e100.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /*
  21. * e100.c: Intel(R) PRO/100 ethernet driver
  22. *
  23. * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
  24. * original e100 driver, but better described as a munging of
  25. * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  26. *
  27. * References:
  28. * Intel 8255x 10/100 Mbps Ethernet Controller Family,
  29. * Open Source Software Developers Manual,
  30. * http://sourceforge.net/projects/e1000
  31. *
  32. *
  33. * Theory of Operation
  34. *
  35. * I. General
  36. *
  37. * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  38. * controller family, which includes the 82557, 82558, 82559, 82550,
  39. * 82551, and 82562 devices. 82558 and greater controllers
  40. * integrate the Intel 82555 PHY. The controllers are used in
  41. * server and client network interface cards, as well as in
  42. * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  43. * configurations. 8255x supports a 32-bit linear addressing
  44. * mode and operates at 33Mhz PCI clock rate.
  45. *
  46. * II. Driver Operation
  47. *
  48. * Memory-mapped mode is used exclusively to access the device's
  49. * shared-memory structure, the Control/Status Registers (CSR). All
  50. * setup, configuration, and control of the device, including queuing
  51. * of Tx, Rx, and configuration commands is through the CSR.
  52. * cmd_lock serializes accesses to the CSR command register. cb_lock
  53. * protects the shared Command Block List (CBL).
  54. *
  55. * 8255x is highly MII-compliant and all access to the PHY go
  56. * through the Management Data Interface (MDI). Consequently, the
  57. * driver leverages the mii.c library shared with other MII-compliant
  58. * devices.
  59. *
  60. * Big- and Little-Endian byte order as well as 32- and 64-bit
  61. * archs are supported. Weak-ordered memory and non-cache-coherent
  62. * archs are supported.
  63. *
  64. * III. Transmit
  65. *
  66. * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
  67. * together in a fixed-size ring (CBL) thus forming the flexible mode
  68. * memory structure. A TCB marked with the suspend-bit indicates
  69. * the end of the ring. The last TCB processed suspends the
  70. * controller, and the controller can be restarted by issue a CU
  71. * resume command to continue from the suspend point, or a CU start
  72. * command to start at a given position in the ring.
  73. *
  74. * Non-Tx commands (config, multicast setup, etc) are linked
  75. * into the CBL ring along with Tx commands. The common structure
  76. * used for both Tx and non-Tx commands is the Command Block (CB).
  77. *
  78. * cb_to_use is the next CB to use for queuing a command; cb_to_clean
  79. * is the next CB to check for completion; cb_to_send is the first
  80. * CB to start on in case of a previous failure to resume. CB clean
  81. * up happens in interrupt context in response to a CU interrupt.
  82. * cbs_avail keeps track of number of free CB resources available.
  83. *
  84. * Hardware padding of short packets to minimum packet size is
  85. * enabled. 82557 pads with 7Eh, while the later controllers pad
  86. * with 00h.
  87. *
  88. * IV. Recieve
  89. *
  90. * The Receive Frame Area (RFA) comprises a ring of Receive Frame
  91. * Descriptors (RFD) + data buffer, thus forming the simplified mode
  92. * memory structure. Rx skbs are allocated to contain both the RFD
  93. * and the data buffer, but the RFD is pulled off before the skb is
  94. * indicated. The data buffer is aligned such that encapsulated
  95. * protocol headers are u32-aligned. Since the RFD is part of the
  96. * mapped shared memory, and completion status is contained within
  97. * the RFD, the RFD must be dma_sync'ed to maintain a consistent
  98. * view from software and hardware.
  99. *
  100. * Under typical operation, the receive unit (RU) is start once,
  101. * and the controller happily fills RFDs as frames arrive. If
  102. * replacement RFDs cannot be allocated, or the RU goes non-active,
  103. * the RU must be restarted. Frame arrival generates an interrupt,
  104. * and Rx indication and re-allocation happen in the same context,
  105. * therefore no locking is required. A software-generated interrupt
  106. * is generated from the watchdog to recover from a failed allocation
  107. * senario where all Rx resources have been indicated and none re-
  108. * placed.
  109. *
  110. * V. Miscellaneous
  111. *
  112. * VLAN offloading of tagging, stripping and filtering is not
  113. * supported, but driver will accommodate the extra 4-byte VLAN tag
  114. * for processing by upper layers. Tx/Rx Checksum offloading is not
  115. * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
  116. * not supported (hardware limitation).
  117. *
  118. * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
  119. *
  120. * Thanks to JC (jchapman@katalix.com) for helping with
  121. * testing/troubleshooting the development driver.
  122. *
  123. * TODO:
  124. * o several entry points race with dev->close
  125. * o check for tx-no-resources/stop Q races with tx clean/wake Q
  126. *
  127. * FIXES:
  128. * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
  129. * - Stratus87247: protect MDI control register manipulations
  130. */
  131. #include <linux/config.h>
  132. #include <linux/module.h>
  133. #include <linux/moduleparam.h>
  134. #include <linux/kernel.h>
  135. #include <linux/types.h>
  136. #include <linux/slab.h>
  137. #include <linux/delay.h>
  138. #include <linux/init.h>
  139. #include <linux/pci.h>
  140. #include <linux/dma-mapping.h>
  141. #include <linux/netdevice.h>
  142. #include <linux/etherdevice.h>
  143. #include <linux/mii.h>
  144. #include <linux/if_vlan.h>
  145. #include <linux/skbuff.h>
  146. #include <linux/ethtool.h>
  147. #include <linux/string.h>
  148. #include <asm/unaligned.h>
  149. #define DRV_NAME "e100"
  150. #define DRV_EXT "-NAPI"
  151. #define DRV_VERSION "3.5.10-k2"DRV_EXT
  152. #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
  153. #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
  154. #define PFX DRV_NAME ": "
  155. #define E100_WATCHDOG_PERIOD (2 * HZ)
  156. #define E100_NAPI_WEIGHT 16
  157. MODULE_DESCRIPTION(DRV_DESCRIPTION);
  158. MODULE_AUTHOR(DRV_COPYRIGHT);
  159. MODULE_LICENSE("GPL");
  160. MODULE_VERSION(DRV_VERSION);
  161. static int debug = 3;
  162. module_param(debug, int, 0);
  163. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  164. #define DPRINTK(nlevel, klevel, fmt, args...) \
  165. (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
  166. printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
  167. __FUNCTION__ , ## args))
  168. #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
  169. PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
  170. PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
  171. static struct pci_device_id e100_id_table[] = {
  172. INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
  173. INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
  174. INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
  175. INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
  176. INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
  177. INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
  178. INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
  179. INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
  180. INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
  181. INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
  182. INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
  183. INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
  184. INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
  185. INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
  186. INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
  187. INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
  188. INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
  189. INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
  190. INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
  191. INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
  192. INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
  193. INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
  194. INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
  195. INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
  196. INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
  197. INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
  198. INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
  199. INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
  200. INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
  201. INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
  202. INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
  203. INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
  204. INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
  205. INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
  206. INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
  207. INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
  208. INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
  209. INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
