myri_sbus.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174
  1. /* myri_sbus.h: MyriCOM MyriNET SBUS card driver.
  2. *
  3. * Copyright (C) 1996, 1999 David S. Miller (davem@redhat.com)
  4. */
  5. static char version[] =
  6. "myri_sbus.c:v1.9 12/Sep/99 David S. Miller (davem@redhat.com)\n";
  7. #include <linux/module.h>
  8. #include <linux/config.h>
  9. #include <linux/errno.h>
  10. #include <linux/kernel.h>
  11. #include <linux/types.h>
  12. #include <linux/fcntl.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/ioport.h>
  15. #include <linux/in.h>
  16. #include <linux/slab.h>
  17. #include <linux/string.h>
  18. #include <linux/delay.h>
  19. #include <linux/init.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/bitops.h>
  24. #include <net/dst.h>
  25. #include <net/arp.h>
  26. #include <net/sock.h>
  27. #include <net/ipv6.h>
  28. #include <asm/system.h>
  29. #include <asm/io.h>
  30. #include <asm/dma.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/idprom.h>
  33. #include <asm/sbus.h>
  34. #include <asm/openprom.h>
  35. #include <asm/oplib.h>
  36. #include <asm/auxio.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/irq.h>
  39. #include <asm/checksum.h>
  40. #include "myri_sbus.h"
  41. #include "myri_code.h"
  42. /* #define DEBUG_DETECT */
  43. /* #define DEBUG_IRQ */
  44. /* #define DEBUG_TRANSMIT */
  45. /* #define DEBUG_RECEIVE */
  46. /* #define DEBUG_HEADER */
  47. #ifdef DEBUG_DETECT
  48. #define DET(x) printk x
  49. #else
  50. #define DET(x)
  51. #endif
  52. #ifdef DEBUG_IRQ
  53. #define DIRQ(x) printk x
  54. #else
  55. #define DIRQ(x)
  56. #endif
  57. #ifdef DEBUG_TRANSMIT
  58. #define DTX(x) printk x
  59. #else
  60. #define DTX(x)
  61. #endif
  62. #ifdef DEBUG_RECEIVE
  63. #define DRX(x) printk x
  64. #else
  65. #define DRX(x)
  66. #endif
  67. #ifdef DEBUG_HEADER
  68. #define DHDR(x) printk x
  69. #else
  70. #define DHDR(x)
  71. #endif
  72. #ifdef MODULE
  73. static struct myri_eth *root_myri_dev;
  74. #endif
  75. static void myri_reset_off(void __iomem *lp, void __iomem *cregs)
  76. {
  77. /* Clear IRQ mask. */
  78. sbus_writel(0, lp + LANAI_EIMASK);
  79. /* Turn RESET function off. */
  80. sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL);
  81. }
  82. static void myri_reset_on(void __iomem *cregs)
  83. {
  84. /* Enable RESET function. */
  85. sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL);
  86. /* Disable IRQ's. */
  87. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  88. }
  89. static void myri_disable_irq(void __iomem *lp, void __iomem *cregs)
  90. {
  91. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  92. sbus_writel(0, lp + LANAI_EIMASK);
  93. sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT);
  94. }
  95. static void myri_enable_irq(void __iomem *lp, void __iomem *cregs)
  96. {
  97. sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL);
  98. sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK);
  99. }
  100. static inline void bang_the_chip(struct myri_eth *mp)
  101. {
  102. struct myri_shmem __iomem *shmem = mp->shmem;
  103. void __iomem *cregs = mp->cregs;
  104. sbus_writel(1, &shmem->send);
  105. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  106. }
  107. static int myri_do_handshake(struct myri_eth *mp)
  108. {
  109. struct myri_shmem __iomem *shmem = mp->shmem;
  110. void __iomem *cregs = mp->cregs;
  111. struct myri_channel __iomem *chan = &shmem->channel;
  112. int tick = 0;
  113. DET(("myri_do_handshake: "));
  114. if (sbus_readl(&chan->state) == STATE_READY) {
  115. DET(("Already STATE_READY, failed.\n"));
  116. return -1; /* We're hosed... */
  117. }
  118. myri_disable_irq(mp->lregs, cregs);
  119. while (tick++ <= 25) {
  120. u32 softstate;
  121. /* Wake it up. */
  122. DET(("shakedown, CONTROL_WON, "));
  123. sbus_writel(1, &shmem->shakedown);
  124. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  125. softstate = sbus_readl(&chan->state);
  126. DET(("chanstate[%08x] ", softstate));
  127. if (softstate == STATE_READY) {
  128. DET(("wakeup successful, "));
  129. break;
  130. }
  131. if (softstate != STATE_WFN) {
  132. DET(("not WFN setting that, "));
  133. sbus_writel(STATE_WFN, &chan->state);
  134. }
  135. udelay(20);
  136. }
  137. myri_enable_irq(mp->lregs, cregs);
  138. if (tick > 25) {
  139. DET(("25 ticks we lose, failure.\n"));
  140. return -1;
  141. }
