forcedeth.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. *
  109. * Known bugs:
  110. * We suspect that on some hardware no TX done interrupts are generated.
  111. * This means recovery from netif_stop_queue only happens if the hw timer
  112. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  113. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  114. * If your hardware reliably generates tx done interrupts, then you can remove
  115. * DEV_NEED_TIMERIRQ from the driver_data flags.
  116. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  117. * superfluous timer interrupts from the nic.
  118. */
  119. #define FORCEDETH_VERSION "0.52"
  120. #define DRV_NAME "forcedeth"
  121. #include <linux/module.h>
  122. #include <linux/types.h>
  123. #include <linux/pci.h>
  124. #include <linux/interrupt.h>
  125. #include <linux/netdevice.h>
  126. #include <linux/etherdevice.h>
  127. #include <linux/delay.h>
  128. #include <linux/spinlock.h>
  129. #include <linux/ethtool.h>
  130. #include <linux/timer.h>
  131. #include <linux/skbuff.h>
  132. #include <linux/mii.h>
  133. #include <linux/random.h>
  134. #include <linux/init.h>
  135. #include <linux/if_vlan.h>
  136. #include <linux/dma-mapping.h>
  137. #include <asm/irq.h>
  138. #include <asm/io.h>
  139. #include <asm/uaccess.h>
  140. #include <asm/system.h>
  141. #if 0
  142. #define dprintk printk
  143. #else
  144. #define dprintk(x...) do { } while (0)
  145. #endif
  146. /*
  147. * Hardware access:
  148. */
  149. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  150. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  151. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  152. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  153. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  154. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  155. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  156. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  157. enum {
  158. NvRegIrqStatus = 0x000,
  159. #define NVREG_IRQSTAT_MIIEVENT 0x040
  160. #define NVREG_IRQSTAT_MASK 0x1ff
  161. NvRegIrqMask = 0x004,
  162. #define NVREG_IRQ_RX_ERROR 0x0001
  163. #define NVREG_IRQ_RX 0x0002
  164. #define NVREG_IRQ_RX_NOBUF 0x0004
  165. #define NVREG_IRQ_TX_ERR 0x0008
  166. #define NVREG_IRQ_TX_OK 0x0010
  167. #define NVREG_IRQ_TIMER 0x0020
  168. #define NVREG_IRQ_LINK 0x0040
  169. #define NVREG_IRQ_RX_FORCED 0x0080
  170. #define NVREG_IRQ_TX_FORCED 0x0100
  171. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  172. #define NVREG_IRQMASK_CPU 0x0040
  173. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  174. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  175. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  176. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  177. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  178. NVREG_IRQ_TX_FORCED))
  179. NvRegUnknownSetupReg6 = 0x008,
  180. #define NVREG_UNKSETUP6_VAL 3
  181. /*
  182. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  183. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  184. */
  185. NvRegPollingInterval = 0x00c,
  186. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  187. #define NVREG_POLL_DEFAULT_CPU 13
  188. NvRegMSIMap0 = 0x020,
  189. NvRegMSIMap1 = 0x024,
  190. NvRegMSIIrqMask = 0x030,
  191. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  192. NvRegMisc1 = 0x080,
  193. #define NVREG_MISC1_HD 0x02
  194. #define NVREG_MISC1_FORCE 0x3b0f3c
  195. NvRegTransmitterControl = 0x084,
  196. #define NVREG_XMITCTL_START 0x01
  197. NvRegTransmitterStatus = 0x088,
  198. #define NVREG_XMITSTAT_BUSY 0x01
  199. NvRegPacketFilterFlags = 0x8c,
  200. #define NVREG_PFF_ALWAYS 0x7F0008
  201. #define NVREG_PFF_PROMISC 0x80
  202. #define NVREG_PFF_MYADDR 0x20
  203. NvRegOffloadConfig = 0x90,
  204. #define NVREG_OFFLOAD_HOMEPHY 0x601
  205. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  206. NvRegReceiverControl = 0x094,
  207. #define NVREG_RCVCTL_START 0x01
  208. NvRegReceiverStatus = 0x98,
  209. #define NVREG_RCVSTAT_BUSY 0x01
  210. NvRegRandomSeed = 0x9c,
  211. #define NVREG_RNDSEED_MASK 0x00ff
  212. #define NVREG_RNDSEED_FORCE 0x7f00
  213. #define NVREG_RNDSEED_FORCE2 0x2d00
  214. #define NVREG_RNDSEED_FORCE3 0x7400
  215. NvRegUnknownSetupReg1 = 0xA0,
  216. #define NVREG_UNKSETUP1_VAL 0x16070f
  217. NvRegUnknownSetupReg2 = 0xA4,
  218. #define NVREG_UNKSETUP2_VAL 0x16
  219. NvRegMacAddrA = 0xA8,
  220. NvRegMacAddrB = 0xAC,
  221. NvRegMulticastAddrA = 0xB0,
  222. #define NVREG_MCASTADDRA_FORCE 0x01
  223. NvRegMulticastAddrB = 0xB4,
  224. NvRegMulticastMaskA = 0xB8,
  225. NvRegMulticastMaskB = 0xBC,
  226. NvRegPhyInterface = 0xC0,
  227. #define PHY_RGMII 0x10000000
  228. NvRegTxRingPhysAddr = 0x100,
  229. NvRegRxRingPhysAddr = 0x104,
  230. NvRegRingSizes = 0x108,
  231. #define NVREG_RINGSZ_TXSHIFT 0
  232. #define NVREG_RINGSZ_RXSHIFT 16
  233. NvRegUnknownTransmitterReg = 0x10c,
  234. NvRegLinkSpeed = 0x110,
  235. #define NVREG_LINKSPEED_FORCE 0x10000
  236. #define NVREG_LINKSPEED_10 1000
  237. #define NVREG_LINKSPEED_100 100
  238. #define NVREG_LINKSPEED_1000 50
  239. #define NVREG_LINKSPEED_MASK (0xFFF)
  240. NvRegUnknownSetupReg5 = 0x130,
  241. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  242. NvRegUnknownSetupReg3 = 0x13c,
  243. #define NVREG_UNKSETUP3_VAL1 0x200010
  244. NvRegTxRxControl = 0x144,
  245. #define NVREG_TXRXCTL_KICK 0x0001
  246. #define NVREG_TXRXCTL_BIT1 0x0002
  247. #define NVREG_TXRXCTL_BIT2 0x0004
  248. #define NVREG_TXRXCTL_IDLE 0x0008
  249. #define NVREG_TXRXCTL_RESET 0x0010
  250. #define NVREG_TXRXCTL_RXCHECK 0x0400
  251. #define NVREG_TXRXCTL_DESC_1 0
  252. #define NVREG_TXRXCTL_DESC_2 0x02100
  253. #define NVREG_TXRXCTL_DESC_3 0x02200
  254. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  255. #define NVREG_TXRXCTL_VLANINS 0x00080
  256. NvRegTxRingPhysAddrHigh = 0x148,
  257. NvRegRxRingPhysAddrHigh = 0x14C,
  258. NvRegMIIStatus = 0x180,
  259. #define NVREG_MIISTAT_ERROR 0x0001
  260. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  261. #define NVREG_MIISTAT_MASK 0x000f
  262. #define NVREG_MIISTAT_MASK2 0x000f
  263. NvRegUnknownSetupReg4 = 0x184,
  264. #define NVREG_UNKSETUP4_VAL 8
  265. NvRegAdapterControl = 0x188,
  266. #define NVREG_ADAPTCTL_START 0x02
  267. #define NVREG_ADAPTCTL_LINKUP 0x04
  268. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  269. #define NVREG_ADAPTCTL_RUNNING 0x100000
  270. #define NVREG_ADAPTCTL_PHYSHIFT 24
  271. NvRegMIISpeed = 0x18c,
  272. #define NVREG_MIISPEED_BIT8 (1<<8)
  273. #define NVREG_MIIDELAY 5
  274. NvRegMIIControl = 0x190,
  275. #define NVREG_MIICTL_INUSE 0x08000
  276. #define NVREG_MIICTL_WRITE 0x00400
  277. #define NVREG_MIICTL_ADDRSHIFT 5
  278. NvRegMIIData = 0x194,
  279. NvRegWakeUpFlags = 0x200,
  280. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  281. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  282. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  283. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  284. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  285. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  286. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  287. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  288. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  289. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  290. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  291. NvRegPatternCRC = 0x204,
  292. NvRegPatternMask = 0x208,
  293. NvRegPowerCap = 0x268,
  294. #define NVREG_POWERCAP_D3SUPP (1<<30)
  295. #define NVREG_POWERCAP_D2SUPP (1<<26)
  296. #define NVREG_POWERCAP_D1SUPP (1<<25)
  297. NvRegPowerState = 0x26c,
  298. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  299. #define NVREG_POWERSTATE_VALID 0x0100
  300. #define NVREG_POWERSTATE_MASK 0x0003
  301. #define NVREG_POWERSTATE_D0 0x0000
  302. #define NVREG_POWERSTATE_D1 0x0001
  303. #define NVREG_POWERSTATE_D2 0x0002
  304. #define NVREG_POWERSTATE_D3 0x0003
  305. NvRegVlanControl = 0x300,
  306. #define NVREG_VLANCONTROL_ENABLE 0x2000
  307. NvRegMSIXMap0 = 0x3e0,
  308. NvRegMSIXMap1 = 0x3e4,
  309. NvRegMSIXIrqStatus = 0x3f0,
  310. };
  311. /* Big endian: should work, but is untested */
  312. struct ring_desc {
  313. u32 PacketBuffer;
  314. u32 FlagLen;
  315. };
  316. struct ring_desc_ex {
  317. u32 PacketBufferHigh;
  318. u32 PacketBufferLow;
  319. u32 TxVlan;
  320. u32 FlagLen;
  321. };
  322. typedef union _ring_type {
  323. struct ring_desc* orig;
  324. struct ring_desc_ex* ex;
  325. } ring_type;
  326. #define FLAG_MASK_V1 0xffff0000
  327. #define FLAG_MASK_V2 0xffffc000
  328. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  329. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  330. #define NV_TX_LASTPACKET (1<<16)
  331. #define NV_TX_RETRYERROR (1<<19)
  332. #define NV_TX_FORCED_INTERRUPT (1<<24)
  333. #define NV_TX_DEFERRED (1<<26)
  334. #define NV_TX_CARRIERLOST (1<<27)
  335. #define NV_TX_LATECOLLISION (1<<28)
  336. #define NV_TX_UNDERFLOW (1<<29)
  337. #define NV_TX_ERROR (1<<30)
  338. #define NV_TX_VALID (1<<31)
  339. #define NV_TX2_LASTPACKET (1<<29)
  340. #define NV_TX2_RETRYERROR (1<<18)
  341. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  342. #define NV_TX2_DEFERRED (1<<25)
  343. #define NV_TX2_CARRIERLOST (1<<26)
  344. #define NV_TX2_LATECOLLISION (1<<27)
  345. #define NV_TX2_UNDERFLOW (1<<28)
  346. /* error and valid are the same for both */
  347. #define NV_TX2_ERROR (1<<30)
  348. #define NV_TX2_VALID (1<<31)
  349. #define NV_TX2_TSO (1<<28)
  350. #define NV_TX2_TSO_SHIFT 14
  351. #define NV_TX2_TSO_MAX_SHIFT 14
  352. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  353. #define NV_TX2_CHECKSUM_L3 (1<<27)
  354. #define NV_TX2_CHECKSUM_L4 (1<<26)
  355. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  356. #define NV_RX_DESCRIPTORVALID (1<<16)
  357. #define NV_RX_MISSEDFRAME (1<<17)
  358. #define NV_RX_SUBSTRACT1 (1<<18)
  359. #define NV_RX_ERROR1 (1<<23)
  360. #define NV_RX_ERROR2 (1<<24)
  361. #define NV_RX_ERROR3 (1<<25)
  362. #define NV_RX_ERROR4 (1<<26)
  363. #define NV_RX_CRCERR (1<<27)
  364. #define NV_RX_OVERFLOW (1<<28)
  365. #define NV_RX_FRAMINGERR (1<<29)
  366. #define NV_RX_ERROR (1<<30)
  367. #define NV_RX_AVAIL (1<<31)
  368. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  369. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  370. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  371. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  372. #define NV_RX2_DESCRIPTORVALID (1<<29)
  373. #define NV_RX2_SUBSTRACT1 (1<<25)
  374. #define NV_RX2_ERROR1 (1<<18)
  375. #define NV_RX2_ERROR2 (1<<19)
  376. #define NV_RX2_ERROR3 (1<<20)
  377. #define NV_RX2_ERROR4 (1<<21)
  378. #define NV_RX2_CRCERR (1<<22)
  379. #define NV_RX2_OVERFLOW (1<<23)
  380. #define NV_RX2_FRAMINGERR (1<<24)
  381. /* error and avail are the same for both */
  382. #define NV_RX2_ERROR (1<<30)
  383. #define NV_RX2_AVAIL (1<<31)
  384. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  385. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  386. /* Miscelaneous hardware related defines: */
  387. #define NV_PCI_REGSZ 0x270
  388. /* various timeout delays: all in usec */
  389. #define NV_TXRX_RESET_DELAY 4
  390. #define NV_TXSTOP_DELAY1 10
  391. #define NV_TXSTOP_DELAY1MAX 500000
  392. #define NV_TXSTOP_DELAY2 100
  393. #define NV_RXSTOP_DELAY1 10
  394. #define NV_RXSTOP_DELAY1MAX 500000
  395. #define NV_RXSTOP_DELAY2 100
  396. #define NV_SETUP5_DELAY 5
  397. #define NV_SETUP5_DELAYMAX 50000
  398. #define NV_POWERUP_DELAY 5
  399. #define NV_POWERUP_DELAYMAX 5000
  400. #define NV_MIIBUSY_DELAY 50
  401. #define NV_MIIPHY_DELAY 10
  402. #define NV_MIIPHY_DELAYMAX 10000
  403. #define NV_WAKEUPPATTERNS 5
  404. #define NV_WAKEUPMASKENTRIES 4
  405. /* General driver defaults */
  406. #define NV_WATCHDOG_TIMEO (5*HZ)
  407. #define RX_RING 128
  408. #define TX_RING 256
  409. /*
  410. * If your nic mysteriously hangs then try to reduce the limits
  411. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  412. * last valid ring entry. But this would be impossible to
  413. * implement - probably a disassembly error.