  210. INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
  211. INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
  212. INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
  213. { 0, }
  214. };
  215. MODULE_DEVICE_TABLE(pci, e100_id_table);
  216. enum mac {
  217. mac_82557_D100_A = 0,
  218. mac_82557_D100_B = 1,
  219. mac_82557_D100_C = 2,
  220. mac_82558_D101_A4 = 4,
  221. mac_82558_D101_B0 = 5,
  222. mac_82559_D101M = 8,
  223. mac_82559_D101S = 9,
  224. mac_82550_D102 = 12,
  225. mac_82550_D102_C = 13,
  226. mac_82551_E = 14,
  227. mac_82551_F = 15,
  228. mac_82551_10 = 16,
  229. mac_unknown = 0xFF,
  230. };
  231. enum phy {
  232. phy_100a = 0x000003E0,
  233. phy_100c = 0x035002A8,
  234. phy_82555_tx = 0x015002A8,
  235. phy_nsc_tx = 0x5C002000,
  236. phy_82562_et = 0x033002A8,
  237. phy_82562_em = 0x032002A8,
  238. phy_82562_ek = 0x031002A8,
  239. phy_82562_eh = 0x017002A8,
  240. phy_unknown = 0xFFFFFFFF,
  241. };
  242. /* CSR (Control/Status Registers) */
  243. struct csr {
  244. struct {
  245. u8 status;
  246. u8 stat_ack;
  247. u8 cmd_lo;
  248. u8 cmd_hi;
  249. u32 gen_ptr;
  250. } scb;
  251. u32 port;
  252. u16 flash_ctrl;
  253. u8 eeprom_ctrl_lo;
  254. u8 eeprom_ctrl_hi;
  255. u32 mdi_ctrl;
  256. u32 rx_dma_count;
  257. };
  258. enum scb_status {
  259. rus_ready = 0x10,
  260. rus_mask = 0x3C,
  261. };
  262. enum ru_state {
  263. RU_SUSPENDED = 0,
  264. RU_RUNNING = 1,
  265. RU_UNINITIALIZED = -1,
  266. };
  267. enum scb_stat_ack {
  268. stat_ack_not_ours = 0x00,
  269. stat_ack_sw_gen = 0x04,
  270. stat_ack_rnr = 0x10,
  271. stat_ack_cu_idle = 0x20,
  272. stat_ack_frame_rx = 0x40,
  273. stat_ack_cu_cmd_done = 0x80,
  274. stat_ack_not_present = 0xFF,
  275. stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
  276. stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
  277. };
  278. enum scb_cmd_hi {
  279. irq_mask_none = 0x00,
  280. irq_mask_all = 0x01,
  281. irq_sw_gen = 0x02,
  282. };
  283. enum scb_cmd_lo {
  284. cuc_nop = 0x00,
  285. ruc_start = 0x01,
  286. ruc_load_base = 0x06,
  287. cuc_start = 0x10,
  288. cuc_resume = 0x20,
  289. cuc_dump_addr = 0x40,
  290. cuc_dump_stats = 0x50,
  291. cuc_load_base = 0x60,
  292. cuc_dump_reset = 0x70,
  293. };
  294. enum cuc_dump {
  295. cuc_dump_complete = 0x0000A005,
  296. cuc_dump_reset_complete = 0x0000A007,
  297. };
  298. enum port {
  299. software_reset = 0x0000,
  300. selftest = 0x0001,
  301. selective_reset = 0x0002,
  302. };
  303. enum eeprom_ctrl_lo {
  304. eesk = 0x01,
  305. eecs = 0x02,
  306. eedi = 0x04,
  307. eedo = 0x08,
  308. };
  309. enum mdi_ctrl {
  310. mdi_write = 0x04000000,
  311. mdi_read = 0x08000000,
  312. mdi_ready = 0x10000000,
  313. };
  314. enum eeprom_op {
  315. op_write = 0x05,
  316. op_read = 0x06,
  317. op_ewds = 0x10,
  318. op_ewen = 0x13,
  319. };
  320. enum eeprom_offsets {
  321. eeprom_cnfg_mdix = 0x03,
  322. eeprom_id = 0x0A,
  323. eeprom_config_asf = 0x0D,
  324. eeprom_smbus_addr = 0x90,
  325. };
  326. enum eeprom_cnfg_mdix {
  327. eeprom_mdix_enabled = 0x0080,
  328. };
  329. enum eeprom_id {
  330. eeprom_id_wol = 0x0020,
  331. };
  332. enum eeprom_config_asf {
  333. eeprom_asf = 0x8000,
  334. eeprom_gcl = 0x4000,
  335. };
  336. enum cb_status {
  337. cb_complete = 0x8000,
  338. cb_ok = 0x2000,
  339. };
  340. enum cb_command {
  341. cb_nop = 0x0000,
  342. cb_iaaddr = 0x0001,
  343. cb_config = 0x0002,
  344. cb_multi = 0x0003,
  345. cb_tx = 0x0004,
  346. cb_ucode = 0x0005,
  347. cb_dump = 0x0006,
  348. cb_tx_sf = 0x0008,
  349. cb_cid = 0x1f00,
  350. cb_i = 0x2000,
  351. cb_s = 0x4000,
  352. cb_el = 0x8000,
  353. };
  354. struct rfd {
  355. u16 status;
  356. u16 command;
  357. u32 link;
  358. u32 rbd;
  359. u16 actual_size;
  360. u16 size;
  361. };
  362. struct rx {
  363. struct rx *next, *prev;
  364. struct sk_buff *skb;
  365. dma_addr_t dma_addr;
  366. };
  367. #if defined(__BIG_ENDIAN_BITFIELD)
  368. #define X(a,b) b,a
  369. #else
  370. #define X(a,b) a,b
  371. #endif
  372. struct config {
  373. /*0*/ u8 X(byte_count:6, pad0:2);
  374. /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
  375. /*2*/ u8 adaptive_ifs;
  376. /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
  377. term_write_cache_line:1), pad3:4);
  378. /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
  379. /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
  380. /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
  381. tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
  382. rx_discard_overruns:1), rx_save_bad_frames:1);
  383. /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
  384. pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
  385. tx_dynamic_tbd:1);
  386. /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
  387. /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
  388. link_status_wake:1), arp_wake:1), mcmatch_wake:1);
  389. /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
  390. loopback:2);
  391. /*11*/ u8 X(linear_priority:3, pad11:5);
  392. /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
  393. /*13*/ u8 ip_addr_lo;
  394. /*14*/ u8 ip_addr_hi;
  395. /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
  396. wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
  397. pad15_2:1), crs_or_cdt:1);
  398. /*16*/ u8 fc_delay_lo;
  399. /*17*/ u8 fc_delay_hi;
  400. /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
  401. rx_long_ok:1), fc_priority_threshold:3), pad18:1);
  402. /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
  403. fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
  404. full_duplex_force:1), full_duplex_pin:1);
  405. /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
  406. /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
  407. /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
  408. u8 pad_d102[9];
  409. };
  410. #define E100_MAX_MULTICAST_ADDRS 64
  411. struct multi {
  412. u16 count;
  413. u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
  414. };
  415. /* Important: keep total struct u32-aligned */
  416. #define UCODE_SIZE 134
  417. struct cb {
  418. u16 status;
  419. u16 command;
  420. u32 link;
  421. union {
  422. u8 iaaddr[ETH_ALEN];
  423. u32 ucode[UCODE_SIZE];
  424. struct config config;
  425. struct multi multi;
  426. struct {
  427. u32 tbd_array;
  428. u16 tcb_byte_count;
  429. u8 threshold;
  430. u8 tbd_count;
  431. struct {
  432. u32 buf_addr;
  433. u16 size;
  434. u16 eol;
  435. } tbd;
  436. } tcb;
  437. u32 dump_buffer_addr;
  438. } u;
  439. struct cb *next, *prev;
  440. dma_addr_t dma_addr;
  441. struct sk_buff *skb;
  442. };
  443. enum loopback {
  444. lb_none = 0, lb_mac = 1, lb_phy = 3,
  445. };
  446. struct stats {
  447. u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
  448. tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
  449. tx_multiple_collisions, tx_total_collisions;
  450. u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
  451. rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
  452. rx_short_frame_errors;
  453. u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
  454. u16 xmt_tco_frames, rcv_tco_frames;
  455. u32 complete;
  456. };
  457. struct mem {
  458. struct {
  459. u32 signature;
  460. u32 result;
  461. } selftest;
  462. struct stats stats;
  463. u8 dump_buf[596];
  464. };
  465. struct param_range {
  466. u32 min;
  467. u32 max;
  468. u32 count;
  469. };
  470. struct params {
  471. struct param_range rfds;
  472. struct param_range cbs;
  473. };
  474. struct nic {
  475. /* Begin: frequently used values: keep adjacent for cache effect */
  476. u32 msg_enable ____cacheline_aligned;
  477. struct net_device *netdev;
  478. struct pci_dev *pdev;
  479. struct rx *rxs ____cacheline_aligned;
  480. struct rx *rx_to_use;
  481. struct rx *rx_to_clean;
  482. struct rfd blank_rfd;
  483. enum ru_state ru_running;
  484. spinlock_t cb_lock ____cacheline_aligned;
  485. spinlock_t cmd_lock;
  486. struct csr __iomem *csr;
  487. enum scb_cmd_lo cuc_cmd;
  488. unsigned int cbs_avail;
  489. struct cb *cbs;
  490. struct cb *cb_to_use;
  491. struct cb *cb_to_send;
  492. struct cb *cb_to_clean;
  493. u16 tx_command;
  494. /* End: frequently used values: keep adjacent for cache effect */
  495. enum {
  496. ich = (1 << 0),
  497. promiscuous = (1 << 1),
  498. multicast_all = (1 << 2),
  499. wol_magic = (1 << 3),
  500. ich_10h_workaround = (1 << 4),
  501. } flags ____cacheline_aligned;
  502. enum mac mac;
  503. enum phy phy;
  504. struct params params;
  505. struct net_device_stats net_stats;
  506. struct timer_list watchdog;
  507. struct timer_list blink_timer;
  508. struct mii_if_info mii;
  509. struct work_struct tx_timeout_task;
  510. enum loopback loopback;
  511. struct mem *mem;
  512. dma_addr_t dma_addr;
  513. dma_addr_t cbs_dma_addr;
  514. u8 adaptive_ifs;
  515. u8 tx_threshold;
  516. u32 tx_frames;
  517. u32 tx_collisions;
  518. u32 tx_deferred;
  519. u32 tx_single_collisions;
  520. u32 tx_multiple_collisions;
  521. u32 tx_fc_pause;
  522. u32 tx_tco_frames;
  523. u32 rx_fc_pause;
  524. u32 rx_fc_unsupported;
  525. u32 rx_tco_frames;
  526. u32 rx_over_length_errors;
  527. u8 rev_id;
  528. u16 leds;
  529. u16 eeprom_wc;
  530. u16 eeprom[256];
