e1000_ethtool.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. struct e1000_stats {
  24. char stat_string[ETH_GSTRING_LEN];
  25. int sizeof_stat;
  26. int stat_offset;
  27. };
  28. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  29. offsetof(struct e1000_adapter, m)
  30. static const struct e1000_stats e1000_gstrings_stats[] = {
  31. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  32. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  33. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  34. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  35. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  36. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  37. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  38. { "multicast", E1000_STAT(net_stats.multicast) },
  39. { "collisions", E1000_STAT(net_stats.collisions) },
  40. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  41. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  42. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  43. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  44. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  45. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  46. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  47. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  48. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  49. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  50. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  51. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  52. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  53. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  54. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  55. { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  56. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  57. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  58. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  59. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  60. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  61. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  62. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  63. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  64. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  65. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  66. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  67. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  68. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  69. { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  70. };
  71. #define E1000_QUEUE_STATS_LEN 0
  72. #define E1000_GLOBAL_STATS_LEN \
  73. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  74. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  75. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  76. "Register test (offline)", "Eeprom test (offline)",
  77. "Interrupt test (offline)", "Loopback test (offline)",
  78. "Link test (on/offline)"
  79. };
  80. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  81. static int
  82. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  83. {
  84. struct e1000_adapter *adapter = netdev_priv(netdev);
  85. struct e1000_hw *hw = &adapter->hw;
  86. if (hw->media_type == e1000_media_type_copper) {
  87. ecmd->supported = (SUPPORTED_10baseT_Half |
  88. SUPPORTED_10baseT_Full |
  89. SUPPORTED_100baseT_Half |
  90. SUPPORTED_100baseT_Full |
  91. SUPPORTED_1000baseT_Full|
  92. SUPPORTED_Autoneg |
  93. SUPPORTED_TP);
  94. ecmd->advertising = ADVERTISED_TP;
  95. if (hw->autoneg == 1) {
  96. ecmd->advertising |= ADVERTISED_Autoneg;
  97. /* the e1000 autoneg seems to match ethtool nicely */
  98. ecmd->advertising |= hw->autoneg_advertised;
  99. }
  100. ecmd->port = PORT_TP;
  101. ecmd->phy_address = hw->phy_addr;
  102. if (hw->mac_type == e1000_82543)
  103. ecmd->transceiver = XCVR_EXTERNAL;
  104. else
  105. ecmd->transceiver = XCVR_INTERNAL;
  106. } else {
  107. ecmd->supported = (SUPPORTED_1000baseT_Full |
  108. SUPPORTED_FIBRE |
  109. SUPPORTED_Autoneg);
  110. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  111. ADVERTISED_FIBRE |
  112. ADVERTISED_Autoneg);
  113. ecmd->port = PORT_FIBRE;
  114. if (hw->mac_type >= e1000_82545)
  115. ecmd->transceiver = XCVR_INTERNAL;
  116. else
  117. ecmd->transceiver = XCVR_EXTERNAL;
  118. }
  119. if (netif_carrier_ok(adapter->netdev)) {
  120. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  121. &adapter->link_duplex);
  122. ecmd->speed = adapter->link_speed;
  123. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  124. * and HALF_DUPLEX != DUPLEX_HALF */
  125. if (adapter->link_duplex == FULL_DUPLEX)
  126. ecmd->duplex = DUPLEX_FULL;
  127. else
  128. ecmd->duplex = DUPLEX_HALF;
  129. } else {
  130. ecmd->speed = -1;
  131. ecmd->duplex = -1;
  132. }
  133. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  134. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  135. return 0;
  136. }
  137. static int
  138. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  139. {
  140. struct e1000_adapter *adapter = netdev_priv(netdev);
  141. struct e1000_hw *hw = &adapter->hw;
  142. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  143. * cannot be changed */
  144. if (e1000_check_phy_reset_block(hw)) {
  145. DPRINTK(DRV, ERR, "Cannot change link characteristics "
  146. "when SoL/IDER is active.\n");
  147. return -EINVAL;
  148. }
  149. if (ecmd->autoneg == AUTONEG_ENABLE) {
  150. hw->autoneg = 1;
  151. if (hw->media_type == e1000_media_type_fiber)
  152. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  153. ADVERTISED_FIBRE |
  154. ADVERTISED_Autoneg;
  155. else
  156. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  157. ADVERTISED_10baseT_Full |
  158. ADVERTISED_100baseT_Half |
  159. ADVERTISED_100baseT_Full |
  160. ADVERTISED_1000baseT_Full|
  161. ADVERTISED_Autoneg |
  162. ADVERTISED_TP;
  163. ecmd->advertising = hw->autoneg_advertised;
  164. } else
  165. if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  166. return -EINVAL;
  167. /* reset the link */
  168. if (netif_running(adapter->netdev)) {
  169. e1000_down(adapter);
  170. e1000_reset(adapter);
  171. e1000_up(adapter);
  172. } else
  173. e1000_reset(adapter);
  174. return 0;
  175. }
  176. static void
  177. e1000_get_pauseparam(struct net_device *netdev,
  178. struct ethtool_pauseparam *pause)
  179. {
  180. struct e1000_adapter *adapter = netdev_priv(netdev);
  181. struct e1000_hw *hw = &adapter->hw;
  182. pause->autoneg =
  183. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  184. if (hw->fc == e1000_fc_rx_pause)
  185. pause->rx_pause = 1;
  186. else if (hw->fc == e1000_fc_tx_pause)
  187. pause->tx_pause = 1;
  188. else if (hw->fc == e1000_fc_full) {
  189. pause->rx_pause = 1;
  190. pause->tx_pause = 1;
  191. }
  192. }
  193. static int
  194. e1000_set_pauseparam(struct net_device *netdev,
  195. struct ethtool_pauseparam *pause)
  196. {
  197. struct e1000_adapter *adapter = netdev_priv(netdev);
  198. struct e1000_hw *hw = &adapter->hw;
  199. adapter->fc_autoneg = pause->autoneg;
  200. if (pause->rx_pause && pause->tx_pause)
  201. hw->fc = e1000_fc_full;
  202. else if (pause->rx_pause && !pause->tx_pause)
  203. hw->fc = e1000_fc_rx_pause;
  204. else if (!pause->rx_pause && pause->tx_pause)
  205. hw->fc = e1000_fc_tx_pause;
  206. else if (!pause->rx_pause && !pause->tx_pause)
  207. hw->fc = e1000_fc_none;
  208. hw->original_fc = hw->fc;
  209. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  210. if (netif_running(adapter->netdev)) {
  211. e1000_down(adapter);
  212. e1000_up(adapter);
  213. } else
  214. e1000_reset(adapter);
  215. } else
  216. return ((hw->media_type == e1000_media_type_fiber) ?
