3010. if (err)
  3011. goto err_chipset_detach;
  3012. err = bcm43xx_leds_init(bcm);
  3013. if (err)
  3014. goto err_chipset_detach;
  3015. for (i = 0; i < bcm->nr_80211_available; i++) {
  3016. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  3017. assert(err != -ENODEV);
  3018. if (err)
  3019. goto err_80211_unwind;
  3020. /* Enable the selected wireless core.
  3021. * Connect PHY only on the first core.
  3022. */
  3023. bcm43xx_wireless_core_reset(bcm, (i == 0));
  3024. err = bcm43xx_read_phyinfo(bcm);
  3025. if (err && (i == 0))
  3026. goto err_80211_unwind;
  3027. err = bcm43xx_read_radioinfo(bcm);
  3028. if (err && (i == 0))
  3029. goto err_80211_unwind;
  3030. err = bcm43xx_validate_chip(bcm);
  3031. if (err && (i == 0))
  3032. goto err_80211_unwind;
  3033. bcm43xx_radio_turn_off(bcm);
  3034. err = bcm43xx_phy_init_tssi2dbm_table(bcm);
  3035. if (err)
  3036. goto err_80211_unwind;
  3037. bcm43xx_wireless_core_disable(bcm);
  3038. }
  3039. bcm43xx_pctl_set_crystal(bcm, 0);
  3040. /* Set the MAC address in the networking subsystem */
  3041. if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_A)
  3042. memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
  3043. else
  3044. memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
  3045. bcm43xx_geo_init(bcm);
  3046. snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
  3047. "Broadcom %04X", bcm->chip_id);
  3048. assert(err == 0);
  3049. out:
  3050. return err;
  3051. err_80211_unwind:
  3052. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3053. kfree(bcm->core_80211_ext[i].phy._lo_pairs);
  3054. if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
  3055. kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
  3056. }
  3057. err_chipset_detach:
  3058. bcm43xx_chipset_detach(bcm);
  3059. err_iounmap:
  3060. iounmap(bcm->mmio_addr);
  3061. err_pci_release:
  3062. pci_release_regions(pci_dev);
  3063. err_pci_disable:
  3064. pci_disable_device(pci_dev);
  3065. goto out;
  3066. }
  3067. /* Do the Hardware IO operations to send the txb */
  3068. static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
  3069. struct ieee80211_txb *txb)
  3070. {
  3071. int err = -ENODEV;
  3072. if (bcm43xx_using_pio(bcm))
  3073. err = bcm43xx_pio_tx(bcm, txb);
  3074. else
  3075. err = bcm43xx_dma_tx(bcm, txb);
  3076. return err;
  3077. }
  3078. static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
  3079. u8 channel)
  3080. {
  3081. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3082. struct bcm43xx_radioinfo *radio;
  3083. unsigned long flags;
  3084. bcm43xx_lock_mmio(bcm, flags);
  3085. if (bcm->initialized) {
  3086. bcm43xx_mac_suspend(bcm);
  3087. bcm43xx_radio_selectchannel(bcm, channel, 0);
  3088. bcm43xx_mac_enable(bcm);
  3089. } else {
  3090. radio = bcm43xx_current_radio(bcm);
  3091. radio->initial_channel = channel;
  3092. }
  3093. bcm43xx_unlock_mmio(bcm, flags);
  3094. }
  3095. /* set_security() callback in struct ieee80211_device */
  3096. static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
  3097. struct ieee80211_security *sec)
  3098. {
  3099. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3100. struct ieee80211_security *secinfo = &bcm->ieee->sec;
  3101. unsigned long flags;
  3102. int keyidx;
  3103. dprintk(KERN_INFO PFX "set security called\n");
  3104. bcm43xx_lock_mmio(bcm, flags);
  3105. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
  3106. if (sec->flags & (1<<keyidx)) {
  3107. secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
  3108. secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
  3109. memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
  3110. }
  3111. if (sec->flags & SEC_ACTIVE_KEY) {
  3112. secinfo->active_key = sec->active_key;
  3113. dprintk(KERN_INFO PFX " .active_key = %d\n", sec->active_key);
  3114. }
  3115. if (sec->flags & SEC_UNICAST_GROUP) {
  3116. secinfo->unicast_uses_group = sec->unicast_uses_group;