  142. DET(("success\n"));
  143. return 0;
  144. }
  145. static int myri_load_lanai(struct myri_eth *mp)
  146. {
  147. struct net_device *dev = mp->dev;
  148. struct myri_shmem __iomem *shmem = mp->shmem;
  149. void __iomem *rptr;
  150. int i;
  151. myri_disable_irq(mp->lregs, mp->cregs);
  152. myri_reset_on(mp->cregs);
  153. rptr = mp->lanai;
  154. for (i = 0; i < mp->eeprom.ramsz; i++)
  155. sbus_writeb(0, rptr + i);
  156. if (mp->eeprom.cpuvers >= CPUVERS_3_0)
  157. sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL);
  158. /* Load executable code. */
  159. for (i = 0; i < sizeof(lanai4_code); i++)
  160. sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i);
  161. /* Load data segment. */
  162. for (i = 0; i < sizeof(lanai4_data); i++)
  163. sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i);
  164. /* Set device address. */
  165. sbus_writeb(0, &shmem->addr[0]);
  166. sbus_writeb(0, &shmem->addr[1]);
  167. for (i = 0; i < 6; i++)
  168. sbus_writeb(dev->dev_addr[i],
  169. &shmem->addr[i + 2]);
  170. /* Set SBUS bursts and interrupt mask. */
  171. sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst);
  172. sbus_writel(SHMEM_IMASK_RX, &shmem->imask);
  173. /* Release the LANAI. */
  174. myri_disable_irq(mp->lregs, mp->cregs);
  175. myri_reset_off(mp->lregs, mp->cregs);
  176. myri_disable_irq(mp->lregs, mp->cregs);
  177. /* Wait for the reset to complete. */
  178. for (i = 0; i < 5000; i++) {
  179. if (sbus_readl(&shmem->channel.state) != STATE_READY)
  180. break;
  181. else
  182. udelay(10);
  183. }
  184. if (i == 5000)
  185. printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n");
  186. i = myri_do_handshake(mp);
  187. if (i)
  188. printk(KERN_ERR "myricom: Handshake with LANAI failed.\n");
  189. if (mp->eeprom.cpuvers == CPUVERS_4_0)
  190. sbus_writel(0, mp->lregs + LANAI_VERS);
  191. return i;
  192. }
  193. static void myri_clean_rings(struct myri_eth *mp)
  194. {
  195. struct sendq __iomem *sq = mp->sq;
  196. struct recvq __iomem *rq = mp->rq;
  197. int i;
  198. sbus_writel(0, &rq->tail);
  199. sbus_writel(0, &rq->head);
  200. for (i = 0; i < (RX_RING_SIZE+1); i++) {
  201. if (mp->rx_skbs[i] != NULL) {
  202. struct myri_rxd __iomem *rxd = &rq->myri_rxd[i];
  203. u32 dma_addr;
  204. dma_addr = sbus_readl(&rxd->myri_scatters[0].addr);
  205. sbus_unmap_single(mp->myri_sdev, dma_addr, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  206. dev_kfree_skb(mp->rx_skbs[i]);
  207. mp->rx_skbs[i] = NULL;
  208. }
  209. }
  210. mp->tx_old = 0;
  211. sbus_writel(0, &sq->tail);
  212. sbus_writel(0, &sq->head);
  213. for (i = 0; i < TX_RING_SIZE; i++) {
  214. if (mp->tx_skbs[i] != NULL) {
  215. struct sk_buff *skb = mp->tx_skbs[i];
  216. struct myri_txd __iomem *txd = &sq->myri_txd[i];
  217. u32 dma_addr;
  218. dma_addr = sbus_readl(&txd->myri_gathers[0].addr);
  219. sbus_unmap_single(mp->myri_sdev, dma_addr, (skb->len + 3) & ~3, SBUS_DMA_TODEVICE);
  220. dev_kfree_skb(mp->tx_skbs[i]);
  221. mp->tx_skbs[i] = NULL;
  222. }
  223. }
  224. }
  225. static void myri_init_rings(struct myri_eth *mp, int from_irq)
  226. {
  227. struct recvq __iomem *rq = mp->rq;
  228. struct myri_rxd __iomem *rxd = &rq->myri_rxd[0];
  229. struct net_device *dev = mp->dev;
  230. gfp_t gfp_flags = GFP_KERNEL;
  231. int i;
  232. if (from_irq || in_interrupt())
  233. gfp_flags = GFP_ATOMIC;
  234. myri_clean_rings(mp);
  235. for (i = 0; i < RX_RING_SIZE; i++) {
  236. struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags);
  237. u32 dma_addr;
  238. if (!skb)
  239. continue;
  240. mp->rx_skbs[i] = skb;
  241. skb->dev = dev;
  242. skb_put(skb, RX_ALLOC_SIZE);
  243. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  244. sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr);
  245. sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len);
  246. sbus_writel(i, &rxd[i].ctx);
  247. sbus_writel(1, &rxd[i].num_sg);
  248. }
  249. sbus_writel(0, &rq->head);
  250. sbus_writel(RX_RING_SIZE, &rq->tail);
  251. }
  252. static int myri_init(struct myri_eth *mp, int from_irq)
  253. {
  254. myri_init_rings(mp, from_irq);
  255. return 0;
  256. }
  257. static void myri_is_not_so_happy(struct myri_eth *mp)
  258. {
  259. }
  260. #ifdef DEBUG_HEADER
  261. static void dump_ehdr(struct ethhdr *ehdr)
  262. {
  263. printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
  264. "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