  217. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  218. return 0;
  219. }
  220. static uint32_t
  221. e1000_get_rx_csum(struct net_device *netdev)
  222. {
  223. struct e1000_adapter *adapter = netdev_priv(netdev);
  224. return adapter->rx_csum;
  225. }
  226. static int
  227. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  228. {
  229. struct e1000_adapter *adapter = netdev_priv(netdev);
  230. adapter->rx_csum = data;
  231. if (netif_running(netdev)) {
  232. e1000_down(adapter);
  233. e1000_up(adapter);
  234. } else
  235. e1000_reset(adapter);
  236. return 0;
  237. }
  238. static uint32_t
  239. e1000_get_tx_csum(struct net_device *netdev)
  240. {
  241. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  242. }
  243. static int
  244. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  245. {
  246. struct e1000_adapter *adapter = netdev_priv(netdev);
  247. if (adapter->hw.mac_type < e1000_82543) {
  248. if (!data)
  249. return -EINVAL;
  250. return 0;
  251. }
  252. if (data)
  253. netdev->features |= NETIF_F_HW_CSUM;
  254. else
  255. netdev->features &= ~NETIF_F_HW_CSUM;
  256. return 0;
  257. }
  258. #ifdef NETIF_F_TSO
  259. static int
  260. e1000_set_tso(struct net_device *netdev, uint32_t data)
  261. {
  262. struct e1000_adapter *adapter = netdev_priv(netdev);
  263. if ((adapter->hw.mac_type < e1000_82544) ||
  264. (adapter->hw.mac_type == e1000_82547))
  265. return data ? -EINVAL : 0;
  266. if (data)
  267. netdev->features |= NETIF_F_TSO;
  268. else
  269. netdev->features &= ~NETIF_F_TSO;
  270. DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
  271. adapter->tso_force = TRUE;
  272. return 0;
  273. }
  274. #endif /* NETIF_F_TSO */
  275. static uint32_t
  276. e1000_get_msglevel(struct net_device *netdev)
  277. {
  278. struct e1000_adapter *adapter = netdev_priv(netdev);
  279. return adapter->msg_enable;
  280. }
  281. static void
  282. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  283. {
  284. struct e1000_adapter *adapter = netdev_priv(netdev);
  285. adapter->msg_enable = data;
  286. }
  287. static int
  288. e1000_get_regs_len(struct net_device *netdev)
  289. {
  290. #define E1000_REGS_LEN 32
  291. return E1000_REGS_LEN * sizeof(uint32_t);
  292. }
  293. static void
  294. e1000_get_regs(struct net_device *netdev,
  295. struct ethtool_regs *regs, void *p)
  296. {
  297. struct e1000_adapter *adapter = netdev_priv(netdev);
  298. struct e1000_hw *hw = &adapter->hw;
  299. uint32_t *regs_buff = p;
  300. uint16_t phy_data;
  301. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  302. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  303. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  304. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  305. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  306. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  307. regs_buff[4] = E1000_READ_REG(hw, RDH);
  308. regs_buff[5] = E1000_READ_REG(hw, RDT);
  309. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  310. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  311. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  312. regs_buff[9] = E1000_READ_REG(hw, TDH);
  313. regs_buff[10] = E1000_READ_REG(hw, TDT);
  314. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  315. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  316. if (hw->phy_type == e1000_phy_igp) {
  317. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  318. IGP01E1000_PHY_AGC_A);
  319. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  320. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  321. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  322. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  323. IGP01E1000_PHY_AGC_B);
  324. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  325. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  326. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  327. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  328. IGP01E1000_PHY_AGC_C);
  329. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  330. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  331. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  332. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  333. IGP01E1000_PHY_AGC_D);
  334. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  335. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  336. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  337. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  338. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  339. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  340. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  341. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  342. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  343. IGP01E1000_PHY_PCS_INIT_REG);
  344. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  345. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  346. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  347. regs_buff[20] = 0; /* polarity correction enabled (always) */
  348. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  349. regs_buff[23] = regs_buff[18]; /* mdix mode */
  350. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  351. } else {
  352. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  353. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  354. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  355. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  356. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  357. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  358. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  359. regs_buff[18] = regs_buff[13]; /* cable polarity */
  360. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  361. regs_buff[20] = regs_buff[17]; /* polarity correction */
  362. /* phy receive errors */
  363. regs_buff[22] = adapter->phy_stats.receive_errors;
  364. regs_buff[23] = regs_buff[13]; /* mdix mode */
  365. }
  366. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  367. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  368. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  369. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  370. if (hw->mac_type >= e1000_82540 &&
  371. hw->media_type == e1000_media_type_copper) {
  372. regs_buff[26] = E1000_READ_REG(hw, MANC);
  373. }
  374. }
  375. static int
  376. e1000_get_eeprom_len(struct net_device *netdev)
  377. {
  378. struct e1000_adapter *adapter = netdev_priv(netdev);
  379. return adapter->hw.eeprom.word_size * 2;
  380. }
  381. static int
  382. e1000_get_eeprom(struct net_device *netdev,
  383. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  384. {
  385. struct e1000_adapter *adapter = netdev_priv(netdev);
  386. struct e1000_hw *hw = &adapter->hw;
  387. uint16_t *eeprom_buff;
  388. int first_word, last_word;
  389. int ret_val = 0;
  390. uint16_t i;
  391. if (eeprom->len == 0)
  392. return -EINVAL;
  393. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  394. first_word = eeprom->offset >> 1;
  395. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  396. eeprom_buff = kmalloc(sizeof(uint16_t) *
  397. (last_word - first_word + 1), GFP_KERNEL);
  398. if (!eeprom_buff)
  399. return -ENOMEM;
  400. if (hw->eeprom.type == e1000_eeprom_spi)
  401. ret_val = e1000_read_eeprom(hw, first_word,
  402. last_word - first_word + 1,
  403. eeprom_buff);
  404. else {
  405. for (i = 0; i < last_word - first_word + 1; i++)
  406. if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  407. &eeprom_buff[i])))
  408. break;
  409. }
  410. /* Device's eeprom is always little-endian, word addressable */
  411. for (i = 0; i < last_word - first_word + 1; i++)
  412. le16_to_cpus(&eeprom_buff[i]);
  413. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  414. eeprom->len);
  415. kfree(eeprom_buff);
  416. return ret_val;
  417. }
  418. static int
  419. e1000_set_eeprom(struct net_device *netdev,
  420. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  421. {