  531. spinlock_t mdio_lock;
  532. };
  533. static inline void e100_write_flush(struct nic *nic)
  534. {
  535. /* Flush previous PCI writes through intermediate bridges
  536. * by doing a benign read */
  537. (void)readb(&nic->csr->scb.status);
  538. }
  539. static void e100_enable_irq(struct nic *nic)
  540. {
  541. unsigned long flags;
  542. spin_lock_irqsave(&nic->cmd_lock, flags);
  543. writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
  544. e100_write_flush(nic);
  545. spin_unlock_irqrestore(&nic->cmd_lock, flags);
  546. }
  547. static void e100_disable_irq(struct nic *nic)
  548. {
  549. unsigned long flags;
  550. spin_lock_irqsave(&nic->cmd_lock, flags);
  551. writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
  552. e100_write_flush(nic);
  553. spin_unlock_irqrestore(&nic->cmd_lock, flags);
  554. }
  555. static void e100_hw_reset(struct nic *nic)
  556. {
  557. /* Put CU and RU into idle with a selective reset to get
  558. * device off of PCI bus */
  559. writel(selective_reset, &nic->csr->port);
  560. e100_write_flush(nic); udelay(20);
  561. /* Now fully reset device */
  562. writel(software_reset, &nic->csr->port);
  563. e100_write_flush(nic); udelay(20);
  564. /* Mask off our interrupt line - it's unmasked after reset */
  565. e100_disable_irq(nic);
  566. }
  567. static int e100_self_test(struct nic *nic)
  568. {
  569. u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
  570. /* Passing the self-test is a pretty good indication
  571. * that the device can DMA to/from host memory */
  572. nic->mem->selftest.signature = 0;
  573. nic->mem->selftest.result = 0xFFFFFFFF;
  574. writel(selftest | dma_addr, &nic->csr->port);
  575. e100_write_flush(nic);
  576. /* Wait 10 msec for self-test to complete */
  577. msleep(10);
  578. /* Interrupts are enabled after self-test */
  579. e100_disable_irq(nic);
  580. /* Check results of self-test */
  581. if(nic->mem->selftest.result != 0) {
  582. DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
  583. nic->mem->selftest.result);
  584. return -ETIMEDOUT;
  585. }
  586. if(nic->mem->selftest.signature == 0) {
  587. DPRINTK(HW, ERR, "Self-test failed: timed out\n");
  588. return -ETIMEDOUT;
  589. }
  590. return 0;
  591. }
  592. static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
  593. {
  594. u32 cmd_addr_data[3];
  595. u8 ctrl;
  596. int i, j;
  597. /* Three cmds: write/erase enable, write data, write/erase disable */
  598. cmd_addr_data[0] = op_ewen << (addr_len - 2);
  599. cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
  600. cpu_to_le16(data);
  601. cmd_addr_data[2] = op_ewds << (addr_len - 2);
  602. /* Bit-bang cmds to write word to eeprom */
  603. for(j = 0; j < 3; j++) {
  604. /* Chip select */
  605. writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
  606. e100_write_flush(nic); udelay(4);
  607. for(i = 31; i >= 0; i--) {
  608. ctrl = (cmd_addr_data[j] & (1 << i)) ?
  609. eecs | eedi : eecs;
  610. writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
  611. e100_write_flush(nic); udelay(4);
  612. writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
  613. e100_write_flush(nic); udelay(4);
  614. }
  615. /* Wait 10 msec for cmd to complete */
  616. msleep(10);
  617. /* Chip deselect */
  618. writeb(0, &nic->csr->eeprom_ctrl_lo);
  619. e100_write_flush(nic); udelay(4);
  620. }
  621. };
  622. /* General technique stolen from the eepro100 driver - very clever */
  623. static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
  624. {
  625. u32 cmd_addr_data;
  626. u16 data = 0;
  627. u8 ctrl;
  628. int i;
  629. cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
  630. /* Chip select */
  631. writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
  632. e100_write_flush(nic); udelay(4);
  633. /* Bit-bang to read word from eeprom */
  634. for(i = 31; i >= 0; i--) {
  635. ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
  636. writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
  637. e100_write_flush(nic); udelay(4);
  638. writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
  639. e100_write_flush(nic); udelay(4);
  640. /* Eeprom drives a dummy zero to EEDO after receiving
  641. * complete address. Use this to adjust addr_len. */
  642. ctrl = readb(&nic->csr->eeprom_ctrl_lo);
  643. if(!(ctrl & eedo) && i > 16) {
  644. *addr_len -= (i - 16);
  645. i = 17;
  646. }
  647. data = (data << 1) | (ctrl & eedo ? 1 : 0);
  648. }
  649. /* Chip deselect */
  650. writeb(0, &nic->csr->eeprom_ctrl_lo);
  651. e100_write_flush(nic); udelay(4);
  652. return le16_to_cpu(data);
  653. };
  654. /* Load entire EEPROM image into driver cache and validate checksum */
  655. static int e100_eeprom_load(struct nic *nic)
  656. {
  657. u16 addr, addr_len = 8, checksum = 0;
  658. /* Try reading with an 8-bit addr len to discover actual addr len */
  659. e100_eeprom_read(nic, &addr_len, 0);
  660. nic->eeprom_wc = 1 << addr_len;
  661. for(addr = 0; addr < nic->eeprom_wc; addr++) {
  662. nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
  663. if(addr < nic->eeprom_wc - 1)
  664. checksum += cpu_to_le16(nic->eeprom[addr]);
  665. }
  666. /* The checksum, stored in the last word, is calculated such that
  667. * the sum of words should be 0xBABA */
  668. checksum = le16_to_cpu(0xBABA - checksum);
  669. if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
  670. DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
  671. return -EAGAIN;
  672. }
  673. return 0;
  674. }
  675. /* Save (portion of) driver EEPROM cache to device and update checksum */
  676. static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
  677. {
  678. u16 addr, addr_len = 8, checksum = 0;
  679. /* Try reading with an 8-bit addr len to discover actual addr len */
  680. e100_eeprom_read(nic, &addr_len, 0);
  681. nic->eeprom_wc = 1 << addr_len;
  682. if(start + count >= nic->eeprom_wc)
  683. return -EINVAL;
  684. for(addr = start; addr < start + count; addr++)
  685. e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
  686. /* The checksum, stored in the last word, is calculated such that
  687. * the sum of words should be 0xBABA */
  688. for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
  689. checksum += cpu_to_le16(nic->eeprom[addr]);
  690. nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
  691. e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
  692. nic->eeprom[nic->eeprom_wc - 1]);
  693. return 0;
  694. }
  695. #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
  696. #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
  697. static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
  698. {
  699. unsigned long flags;
  700. unsigned int i;
  701. int err = 0;
  702. spin_lock_irqsave(&nic->cmd_lock, flags);
  703. /* Previous command is accepted when SCB clears */
  704. for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
  705. if(likely(!readb(&nic->csr->scb.cmd_lo)))
  706. break;
  707. cpu_relax();
  708. if(unlikely(i > E100_WAIT_SCB_FAST))
  709. udelay(5);
  710. }
  711. if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
  712. err = -EAGAIN;
  713. goto err_unlock;
  714. }
  715. if(unlikely(cmd != cuc_resume))
  716. writel(dma_addr, &nic->csr->scb.gen_ptr);
  717. writeb(cmd, &nic->csr->scb.cmd_lo);
  718. err_unlock:
  719. spin_unlock_irqrestore(&nic->cmd_lock, flags);
  720. return err;
  721. }
  722. static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
  723. void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
  724. {
  725. struct cb *cb;
  726. unsigned long flags;
  727. int err = 0;
  728. spin_lock_irqsave(&nic->cb_lock, flags);
  729. if(unlikely(!nic->cbs_avail)) {
  730. err = -ENOMEM;
  731. goto err_unlock;
  732. }
  733. cb = nic->cb_to_use;
  734. nic->cb_to_use = cb->next;
  735. nic->cbs_avail--;
  736. cb->skb = skb;
  737. if(unlikely(!nic->cbs_avail))
  738. err = -ENOSPC;
  739. cb_prepare(nic, cb, skb);
  740. /* Order is important otherwise we'll be in a race with h/w:
  741. * set S-bit in current first, then clear S-bit in previous. */
  742. cb->command |= cpu_to_le16(cb_s);
  743. wmb();
  744. cb->prev->command &= cpu_to_le16(~cb_s);
  745. while(nic->cb_to_send != nic->cb_to_use) {
  746. if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
  747. nic->cb_to_send->dma_addr))) {
  748. /* Ok, here's where things get sticky. It's
  749. * possible that we can't schedule the command
  750. * because the controller is too busy, so
  751. * let's just queue the command and try again
  752. * when another command is scheduled. */
  753. if(err == -ENOSPC) {
  754. //request a reset
  755. schedule_work(&nic->tx_timeout_task);
  756. }
  757. break;
  758. } else {
  759. nic->cuc_cmd = cuc_resume;
  760. nic->cb_to_send = nic->cb_to_send->next;
  761. }
  762. }
  763. err_unlock:
  764. spin_unlock_irqrestore(&nic->cb_lock, flags);
  765. return err;
  766. }
  767. static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
  768. {
  769. u32 data_out = 0;
  770. unsigned int i;
  771. unsigned long flags;
  772. /*
  773. * Stratus87247: we shouldn't be writing the MDI control
  774. * register until the Ready bit shows True. Also, since
  775. * manipulation of the MDI control registers is a multi-step
  776. * procedure it should be done under lock.