  265. ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
  266. ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
  267. ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
  268. ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
  269. ehdr->h_proto);
  270. }
  271. static void dump_ehdr_and_myripad(unsigned char *stuff)
  272. {
  273. struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2);
  274. printk("pad[%02x:%02x]", stuff[0], stuff[1]);
  275. printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
  276. "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
  277. ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
  278. ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
  279. ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
  280. ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
  281. ehdr->h_proto);
  282. }
  283. #endif
  284. static void myri_tx(struct myri_eth *mp, struct net_device *dev)
  285. {
  286. struct sendq __iomem *sq= mp->sq;
  287. int entry = mp->tx_old;
  288. int limit = sbus_readl(&sq->head);
  289. DTX(("entry[%d] limit[%d] ", entry, limit));
  290. if (entry == limit)
  291. return;
  292. while (entry != limit) {
  293. struct sk_buff *skb = mp->tx_skbs[entry];
  294. u32 dma_addr;
  295. DTX(("SKB[%d] ", entry));
  296. dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr);
  297. sbus_unmap_single(mp->myri_sdev, dma_addr, skb->len, SBUS_DMA_TODEVICE);
  298. dev_kfree_skb(skb);
  299. mp->tx_skbs[entry] = NULL;
  300. mp->enet_stats.tx_packets++;
  301. entry = NEXT_TX(entry);
  302. }
  303. mp->tx_old = entry;
  304. }
  305. /* Determine the packet's protocol ID. The rule here is that we
  306. * assume 802.3 if the type field is short enough to be a length.
  307. * This is normal practice and works for any 'now in use' protocol.
  308. */
  309. static __be16 myri_type_trans(struct sk_buff *skb, struct net_device *dev)
  310. {
  311. struct ethhdr *eth;
  312. unsigned char *rawp;
  313. skb->mac.raw = (((unsigned char *)skb->data) + MYRI_PAD_LEN);
  314. skb_pull(skb, dev->hard_header_len);
  315. eth = eth_hdr(skb);
  316. #ifdef DEBUG_HEADER
  317. DHDR(("myri_type_trans: "));
  318. dump_ehdr(eth);
  319. #endif
  320. if (*eth->h_dest & 1) {
  321. if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0)
  322. skb->pkt_type = PACKET_BROADCAST;
  323. else
  324. skb->pkt_type = PACKET_MULTICAST;
  325. } else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) {
  326. if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
  327. skb->pkt_type = PACKET_OTHERHOST;
  328. }
  329. if (ntohs(eth->h_proto) >= 1536)
  330. return eth->h_proto;
  331. rawp = skb->data;
  332. /* This is a magic hack to spot IPX packets. Older Novell breaks
  333. * the protocol design and runs IPX over 802.3 without an 802.2 LLC
  334. * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
  335. * won't work for fault tolerant netware but does for the rest.
  336. */
  337. if (*(unsigned short *)rawp == 0xFFFF)
  338. return htons(ETH_P_802_3);
  339. /* Real 802.2 LLC */
  340. return htons(ETH_P_802_2);
  341. }
  342. static void myri_rx(struct myri_eth *mp, struct net_device *dev)
  343. {
  344. struct recvq __iomem *rq = mp->rq;
  345. struct recvq __iomem *rqa = mp->rqack;
  346. int entry = sbus_readl(&rqa->head);
  347. int limit = sbus_readl(&rqa->tail);
  348. int drops;
  349. DRX(("entry[%d] limit[%d] ", entry, limit));
  350. if (entry == limit)
  351. return;
  352. drops = 0;
  353. DRX(("\n"));
  354. while (entry != limit) {
  355. struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry];
  356. u32 csum = sbus_readl(&rxdack->csum);
  357. int len = sbus_readl(&rxdack->myri_scatters[0].len);
  358. int index = sbus_readl(&rxdack->ctx);
  359. struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)];
  360. struct sk_buff *skb = mp->rx_skbs[index];
  361. /* Ack it. */
  362. sbus_writel(NEXT_RX(entry), &rqa->head);
  363. /* Check for errors. */
  364. DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum));
  365. sbus_dma_sync_single_for_cpu(mp->myri_sdev,
  366. sbus_readl(&rxd->myri_scatters[0].addr),
  367. RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  368. if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) {
  369. DRX(("ERROR["));
  370. mp->enet_stats.rx_errors++;
  371. if (len < (ETH_HLEN + MYRI_PAD_LEN)) {
  372. DRX(("BAD_LENGTH] "));