  422. struct e1000_adapter *adapter = netdev_priv(netdev);
  423. struct e1000_hw *hw = &adapter->hw;
  424. uint16_t *eeprom_buff;
  425. void *ptr;
  426. int max_len, first_word, last_word, ret_val = 0;
  427. uint16_t i;
  428. if (eeprom->len == 0)
  429. return -EOPNOTSUPP;
  430. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  431. return -EFAULT;
  432. max_len = hw->eeprom.word_size * 2;
  433. first_word = eeprom->offset >> 1;
  434. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  435. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  436. if (!eeprom_buff)
  437. return -ENOMEM;
  438. ptr = (void *)eeprom_buff;
  439. if (eeprom->offset & 1) {
  440. /* need read/modify/write of first changed EEPROM word */
  441. /* only the second byte of the word is being modified */
  442. ret_val = e1000_read_eeprom(hw, first_word, 1,
  443. &eeprom_buff[0]);
  444. ptr++;
  445. }
  446. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  447. /* need read/modify/write of last changed EEPROM word */
  448. /* only the first byte of the word is being modified */
  449. ret_val = e1000_read_eeprom(hw, last_word, 1,
  450. &eeprom_buff[last_word - first_word]);
  451. }
  452. /* Device's eeprom is always little-endian, word addressable */
  453. for (i = 0; i < last_word - first_word + 1; i++)
  454. le16_to_cpus(&eeprom_buff[i]);
  455. memcpy(ptr, bytes, eeprom->len);
  456. for (i = 0; i < last_word - first_word + 1; i++)
  457. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  458. ret_val = e1000_write_eeprom(hw, first_word,
  459. last_word - first_word + 1, eeprom_buff);
  460. /* Update the checksum over the first part of the EEPROM if needed
  461. * and flush shadow RAM for 82573 conrollers */
  462. if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  463. (hw->mac_type == e1000_82573)))
  464. e1000_update_eeprom_checksum(hw);
  465. kfree(eeprom_buff);
  466. return ret_val;
  467. }
  468. static void
  469. e1000_get_drvinfo(struct net_device *netdev,
  470. struct ethtool_drvinfo *drvinfo)
  471. {
  472. struct e1000_adapter *adapter = netdev_priv(netdev);
  473. char firmware_version[32];
  474. uint16_t eeprom_data;
  475. strncpy(drvinfo->driver, e1000_driver_name, 32);
  476. strncpy(drvinfo->version, e1000_driver_version, 32);
  477. /* EEPROM image version # is reported as firmware version # for
  478. * 8257{1|2|3} controllers */
  479. e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
  480. switch (adapter->hw.mac_type) {
  481. case e1000_82571:
  482. case e1000_82572:
  483. case e1000_82573:
  484. case e1000_80003es2lan:
  485. sprintf(firmware_version, "%d.%d-%d",
  486. (eeprom_data & 0xF000) >> 12,
  487. (eeprom_data & 0x0FF0) >> 4,
  488. eeprom_data & 0x000F);
  489. break;
  490. default:
  491. sprintf(firmware_version, "N/A");
  492. }
  493. strncpy(drvinfo->fw_version, firmware_version, 32);
  494. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  495. drvinfo->n_stats = E1000_STATS_LEN;
  496. drvinfo->testinfo_len = E1000_TEST_LEN;
  497. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  498. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  499. }
  500. static void
  501. e1000_get_ringparam(struct net_device *netdev,
  502. struct ethtool_ringparam *ring)
  503. {
  504. struct e1000_adapter *adapter = netdev_priv(netdev);
  505. e1000_mac_type mac_type = adapter->hw.mac_type;
  506. struct e1000_tx_ring *txdr = adapter->tx_ring;
  507. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  508. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  509. E1000_MAX_82544_RXD;
  510. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  511. E1000_MAX_82544_TXD;
  512. ring->rx_mini_max_pending = 0;
  513. ring->rx_jumbo_max_pending = 0;
  514. ring->rx_pending = rxdr->count;
  515. ring->tx_pending = txdr->count;
  516. ring->rx_mini_pending = 0;
  517. ring->rx_jumbo_pending = 0;
  518. }
  519. static int
  520. e1000_set_ringparam(struct net_device *netdev,
  521. struct ethtool_ringparam *ring)
  522. {
  523. struct e1000_adapter *adapter = netdev_priv(netdev);
  524. e1000_mac_type mac_type = adapter->hw.mac_type;
  525. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  526. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  527. int i, err, tx_ring_size, rx_ring_size;
  528. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  529. return -EINVAL;
  530. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  531. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  532. if (netif_running(adapter->netdev))
  533. e1000_down(adapter);
  534. tx_old = adapter->tx_ring;
  535. rx_old = adapter->rx_ring;
  536. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  537. if (!adapter->tx_ring) {
  538. err = -ENOMEM;
  539. goto err_setup_rx;
  540. }
  541. memset(adapter->tx_ring, 0, tx_ring_size);
  542. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  543. if (!adapter->rx_ring) {
  544. kfree(adapter->tx_ring);
  545. err = -ENOMEM;
  546. goto err_setup_rx;
  547. }
  548. memset(adapter->rx_ring, 0, rx_ring_size);
  549. txdr = adapter->tx_ring;
  550. rxdr = adapter->rx_ring;
  551. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  552. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  553. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  554. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  555. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  556. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  557. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  558. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  559. for (i = 0; i < adapter->num_tx_queues; i++)
  560. txdr[i].count = txdr->count;
  561. for (i = 0; i < adapter->num_rx_queues; i++)
  562. rxdr[i].count = rxdr->count;
  563. if (netif_running(adapter->netdev)) {
  564. /* Try to get new resources before deleting old */
  565. if ((err = e1000_setup_all_rx_resources(adapter)))
  566. goto err_setup_rx;
  567. if ((err = e1000_setup_all_tx_resources(adapter)))
  568. goto err_setup_tx;
  569. /* save the new, restore the old in order to free it,
  570. * then restore the new back again */
  571. rx_new = adapter->rx_ring;
  572. tx_new = adapter->tx_ring;
  573. adapter->rx_ring = rx_old;
  574. adapter->tx_ring = tx_old;
  575. e1000_free_all_rx_resources(adapter);
  576. e1000_free_all_tx_resources(adapter);
  577. kfree(tx_old);
  578. kfree(rx_old);
  579. adapter->rx_ring = rx_new;
  580. adapter->tx_ring = tx_new;
  581. if ((err = e1000_up(adapter)))
  582. return err;
  583. }
  584. return 0;
  585. err_setup_tx:
  586. e1000_free_all_rx_resources(adapter);
  587. err_setup_rx:
  588. adapter->rx_ring = rx_old;
  589. adapter->tx_ring = tx_old;
  590. e1000_up(adapter);
  591. return err;
  592. }
  593. #define REG_PATTERN_TEST(R, M, W) \
  594. { \
  595. uint32_t pat, value; \
  596. uint32_t test[] = \
  597. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  598. for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  599. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  600. value = E1000_READ_REG(&adapter->hw, R); \
  601. if (value != (test[pat] & W & M)) { \
  602. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  603. "0x%08X expected 0x%08X\n", \
  604. E1000_##R, value, (test[pat] & W & M)); \
  605. *data = (adapter->hw.mac_type < e1000_82543) ? \
  606. E1000_82542_##R : E1000_##R; \
  607. return 1; \
  608. } \
  609. } \
  610. }
  611. #define REG_SET_AND_CHECK(R, M, W) \
  612. { \
  613. uint32_t value; \
  614. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  615. value = E1000_READ_REG(&adapter->hw, R); \
  616. if ((W & M) != (value & M)) { \
  617. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  618. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  619. *data = (adapter->hw.mac_type < e1000_82543) ? \
  620. E1000_82542_##R : E1000_##R; \
  621. return 1; \
  622. } \
  623. }
  624. static int
  625. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  626. {
  627. uint32_t value, before, after;
  628. uint32_t i, toggle;
  629. /* The status register is Read Only, so a write should fail.