  777. */
  778. spin_lock_irqsave(&nic->mdio_lock, flags);
  779. for (i = 100; i; --i) {
  780. if (readl(&nic->csr->mdi_ctrl) & mdi_ready)
  781. break;
  782. udelay(20);
  783. }
  784. if (unlikely(!i)) {
  785. printk("e100.mdio_ctrl(%s) won't go Ready\n",
  786. nic->netdev->name );
  787. spin_unlock_irqrestore(&nic->mdio_lock, flags);
  788. return 0; /* No way to indicate timeout error */
  789. }
  790. writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
  791. for (i = 0; i < 100; i++) {
  792. udelay(20);
  793. if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
  794. break;
  795. }
  796. spin_unlock_irqrestore(&nic->mdio_lock, flags);
  797. DPRINTK(HW, DEBUG,
  798. "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
  799. dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
  800. return (u16)data_out;
  801. }
  802. static int mdio_read(struct net_device *netdev, int addr, int reg)
  803. {
  804. return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
  805. }
  806. static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
  807. {
  808. mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
  809. }
  810. static void e100_get_defaults(struct nic *nic)
  811. {
  812. struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
  813. struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
  814. pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
  815. /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
  816. nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
  817. if(nic->mac == mac_unknown)
  818. nic->mac = mac_82557_D100_A;
  819. nic->params.rfds = rfds;
  820. nic->params.cbs = cbs;
  821. /* Quadwords to DMA into FIFO before starting frame transmit */
  822. nic->tx_threshold = 0xE0;
  823. /* no interrupt for every tx completion, delay = 256us if not 557*/
  824. nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
  825. ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
  826. /* Template for a freshly allocated RFD */
  827. nic->blank_rfd.command = cpu_to_le16(cb_el);
  828. nic->blank_rfd.rbd = 0xFFFFFFFF;
  829. nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
  830. /* MII setup */
  831. nic->mii.phy_id_mask = 0x1F;
  832. nic->mii.reg_num_mask = 0x1F;
  833. nic->mii.dev = nic->netdev;
  834. nic->mii.mdio_read = mdio_read;
  835. nic->mii.mdio_write = mdio_write;
  836. }
  837. static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
  838. {
  839. struct config *config = &cb->u.config;
  840. u8 *c = (u8 *)config;
  841. cb->command = cpu_to_le16(cb_config);
  842. memset(config, 0, sizeof(struct config));
  843. config->byte_count = 0x16; /* bytes in this struct */
  844. config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
  845. config->direct_rx_dma = 0x1; /* reserved */
  846. config->standard_tcb = 0x1; /* 1=standard, 0=extended */
  847. config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
  848. config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
  849. config->tx_underrun_retry = 0x3; /* # of underrun retries */
  850. config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
  851. config->pad10 = 0x6;
  852. config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
  853. config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
  854. config->ifs = 0x6; /* x16 = inter frame spacing */
  855. config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
  856. config->pad15_1 = 0x1;
  857. config->pad15_2 = 0x1;
  858. config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
  859. config->fc_delay_hi = 0x40; /* time delay for fc frame */
  860. config->tx_padding = 0x1; /* 1=pad short frames */
  861. config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
  862. config->pad18 = 0x1;
  863. config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
  864. config->pad20_1 = 0x1F;
  865. config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
  866. config->pad21_1 = 0x5;
  867. config->adaptive_ifs = nic->adaptive_ifs;
  868. config->loopback = nic->loopback;
  869. if(nic->mii.force_media && nic->mii.full_duplex)
  870. config->full_duplex_force = 0x1; /* 1=force, 0=auto */
  871. if(nic->flags & promiscuous || nic->loopback) {
  872. config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
  873. config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
  874. config->promiscuous_mode = 0x1; /* 1=on, 0=off */
  875. }
  876. if(nic->flags & multicast_all)
  877. config->multicast_all = 0x1; /* 1=accept, 0=no */
  878. /* disable WoL when up */
  879. if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
  880. config->magic_packet_disable = 0x1; /* 1=off, 0=on */
  881. if(nic->mac >= mac_82558_D101_A4) {
  882. config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
  883. config->mwi_enable = 0x1; /* 1=enable, 0=disable */
  884. config->standard_tcb = 0x0; /* 1=standard, 0=extended */
  885. config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
  886. if(nic->mac >= mac_82559_D101M)
  887. config->tno_intr = 0x1; /* TCO stats enable */
  888. else
  889. config->standard_stat_counter = 0x0;
  890. }
  891. DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
  892. c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
  893. DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
  894. c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
  895. DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
  896. c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
  897. }
  898. /********************************************************/
  899. /* Micro code for 8086:1229 Rev 8 */
  900. /********************************************************/
  901. /* Parameter values for the D101M B-step */
  902. #define D101M_CPUSAVER_TIMER_DWORD 78
  903. #define D101M_CPUSAVER_BUNDLE_DWORD 65
  904. #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
  905. #define D101M_B_RCVBUNDLE_UCODE \
  906. {\
  907. 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
  908. 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
  909. 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
  910. 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
  911. 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
  912. 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
  913. 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
  914. 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
  915. 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
  916. 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
  917. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  918. 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
  919. 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
  920. 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
  921. 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
  922. 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
  923. 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
  924. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  925. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  926. 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
  927. 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
  928. 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
  929. 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
  930. 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
  931. 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
  932. 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
  933. 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
  934. 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
  935. 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
  936. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  937. 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
  938. 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
  939. 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
  940. }
  941. /********************************************************/
  942. /* Micro code for 8086:1229 Rev 9 */
  943. /********************************************************/
  944. /* Parameter values for the D101S */
  945. #define D101S_CPUSAVER_TIMER_DWORD 78
  946. #define D101S_CPUSAVER_BUNDLE_DWORD 67
  947. #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
  948. #define D101S_RCVBUNDLE_UCODE \
  949. {\
  950. 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
  951. 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
  952. 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
  953. 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
  954. 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
  955. 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
  956. 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
  957. 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
  958. 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
  959. 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
  960. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  961. 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
  962. 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
  963. 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
  964. 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
  965. 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
  966. 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
  967. 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
  968. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  969. 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
  970. 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
  971. 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
  972. 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
  973. 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
  974. 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
  975. 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
  976. 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
  977. 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
  978. 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
  979. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  980. 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
  981. 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
  982. 0x00041000, 0x00010004, 0x00380700 \
  983. }
  984. /********************************************************/
  985. /* Micro code for the 8086:1229 Rev F/10 */
  986. /********************************************************/
  987. /* Parameter values for the D102 E-step */
  988. #define D102_E_CPUSAVER_TIMER_DWORD 42
  989. #define D102_E_CPUSAVER_BUNDLE_DWORD 54
  990. #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
  991. #define D102_E_RCVBUNDLE_UCODE \
  992. {\
  993. 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
  994. 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
  995. 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
  996. 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
  997. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  998. 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
  999. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1000. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1001. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1002. 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
  1003. 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
  1004. 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
  1005. 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
  1006. 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
  1007. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1008. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1009. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1010. 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
  1011. 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
  1012. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1013. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1014. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1015. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1016. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1017. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1018. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1019. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1020. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1021. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1022. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1023. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1024. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1025. 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
  1026. }
  1027. static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
  1028. {
  1029. /* *INDENT-OFF* */
  1030. static struct {
  1031. u32 ucode[UCODE_SIZE + 1];
  1032. u8 mac;
  1033. u8 timer_dword;
  1034. u8 bundle_dword;
  1035. u8 min_size_dword;
  1036. } ucode_opts[] = {
  1037. { D101M_B_RCVBUNDLE_UCODE,
  1038. mac_82559_D101M,
  1039. D101M_CPUSAVER_TIMER_DWORD,
  1040. D101M_CPUSAVER_BUNDLE_DWORD,
  1041. D101M_CPUSAVER_MIN_SIZE_DWORD },
  1042. { D101S_RCVBUNDLE_UCODE,
  1043. mac_82559_D101S,
  1044. D101S_CPUSAVER_TIMER_DWORD,
  1045. D101S_CPUSAVER_BUNDLE_DWORD,
  1046. D101S_CPUSAVER_MIN_SIZE_DWORD },
  1047. { D102_E_RCVBUNDLE_UCODE,
  1048. mac_82551_F,
  1049. D102_E_CPUSAVER_TIMER_DWORD,
  1050. D102_E_CPUSAVER_BUNDLE_DWORD,
  1051. D102_E_CPUSAVER_MIN_SIZE_DWORD },
  1052. { D102_E_RCVBUNDLE_UCODE,
  1053. mac_82551_10,
  1054. D102_E_CPUSAVER_TIMER_DWORD,
  1055. D102_E_CPUSAVER_BUNDLE_DWORD,
  1056. D102_E_CPUSAVER_MIN_SIZE_DWORD },
  1057. { {0}, 0, 0, 0, 0}
  1058. }, *opts;
  1059. /* *INDENT-ON* */
  1060. /*************************************************************************
  1061. * CPUSaver parameters
  1062. *
  1063. * All CPUSaver parameters are 16-bit literals that are part of a
  1064. * "move immediate value" instruction. By changing the value of
  1065. * the literal in the instruction before the code is loaded, the
  1066. * driver can change the algorithm.
  1067. *
  1068. * INTDELAY - This loads the dead-man timer with its inital value.