  373. mp->enet_stats.rx_length_errors++;
  374. } else {
  375. DRX(("NO_PADDING] "));
  376. mp->enet_stats.rx_frame_errors++;
  377. }
  378. /* Return it to the LANAI. */
  379. drop_it:
  380. drops++;
  381. DRX(("DROP "));
  382. mp->enet_stats.rx_dropped++;
  383. sbus_dma_sync_single_for_device(mp->myri_sdev,
  384. sbus_readl(&rxd->myri_scatters[0].addr),
  385. RX_ALLOC_SIZE,
  386. SBUS_DMA_FROMDEVICE);
  387. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  388. sbus_writel(index, &rxd->ctx);
  389. sbus_writel(1, &rxd->num_sg);
  390. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  391. goto next;
  392. }
  393. DRX(("len[%d] ", len));
  394. if (len > RX_COPY_THRESHOLD) {
  395. struct sk_buff *new_skb;
  396. u32 dma_addr;
  397. DRX(("BIGBUFF "));
  398. new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC);
  399. if (new_skb == NULL) {
  400. DRX(("skb_alloc(FAILED) "));
  401. goto drop_it;
  402. }
  403. sbus_unmap_single(mp->myri_sdev,
  404. sbus_readl(&rxd->myri_scatters[0].addr),
  405. RX_ALLOC_SIZE,
  406. SBUS_DMA_FROMDEVICE);
  407. mp->rx_skbs[index] = new_skb;
  408. new_skb->dev = dev;
  409. skb_put(new_skb, RX_ALLOC_SIZE);
  410. dma_addr = sbus_map_single(mp->myri_sdev,
  411. new_skb->data,
  412. RX_ALLOC_SIZE,
  413. SBUS_DMA_FROMDEVICE);
  414. sbus_writel(dma_addr, &rxd->myri_scatters[0].addr);
  415. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  416. sbus_writel(index, &rxd->ctx);
  417. sbus_writel(1, &rxd->num_sg);
  418. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  419. /* Trim the original skb for the netif. */
  420. DRX(("trim(%d) ", len));
  421. skb_trim(skb, len);
  422. } else {
  423. struct sk_buff *copy_skb = dev_alloc_skb(len);
  424. DRX(("SMALLBUFF "));
  425. if (copy_skb == NULL) {
  426. DRX(("dev_alloc_skb(FAILED) "));
  427. goto drop_it;
  428. }
  429. /* DMA sync already done above. */
  430. copy_skb->dev = dev;
  431. DRX(("resv_and_put "));
  432. skb_put(copy_skb, len);
  433. memcpy(copy_skb->data, skb->data, len);
  434. /* Reuse original ring buffer. */
  435. DRX(("reuse "));
  436. sbus_dma_sync_single_for_device(mp->myri_sdev,
  437. sbus_readl(&rxd->myri_scatters[0].addr),
  438. RX_ALLOC_SIZE,
  439. SBUS_DMA_FROMDEVICE);
  440. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  441. sbus_writel(index, &rxd->ctx);
  442. sbus_writel(1, &rxd->num_sg);
  443. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  444. skb = copy_skb;
  445. }
  446. /* Just like the happy meal we get checksums from this card. */
  447. skb->csum = csum;
  448. skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */
  449. skb->protocol = myri_type_trans(skb, dev);
  450. DRX(("prot[%04x] netif_rx ", skb->protocol));
  451. netif_rx(skb);
  452. dev->last_rx = jiffies;
  453. mp->enet_stats.rx_packets++;
  454. mp->enet_stats.rx_bytes += len;
  455. next:
  456. DRX(("NEXT\n"));
  457. entry = NEXT_RX(entry);
  458. }
  459. }
  460. static irqreturn_t myri_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  461. {
  462. struct net_device *dev = (struct net_device *) dev_id;
  463. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  464. void __iomem *lregs = mp->lregs;
  465. struct myri_channel __iomem *chan = &mp->shmem->channel;
  466. unsigned long flags;
  467. u32 status;
  468. int handled = 0;
  469. spin_lock_irqsave(&mp->irq_lock, flags);
  470. status = sbus_readl(lregs + LANAI_ISTAT);
  471. DIRQ(("myri_interrupt: status[%08x] ", status));
  472. if (status & ISTAT_HOST) {
  473. u32 softstate;
  474. handled = 1;
  475. DIRQ(("IRQ_DISAB "));
  476. myri_disable_irq(lregs, mp->cregs);
  477. softstate = sbus_readl(&chan->state);
  478. DIRQ(("state[%08x] ", softstate));
  479. if (softstate != STATE_READY) {
  480. DIRQ(("myri_not_so_happy "));
  481. myri_is_not_so_happy(mp);
  482. }
  483. DIRQ(("\nmyri_rx: "));
  484. myri_rx(mp, dev);
  485. DIRQ(("\nistat=ISTAT_HOST "));
  486. sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT);
  487. DIRQ(("IRQ_ENAB "));
  488. myri_enable_irq(lregs, mp->cregs);
  489. }
  490. DIRQ(("\n"));
  491. spin_unlock_irqrestore(&mp->irq_lock, flags);
  492. return IRQ_RETVAL(handled);
  493. }
  494. static int myri_open(struct net_device *dev)
  495. {
  496. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  497. return myri_init(mp, in_interrupt());
  498. }
  499. static int myri_close(struct net_device *dev)
  500. {