  630. * Some bits that get toggled are ignored.
  631. */
  632. switch (adapter->hw.mac_type) {
  633. /* there are several bits on newer hardware that are r/w */
  634. case e1000_82571:
  635. case e1000_82572:
  636. case e1000_80003es2lan:
  637. toggle = 0x7FFFF3FF;
  638. break;
  639. case e1000_82573:
  640. toggle = 0x7FFFF033;
  641. break;
  642. default:
  643. toggle = 0xFFFFF833;
  644. break;
  645. }
  646. before = E1000_READ_REG(&adapter->hw, STATUS);
  647. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  648. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  649. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  650. if (value != after) {
  651. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  652. "0x%08X expected: 0x%08X\n", after, value);
  653. *data = 1;
  654. return 1;
  655. }
  656. /* restore previous status */
  657. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  658. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  659. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  660. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  661. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  662. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  663. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  664. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  665. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  666. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  667. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  668. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  669. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  670. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  671. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  672. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  673. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  674. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  675. if (adapter->hw.mac_type >= e1000_82543) {
  676. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  677. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  678. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  679. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  680. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  681. for (i = 0; i < E1000_RAR_ENTRIES; i++) {
  682. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  683. 0xFFFFFFFF);
  684. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  685. 0xFFFFFFFF);
  686. }
  687. } else {
  688. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  689. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  690. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  691. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  692. }
  693. for (i = 0; i < E1000_MC_TBL_SIZE; i++)
  694. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  695. *data = 0;
  696. return 0;
  697. }
  698. static int
  699. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  700. {
  701. uint16_t temp;
  702. uint16_t checksum = 0;
  703. uint16_t i;
  704. *data = 0;
  705. /* Read and add up the contents of the EEPROM */
  706. for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  707. if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  708. *data = 1;
  709. break;
  710. }
  711. checksum += temp;
  712. }
  713. /* If Checksum is not Correct return error else test passed */
  714. if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  715. *data = 2;
  716. return *data;
  717. }
  718. static irqreturn_t
  719. e1000_test_intr(int irq,
  720. void *data,
  721. struct pt_regs *regs)
  722. {
  723. struct net_device *netdev = (struct net_device *) data;
  724. struct e1000_adapter *adapter = netdev_priv(netdev);
  725. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  726. return IRQ_HANDLED;
  727. }
  728. static int
  729. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  730. {
  731. struct net_device *netdev = adapter->netdev;
  732. uint32_t mask, i=0, shared_int = TRUE;
  733. uint32_t irq = adapter->pdev->irq;
  734. *data = 0;
  735. /* Hook up test interrupt handler just for this test */
  736. if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  737. shared_int = FALSE;
  738. } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  739. netdev->name, netdev)){
  740. *data = 1;
  741. return -1;
  742. }
  743. /* Disable all the interrupts */
  744. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  745. msec_delay(10);
  746. /* Test each interrupt */
  747. for (; i < 10; i++) {
  748. /* Interrupt to test */
  749. mask = 1 << i;
  750. if (!shared_int) {
  751. /* Disable the interrupt to be reported in
  752. * the cause register and then force the same
  753. * interrupt and see if one gets posted. If
  754. * an interrupt was posted to the bus, the
  755. * test failed.
  756. */
  757. adapter->test_icr = 0;
  758. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  759. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  760. msec_delay(10);
  761. if (adapter->test_icr & mask) {
  762. *data = 3;
  763. break;
  764. }
  765. }
  766. /* Enable the interrupt to be reported in
  767. * the cause register and then force the same
  768. * interrupt and see if one gets posted. If
  769. * an interrupt was not posted to the bus, the
  770. * test failed.
  771. */
  772. adapter->test_icr = 0;
  773. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  774. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  775. msec_delay(10);
  776. if (!(adapter->test_icr & mask)) {
  777. *data = 4;
  778. break;
  779. }
  780. if (!shared_int) {
  781. /* Disable the other interrupts to be reported in
  782. * the cause register and then force the other
  783. * interrupts and see if any get posted. If
  784. * an interrupt was posted to the bus, the
  785. * test failed.
  786. */
  787. adapter->test_icr = 0;
  788. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  789. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  790. msec_delay(10);
  791. if (adapter->test_icr) {
  792. *data = 5;
  793. break;
  794. }
  795. }
  796. }
  797. /* Disable all the interrupts */
  798. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  799. msec_delay(10);
  800. /* Unhook test interrupt handler */
  801. free_irq(irq, netdev);
  802. return *data;
  803. }
  804. static void
  805. e1000_free_desc_rings(struct e1000_adapter *adapter)
  806. {
  807. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  808. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  809. struct pci_dev *pdev = adapter->pdev;
  810. int i;
  811. if (txdr->desc && txdr->buffer_info) {
  812. for (i = 0; i < txdr->count; i++) {
  813. if (txdr->buffer_info[i].dma)
  814. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  815. txdr->buffer_info[i].length,
  816. PCI_DMA_TODEVICE);
  817. if (txdr->buffer_info[i].skb)
  818. dev_kfree_skb(txdr->buffer_info[i].skb);
  819. }
  820. }
  821. if (rxdr->desc && rxdr->buffer_info) {
  822. for (i = 0; i < rxdr->count; i++) {
  823. if (rxdr->buffer_info[i].dma)
  824. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  825. rxdr->buffer_info[i].length,
  826. PCI_DMA_FROMDEVICE);
  827. if (rxdr->buffer_info[i].skb)
  828. dev_kfree_skb(rxdr->buffer_info[i].skb);
  829. }
  830. }
  831. if (txdr->desc) {
  832. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  833. txdr->desc = NULL;
  834. }
  835. if (rxdr->desc) {
  836. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  837. rxdr->desc = NULL;
  838. }
  839. kfree(txdr->buffer_info);
  840. txdr->buffer_info = NULL;
  841. kfree(rxdr->buffer_info);
  842. rxdr->buffer_info = NULL;
  843. return;
  844. }
  845. static int
  846. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  847. {
  848. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  849. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  850. struct pci_dev *pdev = adapter->pdev;
  851. uint32_t rctl;
  852. int size, i, ret_val;
  853. /* Setup Tx descriptor ring and Tx buffers */
  854. if (!txdr->count)
  855. txdr->count = E1000_DEFAULT_TXD;
  856. size = txdr->count * sizeof(struct e1000_buffer);
  857. if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  858. ret_val = 1;
  859. goto err_nomem;
  860. }
  861. memset(txdr->buffer_info, 0, size);
  862. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  863. E1000_ROUNDUP(txdr->size, 4096);
  864. if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  865. ret_val = 2;
  866. goto err_nomem;
  867. }
  868. memset(txdr->desc, 0, txdr->size);
  869. txdr->next_to_use = txdr->next_to_clean = 0;
  870. E1000_WRITE_REG(&adapter->hw, TDBAL,
  871. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  872. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  873. E1000_WRITE_REG(&adapter->hw, TDLEN,
  874. txdr->count * sizeof(struct e1000_tx_desc));