  414. */
  415. #define TX_LIMIT_STOP 255
  416. #define TX_LIMIT_START 254
  417. /* rx/tx mac addr + type + vlan + align + slack*/
  418. #define NV_RX_HEADERS (64)
  419. /* even more slack. */
  420. #define NV_RX_ALLOC_PAD (64)
  421. /* maximum mtu size */
  422. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  423. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  424. #define OOM_REFILL (1+HZ/20)
  425. #define POLL_WAIT (1+HZ/100)
  426. #define LINK_TIMEOUT (3*HZ)
  427. /*
  428. * desc_ver values:
  429. * The nic supports three different descriptor types:
  430. * - DESC_VER_1: Original
  431. * - DESC_VER_2: support for jumbo frames.
  432. * - DESC_VER_3: 64-bit format.
  433. */
  434. #define DESC_VER_1 1
  435. #define DESC_VER_2 2
  436. #define DESC_VER_3 3
  437. /* PHY defines */
  438. #define PHY_OUI_MARVELL 0x5043
  439. #define PHY_OUI_CICADA 0x03f1
  440. #define PHYID1_OUI_MASK 0x03ff
  441. #define PHYID1_OUI_SHFT 6
  442. #define PHYID2_OUI_MASK 0xfc00
  443. #define PHYID2_OUI_SHFT 10
  444. #define PHY_INIT1 0x0f000
  445. #define PHY_INIT2 0x0e00
  446. #define PHY_INIT3 0x01000
  447. #define PHY_INIT4 0x0200
  448. #define PHY_INIT5 0x0004
  449. #define PHY_INIT6 0x02000
  450. #define PHY_GIGABIT 0x0100
  451. #define PHY_TIMEOUT 0x1
  452. #define PHY_ERROR 0x2
  453. #define PHY_100 0x1
  454. #define PHY_1000 0x2
  455. #define PHY_HALF 0x100
  456. /* FIXME: MII defines that should be added to <linux/mii.h> */
  457. #define MII_1000BT_CR 0x09
  458. #define MII_1000BT_SR 0x0a
  459. #define ADVERTISE_1000FULL 0x0200
  460. #define ADVERTISE_1000HALF 0x0100
  461. #define LPA_1000FULL 0x0800
  462. #define LPA_1000HALF 0x0400
  463. /* MSI/MSI-X defines */
  464. #define NV_MSI_X_MAX_VECTORS 8
  465. #define NV_MSI_X_VECTORS_MASK 0x000f
  466. #define NV_MSI_CAPABLE 0x0010
  467. #define NV_MSI_X_CAPABLE 0x0020
  468. #define NV_MSI_ENABLED 0x0040
  469. #define NV_MSI_X_ENABLED 0x0080
  470. #define NV_MSI_X_VECTOR_ALL 0x0
  471. #define NV_MSI_X_VECTOR_RX 0x0
  472. #define NV_MSI_X_VECTOR_TX 0x1
  473. #define NV_MSI_X_VECTOR_OTHER 0x2
  474. /*
  475. * SMP locking:
  476. * All hardware access under dev->priv->lock, except the performance
  477. * critical parts:
  478. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  479. * by the arch code for interrupts.
  480. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  481. * needs dev->priv->lock :-(
  482. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  483. */
  484. /* in dev: base, irq */
  485. struct fe_priv {
  486. spinlock_t lock;
  487. /* General data:
  488. * Locking: spin_lock(&np->lock); */
  489. struct net_device_stats stats;
  490. int in_shutdown;
  491. u32 linkspeed;
  492. int duplex;
  493. int autoneg;
  494. int fixed_mode;
  495. int phyaddr;
  496. int wolenabled;
  497. unsigned int phy_oui;
  498. u16 gigabit;
  499. /* General data: RO fields */
  500. dma_addr_t ring_addr;
  501. struct pci_dev *pci_dev;
  502. u32 orig_mac[2];
  503. u32 irqmask;
  504. u32 desc_ver;
  505. u32 txrxctl_bits;
  506. u32 vlanctl_bits;
  507. void __iomem *base;
  508. /* rx specific fields.
  509. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  510. */
  511. ring_type rx_ring;
  512. unsigned int cur_rx, refill_rx;
  513. struct sk_buff *rx_skbuff[RX_RING];
  514. dma_addr_t rx_dma[RX_RING];
  515. unsigned int rx_buf_sz;
  516. unsigned int pkt_limit;
  517. struct timer_list oom_kick;
  518. struct timer_list nic_poll;
  519. u32 nic_poll_irq;
  520. /* media detection workaround.
  521. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  522. */
  523. int need_linktimer;
  524. unsigned long link_timeout;
  525. /*
  526. * tx specific fields.
  527. */
  528. ring_type tx_ring;
  529. unsigned int next_tx, nic_tx;
  530. struct sk_buff *tx_skbuff[TX_RING];
  531. dma_addr_t tx_dma[TX_RING];
  532. unsigned int tx_dma_len[TX_RING];
  533. u32 tx_flags;
  534. /* vlan fields */
  535. struct vlan_group *vlangrp;
  536. /* msi/msi-x fields */
  537. u32 msi_flags;
  538. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  539. };
  540. /*
  541. * Maximum number of loops until we assume that a bit in the irq mask
  542. * is stuck. Overridable with module param.
  543. */
  544. static int max_interrupt_work = 5;
  545. /*
  546. * Optimization can be either throuput mode or cpu mode
  547. *
  548. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  549. * CPU Mode: Interrupts are controlled by a timer.
  550. */
  551. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  552. #define NV_OPTIMIZATION_MODE_CPU 1
  553. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  554. /*
  555. * Poll interval for timer irq
  556. *
  557. * This interval determines how frequent an interrupt is generated.
  558. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  559. * Min = 0, and Max = 65535
  560. */
  561. static int poll_interval = -1;
  562. /*
  563. * Disable MSI interrupts
  564. */
  565. static int disable_msi = 0;
  566. /*
  567. * Disable MSIX interrupts
  568. */
  569. static int disable_msix = 0;
  570. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  571. {
  572. return netdev_priv(dev);
  573. }
  574. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  575. {
  576. return ((struct fe_priv *)netdev_priv(dev))->base;
  577. }
  578. static inline void pci_push(u8 __iomem *base)
  579. {
  580. /* force out pending posted writes */
  581. readl(base);
  582. }
  583. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  584. {
  585. return le32_to_cpu(prd->FlagLen)
  586. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  587. }
  588. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  589. {
  590. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  591. }
  592. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  593. int delay, int delaymax, const char *msg)
  594. {
  595. u8 __iomem *base = get_hwbase(dev);
  596. pci_push(base);
  597. do {
  598. udelay(delay);
  599. delaymax -= delay;
  600. if (delaymax < 0) {
  601. if (msg)
  602. printk(msg);
  603. return 1;
  604. }
  605. } while ((readl(base + offset) & mask) != target);
  606. return 0;
  607. }
  608. #define NV_SETUP_RX_RING 0x01
  609. #define NV_SETUP_TX_RING 0x02
  610. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  611. {
  612. struct fe_priv *np = get_nvpriv(dev);
  613. u8 __iomem *base = get_hwbase(dev);
  614. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  615. if (rxtx_flags & NV_SETUP_RX_RING) {
  616. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  617. }
  618. if (rxtx_flags & NV_SETUP_TX_RING) {
  619. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  620. }
  621. } else {
  622. if (rxtx_flags & NV_SETUP_RX_RING) {
  623. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  624. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  625. }
  626. if (rxtx_flags & NV_SETUP_TX_RING) {
  627. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  628. writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  629. }
  630. }
  631. }
  632. #define MII_READ (-1)
  633. /* mii_rw: read/write a register on the PHY.