  3117. dprintk(KERN_INFO PFX " .unicast_uses_group = %d\n", sec->unicast_uses_group);
  3118. }
  3119. if (sec->flags & SEC_LEVEL) {
  3120. secinfo->level = sec->level;
  3121. dprintk(KERN_INFO PFX " .level = %d\n", sec->level);
  3122. }
  3123. if (sec->flags & SEC_ENABLED) {
  3124. secinfo->enabled = sec->enabled;
  3125. dprintk(KERN_INFO PFX " .enabled = %d\n", sec->enabled);
  3126. }
  3127. if (sec->flags & SEC_ENCRYPT) {
  3128. secinfo->encrypt = sec->encrypt;
  3129. dprintk(KERN_INFO PFX " .encrypt = %d\n", sec->encrypt);
  3130. }
  3131. if (bcm->initialized && !bcm->ieee->host_encrypt) {
  3132. if (secinfo->enabled) {
  3133. /* upload WEP keys to hardware */
  3134. char null_address[6] = { 0 };
  3135. u8 algorithm = 0;
  3136. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
  3137. if (!(sec->flags & (1<<keyidx)))
  3138. continue;
  3139. switch (sec->encode_alg[keyidx]) {
  3140. case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
  3141. case SEC_ALG_WEP:
  3142. algorithm = BCM43xx_SEC_ALGO_WEP;
  3143. if (secinfo->key_sizes[keyidx] == 13)
  3144. algorithm = BCM43xx_SEC_ALGO_WEP104;
  3145. break;
  3146. case SEC_ALG_TKIP:
  3147. FIXME();
  3148. algorithm = BCM43xx_SEC_ALGO_TKIP;
  3149. break;
  3150. case SEC_ALG_CCMP:
  3151. FIXME();
  3152. algorithm = BCM43xx_SEC_ALGO_AES;
  3153. break;
  3154. default:
  3155. assert(0);
  3156. break;
  3157. }
  3158. bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
  3159. bcm->key[keyidx].enabled = 1;
  3160. bcm->key[keyidx].algorithm = algorithm;
  3161. }
  3162. } else
  3163. bcm43xx_clear_keys(bcm);
  3164. }
  3165. bcm43xx_unlock_mmio(bcm, flags);
  3166. }
  3167. /* hard_start_xmit() callback in struct ieee80211_device */
  3168. static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
  3169. struct net_device *net_dev,
  3170. int pri)
  3171. {
  3172. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3173. int err = -ENODEV;
  3174. unsigned long flags;
  3175. bcm43xx_lock_mmio(bcm, flags);
  3176. if (likely(bcm->initialized))
  3177. err = bcm43xx_tx(bcm, txb);
  3178. bcm43xx_unlock_mmio(bcm, flags);
  3179. return err;
  3180. }
  3181. static struct net_device_stats * bcm43xx_net_get_stats(struct net_device *net_dev)
  3182. {
  3183. return &(bcm43xx_priv(net_dev)->ieee->stats);
  3184. }
  3185. static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
  3186. {
  3187. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3188. unsigned long flags;
  3189. bcm43xx_lock_mmio(bcm, flags);
  3190. bcm43xx_controller_restart(bcm, "TX timeout");
  3191. bcm43xx_unlock_mmio(bcm, flags);
  3192. }
  3193. #ifdef CONFIG_NET_POLL_CONTROLLER
  3194. static void bcm43xx_net_poll_controller(struct net_device *net_dev)
  3195. {
  3196. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3197. unsigned long flags;
  3198. local_irq_save(flags);
  3199. bcm43xx_interrupt_handler(bcm->irq, bcm, NULL);
  3200. local_irq_restore(flags);
  3201. }
  3202. #endif /* CONFIG_NET_POLL_CONTROLLER */
  3203. static int bcm43xx_net_open(struct net_device *net_dev)
  3204. {
  3205. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3206. return bcm43xx_init_board(bcm);
  3207. }
  3208. static int bcm43xx_net_stop(struct net_device *net_dev)
  3209. {
  3210. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3211. ieee80211softmac_stop(net_dev);
  3212. bcm43xx_disable_interrupts_sync(bcm, NULL);
  3213. bcm43xx_free_board(bcm);
  3214. return 0;
  3215. }
  3216. static int bcm43xx_init_private(struct bcm43xx_private *bcm,
  3217. struct net_device *net_dev,
  3218. struct pci_dev *pci_dev)
  3219. {
  3220. int err;
  3221. bcm->ieee = netdev_priv(net_dev);
  3222. bcm->softmac = ieee80211_priv(net_dev);
  3223. bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
  3224. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3225. bcm->pci_dev = pci_dev;
  3226. bcm->net_dev = net_dev;