  875. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  876. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  877. E1000_WRITE_REG(&adapter->hw, TCTL,
  878. E1000_TCTL_PSP | E1000_TCTL_EN |
  879. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  880. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  881. for (i = 0; i < txdr->count; i++) {
  882. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  883. struct sk_buff *skb;
  884. unsigned int size = 1024;
  885. if (!(skb = alloc_skb(size, GFP_KERNEL))) {
  886. ret_val = 3;
  887. goto err_nomem;
  888. }
  889. skb_put(skb, size);
  890. txdr->buffer_info[i].skb = skb;
  891. txdr->buffer_info[i].length = skb->len;
  892. txdr->buffer_info[i].dma =
  893. pci_map_single(pdev, skb->data, skb->len,
  894. PCI_DMA_TODEVICE);
  895. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  896. tx_desc->lower.data = cpu_to_le32(skb->len);
  897. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  898. E1000_TXD_CMD_IFCS |
  899. E1000_TXD_CMD_RPS);
  900. tx_desc->upper.data = 0;
  901. }
  902. /* Setup Rx descriptor ring and Rx buffers */
  903. if (!rxdr->count)
  904. rxdr->count = E1000_DEFAULT_RXD;
  905. size = rxdr->count * sizeof(struct e1000_buffer);
  906. if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  907. ret_val = 4;
  908. goto err_nomem;
  909. }
  910. memset(rxdr->buffer_info, 0, size);
  911. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  912. if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  913. ret_val = 5;
  914. goto err_nomem;
  915. }
  916. memset(rxdr->desc, 0, rxdr->size);
  917. rxdr->next_to_use = rxdr->next_to_clean = 0;
  918. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  919. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  920. E1000_WRITE_REG(&adapter->hw, RDBAL,
  921. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  922. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  923. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  924. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  925. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  926. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  927. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  928. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  929. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  930. for (i = 0; i < rxdr->count; i++) {
  931. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  932. struct sk_buff *skb;
  933. if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  934. GFP_KERNEL))) {
  935. ret_val = 6;
  936. goto err_nomem;
  937. }
  938. skb_reserve(skb, NET_IP_ALIGN);
  939. rxdr->buffer_info[i].skb = skb;
  940. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  941. rxdr->buffer_info[i].dma =
  942. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  943. PCI_DMA_FROMDEVICE);
  944. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  945. memset(skb->data, 0x00, skb->len);
  946. }
  947. return 0;
  948. err_nomem:
  949. e1000_free_desc_rings(adapter);
  950. return ret_val;
  951. }
  952. static void
  953. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  954. {
  955. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  956. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  957. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  958. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  959. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  960. }
  961. static void
  962. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  963. {
  964. uint16_t phy_reg;
  965. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  966. * Extended PHY Specific Control Register to 25MHz clock. This
  967. * value defaults back to a 2.5MHz clock when the PHY is reset.
  968. */
  969. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  970. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  971. e1000_write_phy_reg(&adapter->hw,
  972. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  973. /* In addition, because of the s/w reset above, we need to enable
  974. * CRS on TX. This must be set for both full and half duplex
  975. * operation.
  976. */
  977. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  978. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  979. e1000_write_phy_reg(&adapter->hw,
  980. M88E1000_PHY_SPEC_CTRL, phy_reg);
  981. }
  982. static int
  983. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  984. {
  985. uint32_t ctrl_reg;
  986. uint16_t phy_reg;
  987. /* Setup the Device Control Register for PHY loopback test. */
  988. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  989. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  990. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  991. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  992. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  993. E1000_CTRL_FD); /* Force Duplex to FULL */
  994. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  995. /* Read the PHY Specific Control Register (0x10) */
  996. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  997. /* Clear Auto-Crossover bits in PHY Specific Control Register
  998. * (bits 6:5).
  999. */
  1000. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  1001. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  1002. /* Perform software reset on the PHY */
  1003. e1000_phy_reset(&adapter->hw);
  1004. /* Have to setup TX_CLK and TX_CRS after software reset */
  1005. e1000_phy_reset_clk_and_crs(adapter);
  1006. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  1007. /* Wait for reset to complete. */
  1008. udelay(500);
  1009. /* Have to setup TX_CLK and TX_CRS after software reset */
  1010. e1000_phy_reset_clk_and_crs(adapter);
  1011. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1012. e1000_phy_disable_receiver(adapter);
  1013. /* Set the loopback bit in the PHY control register. */
  1014. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1015. phy_reg |= MII_CR_LOOPBACK;
  1016. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1017. /* Setup TX_CLK and TX_CRS one more time. */
  1018. e1000_phy_reset_clk_and_crs(adapter);
  1019. /* Check Phy Configuration */
  1020. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1021. if (phy_reg != 0x4100)
  1022. return 9;
  1023. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1024. if (phy_reg != 0x0070)
  1025. return 10;
  1026. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1027. if (phy_reg != 0x001A)
  1028. return 11;
  1029. return 0;
  1030. }
  1031. static int
  1032. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1033. {
  1034. uint32_t ctrl_reg = 0;
  1035. uint32_t stat_reg = 0;
  1036. adapter->hw.autoneg = FALSE;
  1037. if (adapter->hw.phy_type == e1000_phy_m88) {
  1038. /* Auto-MDI/MDIX Off */
  1039. e1000_write_phy_reg(&adapter->hw,
  1040. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1041. /* reset to update Auto-MDI/MDIX */
  1042. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1043. /* autoneg off */
  1044. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1045. } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
  1046. e1000_write_phy_reg(&adapter->hw,
  1047. GG82563_PHY_KMRN_MODE_CTRL,
  1048. 0x1CE);
  1049. }
  1050. /* force 1000, set loopback */
  1051. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1052. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1053. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1054. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1055. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1056. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1057. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1058. E1000_CTRL_FD); /* Force Duplex to FULL */
  1059. if (adapter->hw.media_type == e1000_media_type_copper &&
  1060. adapter->hw.phy_type == e1000_phy_m88) {
  1061. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1062. } else {
  1063. /* Set the ILOS bit on the fiber Nic is half
  1064. * duplex link is detected. */
  1065. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1066. if ((stat_reg & E1000_STATUS_FD) == 0)
  1067. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1068. }
  1069. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1070. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1071. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1072. */
  1073. if (adapter->hw.phy_type == e1000_phy_m88)
  1074. e1000_phy_disable_receiver(adapter);
  1075. udelay(500);
  1076. return 0;
  1077. }
  1078. static int
  1079. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1080. {
  1081. uint16_t phy_reg = 0;
  1082. uint16_t count = 0;
  1083. switch (adapter->hw.mac_type) {
  1084. case e1000_82543:
  1085. if (adapter->hw.media_type == e1000_media_type_copper) {
  1086. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1087. * Some PHY registers get corrupted at random, so
  1088. * attempt this 10 times.