  634. *
  635. * Caller must guarantee serialization
  636. */
  637. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  638. {
  639. u8 __iomem *base = get_hwbase(dev);
  640. u32 reg;
  641. int retval;
  642. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  643. reg = readl(base + NvRegMIIControl);
  644. if (reg & NVREG_MIICTL_INUSE) {
  645. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  646. udelay(NV_MIIBUSY_DELAY);
  647. }
  648. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  649. if (value != MII_READ) {
  650. writel(value, base + NvRegMIIData);
  651. reg |= NVREG_MIICTL_WRITE;
  652. }
  653. writel(reg, base + NvRegMIIControl);
  654. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  655. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  656. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  657. dev->name, miireg, addr);
  658. retval = -1;
  659. } else if (value != MII_READ) {
  660. /* it was a write operation - fewer failures are detectable */
  661. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  662. dev->name, value, miireg, addr);
  663. retval = 0;
  664. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  665. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  666. dev->name, miireg, addr);
  667. retval = -1;
  668. } else {
  669. retval = readl(base + NvRegMIIData);
  670. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  671. dev->name, miireg, addr, retval);
  672. }
  673. return retval;
  674. }
  675. static int phy_reset(struct net_device *dev)
  676. {
  677. struct fe_priv *np = netdev_priv(dev);
  678. u32 miicontrol;
  679. unsigned int tries = 0;
  680. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  681. miicontrol |= BMCR_RESET;
  682. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  683. return -1;
  684. }
  685. /* wait for 500ms */
  686. msleep(500);
  687. /* must wait till reset is deasserted */
  688. while (miicontrol & BMCR_RESET) {
  689. msleep(10);
  690. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  691. /* FIXME: 100 tries seem excessive */
  692. if (tries++ > 100)
  693. return -1;
  694. }
  695. return 0;
  696. }
  697. static int phy_init(struct net_device *dev)
  698. {
  699. struct fe_priv *np = get_nvpriv(dev);
  700. u8 __iomem *base = get_hwbase(dev);
  701. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  702. /* set advertise register */
  703. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  704. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  705. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  706. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  707. return PHY_ERROR;
  708. }
  709. /* get phy interface type */
  710. phyinterface = readl(base + NvRegPhyInterface);
  711. /* see if gigabit phy */
  712. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  713. if (mii_status & PHY_GIGABIT) {
  714. np->gigabit = PHY_GIGABIT;
  715. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  716. mii_control_1000 &= ~ADVERTISE_1000HALF;
  717. if (phyinterface & PHY_RGMII)
  718. mii_control_1000 |= ADVERTISE_1000FULL;
  719. else
  720. mii_control_1000 &= ~ADVERTISE_1000FULL;
  721. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  722. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  723. return PHY_ERROR;
  724. }
  725. }
  726. else
  727. np->gigabit = 0;
  728. /* reset the phy */
  729. if (phy_reset(dev)) {
  730. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  731. return PHY_ERROR;
  732. }
  733. /* phy vendor specific configuration */
  734. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  735. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  736. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  737. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  738. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  739. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  740. return PHY_ERROR;
  741. }
  742. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  743. phy_reserved |= PHY_INIT5;
  744. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  745. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  746. return PHY_ERROR;
  747. }
  748. }
  749. if (np->phy_oui == PHY_OUI_CICADA) {
  750. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  751. phy_reserved |= PHY_INIT6;
  752. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  753. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  754. return PHY_ERROR;
  755. }
  756. }
  757. /* restart auto negotiation */
  758. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  759. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  760. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  761. return PHY_ERROR;
  762. }
  763. return 0;
  764. }
  765. static void nv_start_rx(struct net_device *dev)
  766. {
  767. struct fe_priv *np = netdev_priv(dev);
  768. u8 __iomem *base = get_hwbase(dev);
  769. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  770. /* Already running? Stop it. */
  771. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  772. writel(0, base + NvRegReceiverControl);
  773. pci_push(base);
  774. }
  775. writel(np->linkspeed, base + NvRegLinkSpeed);
  776. pci_push(base);
  777. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  778. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  779. dev->name, np->duplex, np->linkspeed);
  780. pci_push(base);
  781. }
  782. static void nv_stop_rx(struct net_device *dev)
  783. {
  784. u8 __iomem *base = get_hwbase(dev);
  785. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  786. writel(0, base + NvRegReceiverControl);
  787. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  788. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  789. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  790. udelay(NV_RXSTOP_DELAY2);
  791. writel(0, base + NvRegLinkSpeed);
  792. }
  793. static void nv_start_tx(struct net_device *dev)
  794. {
  795. u8 __iomem *base = get_hwbase(dev);
  796. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  797. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  798. pci_push(base);
  799. }
  800. static void nv_stop_tx(struct net_device *dev)
  801. {
  802. u8 __iomem *base = get_hwbase(dev);
  803. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  804. writel(0, base + NvRegTransmitterControl);
  805. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  806. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  807. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  808. udelay(NV_TXSTOP_DELAY2);
  809. writel(0, base + NvRegUnknownTransmitterReg);
  810. }
  811. static void nv_txrx_reset(struct net_device *dev)
  812. {
  813. struct fe_priv *np = netdev_priv(dev);
  814. u8 __iomem *base = get_hwbase(dev);
  815. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  816. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  817. pci_push(base);
  818. udelay(NV_TXRX_RESET_DELAY);
  819. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  820. pci_push(base);
  821. }
  822. /*
  823. * nv_get_stats: dev->get_stats function
  824. * Get latest stats value from the nic.
  825. * Called with read_lock(&dev_base_lock) held for read -
  826. * only synchronized against unregister_netdevice.
  827. */
  828. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  829. {
  830. struct fe_priv *np = netdev_priv(dev);
  831. /* It seems that the nic always generates interrupts and doesn't
  832. * accumulate errors internally. Thus the current values in np->stats
  833. * are already up to date.
  834. */
  835. return &np->stats;
  836. }
  837. /*
  838. * nv_alloc_rx: fill rx ring entries.
  839. * Return 1 if the allocations for the skbs failed and the
  840. * rx engine is without Available descriptors
  841. */
  842. static int nv_alloc_rx(struct net_device *dev)
  843. {
  844. struct fe_priv *np = netdev_priv(dev);
  845. unsigned int refill_rx = np->refill_rx;
  846. int nr;
  847. while (np->cur_rx != refill_rx) {
  848. struct sk_buff *skb;
  849. nr = refill_rx % RX_RING;
  850. if (np->rx_skbuff[nr] == NULL) {
  851. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  852. if (!skb)
  853. break;
  854. skb->dev = dev;
  855. np->rx_skbuff[nr] = skb;
  856. } else {
  857. skb = np->rx_skbuff[nr];
  858. }
  859. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  860. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  861. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  862. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  863. wmb();
  864. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  865. } else {
  866. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  867. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  868. wmb();
  869. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  870. }
  871. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  872. dev->name, refill_rx);
  873. refill_rx++;
  874. }
  875. np->refill_rx = refill_rx;
  876. if (np->cur_rx - refill_rx == RX_RING)
  877. return 1;
  878. return 0;
  879. }
  880. static void nv_do_rx_refill(unsigned long data)
  881. {
  882. struct net_device *dev = (struct net_device *) data;
  883. struct fe_priv *np = netdev_priv(dev);
  884. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  885. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  886. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  887. disable_irq(dev->irq);
  888. } else {
  889. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  890. }
  891. if (nv_alloc_rx(dev)) {
  892. spin_lock(&np->lock);
  893. if (!np->in_shutdown)
  894. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  895. spin_unlock(&np->lock);
  896. }
  897. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  898. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  899. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  900. enable_irq(dev->irq);
  901. } else {
  902. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  903. }
  904. }
  905. static void nv_init_rx(struct net_device *dev)
  906. {
  907. struct fe_priv *np = netdev_priv(dev);
  908. int i;
  909. np->cur_rx = RX_RING;
  910. np->refill_rx = 0;
  911. for (i = 0; i < RX_RING; i++)
  912. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  913. np->rx_ring.orig[i].FlagLen = 0;
  914. else
  915. np->rx_ring.ex[i].FlagLen = 0;
  916. }
  917. static void nv_init_tx(struct net_device *dev)
  918. {
  919. struct fe_priv *np = netdev_priv(dev);
  920. int i;
  921. np->next_tx = np->nic_tx = 0;
  922. for (i = 0; i < TX_RING; i++) {
  923. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  924. np->tx_ring.orig[i].FlagLen = 0;
  925. else
  926. np->tx_ring.ex[i].FlagLen = 0;
  927. np->tx_skbuff[i] = NULL;
  928. np->tx_dma[i] = 0;
  929. }
  930. }
  931. static int nv_init_ring(struct net_device *dev)
  932. {
  933. nv_init_tx(dev);
  934. nv_init_rx(dev);
  935. return nv_alloc_rx(dev);
  936. }
  937. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  938. {
  939. struct fe_priv *np = netdev_priv(dev);
  940. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  941. dev->name, skbnr);
  942. if (np->tx_dma[skbnr]) {
  943. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  944. np->tx_dma_len[skbnr],
  945. PCI_DMA_TODEVICE);
  946. np->tx_dma[skbnr] = 0;
  947. }
  948. if (np->tx_skbuff[skbnr]) {
  949. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  950. np->tx_skbuff[skbnr] = NULL;
  951. return 1;
  952. } else {
  953. return 0;
  954. }
  955. }
  956. static void nv_drain_tx(struct net_device *dev)
  957. {
  958. struct fe_priv *np = netdev_priv(dev);
  959. unsigned int i;
  960. for (i = 0; i < TX_RING; i++) {
  961. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  962. np->tx_ring.orig[i].FlagLen = 0;
  963. else
  964. np->tx_ring.ex[i].FlagLen = 0;
  965. if (nv_release_txskb(dev, i))
  966. np->stats.tx_dropped++;
  967. }
  968. }
  969. static void nv_drain_rx(struct net_device *dev)
  970. {
  971. struct fe_priv *np = netdev_priv(dev);
  972. int i;
  973. for (i = 0; i < RX_RING; i++) {
  974. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  975. np->rx_ring.orig[i].FlagLen = 0;
  976. else
  977. np->rx_ring.ex[i].FlagLen = 0;
  978. wmb();
  979. if (np->rx_skbuff[i]) {
  980. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  981. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  982. PCI_DMA_FROMDEVICE);
  983. dev_kfree_skb(np->rx_skbuff[i]);
  984. np->rx_skbuff[i] = NULL;
  985. }
  986. }
  987. }
  988. static void drain_ring(struct net_device *dev)
  989. {
  990. nv_drain_tx(dev);
  991. nv_drain_rx(dev);
  992. }
  993. /*
  994. * nv_start_xmit: dev->hard_start_xmit function
  995. * Called with dev->xmit_lock held.
  996. */
  997. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  998. {
  999. struct fe_priv *np = netdev_priv(dev);
  1000. u32 tx_flags = 0;
  1001. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1002. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1003. unsigned int nr = (np->next_tx - 1) % TX_RING;
  1004. unsigned int start_nr = np->next_tx % TX_RING;
  1005. unsigned int i;
  1006. u32 offset = 0;
  1007. u32 bcnt;
  1008. u32 size = skb->len-skb->data_len;
  1009. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1010. u32 tx_flags_vlan = 0;
  1011. /* add fragments to entries count */
  1012. for (i = 0; i < fragments; i++) {
  1013. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1014. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1015. }
  1016. spin_lock_irq(&np->lock);
  1017. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  1018. spin_unlock_irq(&np->lock);
  1019. netif_stop_queue(dev);
  1020. return NETDEV_TX_BUSY;
  1021. }
  1022. /* setup the header buffer */
  1023. do {
  1024. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1025. nr = (nr + 1) % TX_RING;
  1026. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1027. PCI_DMA_TODEVICE);
  1028. np->tx_dma_len[nr] = bcnt;
  1029. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1030. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1031. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1032. } else {
  1033. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1034. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1035. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1036. }
  1037. tx_flags = np->tx_flags;
  1038. offset += bcnt;
  1039. size -= bcnt;
  1040. } while(size);
  1041. /* setup the fragments */
  1042. for (i = 0; i < fragments; i++) {
  1043. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1044. u32 size = frag->size;
  1045. offset = 0;
  1046. do {
  1047. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1048. nr = (nr + 1) % TX_RING;
  1049. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1050. PCI_DMA_TODEVICE);
  1051. np->tx_dma_len[nr] = bcnt;
  1052. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1053. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1054. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1055. } else {
  1056. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1057. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1058. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1059. }
  1060. offset += bcnt;
  1061. size -= bcnt;
  1062. } while (size);
  1063. }
  1064. /* set last fragment flag */
  1065. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1066. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1067. } else {
  1068. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1069. }
  1070. np->tx_skbuff[nr] = skb;
  1071. #ifdef NETIF_F_TSO
  1072. if (skb_shinfo(skb)->tso_size)
  1073. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1074. else
  1075. #endif
  1076. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1077. /* vlan tag */
  1078. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1079. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1080. }
  1081. /* set tx flags */
  1082. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1083. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1084. } else {
  1085. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1086. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1087. }
  1088. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1089. dev->name, np->next_tx, entries, tx_flags_extra);
  1090. {
  1091. int j;
  1092. for (j=0; j<64; j++) {
  1093. if ((j%16) == 0)
  1094. dprintk("\n%03x:", j);
  1095. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1096. }
  1097. dprintk("\n");
  1098. }
  1099. np->next_tx += entries;
  1100. dev->trans_start = jiffies;
  1101. spin_unlock_irq(&np->lock);
  1102. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1103. pci_push(get_hwbase(dev));
  1104. return NETDEV_TX_OK;
  1105. }
  1106. /*
  1107. * nv_tx_done: check for completed packets, release the skbs.