  501. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  502. myri_clean_rings(mp);
  503. return 0;
  504. }
  505. static void myri_tx_timeout(struct net_device *dev)
  506. {
  507. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  508. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  509. mp->enet_stats.tx_errors++;
  510. myri_init(mp, 0);
  511. netif_wake_queue(dev);
  512. }
  513. static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev)
  514. {
  515. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  516. struct sendq __iomem *sq = mp->sq;
  517. struct myri_txd __iomem *txd;
  518. unsigned long flags;
  519. unsigned int head, tail;
  520. int len, entry;
  521. u32 dma_addr;
  522. DTX(("myri_start_xmit: "));
  523. myri_tx(mp, dev);
  524. netif_stop_queue(dev);
  525. /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
  526. head = sbus_readl(&sq->head);
  527. tail = sbus_readl(&sq->tail);
  528. if (!TX_BUFFS_AVAIL(head, tail)) {
  529. DTX(("no buffs available, returning 1\n"));
  530. return 1;
  531. }
  532. spin_lock_irqsave(&mp->irq_lock, flags);
  533. DHDR(("xmit[skbdata(%p)]\n", skb->data));
  534. #ifdef DEBUG_HEADER
  535. dump_ehdr_and_myripad(((unsigned char *) skb->data));
  536. #endif
  537. /* XXX Maybe this can go as well. */
  538. len = skb->len;
  539. if (len & 3) {
  540. DTX(("len&3 "));
  541. len = (len + 4) & (~3);
  542. }
  543. entry = sbus_readl(&sq->tail);
  544. txd = &sq->myri_txd[entry];
  545. mp->tx_skbs[entry] = skb;
  546. /* Must do this before we sbus map it. */
  547. if (skb->data[MYRI_PAD_LEN] & 0x1) {
  548. sbus_writew(0xffff, &txd->addr[0]);
  549. sbus_writew(0xffff, &txd->addr[1]);
  550. sbus_writew(0xffff, &txd->addr[2]);
  551. sbus_writew(0xffff, &txd->addr[3]);
  552. } else {
  553. sbus_writew(0xffff, &txd->addr[0]);
  554. sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]);
  555. sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]);
  556. sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]);
  557. }
  558. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, len, SBUS_DMA_TODEVICE);
  559. sbus_writel(dma_addr, &txd->myri_gathers[0].addr);
  560. sbus_writel(len, &txd->myri_gathers[0].len);
  561. sbus_writel(1, &txd->num_sg);
  562. sbus_writel(KERNEL_CHANNEL, &txd->chan);
  563. sbus_writel(len, &txd->len);
  564. sbus_writel((u32)-1, &txd->csum_off);
  565. sbus_writel(0, &txd->csum_field);
  566. sbus_writel(NEXT_TX(entry), &sq->tail);
  567. DTX(("BangTheChip "));
  568. bang_the_chip(mp);
  569. DTX(("tbusy=0, returning 0\n"));
  570. netif_start_queue(dev);
  571. spin_unlock_irqrestore(&mp->irq_lock, flags);
  572. return 0;
  573. }
  574. /* Create the MyriNet MAC header for an arbitrary protocol layer
  575. *
  576. * saddr=NULL means use device source address
  577. * daddr=NULL means leave destination address (eg unresolved arp)
  578. */
  579. static int myri_header(struct sk_buff *skb, struct net_device *dev, unsigned short type,
  580. void *daddr, void *saddr, unsigned len)
  581. {
  582. struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
  583. unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN);
  584. #ifdef DEBUG_HEADER
  585. DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1]));
  586. dump_ehdr(eth);
  587. #endif
  588. /* Set the MyriNET padding identifier. */
  589. pad[0] = MYRI_PAD_LEN;
  590. pad[1] = 0xab;
  591. /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
  592. * in here instead. It is up to the 802.2 layer to carry protocol information.
  593. */
  594. if (type != ETH_P_802_3)
  595. eth->h_proto = htons(type);
  596. else
  597. eth->h_proto = htons(len);
  598. /* Set the source hardware address. */
  599. if (saddr)
  600. memcpy(eth->h_source, saddr, dev->addr_len);
  601. else
  602. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  603. /* Anyway, the loopback-device should never use this function... */
  604. if (dev->flags & IFF_LOOPBACK) {
  605. int i;
  606. for (i = 0; i < dev->addr_len; i++)
  607. eth->h_dest[i] = 0;
  608. return(dev->hard_header_len);
  609. }
  610. if (daddr) {
  611. memcpy(eth->h_dest, daddr, dev->addr_len);
  612. return dev->hard_header_len;
  613. }
  614. return -dev->hard_header_len;
  615. }
  616. /* Rebuild the MyriNet MAC header. This is called after an ARP
  617. * (or in future other address resolution) has completed on this
  618. * sk_buff. We now let ARP fill in the other fields.