  1089. */
  1090. while (e1000_nonintegrated_phy_loopback(adapter) &&
  1091. count++ < 10);
  1092. if (count < 11)
  1093. return 0;
  1094. }
  1095. break;
  1096. case e1000_82544:
  1097. case e1000_82540:
  1098. case e1000_82545:
  1099. case e1000_82545_rev_3:
  1100. case e1000_82546:
  1101. case e1000_82546_rev_3:
  1102. case e1000_82541:
  1103. case e1000_82541_rev_2:
  1104. case e1000_82547:
  1105. case e1000_82547_rev_2:
  1106. case e1000_82571:
  1107. case e1000_82572:
  1108. case e1000_82573:
  1109. case e1000_80003es2lan:
  1110. return e1000_integrated_phy_loopback(adapter);
  1111. break;
  1112. default:
  1113. /* Default PHY loopback work is to read the MII
  1114. * control register and assert bit 14 (loopback mode).
  1115. */
  1116. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1117. phy_reg |= MII_CR_LOOPBACK;
  1118. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1119. return 0;
  1120. break;
  1121. }
  1122. return 8;
  1123. }
  1124. static int
  1125. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1126. {
  1127. struct e1000_hw *hw = &adapter->hw;
  1128. uint32_t rctl;
  1129. if (hw->media_type == e1000_media_type_fiber ||
  1130. hw->media_type == e1000_media_type_internal_serdes) {
  1131. switch (hw->mac_type) {
  1132. case e1000_82545:
  1133. case e1000_82546:
  1134. case e1000_82545_rev_3:
  1135. case e1000_82546_rev_3:
  1136. return e1000_set_phy_loopback(adapter);
  1137. break;
  1138. case e1000_82571:
  1139. case e1000_82572:
  1140. #define E1000_SERDES_LB_ON 0x410
  1141. e1000_set_phy_loopback(adapter);
  1142. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
  1143. msec_delay(10);
  1144. return 0;
  1145. break;
  1146. default:
  1147. rctl = E1000_READ_REG(hw, RCTL);
  1148. rctl |= E1000_RCTL_LBM_TCVR;
  1149. E1000_WRITE_REG(hw, RCTL, rctl);
  1150. return 0;
  1151. }
  1152. } else if (hw->media_type == e1000_media_type_copper)
  1153. return e1000_set_phy_loopback(adapter);
  1154. return 7;
  1155. }
  1156. static void
  1157. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1158. {
  1159. struct e1000_hw *hw = &adapter->hw;
  1160. uint32_t rctl;
  1161. uint16_t phy_reg;
  1162. rctl = E1000_READ_REG(hw, RCTL);
  1163. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1164. E1000_WRITE_REG(hw, RCTL, rctl);
  1165. switch (hw->mac_type) {
  1166. case e1000_82571:
  1167. case e1000_82572:
  1168. if (hw->media_type == e1000_media_type_fiber ||
  1169. hw->media_type == e1000_media_type_internal_serdes) {
  1170. #define E1000_SERDES_LB_OFF 0x400
  1171. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
  1172. msec_delay(10);
  1173. break;
  1174. }
  1175. /* Fall Through */
  1176. case e1000_82545:
  1177. case e1000_82546:
  1178. case e1000_82545_rev_3:
  1179. case e1000_82546_rev_3:
  1180. default:
  1181. hw->autoneg = TRUE;
  1182. if (hw->phy_type == e1000_phy_gg82563) {
  1183. e1000_write_phy_reg(hw,
  1184. GG82563_PHY_KMRN_MODE_CTRL,
  1185. 0x180);
  1186. }
  1187. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1188. if (phy_reg & MII_CR_LOOPBACK) {
  1189. phy_reg &= ~MII_CR_LOOPBACK;
  1190. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1191. e1000_phy_reset(hw);
  1192. }
  1193. break;
  1194. }
  1195. }
  1196. static void
  1197. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1198. {
  1199. memset(skb->data, 0xFF, frame_size);
  1200. frame_size &= ~1;
  1201. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1202. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1203. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1204. }
  1205. static int
  1206. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1207. {
  1208. frame_size &= ~1;
  1209. if (*(skb->data + 3) == 0xFF) {
  1210. if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1211. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1212. return 0;
  1213. }
  1214. }
  1215. return 13;
  1216. }
  1217. static int
  1218. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1219. {
  1220. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1221. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1222. struct pci_dev *pdev = adapter->pdev;
  1223. int i, j, k, l, lc, good_cnt, ret_val=0;
  1224. unsigned long time;
  1225. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1226. /* Calculate the loop count based on the largest descriptor ring
  1227. * The idea is to wrap the largest ring a number of times using 64
  1228. * send/receive pairs during each loop
  1229. */
  1230. if (rxdr->count <= txdr->count)
  1231. lc = ((txdr->count / 64) * 2) + 1;
  1232. else
  1233. lc = ((rxdr->count / 64) * 2) + 1;
  1234. k = l = 0;
  1235. for (j = 0; j <= lc; j++) { /* loop count loop */
  1236. for (i = 0; i < 64; i++) { /* send the packets */
  1237. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1238. 1024);
  1239. pci_dma_sync_single_for_device(pdev,
  1240. txdr->buffer_info[k].dma,
  1241. txdr->buffer_info[k].length,
  1242. PCI_DMA_TODEVICE);
  1243. if (unlikely(++k == txdr->count)) k = 0;
  1244. }
  1245. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1246. msec_delay(200);
  1247. time = jiffies; /* set the start time for the receive */
  1248. good_cnt = 0;
  1249. do { /* receive the sent packets */
  1250. pci_dma_sync_single_for_cpu(pdev,
  1251. rxdr->buffer_info[l].dma,
  1252. rxdr->buffer_info[l].length,
  1253. PCI_DMA_FROMDEVICE);
  1254. ret_val = e1000_check_lbtest_frame(
  1255. rxdr->buffer_info[l].skb,
  1256. 1024);
  1257. if (!ret_val)
  1258. good_cnt++;
  1259. if (unlikely(++l == rxdr->count)) l = 0;
  1260. /* time + 20 msecs (200 msecs on 2.4) is more than
  1261. * enough time to complete the receives, if it's
  1262. * exceeded, break and error off
  1263. */
  1264. } while (good_cnt < 64 && jiffies < (time + 20));
  1265. if (good_cnt != 64) {
  1266. ret_val = 13; /* ret_val is the same as mis-compare */
  1267. break;
  1268. }
  1269. if (jiffies >= (time + 2)) {
  1270. ret_val = 14; /* error code for time out error */
  1271. break;
  1272. }
  1273. } /* end loop count loop */
  1274. return ret_val;
  1275. }
  1276. static int
  1277. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1278. {
  1279. /* PHY loopback cannot be performed if SoL/IDER
  1280. * sessions are active */