  1069. * When this timer expires the interrupt is asserted, and the
  1070. * timer is reset each time a new packet is received. (see
  1071. * BUNDLEMAX below to set the limit on number of chained packets)
  1072. * The current default is 0x600 or 1536. Experiments show that
  1073. * the value should probably stay within the 0x200 - 0x1000.
  1074. *
  1075. * BUNDLEMAX -
  1076. * This sets the maximum number of frames that will be bundled. In
  1077. * some situations, such as the TCP windowing algorithm, it may be
  1078. * better to limit the growth of the bundle size than let it go as
  1079. * high as it can, because that could cause too much added latency.
  1080. * The default is six, because this is the number of packets in the
  1081. * default TCP window size. A value of 1 would make CPUSaver indicate
  1082. * an interrupt for every frame received. If you do not want to put
  1083. * a limit on the bundle size, set this value to xFFFF.
  1084. *
  1085. * BUNDLESMALL -
  1086. * This contains a bit-mask describing the minimum size frame that
  1087. * will be bundled. The default masks the lower 7 bits, which means
  1088. * that any frame less than 128 bytes in length will not be bundled,
  1089. * but will instead immediately generate an interrupt. This does
  1090. * not affect the current bundle in any way. Any frame that is 128
  1091. * bytes or large will be bundled normally. This feature is meant
  1092. * to provide immediate indication of ACK frames in a TCP environment.
  1093. * Customers were seeing poor performance when a machine with CPUSaver
  1094. * enabled was sending but not receiving. The delay introduced when
  1095. * the ACKs were received was enough to reduce total throughput, because
  1096. * the sender would sit idle until the ACK was finally seen.
  1097. *
  1098. * The current default is 0xFF80, which masks out the lower 7 bits.
  1099. * This means that any frame which is x7F (127) bytes or smaller
  1100. * will cause an immediate interrupt. Because this value must be a
  1101. * bit mask, there are only a few valid values that can be used. To
  1102. * turn this feature off, the driver can write the value xFFFF to the
  1103. * lower word of this instruction (in the same way that the other
  1104. * parameters are used). Likewise, a value of 0xF800 (2047) would
  1105. * cause an interrupt to be generated for every frame, because all
  1106. * standard Ethernet frames are <= 2047 bytes in length.
  1107. *************************************************************************/
  1108. /* if you wish to disable the ucode functionality, while maintaining the
  1109. * workarounds it provides, set the following defines to:
  1110. * BUNDLESMALL 0
  1111. * BUNDLEMAX 1
  1112. * INTDELAY 1
  1113. */
  1114. #define BUNDLESMALL 1
  1115. #define BUNDLEMAX (u16)6
  1116. #define INTDELAY (u16)1536 /* 0x600 */
  1117. /* do not load u-code for ICH devices */
  1118. if (nic->flags & ich)
  1119. goto noloaducode;
  1120. /* Search for ucode match against h/w rev_id */
  1121. for (opts = ucode_opts; opts->mac; opts++) {
  1122. int i;
  1123. u32 *ucode = opts->ucode;
  1124. if (nic->mac != opts->mac)
  1125. continue;
  1126. /* Insert user-tunable settings */
  1127. ucode[opts->timer_dword] &= 0xFFFF0000;
  1128. ucode[opts->timer_dword] |= INTDELAY;
  1129. ucode[opts->bundle_dword] &= 0xFFFF0000;
  1130. ucode[opts->bundle_dword] |= BUNDLEMAX;
  1131. ucode[opts->min_size_dword] &= 0xFFFF0000;
  1132. ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
  1133. for (i = 0; i < UCODE_SIZE; i++)
  1134. cb->u.ucode[i] = cpu_to_le32(ucode[i]);
  1135. cb->command = cpu_to_le16(cb_ucode | cb_el);
  1136. return;
  1137. }
  1138. noloaducode:
  1139. cb->command = cpu_to_le16(cb_nop | cb_el);
  1140. }
  1141. static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
  1142. void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
  1143. {
  1144. int err = 0, counter = 50;
  1145. struct cb *cb = nic->cb_to_clean;
  1146. if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
  1147. DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
  1148. /* must restart cuc */
  1149. nic->cuc_cmd = cuc_start;
  1150. /* wait for completion */
  1151. e100_write_flush(nic);
  1152. udelay(10);
  1153. /* wait for possibly (ouch) 500ms */
  1154. while (!(cb->status & cpu_to_le16(cb_complete))) {
  1155. msleep(10);
  1156. if (!--counter) break;
  1157. }
  1158. /* ack any interupts, something could have been set */
  1159. writeb(~0, &nic->csr->scb.stat_ack);
  1160. /* if the command failed, or is not OK, notify and return */
  1161. if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
  1162. DPRINTK(PROBE,ERR, "ucode load failed\n");
  1163. err = -EPERM;
  1164. }
  1165. return err;
  1166. }
  1167. static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
  1168. struct sk_buff *skb)
  1169. {
  1170. cb->command = cpu_to_le16(cb_iaaddr);
  1171. memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
  1172. }
  1173. static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
  1174. {
  1175. cb->command = cpu_to_le16(cb_dump);
  1176. cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
  1177. offsetof(struct mem, dump_buf));
  1178. }
  1179. #define NCONFIG_AUTO_SWITCH 0x0080
  1180. #define MII_NSC_CONG MII_RESV1
  1181. #define NSC_CONG_ENABLE 0x0100
  1182. #define NSC_CONG_TXREADY 0x0400
  1183. #define ADVERTISE_FC_SUPPORTED 0x0400
  1184. static int e100_phy_init(struct nic *nic)
  1185. {
  1186. struct net_device *netdev = nic->netdev;
  1187. u32 addr;
  1188. u16 bmcr, stat, id_lo, id_hi, cong;
  1189. /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
  1190. for(addr = 0; addr < 32; addr++) {
  1191. nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
  1192. bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
  1193. stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
  1194. stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
  1195. if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
  1196. break;
  1197. }
  1198. DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
  1199. if(addr == 32)
  1200. return -EAGAIN;
  1201. /* Selected the phy and isolate the rest */
  1202. for(addr = 0; addr < 32; addr++) {
  1203. if(addr != nic->mii.phy_id) {
  1204. mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
  1205. } else {
  1206. bmcr = mdio_read(netdev, addr, MII_BMCR);
  1207. mdio_write(netdev, addr, MII_BMCR,
  1208. bmcr & ~BMCR_ISOLATE);
  1209. }
  1210. }
  1211. /* Get phy ID */
  1212. id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
  1213. id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
  1214. nic->phy = (u32)id_hi << 16 | (u32)id_lo;
  1215. DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
  1216. /* Handle National tx phys */
  1217. #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
  1218. if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
  1219. /* Disable congestion control */
  1220. cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
  1221. cong |= NSC_CONG_TXREADY;
  1222. cong &= ~NSC_CONG_ENABLE;
  1223. mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
  1224. }
  1225. if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
  1226. (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) {
  1227. /* enable/disable MDI/MDI-X auto-switching.