  619. */
  620. static int myri_rebuild_header(struct sk_buff *skb)
  621. {
  622. unsigned char *pad = (unsigned char *) skb->data;
  623. struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  624. struct net_device *dev = skb->dev;
  625. #ifdef DEBUG_HEADER
  626. DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1]));
  627. dump_ehdr(eth);
  628. #endif
  629. /* Refill MyriNet padding identifiers, this is just being anal. */
  630. pad[0] = MYRI_PAD_LEN;
  631. pad[1] = 0xab;
  632. switch (eth->h_proto)
  633. {
  634. #ifdef CONFIG_INET
  635. case __constant_htons(ETH_P_IP):
  636. return arp_find(eth->h_dest, skb);
  637. #endif
  638. default:
  639. printk(KERN_DEBUG
  640. "%s: unable to resolve type %X addresses.\n",
  641. dev->name, (int)eth->h_proto);
  642. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  643. return 0;
  644. break;
  645. }
  646. return 0;
  647. }
  648. int myri_header_cache(struct neighbour *neigh, struct hh_cache *hh)
  649. {
  650. unsigned short type = hh->hh_type;
  651. unsigned char *pad;
  652. struct ethhdr *eth;
  653. struct net_device *dev = neigh->dev;
  654. pad = ((unsigned char *) hh->hh_data) +
  655. HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN);
  656. eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  657. if (type == __constant_htons(ETH_P_802_3))
  658. return -1;
  659. /* Refill MyriNet padding identifiers, this is just being anal. */
  660. pad[0] = MYRI_PAD_LEN;
  661. pad[1] = 0xab;
  662. eth->h_proto = type;
  663. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  664. memcpy(eth->h_dest, neigh->ha, dev->addr_len);
  665. hh->hh_len = 16;
  666. return 0;
  667. }
  668. /* Called by Address Resolution module to notify changes in address. */
  669. void myri_header_cache_update(struct hh_cache *hh, struct net_device *dev, unsigned char * haddr)
  670. {
  671. memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
  672. haddr, dev->addr_len);
  673. }
  674. static int myri_change_mtu(struct net_device *dev, int new_mtu)
  675. {
  676. if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU))
  677. return -EINVAL;
  678. dev->mtu = new_mtu;
  679. return 0;
  680. }
  681. static struct net_device_stats *myri_get_stats(struct net_device *dev)
  682. { return &(((struct myri_eth *)dev->priv)->enet_stats); }
  683. static void myri_set_multicast(struct net_device *dev)
  684. {
  685. /* Do nothing, all MyriCOM nodes transmit multicast frames
  686. * as broadcast packets...
  687. */
  688. }
  689. static inline void set_boardid_from_idprom(struct myri_eth *mp, int num)
  690. {
  691. mp->eeprom.id[0] = 0;
  692. mp->eeprom.id[1] = idprom->id_machtype;
  693. mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff;
  694. mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff;
  695. mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff;
  696. mp->eeprom.id[5] = num;
  697. }
  698. static inline void determine_reg_space_size(struct myri_eth *mp)
  699. {
  700. switch(mp->eeprom.cpuvers) {
  701. case CPUVERS_2_3:
  702. case CPUVERS_3_0:
  703. case CPUVERS_3_1:
  704. case CPUVERS_3_2:
  705. mp->reg_size = (3 * 128 * 1024) + 4096;
  706. break;
  707. case CPUVERS_4_0:
  708. case CPUVERS_4_1:
  709. mp->reg_size = ((4096<<1) + mp->eeprom.ramsz);
  710. break;
  711. case CPUVERS_4_2:
  712. case CPUVERS_5_0:
  713. default:
  714. printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
  715. mp->eeprom.cpuvers);
  716. mp->reg_size = (3 * 128 * 1024) + 4096;
  717. };
  718. }
  719. #ifdef DEBUG_DETECT
  720. static void dump_eeprom(struct myri_eth *mp)
  721. {
  722. printk("EEPROM: clockval[%08x] cpuvers[%04x] "
  723. "id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
  724. mp->eeprom.cval, mp->eeprom.cpuvers,
  725. mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2],
  726. mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]);
  727. printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz);
  728. printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  729. mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2],
  730. mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5],
  731. mp->eeprom.fvers[6], mp->eeprom.fvers[7]);
  732. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  733. mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10],
  734. mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13],
  735. mp->eeprom.fvers[14], mp->eeprom.fvers[15]);
  736. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  737. mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18],