  1108. *
  1109. * Caller must own np->lock.
  1110. */
  1111. static void nv_tx_done(struct net_device *dev)
  1112. {
  1113. struct fe_priv *np = netdev_priv(dev);
  1114. u32 Flags;
  1115. unsigned int i;
  1116. struct sk_buff *skb;
  1117. while (np->nic_tx != np->next_tx) {
  1118. i = np->nic_tx % TX_RING;
  1119. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1120. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1121. else
  1122. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1123. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1124. dev->name, np->nic_tx, Flags);
  1125. if (Flags & NV_TX_VALID)
  1126. break;
  1127. if (np->desc_ver == DESC_VER_1) {
  1128. if (Flags & NV_TX_LASTPACKET) {
  1129. skb = np->tx_skbuff[i];
  1130. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1131. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1132. if (Flags & NV_TX_UNDERFLOW)
  1133. np->stats.tx_fifo_errors++;
  1134. if (Flags & NV_TX_CARRIERLOST)
  1135. np->stats.tx_carrier_errors++;
  1136. np->stats.tx_errors++;
  1137. } else {
  1138. np->stats.tx_packets++;
  1139. np->stats.tx_bytes += skb->len;
  1140. }
  1141. }
  1142. } else {
  1143. if (Flags & NV_TX2_LASTPACKET) {
  1144. skb = np->tx_skbuff[i];
  1145. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1146. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1147. if (Flags & NV_TX2_UNDERFLOW)
  1148. np->stats.tx_fifo_errors++;
  1149. if (Flags & NV_TX2_CARRIERLOST)
  1150. np->stats.tx_carrier_errors++;
  1151. np->stats.tx_errors++;
  1152. } else {
  1153. np->stats.tx_packets++;
  1154. np->stats.tx_bytes += skb->len;
  1155. }
  1156. }
  1157. }
  1158. nv_release_txskb(dev, i);
  1159. np->nic_tx++;
  1160. }
  1161. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1162. netif_wake_queue(dev);
  1163. }
  1164. /*
  1165. * nv_tx_timeout: dev->tx_timeout function
  1166. * Called with dev->xmit_lock held.
  1167. */
  1168. static void nv_tx_timeout(struct net_device *dev)
  1169. {
  1170. struct fe_priv *np = netdev_priv(dev);
  1171. u8 __iomem *base = get_hwbase(dev);
  1172. u32 status;
  1173. if (np->msi_flags & NV_MSI_X_ENABLED)
  1174. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1175. else
  1176. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1177. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1178. {
  1179. int i;
  1180. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1181. dev->name, (unsigned long)np->ring_addr,
  1182. np->next_tx, np->nic_tx);
  1183. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1184. for (i=0;i<0x400;i+= 32) {
  1185. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1186. i,
  1187. readl(base + i + 0), readl(base + i + 4),
  1188. readl(base + i + 8), readl(base + i + 12),
  1189. readl(base + i + 16), readl(base + i + 20),
  1190. readl(base + i + 24), readl(base + i + 28));
  1191. }
  1192. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1193. for (i=0;i<TX_RING;i+= 4) {
  1194. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1195. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1196. i,
  1197. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1198. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1199. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1200. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1201. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1202. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1203. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1204. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1205. } else {
  1206. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1207. i,
  1208. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1209. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1210. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1211. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1212. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1213. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1214. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1215. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1216. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1217. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1218. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1219. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1220. }
  1221. }
  1222. }
  1223. spin_lock_irq(&np->lock);
  1224. /* 1) stop tx engine */
  1225. nv_stop_tx(dev);
  1226. /* 2) check that the packets were not sent already: */
  1227. nv_tx_done(dev);
  1228. /* 3) if there are dead entries: clear everything */
  1229. if (np->next_tx != np->nic_tx) {
  1230. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1231. nv_drain_tx(dev);
  1232. np->next_tx = np->nic_tx = 0;
  1233. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1234. netif_wake_queue(dev);
  1235. }
  1236. /* 4) restart tx engine */
  1237. nv_start_tx(dev);
  1238. spin_unlock_irq(&np->lock);
  1239. }
  1240. /*
  1241. * Called when the nic notices a mismatch between the actual data len on the
  1242. * wire and the len indicated in the 802 header
  1243. */
  1244. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1245. {
  1246. int hdrlen; /* length of the 802 header */
  1247. int protolen; /* length as stored in the proto field */
  1248. /* 1) calculate len according to header */
  1249. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1250. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1251. hdrlen = VLAN_HLEN;
  1252. } else {
  1253. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1254. hdrlen = ETH_HLEN;
  1255. }
  1256. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1257. dev->name, datalen, protolen, hdrlen);
  1258. if (protolen > ETH_DATA_LEN)
  1259. return datalen; /* Value in proto field not a len, no checks possible */
  1260. protolen += hdrlen;
  1261. /* consistency checks: */
  1262. if (datalen > ETH_ZLEN) {
  1263. if (datalen >= protolen) {
  1264. /* more data on wire than in 802 header, trim of
  1265. * additional data.
  1266. */
  1267. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1268. dev->name, protolen);
  1269. return protolen;
  1270. } else {
  1271. /* less data on wire than mentioned in header.
  1272. * Discard the packet.
  1273. */
  1274. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1275. dev->name);
  1276. return -1;
  1277. }
  1278. } else {
  1279. /* short packet. Accept only if 802 values are also short */
  1280. if (protolen > ETH_ZLEN) {
  1281. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1282. dev->name);
  1283. return -1;
  1284. }
  1285. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1286. dev->name, datalen);
  1287. return datalen;
  1288. }
  1289. }
  1290. static void nv_rx_process(struct net_device *dev)
  1291. {
  1292. struct fe_priv *np = netdev_priv(dev);
  1293. u32 Flags;
  1294. u32 vlanflags = 0;
  1295. for (;;) {
  1296. struct sk_buff *skb;
  1297. int len;
  1298. int i;
  1299. if (np->cur_rx - np->refill_rx >= RX_RING)
  1300. break; /* we scanned the whole ring - do not continue */
  1301. i = np->cur_rx % RX_RING;
  1302. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1303. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1304. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1305. } else {
  1306. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1307. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1308. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1309. }
  1310. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1311. dev->name, np->cur_rx, Flags);
  1312. if (Flags & NV_RX_AVAIL)
  1313. break; /* still owned by hardware, */
  1314. /*
  1315. * the packet is for us - immediately tear down the pci mapping.
  1316. * TODO: check if a prefetch of the first cacheline improves
  1317. * the performance.
  1318. */
  1319. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1320. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1321. PCI_DMA_FROMDEVICE);
  1322. {
  1323. int j;
  1324. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1325. for (j=0; j<64; j++) {
  1326. if ((j%16) == 0)
  1327. dprintk("\n%03x:", j);
  1328. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1329. }
  1330. dprintk("\n");
  1331. }
  1332. /* look at what we actually got: */
  1333. if (np->desc_ver == DESC_VER_1) {
  1334. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1335. goto next_pkt;
  1336. if (Flags & NV_RX_ERROR) {
  1337. if (Flags & NV_RX_MISSEDFRAME) {
  1338. np->stats.rx_missed_errors++;
  1339. np->stats.rx_errors++;
  1340. goto next_pkt;
  1341. }
  1342. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1343. np->stats.rx_errors++;
  1344. goto next_pkt;
  1345. }
  1346. if (Flags & NV_RX_CRCERR) {
  1347. np->stats.rx_crc_errors++;
  1348. np->stats.rx_errors++;
  1349. goto next_pkt;
  1350. }
  1351. if (Flags & NV_RX_OVERFLOW) {
  1352. np->stats.rx_over_errors++;
  1353. np->stats.rx_errors++;
  1354. goto next_pkt;
  1355. }
  1356. if (Flags & NV_RX_ERROR4) {
  1357. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1358. if (len < 0) {
  1359. np->stats.rx_errors++;
  1360. goto next_pkt;
  1361. }
  1362. }
  1363. /* framing errors are soft errors. */
  1364. if (Flags & NV_RX_FRAMINGERR) {
  1365. if (Flags & NV_RX_SUBSTRACT1) {
  1366. len--;
  1367. }
  1368. }
  1369. }
  1370. } else {
  1371. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1372. goto next_pkt;
  1373. if (Flags & NV_RX2_ERROR) {
  1374. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1375. np->stats.rx_errors++;
  1376. goto next_pkt;
  1377. }
  1378. if (Flags & NV_RX2_CRCERR) {
  1379. np->stats.rx_crc_errors++;
  1380. np->stats.rx_errors++;
  1381. goto next_pkt;
  1382. }
  1383. if (Flags & NV_RX2_OVERFLOW) {
  1384. np->stats.rx_over_errors++;
  1385. np->stats.rx_errors++;
  1386. goto next_pkt;
  1387. }
  1388. if (Flags & NV_RX2_ERROR4) {
  1389. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1390. if (len < 0) {
  1391. np->stats.rx_errors++;
  1392. goto next_pkt;
  1393. }
  1394. }
  1395. /* framing errors are soft errors */
  1396. if (Flags & NV_RX2_FRAMINGERR) {
  1397. if (Flags & NV_RX2_SUBSTRACT1) {
  1398. len--;
  1399. }
  1400. }
  1401. }
  1402. Flags &= NV_RX2_CHECKSUMMASK;
  1403. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1404. Flags == NV_RX2_CHECKSUMOK2 ||
  1405. Flags == NV_RX2_CHECKSUMOK3) {
  1406. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1407. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1408. } else {
  1409. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1410. }
  1411. }
  1412. /* got a valid packet - forward it to the network core */
  1413. skb = np->rx_skbuff[i];
  1414. np->rx_skbuff[i] = NULL;
  1415. skb_put(skb, len);
  1416. skb->protocol = eth_type_trans(skb, dev);
  1417. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1418. dev->name, np->cur_rx, len, skb->protocol);
  1419. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1420. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1421. } else {
  1422. netif_rx(skb);
  1423. }
  1424. dev->last_rx = jiffies;
  1425. np->stats.rx_packets++;
  1426. np->stats.rx_bytes += len;
  1427. next_pkt:
  1428. np->cur_rx++;
  1429. }
  1430. }
  1431. static void set_bufsize(struct net_device *dev)
  1432. {
  1433. struct fe_priv *np = netdev_priv(dev);
  1434. if (dev->mtu <= ETH_DATA_LEN)
  1435. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1436. else
  1437. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1438. }
  1439. /*
  1440. * nv_change_mtu: dev->change_mtu function
  1441. * Called with dev_base_lock held for read.