  1228. MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */
  1229. if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) ||
  1230. (nic->mac == mac_82551_10) || (nic->mii.force_media) ||
  1231. !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))
  1232. mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0);
  1233. else
  1234. mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH);
  1235. }
  1236. return 0;
  1237. }
  1238. static int e100_hw_init(struct nic *nic)
  1239. {
  1240. int err;
  1241. e100_hw_reset(nic);
  1242. DPRINTK(HW, ERR, "e100_hw_init\n");
  1243. if(!in_interrupt() && (err = e100_self_test(nic)))
  1244. return err;
  1245. if((err = e100_phy_init(nic)))
  1246. return err;
  1247. if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
  1248. return err;
  1249. if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
  1250. return err;
  1251. if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
  1252. return err;
  1253. if((err = e100_exec_cb(nic, NULL, e100_configure)))
  1254. return err;
  1255. if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
  1256. return err;
  1257. if((err = e100_exec_cmd(nic, cuc_dump_addr,
  1258. nic->dma_addr + offsetof(struct mem, stats))))
  1259. return err;
  1260. if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
  1261. return err;
  1262. e100_disable_irq(nic);
  1263. return 0;
  1264. }
  1265. static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
  1266. {
  1267. struct net_device *netdev = nic->netdev;
  1268. struct dev_mc_list *list = netdev->mc_list;
  1269. u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
  1270. cb->command = cpu_to_le16(cb_multi);
  1271. cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
  1272. for(i = 0; list && i < count; i++, list = list->next)
  1273. memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
  1274. ETH_ALEN);
  1275. }
  1276. static void e100_set_multicast_list(struct net_device *netdev)
  1277. {
  1278. struct nic *nic = netdev_priv(netdev);
  1279. DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
  1280. netdev->mc_count, netdev->flags);
  1281. if(netdev->flags & IFF_PROMISC)
  1282. nic->flags |= promiscuous;
  1283. else
  1284. nic->flags &= ~promiscuous;
  1285. if(netdev->flags & IFF_ALLMULTI ||
  1286. netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
  1287. nic->flags |= multicast_all;
  1288. else
  1289. nic->flags &= ~multicast_all;
  1290. e100_exec_cb(nic, NULL, e100_configure);
  1291. e100_exec_cb(nic, NULL, e100_multi);
  1292. }
  1293. static void e100_update_stats(struct nic *nic)
  1294. {
  1295. struct net_device_stats *ns = &nic->net_stats;
  1296. struct stats *s = &nic->mem->stats;
  1297. u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
  1298. (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
  1299. &s->complete;
  1300. /* Device's stats reporting may take several microseconds to
  1301. * complete, so where always waiting for results of the
  1302. * previous command. */
  1303. if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
  1304. *complete = 0;
  1305. nic->tx_frames = le32_to_cpu(s->tx_good_frames);
  1306. nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
  1307. ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
  1308. ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
  1309. ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
  1310. ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
  1311. ns->collisions += nic->tx_collisions;
  1312. ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
  1313. le32_to_cpu(s->tx_lost_crs);
  1314. ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
  1315. nic->rx_over_length_errors;
  1316. ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
  1317. ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
  1318. ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
  1319. ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
  1320. ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
  1321. ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
  1322. le32_to_cpu(s->rx_alignment_errors) +
  1323. le32_to_cpu(s->rx_short_frame_errors) +
  1324. le32_to_cpu(s->rx_cdt_errors);
  1325. nic->tx_deferred += le32_to_cpu(s->tx_deferred);
  1326. nic->tx_single_collisions +=
  1327. le32_to_cpu(s->tx_single_collisions);
  1328. nic->tx_multiple_collisions +=
  1329. le32_to_cpu(s->tx_multiple_collisions);
  1330. if(nic->mac >= mac_82558_D101_A4) {
  1331. nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
  1332. nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
  1333. nic->rx_fc_unsupported +=
  1334. le32_to_cpu(s->fc_rcv_unsupported);
  1335. if(nic->mac >= mac_82559_D101M) {
  1336. nic->tx_tco_frames +=
  1337. le16_to_cpu(s->xmt_tco_frames);
  1338. nic->rx_tco_frames +=
  1339. le16_to_cpu(s->rcv_tco_frames);
  1340. }
  1341. }
  1342. }
  1343. if(e100_exec_cmd(nic, cuc_dump_reset, 0))
  1344. DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
  1345. }
  1346. static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
  1347. {
  1348. /* Adjust inter-frame-spacing (IFS) between two transmits if
  1349. * we're getting collisions on a half-duplex connection. */
  1350. if(duplex == DUPLEX_HALF) {
  1351. u32 prev = nic->adaptive_ifs;
  1352. u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
  1353. if((nic->tx_frames / 32 < nic->tx_collisions) &&
  1354. (nic->tx_frames > min_frames)) {
  1355. if(nic->adaptive_ifs < 60)
  1356. nic->adaptive_ifs += 5;
  1357. } else if (nic->tx_frames < min_frames) {
  1358. if(nic->adaptive_ifs >= 5)
  1359. nic->adaptive_ifs -= 5;
  1360. }
  1361. if(nic->adaptive_ifs != prev)
  1362. e100_exec_cb(nic, NULL, e100_configure);
  1363. }
  1364. }
  1365. static void e100_watchdog(unsigned long data)
  1366. {
  1367. struct nic *nic = (struct nic *)data;
  1368. struct ethtool_cmd cmd;
  1369. DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
  1370. /* mii library handles link maintenance tasks */
  1371. mii_ethtool_gset(&nic->mii, &cmd);
  1372. if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
  1373. DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
  1374. cmd.speed == SPEED_100 ? "100" : "10",
  1375. cmd.duplex == DUPLEX_FULL ? "full" : "half");
  1376. } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
  1377. DPRINTK(LINK, INFO, "link down\n");
  1378. }
  1379. mii_check_link(&nic->mii);
  1380. /* Software generated interrupt to recover from (rare) Rx
  1381. * allocation failure.
  1382. * Unfortunately have to use a spinlock to not re-enable interrupts
  1383. * accidentally, due to hardware that shares a register between the
  1384. * interrupt mask bit and the SW Interrupt generation bit */
  1385. spin_lock_irq(&nic->cmd_lock);
  1386. writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
  1387. e100_write_flush(nic);
  1388. spin_unlock_irq(&nic->cmd_lock);
  1389. e100_update_stats(nic);
  1390. e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
  1391. if(nic->mac <= mac_82557_D100_C)
  1392. /* Issue a multicast command to workaround a 557 lock up */
  1393. e100_set_multicast_list(nic->netdev);
  1394. if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
  1395. /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
  1396. nic->flags |= ich_10h_workaround;
  1397. else
  1398. nic->flags &= ~ich_10h_workaround;
  1399. mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
  1400. }
  1401. static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
  1402. struct sk_buff *skb)
  1403. {
  1404. cb->command = nic->tx_command;
  1405. /* interrupt every 16 packets regardless of delay */
  1406. if((nic->cbs_avail & ~15) == nic->cbs_avail)
  1407. cb->command |= cpu_to_le16(cb_i);
  1408. cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
  1409. cb->u.tcb.tcb_byte_count = 0;
  1410. cb->u.tcb.threshold = nic->tx_threshold;
  1411. cb->u.tcb.tbd_count = 1;
  1412. cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
  1413. skb->data, skb->len, PCI_DMA_TODEVICE));
  1414. /* check for mapping failure? */
  1415. cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
  1416. }
  1417. static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1418. {
  1419. struct nic *nic = netdev_priv(netdev);
  1420. int err;
  1421. if(nic->flags & ich_10h_workaround) {
  1422. /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
  1423. Issue a NOP command followed by a 1us delay before
  1424. issuing the Tx command. */
  1425. if(e100_exec_cmd(nic, cuc_nop, 0))
  1426. DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
  1427. udelay(1);
  1428. }
  1429. err = e100_exec_cb(nic, skb, e100_xmit_prepare);
  1430. switch(err) {
  1431. case -ENOSPC:
  1432. /* We queued the skb, but now we're out of space. */
  1433. DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
  1434. netif_stop_queue(netdev);
  1435. break;
  1436. case -ENOMEM:
  1437. /* This is a hard error - log it. */
  1438. DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
  1439. netif_stop_queue(netdev);
  1440. return 1;
  1441. }
  1442. netdev->trans_start = jiffies;
  1443. return 0;
  1444. }
  1445. static int e100_tx_clean(struct nic *nic)
  1446. {
  1447. struct cb *cb;
  1448. int tx_cleaned = 0;
  1449. spin_lock(&nic->cb_lock);
  1450. DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
  1451. nic->cb_to_clean->status);
  1452. /* Clean CBs marked complete */
  1453. for(cb = nic->cb_to_clean;
  1454. cb->status & cpu_to_le16(cb_complete);
  1455. cb = nic->cb_to_clean = cb->next) {