  738. mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21],
  739. mp->eeprom.fvers[22], mp->eeprom.fvers[23]);
  740. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  741. mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26],
  742. mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29],
  743. mp->eeprom.fvers[30], mp->eeprom.fvers[31]);
  744. printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  745. mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2],
  746. mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5],
  747. mp->eeprom.mvers[6], mp->eeprom.mvers[7]);
  748. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  749. mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10],
  750. mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13],
  751. mp->eeprom.mvers[14], mp->eeprom.mvers[15]);
  752. printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
  753. mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type,
  754. mp->eeprom.prod_code);
  755. printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num);
  756. }
  757. #endif
  758. static int __init myri_ether_init(struct sbus_dev *sdev, int num)
  759. {
  760. static unsigned version_printed;
  761. struct net_device *dev;
  762. struct myri_eth *mp;
  763. unsigned char prop_buf[32];
  764. int i;
  765. DET(("myri_ether_init(%p,%d):\n", sdev, num));
  766. dev = alloc_etherdev(sizeof(struct myri_eth));
  767. if (!dev)
  768. return -ENOMEM;
  769. if (version_printed++ == 0)
  770. printk(version);
  771. mp = (struct myri_eth *) dev->priv;
  772. spin_lock_init(&mp->irq_lock);
  773. mp->myri_sdev = sdev;
  774. /* Clean out skb arrays. */
  775. for (i = 0; i < (RX_RING_SIZE + 1); i++)
  776. mp->rx_skbs[i] = NULL;
  777. for (i = 0; i < TX_RING_SIZE; i++)
  778. mp->tx_skbs[i] = NULL;
  779. /* First check for EEPROM information. */
  780. i = prom_getproperty(sdev->prom_node, "myrinet-eeprom-info",
  781. (char *)&mp->eeprom, sizeof(struct myri_eeprom));
  782. DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i));
  783. if (i == 0 || i == -1) {
  784. /* No eeprom property, must cook up the values ourselves. */
  785. DET(("No EEPROM: "));
  786. mp->eeprom.bus_type = BUS_TYPE_SBUS;
  787. mp->eeprom.cpuvers = prom_getintdefault(sdev->prom_node,"cpu_version",0);
  788. mp->eeprom.cval = prom_getintdefault(sdev->prom_node,"clock_value",0);
  789. mp->eeprom.ramsz = prom_getintdefault(sdev->prom_node,"sram_size",0);
  790. DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp->eeprom.cpuvers,
  791. mp->eeprom.cval, mp->eeprom.ramsz));
  792. if (mp->eeprom.cpuvers == 0) {
  793. DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3));
  794. mp->eeprom.cpuvers = CPUVERS_2_3;
  795. }
  796. if (mp->eeprom.cpuvers < CPUVERS_3_0) {
  797. DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n"));
  798. mp->eeprom.cval = 0;
  799. }
  800. if (mp->eeprom.ramsz == 0) {
  801. DET(("EEPROM: ramsz == 0, setting to 128k\n"));
  802. mp->eeprom.ramsz = (128 * 1024);
  803. }
  804. i = prom_getproperty(sdev->prom_node, "myrinet-board-id",
  805. &prop_buf[0], 10);
  806. DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i));
  807. if ((i != 0) && (i != -1))
  808. memcpy(&mp->eeprom.id[0], &prop_buf[0], 6);
  809. else
  810. set_boardid_from_idprom(mp, num);
  811. i = prom_getproperty(sdev->prom_node, "fpga_version",
  812. &mp->eeprom.fvers[0], 32);
  813. DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i));
  814. if (i == 0 || i == -1)
  815. memset(&mp->eeprom.fvers[0], 0, 32);
  816. if (mp->eeprom.cpuvers == CPUVERS_4_1) {
  817. DET(("EEPROM: cpuvers CPUVERS_4_1, "));
  818. if (mp->eeprom.ramsz == (128 * 1024)) {
  819. DET(("ramsize 128k, setting to 256k, "));
  820. mp->eeprom.ramsz = (256 * 1024);
  821. }
  822. if ((mp->eeprom.cval==0x40414041)||(mp->eeprom.cval==0x90449044)){
  823. DET(("changing cval from %08x to %08x ",
  824. mp->eeprom.cval, 0x50e450e4));
  825. mp->eeprom.cval = 0x50e450e4;
  826. }
  827. DET(("\n"));
  828. }
  829. }
  830. #ifdef DEBUG_DETECT
  831. dump_eeprom(mp);
  832. #endif
  833. for (i = 0; i < 6; i++)
  834. dev->dev_addr[i] = mp->eeprom.id[i];
  835. determine_reg_space_size(mp);
  836. /* Map in the MyriCOM register/localram set. */
  837. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  838. /* XXX Makes no sense, if control reg is non-existant this
  839. * XXX driver cannot function at all... maybe pre-4.0 is
  840. * XXX only a valid version for PCI cards? Ask feldy...