  3227. bcm->bad_frames_preempt = modparam_bad_frames_preempt;
  3228. spin_lock_init(&bcm->_lock);
  3229. tasklet_init(&bcm->isr_tasklet,
  3230. (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
  3231. (unsigned long)bcm);
  3232. tasklet_disable_nosync(&bcm->isr_tasklet);
  3233. if (modparam_pio) {
  3234. bcm->__using_pio = 1;
  3235. } else {
  3236. err = pci_set_dma_mask(pci_dev, DMA_30BIT_MASK);
  3237. err |= pci_set_consistent_dma_mask(pci_dev, DMA_30BIT_MASK);
  3238. if (err) {
  3239. #ifdef CONFIG_BCM43XX_PIO
  3240. printk(KERN_WARNING PFX "DMA not supported. Falling back to PIO.\n");
  3241. bcm->__using_pio = 1;
  3242. #else
  3243. printk(KERN_ERR PFX "FATAL: DMA not supported and PIO not configured. "
  3244. "Recompile the driver with PIO support, please.\n");
  3245. return -ENODEV;
  3246. #endif /* CONFIG_BCM43XX_PIO */
  3247. }
  3248. }
  3249. bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
  3250. /* default to sw encryption for now */
  3251. bcm->ieee->host_build_iv = 0;
  3252. bcm->ieee->host_encrypt = 1;
  3253. bcm->ieee->host_decrypt = 1;
  3254. bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
  3255. bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
  3256. bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
  3257. bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
  3258. return 0;
  3259. }
  3260. static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
  3261. const struct pci_device_id *ent)
  3262. {
  3263. struct net_device *net_dev;
  3264. struct bcm43xx_private *bcm;
  3265. int err;
  3266. #ifdef CONFIG_BCM947XX
  3267. if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
  3268. return -ENODEV;
  3269. #endif
  3270. #ifdef DEBUG_SINGLE_DEVICE_ONLY
  3271. if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
  3272. return -ENODEV;
  3273. #endif
  3274. net_dev = alloc_ieee80211softmac(sizeof(*bcm));
  3275. if (!net_dev) {
  3276. printk(KERN_ERR PFX
  3277. "could not allocate ieee80211 device %s\n",
  3278. pci_name(pdev));
  3279. err = -ENOMEM;
  3280. goto out;
  3281. }
  3282. /* initialize the net_device struct */
  3283. SET_MODULE_OWNER(net_dev);
  3284. SET_NETDEV_DEV(net_dev, &pdev->dev);
  3285. net_dev->open = bcm43xx_net_open;
  3286. net_dev->stop = bcm43xx_net_stop;
  3287. net_dev->get_stats = bcm43xx_net_get_stats;
  3288. net_dev->tx_timeout = bcm43xx_net_tx_timeout;
  3289. #ifdef CONFIG_NET_POLL_CONTROLLER
  3290. net_dev->poll_controller = bcm43xx_net_poll_controller;
  3291. #endif
  3292. net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
  3293. net_dev->irq = pdev->irq;
  3294. SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
  3295. /* initialize the bcm43xx_private struct */
  3296. bcm = bcm43xx_priv(net_dev);
  3297. memset(bcm, 0, sizeof(*bcm));
  3298. err = bcm43xx_init_private(bcm, net_dev, pdev);
  3299. if (err)
  3300. goto err_free_netdev;
  3301. pci_set_drvdata(pdev, net_dev);
  3302. err = bcm43xx_attach_board(bcm);
  3303. if (err)
  3304. goto err_free_netdev;
  3305. err = register_netdev(net_dev);
  3306. if (err) {
  3307. printk(KERN_ERR PFX "Cannot register net device, "
  3308. "aborting.\n");
  3309. err = -ENOMEM;
  3310. goto err_detach_board;
  3311. }
  3312. bcm43xx_debugfs_add_device(bcm);
  3313. assert(err == 0);
  3314. out:
  3315. return err;
  3316. err_detach_board:
  3317. bcm43xx_detach_board(bcm);
  3318. err_free_netdev:
  3319. free_ieee80211softmac(net_dev);
  3320. goto out;
  3321. }
  3322. static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
  3323. {
  3324. struct net_device *net_dev = pci_get_drvdata(pdev);
  3325. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3326. bcm43xx_debugfs_remove_device(bcm);
  3327. unregister_netdev(net_dev);
  3328. bcm43xx_detach_board(bcm);
  3329. assert(bcm->ucode == NULL);
  3330. free_ieee80211softmac(net_dev);
  3331. }
  3332. /* Hard-reset the chip. Do not call this directly.