  1456. if(likely(cb->skb != NULL)) {
  1457. nic->net_stats.tx_packets++;
  1458. nic->net_stats.tx_bytes += cb->skb->len;
  1459. pci_unmap_single(nic->pdev,
  1460. le32_to_cpu(cb->u.tcb.tbd.buf_addr),
  1461. le16_to_cpu(cb->u.tcb.tbd.size),
  1462. PCI_DMA_TODEVICE);
  1463. dev_kfree_skb_any(cb->skb);
  1464. cb->skb = NULL;
  1465. tx_cleaned = 1;
  1466. }
  1467. cb->status = 0;
  1468. nic->cbs_avail++;
  1469. }
  1470. spin_unlock(&nic->cb_lock);
  1471. /* Recover from running out of Tx resources in xmit_frame */
  1472. if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
  1473. netif_wake_queue(nic->netdev);
  1474. return tx_cleaned;
  1475. }
  1476. static void e100_clean_cbs(struct nic *nic)
  1477. {
  1478. if(nic->cbs) {
  1479. while(nic->cbs_avail != nic->params.cbs.count) {
  1480. struct cb *cb = nic->cb_to_clean;
  1481. if(cb->skb) {
  1482. pci_unmap_single(nic->pdev,
  1483. le32_to_cpu(cb->u.tcb.tbd.buf_addr),
  1484. le16_to_cpu(cb->u.tcb.tbd.size),
  1485. PCI_DMA_TODEVICE);
  1486. dev_kfree_skb(cb->skb);
  1487. }
  1488. nic->cb_to_clean = nic->cb_to_clean->next;
  1489. nic->cbs_avail++;
  1490. }
  1491. pci_free_consistent(nic->pdev,
  1492. sizeof(struct cb) * nic->params.cbs.count,
  1493. nic->cbs, nic->cbs_dma_addr);
  1494. nic->cbs = NULL;
  1495. nic->cbs_avail = 0;
  1496. }
  1497. nic->cuc_cmd = cuc_start;
  1498. nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
  1499. nic->cbs;
  1500. }
  1501. static int e100_alloc_cbs(struct nic *nic)
  1502. {
  1503. struct cb *cb;
  1504. unsigned int i, count = nic->params.cbs.count;
  1505. nic->cuc_cmd = cuc_start;
  1506. nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
  1507. nic->cbs_avail = 0;
  1508. nic->cbs = pci_alloc_consistent(nic->pdev,
  1509. sizeof(struct cb) * count, &nic->cbs_dma_addr);
  1510. if(!nic->cbs)
  1511. return -ENOMEM;
  1512. for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
  1513. cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
  1514. cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
  1515. cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
  1516. cb->link = cpu_to_le32(nic->cbs_dma_addr +
  1517. ((i+1) % count) * sizeof(struct cb));
  1518. cb->skb = NULL;
  1519. }
  1520. nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
  1521. nic->cbs_avail = count;
  1522. return 0;
  1523. }
  1524. static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
  1525. {
  1526. if(!nic->rxs) return;
  1527. if(RU_SUSPENDED != nic->ru_running) return;
  1528. /* handle init time starts */
  1529. if(!rx) rx = nic->rxs;
  1530. /* (Re)start RU if suspended or idle and RFA is non-NULL */
  1531. if(rx->skb) {
  1532. e100_exec_cmd(nic, ruc_start, rx->dma_addr);
  1533. nic->ru_running = RU_RUNNING;
  1534. }
  1535. }
  1536. #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
  1537. static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
  1538. {
  1539. if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
  1540. return -ENOMEM;
  1541. /* Align, init, and map the RFD. */
  1542. rx->skb->dev = nic->netdev;
  1543. skb_reserve(rx->skb, NET_IP_ALIGN);
  1544. memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
  1545. rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
  1546. RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
  1547. if(pci_dma_mapping_error(rx->dma_addr)) {
  1548. dev_kfree_skb_any(rx->skb);
  1549. rx->skb = NULL;
  1550. rx->dma_addr = 0;
  1551. return -ENOMEM;
  1552. }
  1553. /* Link the RFD to end of RFA by linking previous RFD to
  1554. * this one, and clearing EL bit of previous. */
  1555. if(rx->prev->skb) {
  1556. struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
  1557. put_unaligned(cpu_to_le32(rx->dma_addr),
  1558. (u32 *)&prev_rfd->link);
  1559. wmb();
  1560. prev_rfd->command &= ~cpu_to_le16(cb_el);
  1561. pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
  1562. sizeof(struct rfd), PCI_DMA_TODEVICE);
  1563. }
  1564. return 0;
  1565. }
  1566. static int e100_rx_indicate(struct nic *nic, struct rx *rx,
  1567. unsigned int *work_done, unsigned int work_to_do)
  1568. {
  1569. struct sk_buff *skb = rx->skb;
  1570. struct rfd *rfd = (struct rfd *)skb->data;
  1571. u16 rfd_status, actual_size;
  1572. if(unlikely(work_done && *work_done >= work_to_do))
  1573. return -EAGAIN;
  1574. /* Need to sync before taking a peek at cb_complete bit */
  1575. pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
  1576. sizeof(struct rfd), PCI_DMA_FROMDEVICE);
  1577. rfd_status = le16_to_cpu(rfd->status);
  1578. DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
  1579. /* If data isn't ready, nothing to indicate */
  1580. if(unlikely(!(rfd_status & cb_complete)))
  1581. return -ENODATA;
  1582. /* Get actual data size */
  1583. actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
  1584. if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
  1585. actual_size = RFD_BUF_LEN - sizeof(struct rfd);
  1586. /* Get data */
  1587. pci_unmap_single(nic->pdev, rx->dma_addr,
  1588. RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
  1589. /* this allows for a fast restart without re-enabling interrupts */
  1590. if(le16_to_cpu(rfd->command) & cb_el)
  1591. nic->ru_running = RU_SUSPENDED;
  1592. /* Pull off the RFD and put the actual data (minus eth hdr) */
  1593. skb_reserve(skb, sizeof(struct rfd));
  1594. skb_put(skb, actual_size);
  1595. skb->protocol = eth_type_trans(skb, nic->netdev);
  1596. if(unlikely(!(rfd_status & cb_ok))) {
  1597. /* Don't indicate if hardware indicates errors */
  1598. dev_kfree_skb_any(skb);
  1599. } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
  1600. /* Don't indicate oversized frames */
  1601. nic->rx_over_length_errors++;
  1602. dev_kfree_skb_any(skb);
  1603. } else {
  1604. nic->net_stats.rx_packets++;
  1605. nic->net_stats.rx_bytes += actual_size;
  1606. nic->netdev->last_rx = jiffies;
  1607. netif_receive_skb(skb);
  1608. if(work_done)
  1609. (*work_done)++;
  1610. }
  1611. rx->skb = NULL;
  1612. return 0;
  1613. }
  1614. static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
  1615. unsigned int work_to_do)
  1616. {
  1617. struct rx *rx;
  1618. int restart_required = 0;
  1619. struct rx *rx_to_start = NULL;
  1620. /* are we already rnr? then pay attention!!! this ensures that
  1621. * the state machine progression never allows a start with a
  1622. * partially cleaned list, avoiding a race between hardware
  1623. * and rx_to_clean when in NAPI mode */
  1624. if(RU_SUSPENDED == nic->ru_running)
  1625. restart_required = 1;
  1626. /* Indicate newly arrived packets */
  1627. for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
  1628. int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
  1629. if(-EAGAIN == err) {
  1630. /* hit quota so have more work to do, restart once
  1631. * cleanup is complete */
  1632. restart_required = 0;
  1633. break;
  1634. } else if(-ENODATA == err)
  1635. break; /* No more to clean */
  1636. }
  1637. /* save our starting point as the place we'll restart the receiver */
  1638. if(restart_required)
  1639. rx_to_start = nic->rx_to_clean;
  1640. /* Alloc new skbs to refill list */
  1641. for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
  1642. if(unlikely(e100_rx_alloc_skb(nic, rx)))
  1643. break; /* Better luck next time (see watchdog) */
  1644. }
  1645. if(restart_required) {
  1646. // ack the rnr?
  1647. writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
  1648. e100_start_receiver(nic, rx_to_start);
  1649. if(work_done)
  1650. (*work_done)++;
  1651. }
  1652. }
  1653. static void e100_rx_clean_list(struct nic *nic)
  1654. {
  1655. struct rx *rx;
  1656. unsigned int i, count = nic->params.rfds.count;
  1657. nic->ru_running = RU_UNINITIALIZED;
  1658. if(nic->rxs) {
  1659. for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
  1660. if(rx->skb) {
  1661. pci_unmap_single(nic->pdev, rx->dma_addr,
  1662. RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
  1663. dev_kfree_skb(rx->skb);
  1664. }
  1665. }
  1666. kfree(nic->rxs);
  1667. nic->rxs = NULL;
  1668. }
  1669. nic->rx_to_use = nic->rx_to_clean = NULL;
  1670. }
  1671. static int e100_rx_alloc_list(struct nic *nic)
  1672. {
  1673. struct rx *rx;
  1674. unsigned int i, count = nic->params.rfds.count;
  1675. nic->rx_to_use = nic->rx_to_clean = NULL;
  1676. nic->ru_running = RU_UNINITIALIZED;
  1677. if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
  1678. return -ENOMEM;
  1679. memset(nic->rxs, 0, sizeof(struct rx) * count);
  1680. for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
  1681. rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
  1682. rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
  1683. if(e100_rx_alloc_skb(nic, rx)) {
  1684. e100_rx_clean_list(nic);
  1685. return -ENOMEM;
  1686. }
  1687. }
  1688. nic->rx_to_use = nic->rx_to_clean = nic->rxs;
  1689. nic->ru_running = RU_SUSPENDED;
  1690. return 0;
  1691. }
  1692. static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
  1693. {
  1694. struct net_device *netdev = dev_id;
  1695. struct nic *nic = netdev_priv(netdev);
  1696. u8 stat_ack = readb(&nic->csr->scb.stat_ack);
  1697. DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
  1698. if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
  1699. stat_ack == stat_ack_not_present) /* Hardware is ejected */
  1700. return IRQ_NONE;
  1701. /* Ack interrupt(s) */
  1702. writeb(stat_ack, &nic->csr->scb.stat_ack);
  1703. /* We hit Receive No Resource (RNR); restart RU after cleaning */