  1281. if (e1000_check_phy_reset_block(&adapter->hw)) {
  1282. DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
  1283. "when SoL/IDER is active.\n");
  1284. *data = 0;
  1285. goto out;
  1286. }
  1287. if ((*data = e1000_setup_desc_rings(adapter)))
  1288. goto out;
  1289. if ((*data = e1000_setup_loopback_test(adapter)))
  1290. goto err_loopback;
  1291. *data = e1000_run_loopback_test(adapter);
  1292. e1000_loopback_cleanup(adapter);
  1293. err_loopback:
  1294. e1000_free_desc_rings(adapter);
  1295. out:
  1296. return *data;
  1297. }
  1298. static int
  1299. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1300. {
  1301. *data = 0;
  1302. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1303. int i = 0;
  1304. adapter->hw.serdes_link_down = TRUE;
  1305. /* On some blade server designs, link establishment
  1306. * could take as long as 2-3 minutes */
  1307. do {
  1308. e1000_check_for_link(&adapter->hw);
  1309. if (adapter->hw.serdes_link_down == FALSE)
  1310. return *data;
  1311. msec_delay(20);
  1312. } while (i++ < 3750);
  1313. *data = 1;
  1314. } else {
  1315. e1000_check_for_link(&adapter->hw);
  1316. if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1317. msec_delay(4000);
  1318. if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1319. *data = 1;
  1320. }
  1321. }
  1322. return *data;
  1323. }
  1324. static int
  1325. e1000_diag_test_count(struct net_device *netdev)
  1326. {
  1327. return E1000_TEST_LEN;
  1328. }
  1329. static void
  1330. e1000_diag_test(struct net_device *netdev,
  1331. struct ethtool_test *eth_test, uint64_t *data)
  1332. {
  1333. struct e1000_adapter *adapter = netdev_priv(netdev);
  1334. boolean_t if_running = netif_running(netdev);
  1335. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1336. /* Offline tests */
  1337. /* save speed, duplex, autoneg settings */
  1338. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1339. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1340. uint8_t autoneg = adapter->hw.autoneg;
  1341. /* Link test performed before hardware reset so autoneg doesn't
  1342. * interfere with test result */
  1343. if (e1000_link_test(adapter, &data[4]))
  1344. eth_test->flags |= ETH_TEST_FL_FAILED;
  1345. if (if_running)
  1346. e1000_down(adapter);
  1347. else
  1348. e1000_reset(adapter);
  1349. if (e1000_reg_test(adapter, &data[0]))
  1350. eth_test->flags |= ETH_TEST_FL_FAILED;
  1351. e1000_reset(adapter);
  1352. if (e1000_eeprom_test(adapter, &data[1]))
  1353. eth_test->flags |= ETH_TEST_FL_FAILED;
  1354. e1000_reset(adapter);
  1355. if (e1000_intr_test(adapter, &data[2]))
  1356. eth_test->flags |= ETH_TEST_FL_FAILED;
  1357. e1000_reset(adapter);
  1358. if (e1000_loopback_test(adapter, &data[3]))
  1359. eth_test->flags |= ETH_TEST_FL_FAILED;
  1360. /* restore speed, duplex, autoneg settings */
  1361. adapter->hw.autoneg_advertised = autoneg_advertised;
  1362. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1363. adapter->hw.autoneg = autoneg;
  1364. e1000_reset(adapter);
  1365. if (if_running)
  1366. e1000_up(adapter);
  1367. } else {
  1368. /* Online tests */
  1369. if (e1000_link_test(adapter, &data[4]))
  1370. eth_test->flags |= ETH_TEST_FL_FAILED;
  1371. /* Offline tests aren't run; pass by default */
  1372. data[0] = 0;
  1373. data[1] = 0;
  1374. data[2] = 0;
  1375. data[3] = 0;
  1376. }
  1377. msleep_interruptible(4 * 1000);
  1378. }
  1379. static void
  1380. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1381. {
  1382. struct e1000_adapter *adapter = netdev_priv(netdev);
  1383. struct e1000_hw *hw = &adapter->hw;
  1384. switch (adapter->hw.device_id) {
  1385. case E1000_DEV_ID_82542:
  1386. case E1000_DEV_ID_82543GC_FIBER:
  1387. case E1000_DEV_ID_82543GC_COPPER:
  1388. case E1000_DEV_ID_82544EI_FIBER:
  1389. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1390. case E1000_DEV_ID_82545EM_FIBER:
  1391. case E1000_DEV_ID_82545EM_COPPER:
  1392. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1393. wol->supported = 0;
  1394. wol->wolopts = 0;
  1395. return;
  1396. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1397. /* device id 10B5 port-A supports wol */
  1398. if (!adapter->ksp3_port_a) {
  1399. wol->supported = 0;
  1400. return;
  1401. }
  1402. /* KSP3 does not suppport UCAST wake-ups for any interface */
  1403. wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
  1404. if (adapter->wol & E1000_WUFC_EX)
  1405. DPRINTK(DRV, ERR, "Interface does not support "
  1406. "directed (unicast) frame wake-up packets\n");
  1407. wol->wolopts = 0;
  1408. goto do_defaults;
  1409. case E1000_DEV_ID_82546EB_FIBER:
  1410. case E1000_DEV_ID_82546GB_FIBER:
  1411. case E1000_DEV_ID_82571EB_FIBER:
  1412. /* Wake events only supported on port A for dual fiber */
  1413. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1414. wol->supported = 0;
  1415. wol->wolopts = 0;
  1416. return;
  1417. }
  1418. /* Fall Through */
  1419. default:
  1420. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1421. WAKE_BCAST | WAKE_MAGIC;
  1422. wol->wolopts = 0;
  1423. do_defaults:
  1424. if (adapter->wol & E1000_WUFC_EX)
  1425. wol->wolopts |= WAKE_UCAST;
  1426. if (adapter->wol & E1000_WUFC_MC)
  1427. wol->wolopts |= WAKE_MCAST;
  1428. if (adapter->wol & E1000_WUFC_BC)
  1429. wol->wolopts |= WAKE_BCAST;
  1430. if (adapter->wol & E1000_WUFC_MAG)
  1431. wol->wolopts |= WAKE_MAGIC;
  1432. return;
  1433. }
  1434. }
  1435. static int
  1436. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1437. {
  1438. struct e1000_adapter *adapter = netdev_priv(netdev);
  1439. struct e1000_hw *hw = &adapter->hw;
  1440. switch (adapter->hw.device_id) {
  1441. case E1000_DEV_ID_82542:
  1442. case E1000_DEV_ID_82543GC_FIBER:
  1443. case E1000_DEV_ID_82543GC_COPPER:
  1444. case E1000_DEV_ID_82544EI_FIBER:
  1445. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1446. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1447. case E1000_DEV_ID_82545EM_FIBER:
  1448. case E1000_DEV_ID_82545EM_COPPER:
  1449. return wol->wolopts ? -EOPNOTSUPP : 0;
  1450. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1451. /* device id 10B5 port-A supports wol */
  1452. if (!adapter->ksp3_port_a)
  1453. return wol->wolopts ? -EOPNOTSUPP : 0;
  1454. if (wol->wolopts & WAKE_UCAST) {
  1455. DPRINTK(DRV, ERR, "Interface does not support "