  1442. */
  1443. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1444. {
  1445. struct fe_priv *np = netdev_priv(dev);
  1446. int old_mtu;
  1447. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1448. return -EINVAL;
  1449. old_mtu = dev->mtu;
  1450. dev->mtu = new_mtu;
  1451. /* return early if the buffer sizes will not change */
  1452. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1453. return 0;
  1454. if (old_mtu == new_mtu)
  1455. return 0;
  1456. /* synchronized against open : rtnl_lock() held by caller */
  1457. if (netif_running(dev)) {
  1458. u8 __iomem *base = get_hwbase(dev);
  1459. /*
  1460. * It seems that the nic preloads valid ring entries into an
  1461. * internal buffer. The procedure for flushing everything is
  1462. * guessed, there is probably a simpler approach.
  1463. * Changing the MTU is a rare event, it shouldn't matter.
  1464. */
  1465. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1466. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1467. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1468. disable_irq(dev->irq);
  1469. } else {
  1470. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1471. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1472. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1473. }
  1474. spin_lock_bh(&dev->xmit_lock);
  1475. spin_lock(&np->lock);
  1476. /* stop engines */
  1477. nv_stop_rx(dev);
  1478. nv_stop_tx(dev);
  1479. nv_txrx_reset(dev);
  1480. /* drain rx queue */
  1481. nv_drain_rx(dev);
  1482. nv_drain_tx(dev);
  1483. /* reinit driver view of the rx queue */
  1484. nv_init_rx(dev);
  1485. nv_init_tx(dev);
  1486. /* alloc new rx buffers */
  1487. set_bufsize(dev);
  1488. if (nv_alloc_rx(dev)) {
  1489. if (!np->in_shutdown)
  1490. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1491. }
  1492. /* reinit nic view of the rx queue */
  1493. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1494. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1495. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1496. base + NvRegRingSizes);
  1497. pci_push(base);
  1498. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1499. pci_push(base);
  1500. /* restart rx engine */
  1501. nv_start_rx(dev);
  1502. nv_start_tx(dev);
  1503. spin_unlock(&np->lock);
  1504. spin_unlock_bh(&dev->xmit_lock);
  1505. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1506. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1507. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1508. enable_irq(dev->irq);
  1509. } else {
  1510. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1511. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1512. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1513. }
  1514. }
  1515. return 0;
  1516. }
  1517. static void nv_copy_mac_to_hw(struct net_device *dev)
  1518. {
  1519. u8 __iomem *base = get_hwbase(dev);
  1520. u32 mac[2];
  1521. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1522. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1523. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1524. writel(mac[0], base + NvRegMacAddrA);
  1525. writel(mac[1], base + NvRegMacAddrB);
  1526. }
  1527. /*
  1528. * nv_set_mac_address: dev->set_mac_address function
  1529. * Called with rtnl_lock() held.
  1530. */
  1531. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1532. {
  1533. struct fe_priv *np = netdev_priv(dev);
  1534. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1535. if(!is_valid_ether_addr(macaddr->sa_data))
  1536. return -EADDRNOTAVAIL;
  1537. /* synchronized against open : rtnl_lock() held by caller */
  1538. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1539. if (netif_running(dev)) {
  1540. spin_lock_bh(&dev->xmit_lock);
  1541. spin_lock_irq(&np->lock);
  1542. /* stop rx engine */
  1543. nv_stop_rx(dev);
  1544. /* set mac address */
  1545. nv_copy_mac_to_hw(dev);
  1546. /* restart rx engine */
  1547. nv_start_rx(dev);
  1548. spin_unlock_irq(&np->lock);
  1549. spin_unlock_bh(&dev->xmit_lock);
  1550. } else {
  1551. nv_copy_mac_to_hw(dev);
  1552. }
  1553. return 0;
  1554. }
  1555. /*
  1556. * nv_set_multicast: dev->set_multicast function
  1557. * Called with dev->xmit_lock held.
  1558. */
  1559. static void nv_set_multicast(struct net_device *dev)
  1560. {
  1561. struct fe_priv *np = netdev_priv(dev);
  1562. u8 __iomem *base = get_hwbase(dev);
  1563. u32 addr[2];
  1564. u32 mask[2];
  1565. u32 pff;
  1566. memset(addr, 0, sizeof(addr));
  1567. memset(mask, 0, sizeof(mask));
  1568. if (dev->flags & IFF_PROMISC) {
  1569. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1570. pff = NVREG_PFF_PROMISC;
  1571. } else {
  1572. pff = NVREG_PFF_MYADDR;
  1573. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1574. u32 alwaysOff[2];
  1575. u32 alwaysOn[2];
  1576. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1577. if (dev->flags & IFF_ALLMULTI) {
  1578. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1579. } else {
  1580. struct dev_mc_list *walk;
  1581. walk = dev->mc_list;
  1582. while (walk != NULL) {
  1583. u32 a, b;
  1584. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1585. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1586. alwaysOn[0] &= a;
  1587. alwaysOff[0] &= ~a;
  1588. alwaysOn[1] &= b;
  1589. alwaysOff[1] &= ~b;
  1590. walk = walk->next;
  1591. }
  1592. }
  1593. addr[0] = alwaysOn[0];
  1594. addr[1] = alwaysOn[1];
  1595. mask[0] = alwaysOn[0] | alwaysOff[0];
  1596. mask[1] = alwaysOn[1] | alwaysOff[1];
  1597. }
  1598. }
  1599. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1600. pff |= NVREG_PFF_ALWAYS;
  1601. spin_lock_irq(&np->lock);
  1602. nv_stop_rx(dev);
  1603. writel(addr[0], base + NvRegMulticastAddrA);
  1604. writel(addr[1], base + NvRegMulticastAddrB);
  1605. writel(mask[0], base + NvRegMulticastMaskA);
  1606. writel(mask[1], base + NvRegMulticastMaskB);
  1607. writel(pff, base + NvRegPacketFilterFlags);
  1608. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1609. dev->name);
  1610. nv_start_rx(dev);
  1611. spin_unlock_irq(&np->lock);
  1612. }
  1613. /**
  1614. * nv_update_linkspeed: Setup the MAC according to the link partner
  1615. * @dev: Network device to be configured
  1616. *
  1617. * The function queries the PHY and checks if there is a link partner.
  1618. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1619. * set to 10 MBit HD.
  1620. *
  1621. * The function returns 0 if there is no link partner and 1 if there is
  1622. * a good link partner.
  1623. */
  1624. static int nv_update_linkspeed(struct net_device *dev)
  1625. {
  1626. struct fe_priv *np = netdev_priv(dev);
  1627. u8 __iomem *base = get_hwbase(dev);
  1628. int adv, lpa;
  1629. int newls = np->linkspeed;
  1630. int newdup = np->duplex;
  1631. int mii_status;
  1632. int retval = 0;
  1633. u32 control_1000, status_1000, phyreg;
  1634. /* BMSR_LSTATUS is latched, read it twice:
  1635. * we want the current value.
  1636. */
  1637. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1638. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1639. if (!(mii_status & BMSR_LSTATUS)) {
  1640. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1641. dev->name);
  1642. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1643. newdup = 0;
  1644. retval = 0;
  1645. goto set_speed;
  1646. }
  1647. if (np->autoneg == 0) {
  1648. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1649. dev->name, np->fixed_mode);
  1650. if (np->fixed_mode & LPA_100FULL) {
  1651. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1652. newdup = 1;
  1653. } else if (np->fixed_mode & LPA_100HALF) {
  1654. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1655. newdup = 0;
  1656. } else if (np->fixed_mode & LPA_10FULL) {
  1657. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1658. newdup = 1;
  1659. } else {
  1660. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1661. newdup = 0;
  1662. }
  1663. retval = 1;
  1664. goto set_speed;
  1665. }
  1666. /* check auto negotiation is complete */
  1667. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1668. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1669. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1670. newdup = 0;
  1671. retval = 0;
  1672. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1673. goto set_speed;
  1674. }
  1675. retval = 1;
  1676. if (np->gigabit == PHY_GIGABIT) {
  1677. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1678. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1679. if ((control_1000 & ADVERTISE_1000FULL) &&
  1680. (status_1000 & LPA_1000FULL)) {
  1681. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1682. dev->name);
  1683. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1684. newdup = 1;
  1685. goto set_speed;
  1686. }
  1687. }
  1688. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1689. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1690. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1691. dev->name, adv, lpa);
  1692. /* FIXME: handle parallel detection properly */
  1693. lpa = lpa & adv;
  1694. if (lpa & LPA_100FULL) {
  1695. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1696. newdup = 1;
  1697. } else if (lpa & LPA_100HALF) {
  1698. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1699. newdup = 0;
  1700. } else if (lpa & LPA_10FULL) {
  1701. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1702. newdup = 1;
  1703. } else if (lpa & LPA_10HALF) {
  1704. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1705. newdup = 0;
  1706. } else {
  1707. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1708. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1709. newdup = 0;
  1710. }
  1711. set_speed:
  1712. if (np->duplex == newdup && np->linkspeed == newls)
  1713. return retval;
  1714. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1715. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1716. np->duplex = newdup;
  1717. np->linkspeed = newls;
  1718. if (np->gigabit == PHY_GIGABIT) {
  1719. phyreg = readl(base + NvRegRandomSeed);
  1720. phyreg &= ~(0x3FF00);
  1721. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1722. phyreg |= NVREG_RNDSEED_FORCE3;
  1723. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1724. phyreg |= NVREG_RNDSEED_FORCE2;
  1725. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1726. phyreg |= NVREG_RNDSEED_FORCE;
  1727. writel(phyreg, base + NvRegRandomSeed);
  1728. }
  1729. phyreg = readl(base + NvRegPhyInterface);
  1730. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1731. if (np->duplex == 0)
  1732. phyreg |= PHY_HALF;
  1733. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1734. phyreg |= PHY_100;
  1735. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1736. phyreg |= PHY_1000;
  1737. writel(phyreg, base + NvRegPhyInterface);
  1738. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1739. base + NvRegMisc1);
  1740. pci_push(base);
  1741. writel(np->linkspeed, base + NvRegLinkSpeed);
  1742. pci_push(base);
  1743. return retval;
  1744. }
  1745. static void nv_linkchange(struct net_device *dev)
  1746. {
  1747. if (nv_update_linkspeed(dev)) {
  1748. if (!netif_carrier_ok(dev)) {
  1749. netif_carrier_on(dev);
  1750. printk(KERN_INFO "%s: link up.\n", dev->name);
  1751. nv_start_rx(dev);
  1752. }
  1753. } else {
  1754. if (netif_carrier_ok(dev)) {
  1755. netif_carrier_off(dev);
  1756. printk(KERN_INFO "%s: link down.\n", dev->name);
  1757. nv_stop_rx(dev);
  1758. }
  1759. }
  1760. }
  1761. static void nv_link_irq(struct net_device *dev)
  1762. {
  1763. u8 __iomem *base = get_hwbase(dev);
  1764. u32 miistat;
  1765. miistat = readl(base + NvRegMIIStatus);
  1766. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1767. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1768. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1769. nv_linkchange(dev);
  1770. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1771. }
  1772. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1773. {
  1774. struct net_device *dev = (struct net_device *) data;
  1775. struct fe_priv *np = netdev_priv(dev);
  1776. u8 __iomem *base = get_hwbase(dev);
  1777. u32 events;
  1778. int i;
  1779. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1780. for (i=0; ; i++) {
  1781. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  1782. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1783. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1784. } else {
  1785. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1786. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  1787. }
  1788. pci_push(base);
  1789. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1790. if (!(events & np->irqmask))
  1791. break;
  1792. spin_lock(&np->lock);
  1793. nv_tx_done(dev);
  1794. spin_unlock(&np->lock);
  1795. nv_rx_process(dev);
  1796. if (nv_alloc_rx(dev)) {
  1797. spin_lock(&np->lock);
  1798. if (!np->in_shutdown)
  1799. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1800. spin_unlock(&np->lock);
  1801. }
  1802. if (events & NVREG_IRQ_LINK) {
  1803. spin_lock(&np->lock);
  1804. nv_link_irq(dev);
  1805. spin_unlock(&np->lock);
  1806. }
  1807. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1808. spin_lock(&np->lock);
  1809. nv_linkchange(dev);
  1810. spin_unlock(&np->lock);
  1811. np->link_timeout = jiffies + LINK_TIMEOUT;
  1812. }
  1813. if (events & (NVREG_IRQ_TX_ERR)) {