  841. */
  842. DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
  843. mp->regs = sbus_ioremap(&sdev->resource[0], 0,
  844. mp->reg_size, "MyriCOM Regs");
  845. if (!mp->regs) {
  846. printk("MyriCOM: Cannot map MyriCOM registers.\n");
  847. goto err;
  848. }
  849. mp->lanai = mp->regs + (256 * 1024);
  850. mp->lregs = mp->lanai + (0x10000 * 2);
  851. } else {
  852. DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
  853. mp->cregs = sbus_ioremap(&sdev->resource[0], 0,
  854. PAGE_SIZE, "MyriCOM Control Regs");
  855. mp->lregs = sbus_ioremap(&sdev->resource[0], (256 * 1024),
  856. PAGE_SIZE, "MyriCOM LANAI Regs");
  857. mp->lanai =
  858. sbus_ioremap(&sdev->resource[0], (512 * 1024),
  859. mp->eeprom.ramsz, "MyriCOM SRAM");
  860. }
  861. DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
  862. mp->cregs, mp->lregs, mp->lanai));
  863. if (mp->eeprom.cpuvers >= CPUVERS_4_0)
  864. mp->shmem_base = 0xf000;
  865. else
  866. mp->shmem_base = 0x8000;
  867. DET(("Shared memory base is %04x, ", mp->shmem_base));
  868. mp->shmem = (struct myri_shmem __iomem *)
  869. (mp->lanai + (mp->shmem_base * 2));
  870. DET(("shmem mapped at %p\n", mp->shmem));
  871. mp->rqack = &mp->shmem->channel.recvqa;
  872. mp->rq = &mp->shmem->channel.recvq;
  873. mp->sq = &mp->shmem->channel.sendq;
  874. /* Reset the board. */
  875. DET(("Resetting LANAI\n"));
  876. myri_reset_off(mp->lregs, mp->cregs);
  877. myri_reset_on(mp->cregs);
  878. /* Turn IRQ's off. */
  879. myri_disable_irq(mp->lregs, mp->cregs);
  880. /* Reset once more. */
  881. myri_reset_on(mp->cregs);
  882. /* Get the supported DVMA burst sizes from our SBUS. */
  883. mp->myri_bursts = prom_getintdefault(mp->myri_sdev->bus->prom_node,
  884. "burst-sizes", 0x00);
  885. if (!sbus_can_burst64(sdev))
  886. mp->myri_bursts &= ~(DMA_BURST64);
  887. DET(("MYRI bursts %02x\n", mp->myri_bursts));
  888. /* Encode SBUS interrupt level in second control register. */
  889. i = prom_getint(sdev->prom_node, "interrupts");
  890. if (i == 0)
  891. i = 4;
  892. DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
  893. i, (1 << i)));
  894. sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL);
  895. mp->dev = dev;
  896. dev->open = &myri_open;
  897. dev->stop = &myri_close;
  898. dev->hard_start_xmit = &myri_start_xmit;
  899. dev->tx_timeout = &myri_tx_timeout;
  900. dev->watchdog_timeo = 5*HZ;
  901. dev->get_stats = &myri_get_stats;
  902. dev->set_multicast_list = &myri_set_multicast;
  903. dev->irq = sdev->irqs[0];
  904. /* Register interrupt handler now. */
  905. DET(("Requesting MYRIcom IRQ line.\n"));
  906. if (request_irq(dev->irq, &myri_interrupt,
  907. SA_SHIRQ, "MyriCOM Ethernet", (void *) dev)) {
  908. printk("MyriCOM: Cannot register interrupt handler.\n");
  909. goto err;
  910. }
  911. dev->mtu = MYRINET_MTU;
  912. dev->change_mtu = myri_change_mtu;
  913. dev->hard_header = myri_header;
  914. dev->rebuild_header = myri_rebuild_header;
  915. dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN);
  916. dev->hard_header_cache = myri_header_cache;
  917. dev->header_cache_update= myri_header_cache_update;
  918. /* Load code onto the LANai. */
  919. DET(("Loading LANAI firmware\n"));
  920. myri_load_lanai(mp);
  921. if (register_netdev(dev)) {
  922. printk("MyriCOM: Cannot register device.\n");
  923. goto err_free_irq;
  924. }
  925. #ifdef MODULE
  926. mp->next_module = root_myri_dev;
  927. root_myri_dev = mp;
  928. #endif
  929. printk("%s: MyriCOM MyriNET Ethernet ", dev->name);
  930. for (i = 0; i < 6; i++)
  931. printk("%2.2x%c", dev->dev_addr[i],
  932. i == 5 ? ' ' : ':');
  933. printk("\n");
  934. return 0;
  935. err_free_irq:
  936. free_irq(dev->irq, dev);
  937. err:
  938. /* This will also free the co-allocated 'dev->priv' */
  939. free_netdev(dev);
  940. return -ENODEV;
  941. }
  942. static int __init myri_sbus_match(struct sbus_dev *sdev)
  943. {
  944. char *name = sdev->prom_name;
  945. if (!strcmp(name, "MYRICOM,mlanai") ||
  946. !strcmp(name, "myri"))
  947. return 1;
  948. return 0;
  949. }
  950. static int __init myri_sbus_probe(void)
  951. {
  952. struct sbus_bus *bus;
  953. struct sbus_dev *sdev = NULL;
  954. static int called;
  955. int cards = 0, v;
  956. #ifdef MODULE
  957. root_myri_dev = NULL;
  958. #endif
  959. if (called)
  960. return -ENODEV;
  961. called++;
  962. for_each_sbus(bus) {
  963. for_each_sbusdev(sdev, bus) {
  964. if (myri_sbus_match(sdev)) {
  965. cards++;
  966. DET(("Found myricom myrinet as %s\n", sdev->prom_name));
  967. if ((v = myri_ether_init(sdev, (cards - 1))))
  968. return v;
  969. }
  970. }
  971. }
  972. if (!cards)
  973. return -ENODEV;
  974. return 0;
  975. }
  976. static void __exit myri_sbus_cleanup(void)
  977. {
  978. #ifdef MODULE
  979. while (root_myri_dev) {
  980. struct myri_eth *next = root_myri_dev->next_module;
  981. unregister_netdev(root_myri_dev->dev);
  982. /* this will also free the co-allocated 'root_myri_dev' */
  983. free_netdev(root_myri_dev->dev);
  984. root_myri_dev = next;
  985. }
  986. #endif /* MODULE */
  987. }
  988. module_init(myri_sbus_probe);
  989. module_exit(myri_sbus_cleanup);
  990. MODULE_LICENSE("GPL");