  1456. "directed (unicast) frame wake-up packets\n");
  1457. return -EOPNOTSUPP;
  1458. }
  1459. case E1000_DEV_ID_82546EB_FIBER:
  1460. case E1000_DEV_ID_82546GB_FIBER:
  1461. case E1000_DEV_ID_82571EB_FIBER:
  1462. /* Wake events only supported on port A for dual fiber */
  1463. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1464. return wol->wolopts ? -EOPNOTSUPP : 0;
  1465. /* Fall Through */
  1466. default:
  1467. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1468. return -EOPNOTSUPP;
  1469. adapter->wol = 0;
  1470. if (wol->wolopts & WAKE_UCAST)
  1471. adapter->wol |= E1000_WUFC_EX;
  1472. if (wol->wolopts & WAKE_MCAST)
  1473. adapter->wol |= E1000_WUFC_MC;
  1474. if (wol->wolopts & WAKE_BCAST)
  1475. adapter->wol |= E1000_WUFC_BC;
  1476. if (wol->wolopts & WAKE_MAGIC)
  1477. adapter->wol |= E1000_WUFC_MAG;
  1478. }
  1479. return 0;
  1480. }
  1481. /* toggle LED 4 times per second = 2 "blinks" per second */
  1482. #define E1000_ID_INTERVAL (HZ/4)
  1483. /* bit defines for adapter->led_status */
  1484. #define E1000_LED_ON 0
  1485. static void
  1486. e1000_led_blink_callback(unsigned long data)
  1487. {
  1488. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1489. if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1490. e1000_led_off(&adapter->hw);
  1491. else
  1492. e1000_led_on(&adapter->hw);
  1493. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1494. }
  1495. static int
  1496. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1497. {
  1498. struct e1000_adapter *adapter = netdev_priv(netdev);
  1499. if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1500. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1501. if (adapter->hw.mac_type < e1000_82571) {
  1502. if (!adapter->blink_timer.function) {
  1503. init_timer(&adapter->blink_timer);
  1504. adapter->blink_timer.function = e1000_led_blink_callback;
  1505. adapter->blink_timer.data = (unsigned long) adapter;
  1506. }
  1507. e1000_setup_led(&adapter->hw);
  1508. mod_timer(&adapter->blink_timer, jiffies);
  1509. msleep_interruptible(data * 1000);
  1510. del_timer_sync(&adapter->blink_timer);
  1511. } else if (adapter->hw.mac_type < e1000_82573) {
  1512. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1513. (E1000_LEDCTL_LED2_BLINK_RATE |
  1514. E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
  1515. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1516. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
  1517. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
  1518. msleep_interruptible(data * 1000);
  1519. } else {
  1520. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1521. (E1000_LEDCTL_LED2_BLINK_RATE |
  1522. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1523. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1524. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1525. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1526. msleep_interruptible(data * 1000);
  1527. }
  1528. e1000_led_off(&adapter->hw);
  1529. clear_bit(E1000_LED_ON, &adapter->led_status);
  1530. e1000_cleanup_led(&adapter->hw);
  1531. return 0;
  1532. }
  1533. static int
  1534. e1000_nway_reset(struct net_device *netdev)
  1535. {
  1536. struct e1000_adapter *adapter = netdev_priv(netdev);
  1537. if (netif_running(netdev)) {
  1538. e1000_down(adapter);
  1539. e1000_up(adapter);
  1540. }
  1541. return 0;
  1542. }
  1543. static int
  1544. e1000_get_stats_count(struct net_device *netdev)
  1545. {
  1546. return E1000_STATS_LEN;
  1547. }
  1548. static void
  1549. e1000_get_ethtool_stats(struct net_device *netdev,
  1550. struct ethtool_stats *stats, uint64_t *data)
  1551. {
  1552. struct e1000_adapter *adapter = netdev_priv(netdev);
  1553. int i;
  1554. e1000_update_stats(adapter);
  1555. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1556. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1557. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1558. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1559. }
  1560. /* BUG_ON(i != E1000_STATS_LEN); */
  1561. }
  1562. static void
  1563. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1564. {
  1565. uint8_t *p = data;
  1566. int i;
  1567. switch (stringset) {
  1568. case ETH_SS_TEST:
  1569. memcpy(data, *e1000_gstrings_test,
  1570. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1571. break;
  1572. case ETH_SS_STATS:
  1573. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1574. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1575. ETH_GSTRING_LEN);
  1576. p += ETH_GSTRING_LEN;
  1577. }
  1578. /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
  1579. break;
  1580. }
  1581. }
  1582. static struct ethtool_ops e1000_ethtool_ops = {
  1583. .get_settings = e1000_get_settings,
  1584. .set_settings = e1000_set_settings,
  1585. .get_drvinfo = e1000_get_drvinfo,
  1586. .get_regs_len = e1000_get_regs_len,
  1587. .get_regs = e1000_get_regs,
  1588. .get_wol = e1000_get_wol,
  1589. .set_wol = e1000_set_wol,
  1590. .get_msglevel = e1000_get_msglevel,
  1591. .set_msglevel = e1000_set_msglevel,
  1592. .nway_reset = e1000_nway_reset,
  1593. .get_link = ethtool_op_get_link,
  1594. .get_eeprom_len = e1000_get_eeprom_len,
  1595. .get_eeprom = e1000_get_eeprom,
  1596. .set_eeprom = e1000_set_eeprom,
  1597. .get_ringparam = e1000_get_ringparam,
  1598. .set_ringparam = e1000_set_ringparam,
  1599. .get_pauseparam = e1000_get_pauseparam,
  1600. .set_pauseparam = e1000_set_pauseparam,
  1601. .get_rx_csum = e1000_get_rx_csum,
  1602. .set_rx_csum = e1000_set_rx_csum,
  1603. .get_tx_csum = e1000_get_tx_csum,
  1604. .set_tx_csum = e1000_set_tx_csum,
  1605. .get_sg = ethtool_op_get_sg,
  1606. .set_sg = ethtool_op_set_sg,
  1607. #ifdef NETIF_F_TSO
  1608. .get_tso = ethtool_op_get_tso,
  1609. .set_tso = e1000_set_tso,
  1610. #endif
  1611. .self_test_count = e1000_diag_test_count,
  1612. .self_test = e1000_diag_test,
  1613. .get_strings = e1000_get_strings,
  1614. .phys_id = e1000_phys_id,
  1615. .get_stats_count = e1000_get_stats_count,
  1616. .get_ethtool_stats = e1000_get_ethtool_stats,
  1617. .get_perm_addr = ethtool_op_get_perm_addr,
  1618. };
  1619. void e1000_set_ethtool_ops(struct net_device *netdev)
  1620. {
  1621. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1622. }