  1814. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1815. dev->name, events);
  1816. }
  1817. if (events & (NVREG_IRQ_UNKNOWN)) {
  1818. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1819. dev->name, events);
  1820. }
  1821. if (i > max_interrupt_work) {
  1822. spin_lock(&np->lock);
  1823. /* disable interrupts on the nic */
  1824. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  1825. writel(0, base + NvRegIrqMask);
  1826. else
  1827. writel(np->irqmask, base + NvRegIrqMask);
  1828. pci_push(base);
  1829. if (!np->in_shutdown) {
  1830. np->nic_poll_irq = np->irqmask;
  1831. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1832. }
  1833. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1834. spin_unlock(&np->lock);
  1835. break;
  1836. }
  1837. }
  1838. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1839. return IRQ_RETVAL(i);
  1840. }
  1841. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  1842. {
  1843. struct net_device *dev = (struct net_device *) data;
  1844. struct fe_priv *np = netdev_priv(dev);
  1845. u8 __iomem *base = get_hwbase(dev);
  1846. u32 events;
  1847. int i;
  1848. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  1849. for (i=0; ; i++) {
  1850. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  1851. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  1852. pci_push(base);
  1853. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  1854. if (!(events & np->irqmask))
  1855. break;
  1856. spin_lock(&np->lock);
  1857. nv_tx_done(dev);
  1858. spin_unlock(&np->lock);
  1859. if (events & (NVREG_IRQ_TX_ERR)) {
  1860. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1861. dev->name, events);
  1862. }
  1863. if (i > max_interrupt_work) {
  1864. spin_lock(&np->lock);
  1865. /* disable interrupts on the nic */
  1866. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  1867. pci_push(base);
  1868. if (!np->in_shutdown) {
  1869. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  1870. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1871. }
  1872. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  1873. spin_unlock(&np->lock);
  1874. break;
  1875. }
  1876. }
  1877. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  1878. return IRQ_RETVAL(i);
  1879. }
  1880. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  1881. {
  1882. struct net_device *dev = (struct net_device *) data;
  1883. struct fe_priv *np = netdev_priv(dev);
  1884. u8 __iomem *base = get_hwbase(dev);
  1885. u32 events;
  1886. int i;
  1887. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  1888. for (i=0; ; i++) {
  1889. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  1890. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  1891. pci_push(base);
  1892. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  1893. if (!(events & np->irqmask))
  1894. break;
  1895. nv_rx_process(dev);
  1896. if (nv_alloc_rx(dev)) {
  1897. spin_lock(&np->lock);
  1898. if (!np->in_shutdown)
  1899. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1900. spin_unlock(&np->lock);
  1901. }
  1902. if (i > max_interrupt_work) {
  1903. spin_lock(&np->lock);
  1904. /* disable interrupts on the nic */
  1905. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  1906. pci_push(base);
  1907. if (!np->in_shutdown) {
  1908. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  1909. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1910. }
  1911. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  1912. spin_unlock(&np->lock);
  1913. break;
  1914. }
  1915. }
  1916. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  1917. return IRQ_RETVAL(i);
  1918. }
  1919. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  1920. {
  1921. struct net_device *dev = (struct net_device *) data;
  1922. struct fe_priv *np = netdev_priv(dev);
  1923. u8 __iomem *base = get_hwbase(dev);
  1924. u32 events;
  1925. int i;
  1926. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  1927. for (i=0; ; i++) {
  1928. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  1929. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  1930. pci_push(base);
  1931. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1932. if (!(events & np->irqmask))
  1933. break;
  1934. if (events & NVREG_IRQ_LINK) {
  1935. spin_lock(&np->lock);
  1936. nv_link_irq(dev);
  1937. spin_unlock(&np->lock);
  1938. }
  1939. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1940. spin_lock(&np->lock);
  1941. nv_linkchange(dev);
  1942. spin_unlock(&np->lock);
  1943. np->link_timeout = jiffies + LINK_TIMEOUT;
  1944. }
  1945. if (events & (NVREG_IRQ_UNKNOWN)) {
  1946. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1947. dev->name, events);
  1948. }
  1949. if (i > max_interrupt_work) {
  1950. spin_lock(&np->lock);
  1951. /* disable interrupts on the nic */
  1952. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  1953. pci_push(base);
  1954. if (!np->in_shutdown) {
  1955. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  1956. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1957. }
  1958. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  1959. spin_unlock(&np->lock);
  1960. break;
  1961. }
  1962. }
  1963. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  1964. return IRQ_RETVAL(i);
  1965. }
  1966. static void nv_do_nic_poll(unsigned long data)
  1967. {
  1968. struct net_device *dev = (struct net_device *) data;
  1969. struct fe_priv *np = netdev_priv(dev);
  1970. u8 __iomem *base = get_hwbase(dev);
  1971. u32 mask = 0;
  1972. /*
  1973. * First disable irq(s) and then
  1974. * reenable interrupts on the nic, we have to do this before calling
  1975. * nv_nic_irq because that may decide to do otherwise
  1976. */
  1977. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1978. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1979. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1980. disable_irq(dev->irq);
  1981. mask = np->irqmask;
  1982. } else {
  1983. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  1984. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1985. mask |= NVREG_IRQ_RX_ALL;
  1986. }
  1987. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  1988. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1989. mask |= NVREG_IRQ_TX_ALL;
  1990. }
  1991. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  1992. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1993. mask |= NVREG_IRQ_OTHER;
  1994. }
  1995. }
  1996. np->nic_poll_irq = 0;
  1997. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  1998. writel(mask, base + NvRegIrqMask);
  1999. pci_push(base);
  2000. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  2001. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  2002. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  2003. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2004. enable_irq(dev->irq);
  2005. } else {
  2006. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2007. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2008. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2009. }
  2010. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2011. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2012. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2013. }
  2014. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2015. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2016. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2017. }
  2018. }
  2019. }
  2020. #ifdef CONFIG_NET_POLL_CONTROLLER
  2021. static void nv_poll_controller(struct net_device *dev)
  2022. {
  2023. nv_do_nic_poll((unsigned long) dev);
  2024. }
  2025. #endif
  2026. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2027. {
  2028. struct fe_priv *np = netdev_priv(dev);
  2029. strcpy(info->driver, "forcedeth");
  2030. strcpy(info->version, FORCEDETH_VERSION);
  2031. strcpy(info->bus_info, pci_name(np->pci_dev));
  2032. }
  2033. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2034. {
  2035. struct fe_priv *np = netdev_priv(dev);
  2036. wolinfo->supported = WAKE_MAGIC;
  2037. spin_lock_irq(&np->lock);
  2038. if (np->wolenabled)
  2039. wolinfo->wolopts = WAKE_MAGIC;
  2040. spin_unlock_irq(&np->lock);
  2041. }
  2042. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2043. {
  2044. struct fe_priv *np = netdev_priv(dev);
  2045. u8 __iomem *base = get_hwbase(dev);
  2046. spin_lock_irq(&np->lock);
  2047. if (wolinfo->wolopts == 0) {
  2048. writel(0, base + NvRegWakeUpFlags);
  2049. np->wolenabled = 0;
  2050. }
  2051. if (wolinfo->wolopts & WAKE_MAGIC) {
  2052. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  2053. np->wolenabled = 1;
  2054. }
  2055. spin_unlock_irq(&np->lock);
  2056. return 0;
  2057. }
  2058. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2059. {
  2060. struct fe_priv *np = netdev_priv(dev);
  2061. int adv;
  2062. spin_lock_irq(&np->lock);
  2063. ecmd->port = PORT_MII;
  2064. if (!netif_running(dev)) {
  2065. /* We do not track link speed / duplex setting if the
  2066. * interface is disabled. Force a link check */
  2067. nv_update_linkspeed(dev);
  2068. }
  2069. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2070. case NVREG_LINKSPEED_10:
  2071. ecmd->speed = SPEED_10;
  2072. break;
  2073. case NVREG_LINKSPEED_100:
  2074. ecmd->speed = SPEED_100;
  2075. break;
  2076. case NVREG_LINKSPEED_1000:
  2077. ecmd->speed = SPEED_1000;
  2078. break;
  2079. }
  2080. ecmd->duplex = DUPLEX_HALF;
  2081. if (np->duplex)
  2082. ecmd->duplex = DUPLEX_FULL;
  2083. ecmd->autoneg = np->autoneg;
  2084. ecmd->advertising = ADVERTISED_MII;
  2085. if (np->autoneg) {
  2086. ecmd->advertising |= ADVERTISED_Autoneg;
  2087. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2088. } else {
  2089. adv = np->fixed_mode;
  2090. }
  2091. if (adv & ADVERTISE_10HALF)
  2092. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2093. if (adv & ADVERTISE_10FULL)
  2094. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2095. if (adv & ADVERTISE_100HALF)
  2096. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2097. if (adv & ADVERTISE_100FULL)
  2098. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2099. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  2100. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2101. if (adv & ADVERTISE_1000FULL)
  2102. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2103. }
  2104. ecmd->supported = (SUPPORTED_Autoneg |
  2105. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2106. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2107. SUPPORTED_MII);
  2108. if (np->gigabit == PHY_GIGABIT)
  2109. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2110. ecmd->phy_address = np->phyaddr;
  2111. ecmd->transceiver = XCVR_EXTERNAL;
  2112. /* ignore maxtxpkt, maxrxpkt for now */
  2113. spin_unlock_irq(&np->lock);
  2114. return 0;
  2115. }
  2116. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2117. {
  2118. struct fe_priv *np = netdev_priv(dev);
  2119. if (ecmd->port != PORT_MII)
  2120. return -EINVAL;
  2121. if (ecmd->transceiver != XCVR_EXTERNAL)
  2122. return -EINVAL;
  2123. if (ecmd->phy_address != np->phyaddr) {
  2124. /* TODO: support switching between multiple phys. Should be
  2125. * trivial, but not enabled due to lack of test hardware. */
  2126. return -EINVAL;
  2127. }
  2128. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2129. u32 mask;
  2130. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2131. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2132. if (np->gigabit == PHY_GIGABIT)
  2133. mask |= ADVERTISED_1000baseT_Full;
  2134. if ((ecmd->advertising & mask) == 0)
  2135. return -EINVAL;
  2136. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2137. /* Note: autonegotiation disable, speed 1000 intentionally
  2138. * forbidden - noone should need that. */
  2139. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2140. return -EINVAL;
  2141. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2142. return -EINVAL;
  2143. } else {
  2144. return -EINVAL;
  2145. }
  2146. spin_lock_irq(&np->lock);
  2147. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2148. int adv, bmcr;
  2149. np->autoneg = 1;
  2150. /* advertise only what has been requested */
  2151. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2152. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2153. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2154. adv |= ADVERTISE_10HALF;
  2155. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2156. adv |= ADVERTISE_10FULL;
  2157. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2158. adv |= ADVERTISE_100HALF;
  2159. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2160. adv |= ADVERTISE_100FULL;
  2161. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2162. if (np->gigabit == PHY_GIGABIT) {
  2163. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2164. adv &= ~ADVERTISE_1000FULL;
  2165. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2166. adv |= ADVERTISE_1000FULL;
  2167. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2168. }
  2169. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2170. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2171. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2172. } else {
  2173. int adv, bmcr;
  2174. np->autoneg = 0;
  2175. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2176. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2177. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2178. adv |= ADVERTISE_10HALF;