  3333. * Use bcm43xx_controller_restart()
  3334. */
  3335. static void bcm43xx_chip_reset(void *_bcm)
  3336. {
  3337. struct bcm43xx_private *bcm = _bcm;
  3338. struct net_device *net_dev = bcm->net_dev;
  3339. struct pci_dev *pci_dev = bcm->pci_dev;
  3340. int err;
  3341. int was_initialized = bcm->initialized;
  3342. netif_stop_queue(bcm->net_dev);
  3343. tasklet_disable(&bcm->isr_tasklet);
  3344. bcm->firmware_norelease = 1;
  3345. if (was_initialized)
  3346. bcm43xx_free_board(bcm);
  3347. bcm->firmware_norelease = 0;
  3348. bcm43xx_detach_board(bcm);
  3349. err = bcm43xx_init_private(bcm, net_dev, pci_dev);
  3350. if (err)
  3351. goto failure;
  3352. err = bcm43xx_attach_board(bcm);
  3353. if (err)
  3354. goto failure;
  3355. if (was_initialized) {
  3356. err = bcm43xx_init_board(bcm);
  3357. if (err)
  3358. goto failure;
  3359. }
  3360. netif_wake_queue(bcm->net_dev);
  3361. printk(KERN_INFO PFX "Controller restarted\n");
  3362. return;
  3363. failure:
  3364. printk(KERN_ERR PFX "Controller restart failed\n");
  3365. }
  3366. /* Hard-reset the chip.
  3367. * This can be called from interrupt or process context.
  3368. * Make sure to _not_ re-enable device interrupts after this has been called.
  3369. */
  3370. void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
  3371. {
  3372. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  3373. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  3374. printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
  3375. INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset, bcm);
  3376. schedule_work(&bcm->restart_work);
  3377. }
  3378. #ifdef CONFIG_PM
  3379. static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
  3380. {
  3381. struct net_device *net_dev = pci_get_drvdata(pdev);
  3382. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3383. unsigned long flags;
  3384. int try_to_shutdown = 0, err;
  3385. dprintk(KERN_INFO PFX "Suspending...\n");
  3386. bcm43xx_lock(bcm, flags);
  3387. bcm->was_initialized = bcm->initialized;
  3388. if (bcm->initialized)
  3389. try_to_shutdown = 1;
  3390. bcm43xx_unlock(bcm, flags);
  3391. netif_device_detach(net_dev);
  3392. if (try_to_shutdown) {
  3393. ieee80211softmac_stop(net_dev);
  3394. err = bcm43xx_disable_interrupts_sync(bcm, &bcm->irq_savedstate);
  3395. if (unlikely(err)) {
  3396. dprintk(KERN_ERR PFX "Suspend failed.\n");
  3397. return -EAGAIN;
  3398. }
  3399. bcm->firmware_norelease = 1;
  3400. bcm43xx_free_board(bcm);
  3401. bcm->firmware_norelease = 0;
  3402. }
  3403. bcm43xx_chipset_detach(bcm);
  3404. pci_save_state(pdev);
  3405. pci_disable_device(pdev);
  3406. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3407. dprintk(KERN_INFO PFX "Device suspended.\n");
  3408. return 0;
  3409. }
  3410. static int bcm43xx_resume(struct pci_dev *pdev)
  3411. {
  3412. struct net_device *net_dev = pci_get_drvdata(pdev);
  3413. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3414. int err = 0;
  3415. dprintk(KERN_INFO PFX "Resuming...\n");
  3416. pci_set_power_state(pdev, 0);
  3417. pci_enable_device(pdev);
  3418. pci_restore_state(pdev);
  3419. bcm43xx_chipset_attach(bcm);
  3420. if (bcm->was_initialized) {
  3421. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3422. err = bcm43xx_init_board(bcm);
  3423. }
  3424. if (err) {
  3425. printk(KERN_ERR PFX "Resume failed!\n");
  3426. return err;
  3427. }
  3428. netif_device_attach(net_dev);
  3429. /*FIXME: This should be handled by softmac instead. */
  3430. schedule_work(&bcm->softmac->associnfo.work);
  3431. dprintk(KERN_INFO PFX "Device resumed.\n");
  3432. return 0;
  3433. }
  3434. #endif /* CONFIG_PM */
  3435. static struct pci_driver bcm43xx_pci_driver = {
  3436. .name = KBUILD_MODNAME,
  3437. .id_table = bcm43xx_pci_tbl,
  3438. .probe = bcm43xx_init_one,
  3439. .remove = __devexit_p(bcm43xx_remove_one),
  3440. #ifdef CONFIG_PM
  3441. .suspend = bcm43xx_suspend,
  3442. .resume = bcm43xx_resume,
  3443. #endif /* CONFIG_PM */
  3444. };
  3445. static int __init bcm43xx_init(void)
  3446. {
  3447. printk(KERN_INFO KBUILD_MODNAME " driver\n");
  3448. bcm43xx_debugfs_init();
  3449. return pci_register_driver(&bcm43xx_pci_driver);
  3450. }
  3451. static void __exit bcm43xx_exit(void)
  3452. {
  3453. pci_unregister_driver(&bcm43xx_pci_driver);
  3454. bcm43xx_debugfs_exit();
  3455. }
  3456. module_init(bcm43xx_init)
  3457. module_exit(bcm43xx_exit)