  2179. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2180. adv |= ADVERTISE_10FULL;
  2181. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2182. adv |= ADVERTISE_100HALF;
  2183. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2184. adv |= ADVERTISE_100FULL;
  2185. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2186. np->fixed_mode = adv;
  2187. if (np->gigabit == PHY_GIGABIT) {
  2188. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2189. adv &= ~ADVERTISE_1000FULL;
  2190. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2191. }
  2192. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2193. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  2194. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2195. bmcr |= BMCR_FULLDPLX;
  2196. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2197. bmcr |= BMCR_SPEED100;
  2198. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2199. if (netif_running(dev)) {
  2200. /* Wait a bit and then reconfigure the nic. */
  2201. udelay(10);
  2202. nv_linkchange(dev);
  2203. }
  2204. }
  2205. spin_unlock_irq(&np->lock);
  2206. return 0;
  2207. }
  2208. #define FORCEDETH_REGS_VER 1
  2209. #define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
  2210. static int nv_get_regs_len(struct net_device *dev)
  2211. {
  2212. return FORCEDETH_REGS_SIZE;
  2213. }
  2214. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2215. {
  2216. struct fe_priv *np = netdev_priv(dev);
  2217. u8 __iomem *base = get_hwbase(dev);
  2218. u32 *rbuf = buf;
  2219. int i;
  2220. regs->version = FORCEDETH_REGS_VER;
  2221. spin_lock_irq(&np->lock);
  2222. for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
  2223. rbuf[i] = readl(base + i*sizeof(u32));
  2224. spin_unlock_irq(&np->lock);
  2225. }
  2226. static int nv_nway_reset(struct net_device *dev)
  2227. {
  2228. struct fe_priv *np = netdev_priv(dev);
  2229. int ret;
  2230. spin_lock_irq(&np->lock);
  2231. if (np->autoneg) {
  2232. int bmcr;
  2233. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2234. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2235. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2236. ret = 0;
  2237. } else {
  2238. ret = -EINVAL;
  2239. }
  2240. spin_unlock_irq(&np->lock);
  2241. return ret;
  2242. }
  2243. static struct ethtool_ops ops = {
  2244. .get_drvinfo = nv_get_drvinfo,
  2245. .get_link = ethtool_op_get_link,
  2246. .get_wol = nv_get_wol,
  2247. .set_wol = nv_set_wol,
  2248. .get_settings = nv_get_settings,
  2249. .set_settings = nv_set_settings,
  2250. .get_regs_len = nv_get_regs_len,
  2251. .get_regs = nv_get_regs,
  2252. .nway_reset = nv_nway_reset,
  2253. .get_perm_addr = ethtool_op_get_perm_addr,
  2254. };
  2255. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2256. {
  2257. struct fe_priv *np = get_nvpriv(dev);
  2258. spin_lock_irq(&np->lock);
  2259. /* save vlan group */
  2260. np->vlangrp = grp;
  2261. if (grp) {
  2262. /* enable vlan on MAC */
  2263. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2264. } else {
  2265. /* disable vlan on MAC */
  2266. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2267. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2268. }
  2269. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2270. spin_unlock_irq(&np->lock);
  2271. };
  2272. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2273. {
  2274. /* nothing to do */
  2275. };
  2276. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2277. {
  2278. u8 __iomem *base = get_hwbase(dev);
  2279. int i;
  2280. u32 msixmap = 0;
  2281. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2282. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2283. * the remaining 8 interrupts.
  2284. */
  2285. for (i = 0; i < 8; i++) {
  2286. if ((irqmask >> i) & 0x1) {
  2287. msixmap |= vector << (i << 2);
  2288. }
  2289. }
  2290. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2291. msixmap = 0;
  2292. for (i = 0; i < 8; i++) {
  2293. if ((irqmask >> (i + 8)) & 0x1) {
  2294. msixmap |= vector << (i << 2);
  2295. }
  2296. }
  2297. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2298. }
  2299. static int nv_open(struct net_device *dev)
  2300. {
  2301. struct fe_priv *np = netdev_priv(dev);
  2302. u8 __iomem *base = get_hwbase(dev);
  2303. int ret = 1;
  2304. int oom, i;
  2305. dprintk(KERN_DEBUG "nv_open: begin\n");
  2306. /* 1) erase previous misconfiguration */
  2307. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2308. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2309. writel(0, base + NvRegMulticastAddrB);
  2310. writel(0, base + NvRegMulticastMaskA);
  2311. writel(0, base + NvRegMulticastMaskB);
  2312. writel(0, base + NvRegPacketFilterFlags);
  2313. writel(0, base + NvRegTransmitterControl);
  2314. writel(0, base + NvRegReceiverControl);
  2315. writel(0, base + NvRegAdapterControl);
  2316. /* 2) initialize descriptor rings */
  2317. set_bufsize(dev);
  2318. oom = nv_init_ring(dev);
  2319. writel(0, base + NvRegLinkSpeed);
  2320. writel(0, base + NvRegUnknownTransmitterReg);
  2321. nv_txrx_reset(dev);
  2322. writel(0, base + NvRegUnknownSetupReg6);
  2323. np->in_shutdown = 0;
  2324. /* 3) set mac address */
  2325. nv_copy_mac_to_hw(dev);
  2326. /* 4) give hw rings */
  2327. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2328. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2329. base + NvRegRingSizes);
  2330. /* 5) continue setup */
  2331. writel(np->linkspeed, base + NvRegLinkSpeed);
  2332. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2333. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2334. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2335. pci_push(base);
  2336. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2337. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2338. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2339. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2340. writel(0, base + NvRegUnknownSetupReg4);
  2341. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2342. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2343. /* 6) continue setup */
  2344. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2345. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2346. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2347. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2348. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2349. get_random_bytes(&i, sizeof(i));
  2350. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2351. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2352. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2353. if (poll_interval == -1) {
  2354. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2355. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2356. else
  2357. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2358. }
  2359. else
  2360. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2361. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2362. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2363. base + NvRegAdapterControl);
  2364. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2365. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2366. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2367. i = readl(base + NvRegPowerState);
  2368. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2369. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2370. pci_push(base);
  2371. udelay(10);
  2372. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2373. writel(0, base + NvRegIrqMask);
  2374. pci_push(base);
  2375. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2376. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2377. pci_push(base);
  2378. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2379. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2380. np->msi_x_entry[i].entry = i;
  2381. }
  2382. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2383. np->msi_flags |= NV_MSI_X_ENABLED;
  2384. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2385. /* Request irq for rx handling */
  2386. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2387. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2388. pci_disable_msix(np->pci_dev);
  2389. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2390. goto out_drain;
  2391. }
  2392. /* Request irq for tx handling */
  2393. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2394. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2395. pci_disable_msix(np->pci_dev);
  2396. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2397. goto out_drain;
  2398. }
  2399. /* Request irq for link and timer handling */
  2400. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  2401. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2402. pci_disable_msix(np->pci_dev);
  2403. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2404. goto out_drain;
  2405. }
  2406. /* map interrupts to their respective vector */
  2407. writel(0, base + NvRegMSIXMap0);
  2408. writel(0, base + NvRegMSIXMap1);
  2409. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2410. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2411. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2412. } else {
  2413. /* Request irq for all interrupts */
  2414. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2415. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2416. pci_disable_msix(np->pci_dev);
  2417. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2418. goto out_drain;
  2419. }
  2420. /* map interrupts to vector 0 */
  2421. writel(0, base + NvRegMSIXMap0);
  2422. writel(0, base + NvRegMSIXMap1);
  2423. }
  2424. }
  2425. }
  2426. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2427. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2428. np->msi_flags |= NV_MSI_ENABLED;
  2429. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2430. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2431. pci_disable_msi(np->pci_dev);
  2432. np->msi_flags &= ~NV_MSI_ENABLED;
  2433. goto out_drain;
  2434. }
  2435. /* map interrupts to vector 0 */
  2436. writel(0, base + NvRegMSIMap0);
  2437. writel(0, base + NvRegMSIMap1);
  2438. /* enable msi vector 0 */
  2439. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2440. }
  2441. }
  2442. if (ret != 0) {
  2443. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  2444. goto out_drain;
  2445. }
  2446. /* ask for interrupts */
  2447. writel(np->irqmask, base + NvRegIrqMask);
  2448. spin_lock_irq(&np->lock);
  2449. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2450. writel(0, base + NvRegMulticastAddrB);
  2451. writel(0, base + NvRegMulticastMaskA);
  2452. writel(0, base + NvRegMulticastMaskB);
  2453. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2454. /* One manual link speed update: Interrupts are enabled, future link
  2455. * speed changes cause interrupts and are handled by nv_link_irq().
  2456. */
  2457. {
  2458. u32 miistat;
  2459. miistat = readl(base + NvRegMIIStatus);
  2460. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2461. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2462. }
  2463. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2464. * to init hw */
  2465. np->linkspeed = 0;
  2466. ret = nv_update_linkspeed(dev);
  2467. nv_start_rx(dev);
  2468. nv_start_tx(dev);
  2469. netif_start_queue(dev);
  2470. if (ret) {
  2471. netif_carrier_on(dev);
  2472. } else {
  2473. printk("%s: no link during initialization.\n", dev->name);
  2474. netif_carrier_off(dev);
  2475. }
  2476. if (oom)
  2477. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2478. spin_unlock_irq(&np->lock);
  2479. return 0;
  2480. out_drain:
  2481. drain_ring(dev);
  2482. return ret;
  2483. }
  2484. static int nv_close(struct net_device *dev)
  2485. {
  2486. struct fe_priv *np = netdev_priv(dev);
  2487. u8 __iomem *base;
  2488. int i;
  2489. spin_lock_irq(&np->lock);
  2490. np->in_shutdown = 1;
  2491. spin_unlock_irq(&np->lock);
  2492. synchronize_irq(dev->irq);
  2493. del_timer_sync(&np->oom_kick);
  2494. del_timer_sync(&np->nic_poll);
  2495. netif_stop_queue(dev);
  2496. spin_lock_irq(&np->lock);
  2497. nv_stop_tx(dev);
  2498. nv_stop_rx(dev);
  2499. nv_txrx_reset(dev);
  2500. /* disable interrupts on the nic or we will lock up */
  2501. base = get_hwbase(dev);
  2502. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2503. writel(np->irqmask, base + NvRegIrqMask);
  2504. } else {
  2505. if (np->msi_flags & NV_MSI_ENABLED)
  2506. writel(0, base + NvRegMSIIrqMask);
  2507. writel(0, base + NvRegIrqMask);
  2508. }
  2509. pci_push(base);
  2510. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2511. spin_unlock_irq(&np->lock);
  2512. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2513. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2514. free_irq(np->msi_x_entry[i].vector, dev);
  2515. }
  2516. pci_disable_msix(np->pci_dev);
  2517. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2518. } else {
  2519. free_irq(np->pci_dev->irq, dev);
  2520. if (np->msi_flags & NV_MSI_ENABLED) {
  2521. pci_disable_msi(np->pci_dev);
  2522. np->msi_flags &= ~NV_MSI_ENABLED;
  2523. }
  2524. }
  2525. drain_ring(dev);
  2526. if (np->wolenabled)
  2527. nv_start_rx(dev);
  2528. /* special op: write back the misordered MAC address - otherwise
  2529. * the next nv_probe would see a wrong address.
  2530. */
  2531. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2532. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2533. /* FIXME: power down nic */
  2534. return 0;
  2535. }
  2536. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2537. {
  2538. struct net_device *dev;
  2539. struct fe_priv *np;
  2540. unsigned long addr;
  2541. u8 __iomem *base;
  2542. int err, i;
  2543. dev = alloc_etherdev(sizeof(struct fe_priv));
  2544. err = -ENOMEM;
  2545. if (!dev)
  2546. goto out;
  2547. np = netdev_priv(dev);
  2548. np->pci_dev = pci_dev;
  2549. spin_lock_init(&np->lock);
  2550. SET_MODULE_OWNER(dev);
  2551. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2552. init_timer(&np->oom_kick);
  2553. np->oom_kick.data = (unsigned long) dev;
  2554. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2555. init_timer(&np->nic_poll);
  2556. np->nic_poll.data = (unsigned long) dev;
  2557. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2558. err = pci_enable_device(pci_dev);
  2559. if (err) {
  2560. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2561. err, pci_name(pci_dev));
  2562. goto out_free;
  2563. }
  2564. pci_set_master(pci_dev);
  2565. err = pci_request_regions(pci_dev, DRV_NAME);
  2566. if (err < 0)
  2567. goto out_disable;
  2568. err = -EINVAL;
  2569. addr = 0;
  2570. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2571. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2572. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2573. pci_resource_len(pci_dev, i),
  2574. pci_resource_flags(pci_dev, i));
  2575. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2576. pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
  2577. addr = pci_resource_start(pci_dev, i);
  2578. break;
  2579. }
  2580. }
  2581. if (i == DEVICE_COUNT_RESOURCE) {
  2582. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2583. pci_name(pci_dev));
  2584. goto out_relreg;
  2585. }
  2586. /* handle different descriptor versions */
  2587. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2588. /* packet format 3: supports 40-bit addressing */
  2589. np->desc_ver = DESC_VER_3;
  2590. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  2591. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2592. pci_name(pci_dev));
  2593. } else {
  2594. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2595. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  2596. pci_name(pci_dev));
  2597. goto out_relreg;
  2598. } else {
  2599. dev->features |= NETIF_F_HIGHDMA;
  2600. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  2601. }
  2602. }
  2603. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2604. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2605. /* packet format 2: supports jumbo frames */
  2606. np->desc_ver = DESC_VER_2;
  2607. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2608. } else {
  2609. /* original packet format */
  2610. np->desc_ver = DESC_VER_1;
  2611. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2612. }
  2613. np->pkt_limit = NV_PKTLIMIT_1;
  2614. if (id->driver_data & DEV_HAS_LARGEDESC)
  2615. np->pkt_limit = NV_PKTLIMIT_2;
  2616. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2617. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2618. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2619. #ifdef NETIF_F_TSO
  2620. dev->features |= NETIF_F_TSO;
  2621. #endif
  2622. }
  2623. np->vlanctl_bits = 0;
  2624. if (id->driver_data & DEV_HAS_VLAN) {
  2625. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2626. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2627. dev->vlan_rx_register = nv_vlan_rx_register;
  2628. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2629. }
  2630. np->msi_flags = 0;
  2631. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  2632. np->msi_flags |= NV_MSI_CAPABLE;
  2633. }
  2634. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  2635. np->msi_flags |= NV_MSI_X_CAPABLE;
  2636. }
  2637. err = -ENOMEM;
  2638. np->base = ioremap(addr, NV_PCI_REGSZ);
  2639. if (!np->base)
  2640. goto out_relreg;
  2641. dev->base_addr = (unsigned long)np->base;
  2642. dev->irq = pci_dev->irq;
  2643. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2644. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2645. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2646. &np->ring_addr);
  2647. if (!np->rx_ring.orig)
  2648. goto out_unmap;
  2649. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2650. } else {
  2651. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2652. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2653. &np->ring_addr);
  2654. if (!np->rx_ring.ex)
  2655. goto out_unmap;
  2656. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2657. }
  2658. dev->open = nv_open;
  2659. dev->stop = nv_close;
  2660. dev->hard_start_xmit = nv_start_xmit;
  2661. dev->get_stats = nv_get_stats;
  2662. dev->change_mtu = nv_change_mtu;
  2663. dev->set_mac_address = nv_set_mac_address;
  2664. dev->set_multicast_list = nv_set_multicast;
  2665. #ifdef CONFIG_NET_POLL_CONTROLLER
  2666. dev->poll_controller = nv_poll_controller;
  2667. #endif
  2668. SET_ETHTOOL_OPS(dev, &ops);
  2669. dev->tx_timeout = nv_tx_timeout;
  2670. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2671. pci_set_drvdata(pci_dev, dev);
  2672. /* read the mac address */
  2673. base = get_hwbase(dev);
  2674. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2675. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2676. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2677. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2678. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2679. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2680. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2681. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2682. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2683. if (!is_valid_ether_addr(dev->perm_addr)) {
  2684. /*
  2685. * Bad mac address. At least one bios sets the mac address
  2686. * to 01:23:45:67:89:ab
  2687. */
  2688. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2689. pci_name(pci_dev),
  2690. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2691. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2692. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2693. dev->dev_addr[0] = 0x00;
  2694. dev->dev_addr[1] = 0x00;
  2695. dev->dev_addr[2] = 0x6c;
  2696. get_random_bytes(&dev->dev_addr[3], 3);
  2697. }
  2698. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2699. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2700. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2701. /* disable WOL */
  2702. writel(0, base + NvRegWakeUpFlags);
  2703. np->wolenabled = 0;
  2704. if (np->desc_ver == DESC_VER_1) {
  2705. np->tx_flags = NV_TX_VALID;
  2706. } else {
  2707. np->tx_flags = NV_TX2_VALID;
  2708. }
  2709. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2710. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2711. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2712. np->msi_flags |= 0x0003;
  2713. } else {
  2714. np->irqmask = NVREG_IRQMASK_CPU;
  2715. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2716. np->msi_flags |= 0x0001;
  2717. }
  2718. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2719. np->irqmask |= NVREG_IRQ_TIMER;
  2720. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2721. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2722. np->need_linktimer = 1;
  2723. np->link_timeout = jiffies + LINK_TIMEOUT;
  2724. } else {
  2725. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2726. np->need_linktimer = 0;
  2727. }
  2728. /* find a suitable phy */
  2729. for (i = 1; i <= 32; i++) {
  2730. int id1, id2;
  2731. int phyaddr = i & 0x1F;
  2732. spin_lock_irq(&np->lock);
  2733. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2734. spin_unlock_irq(&np->lock);
  2735. if (id1 < 0 || id1 == 0xffff)
  2736. continue;
  2737. spin_lock_irq(&np->lock);
  2738. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2739. spin_unlock_irq(&np->lock);
  2740. if (id2 < 0 || id2 == 0xffff)
  2741. continue;
  2742. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2743. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2744. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2745. pci_name(pci_dev), id1, id2, phyaddr);
  2746. np->phyaddr = phyaddr;
  2747. np->phy_oui = id1 | id2;
  2748. break;
  2749. }
  2750. if (i == 33) {
  2751. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2752. pci_name(pci_dev));
  2753. goto out_freering;
  2754. }
  2755. /* reset it */
  2756. phy_init(dev);
  2757. /* set default link speed settings */
  2758. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2759. np->duplex = 0;
  2760. np->autoneg = 1;
  2761. err = register_netdev(dev);
  2762. if (err) {
  2763. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2764. goto out_freering;
  2765. }
  2766. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2767. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2768. pci_name(pci_dev));
  2769. return 0;
  2770. out_freering:
  2771. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2772. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2773. np->rx_ring.orig, np->ring_addr);
  2774. else
  2775. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2776. np->rx_ring.ex, np->ring_addr);
  2777. pci_set_drvdata(pci_dev, NULL);
  2778. out_unmap:
  2779. iounmap(get_hwbase(dev));
  2780. out_relreg:
  2781. pci_release_regions(pci_dev);
  2782. out_disable:
  2783. pci_disable_device(pci_dev);
  2784. out_free:
  2785. free_netdev(dev);
  2786. out:
  2787. return err;
  2788. }
  2789. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2790. {
  2791. struct net_device *dev = pci_get_drvdata(pci_dev);
  2792. struct fe_priv *np = netdev_priv(dev);
  2793. unregister_netdev(dev);
  2794. /* free all structures */
  2795. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2796. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2797. else
  2798. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2799. iounmap(get_hwbase(dev));
  2800. pci_release_regions(pci_dev);
  2801. pci_disable_device(pci_dev);
  2802. free_netdev(dev);
  2803. pci_set_drvdata(pci_dev, NULL);
  2804. }
  2805. static struct pci_device_id pci_tbl[] = {
  2806. { /* nForce Ethernet Controller */
  2807. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2808. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2809. },
  2810. { /* nForce2 Ethernet Controller */
  2811. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2812. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2813. },
  2814. { /* nForce3 Ethernet Controller */
  2815. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2816. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2817. },
  2818. { /* nForce3 Ethernet Controller */
  2819. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2820. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2821. },
  2822. { /* nForce3 Ethernet Controller */
  2823. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2824. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2825. },
  2826. { /* nForce3 Ethernet Controller */
  2827. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2828. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2829. },
  2830. { /* nForce3 Ethernet Controller */
  2831. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2832. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2833. },
  2834. { /* CK804 Ethernet Controller */
  2835. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2836. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2837. },
  2838. { /* CK804 Ethernet Controller */
  2839. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2840. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2841. },
  2842. { /* MCP04 Ethernet Controller */
  2843. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2844. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2845. },
  2846. { /* MCP04 Ethernet Controller */
  2847. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2848. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2849. },
  2850. { /* MCP51 Ethernet Controller */
  2851. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2852. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2853. },
  2854. { /* MCP51 Ethernet Controller */
  2855. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2856. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2857. },
  2858. { /* MCP55 Ethernet Controller */
  2859. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2860. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
  2861. },
  2862. { /* MCP55 Ethernet Controller */
  2863. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2864. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
  2865. },
  2866. {0,},
  2867. };
  2868. static struct pci_driver driver = {
  2869. .name = "forcedeth",
  2870. .id_table = pci_tbl,
  2871. .probe = nv_probe,
  2872. .remove = __devexit_p(nv_remove),
  2873. };
  2874. static int __init init_nic(void)
  2875. {
  2876. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2877. return pci_module_init(&driver);
  2878. }
  2879. static void __exit exit_nic(void)
  2880. {
  2881. pci_unregister_driver(&driver);
  2882. }
  2883. module_param(max_interrupt_work, int, 0);
  2884. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  2885. module_param(optimization_mode, int, 0);
  2886. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  2887. module_param(poll_interval, int, 0);
  2888. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  2889. module_param(disable_msi, int, 0);
  2890. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  2891. module_param(disable_msix, int, 0);
  2892. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  2893. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  2894. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  2895. MODULE_LICENSE("GPL");
  2896. MODULE_DEVICE_TABLE(pci, pci_tbl);
  2897. module_init(init_nic);
  2898. module_exit(exit_nic);