  1704. if(stat_ack & stat_ack_rnr)
  1705. nic->ru_running = RU_SUSPENDED;
  1706. if(likely(netif_rx_schedule_prep(netdev))) {
  1707. e100_disable_irq(nic);
  1708. __netif_rx_schedule(netdev);
  1709. }
  1710. return IRQ_HANDLED;
  1711. }
  1712. static int e100_poll(struct net_device *netdev, int *budget)
  1713. {
  1714. struct nic *nic = netdev_priv(netdev);
  1715. unsigned int work_to_do = min(netdev->quota, *budget);
  1716. unsigned int work_done = 0;
  1717. int tx_cleaned;
  1718. e100_rx_clean(nic, &work_done, work_to_do);
  1719. tx_cleaned = e100_tx_clean(nic);
  1720. /* If no Rx and Tx cleanup work was done, exit polling mode. */
  1721. if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
  1722. netif_rx_complete(netdev);
  1723. e100_enable_irq(nic);
  1724. return 0;
  1725. }
  1726. *budget -= work_done;
  1727. netdev->quota -= work_done;
  1728. return 1;
  1729. }
  1730. #ifdef CONFIG_NET_POLL_CONTROLLER
  1731. static void e100_netpoll(struct net_device *netdev)
  1732. {
  1733. struct nic *nic = netdev_priv(netdev);
  1734. e100_disable_irq(nic);
  1735. e100_intr(nic->pdev->irq, netdev, NULL);
  1736. e100_tx_clean(nic);
  1737. e100_enable_irq(nic);
  1738. }
  1739. #endif
  1740. static struct net_device_stats *e100_get_stats(struct net_device *netdev)
  1741. {
  1742. struct nic *nic = netdev_priv(netdev);
  1743. return &nic->net_stats;
  1744. }
  1745. static int e100_set_mac_address(struct net_device *netdev, void *p)
  1746. {
  1747. struct nic *nic = netdev_priv(netdev);
  1748. struct sockaddr *addr = p;
  1749. if (!is_valid_ether_addr(addr->sa_data))
  1750. return -EADDRNOTAVAIL;
  1751. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1752. e100_exec_cb(nic, NULL, e100_setup_iaaddr);
  1753. return 0;
  1754. }
  1755. static int e100_change_mtu(struct net_device *netdev, int new_mtu)
  1756. {
  1757. if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
  1758. return -EINVAL;
  1759. netdev->mtu = new_mtu;
  1760. return 0;
  1761. }
  1762. #ifdef CONFIG_PM
  1763. static int e100_asf(struct nic *nic)
  1764. {
  1765. /* ASF can be enabled from eeprom */
  1766. return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
  1767. (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
  1768. !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
  1769. ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
  1770. }
  1771. #endif
  1772. static int e100_up(struct nic *nic)
  1773. {
  1774. int err;
  1775. if((err = e100_rx_alloc_list(nic)))
  1776. return err;
  1777. if((err = e100_alloc_cbs(nic)))
  1778. goto err_rx_clean_list;
  1779. if((err = e100_hw_init(nic)))
  1780. goto err_clean_cbs;
  1781. e100_set_multicast_list(nic->netdev);
  1782. e100_start_receiver(nic, NULL);
  1783. mod_timer(&nic->watchdog, jiffies);
  1784. if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
  1785. nic->netdev->name, nic->netdev)))
  1786. goto err_no_irq;
  1787. netif_wake_queue(nic->netdev);
  1788. netif_poll_enable(nic->netdev);
  1789. /* enable ints _after_ enabling poll, preventing a race between
  1790. * disable ints+schedule */
  1791. e100_enable_irq(nic);
  1792. return 0;
  1793. err_no_irq:
  1794. del_timer_sync(&nic->watchdog);
  1795. err_clean_cbs:
  1796. e100_clean_cbs(nic);
  1797. err_rx_clean_list:
  1798. e100_rx_clean_list(nic);
  1799. return err;
  1800. }
  1801. static void e100_down(struct nic *nic)
  1802. {
  1803. /* wait here for poll to complete */
  1804. netif_poll_disable(nic->netdev);
  1805. netif_stop_queue(nic->netdev);
  1806. e100_hw_reset(nic);
  1807. free_irq(nic->pdev->irq, nic->netdev);
  1808. del_timer_sync(&nic->watchdog);
  1809. netif_carrier_off(nic->netdev);
  1810. e100_clean_cbs(nic);
  1811. e100_rx_clean_list(nic);
  1812. }
  1813. static void e100_tx_timeout(struct net_device *netdev)
  1814. {
  1815. struct nic *nic = netdev_priv(netdev);
  1816. /* Reset outside of interrupt context, to avoid request_irq
  1817. * in interrupt context */
  1818. schedule_work(&nic->tx_timeout_task);
  1819. }
  1820. static void e100_tx_timeout_task(struct net_device *netdev)
  1821. {
  1822. struct nic *nic = netdev_priv(netdev);
  1823. DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
  1824. readb(&nic->csr->scb.status));
  1825. e100_down(netdev_priv(netdev));
  1826. e100_up(netdev_priv(netdev));
  1827. }
  1828. static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
  1829. {
  1830. int err;
  1831. struct sk_buff *skb;
  1832. /* Use driver resources to perform internal MAC or PHY
  1833. * loopback test. A single packet is prepared and transmitted
  1834. * in loopback mode, and the test passes if the received
  1835. * packet compares byte-for-byte to the transmitted packet. */
  1836. if((err = e100_rx_alloc_list(nic)))
  1837. return err;
  1838. if((err = e100_alloc_cbs(nic)))
  1839. goto err_clean_rx;
  1840. /* ICH PHY loopback is broken so do MAC loopback instead */
  1841. if(nic->flags & ich && loopback_mode == lb_phy)
  1842. loopback_mode = lb_mac;
  1843. nic->loopback = loopback_mode;
  1844. if((err = e100_hw_init(nic)))
  1845. goto err_loopback_none;
  1846. if(loopback_mode == lb_phy)
  1847. mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
  1848. BMCR_LOOPBACK);
  1849. e100_start_receiver(nic, NULL);
  1850. if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
  1851. err = -ENOMEM;
  1852. goto err_loopback_none;
  1853. }
  1854. skb_put(skb, ETH_DATA_LEN);
  1855. memset(skb->data, 0xFF, ETH_DATA_LEN);
  1856. e100_xmit_frame(skb, nic->netdev);
  1857. msleep(10);
  1858. pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
  1859. RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
  1860. if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
  1861. skb->data, ETH_DATA_LEN))
  1862. err = -EAGAIN;
  1863. err_loopback_none:
  1864. mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
  1865. nic->loopback = lb_none;
  1866. e100_clean_cbs(nic);
  1867. e100_hw_reset(nic);
  1868. err_clean_rx:
  1869. e100_rx_clean_list(nic);
  1870. return err;
  1871. }
  1872. #define MII_LED_CONTROL 0x1B
  1873. static void e100_blink_led(unsigned long data)
  1874. {
  1875. struct nic *nic = (struct nic *)data;
  1876. enum led_state {
  1877. led_on = 0x01,
  1878. led_off = 0x04,
  1879. led_on_559 = 0x05,
  1880. led_on_557 = 0x07,
  1881. };
  1882. nic->leds = (nic->leds & led_on) ? led_off :
  1883. (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
  1884. mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
  1885. mod_timer(&nic->blink_timer, jiffies + HZ / 4);
  1886. }
  1887. static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
  1888. {
  1889. struct nic *nic = netdev_priv(netdev);
  1890. return mii_ethtool_gset(&nic->mii, cmd);
  1891. }
  1892. static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
  1893. {
  1894. struct nic *nic = netdev_priv(netdev);
  1895. int err;
  1896. mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
  1897. err = mii_ethtool_sset(&nic->mii, cmd);
  1898. e100_exec_cb(nic, NULL, e100_configure);
  1899. return err;
  1900. }
  1901. static void e100_get_drvinfo(struct net_device *netdev,
  1902. struct ethtool_drvinfo *info)
  1903. {
  1904. struct nic *nic = netdev_priv(netdev);
  1905. strcpy(info->driver, DRV_NAME);
  1906. strcpy(info->version, DRV_VERSION);
  1907. strcpy(info->fw_version, "N/A");
  1908. strcpy(info->bus_info, pci_name(nic->pdev));
  1909. }
  1910. static int e100_get_regs_len(struct net_device *netdev)
  1911. {
  1912. struct nic *nic = netdev_priv(netdev);
  1913. #define E100_PHY_REGS 0x1C
  1914. #define E100_REGS_LEN 1 + E100_PHY_REGS + \
  1915. sizeof(nic->mem->dump_buf) / sizeof(u32)
  1916. return E100_REGS_LEN * sizeof(u32);
  1917. }
  1918. static void e100_get_regs(struct net_device *netdev,
  1919. struct ethtool_regs *regs, void *p)
  1920. {
  1921. struct nic *nic = netdev_priv(netdev);
  1922. u32 *buff = p;
  1923. int i;
  1924. regs->version = (1 << 24) | nic->rev_id;
  1925. buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
  1926. readb(&nic->csr->scb.cmd_lo) << 16 |
  1927. readw(&nic->csr->scb.status);
  1928. for(i = E100_PHY_REGS; i >= 0; i--)
  1929. buff[1 + E100_PHY_REGS - i] =
  1930. mdio_read(netdev, nic->mii.phy_id, i);
  1931. memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
  1932. e100_exec_cb(nic, NULL, e100_dump);
  1933. msleep(10);
  1934. memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
  1935. sizeof(nic->mem->dump_buf));
  1936. }
  1937. static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1938. {
  1939. struct nic *nic = netdev_priv(netdev);
  1940. wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
  1941. wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
  1942. }
  1943. static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1944. {
  1945. struct nic *nic = netdev_priv(netdev);
  1946. if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  1947. return -EOPNOTSUPP;
  1948. if(wol->wolopts)
  1949. nic->flags |= wol_magic;
  1950. else
  1951. nic->flags &= ~wol_magic;
  1952. e100_exec_cb(nic, NULL, e100_configure);
  1953. return 0;
  1954. }
  1955. static u32 e100_get_msglevel(struct net_device *netdev)
  1956. {
  1957. struct nic *nic = netdev_priv(netdev);
  1958. return nic->msg_enable;
  1959. }
  1960. static void e100_set_msglevel(struct net_device *netdev, u32 value)
  1961. {
  1962. struct nic *nic = netdev_priv(netdev);
  1963. nic->msg_enable = value;
  1964. }
  1965. static int e100_nway_reset(struct net_device *netdev)
  1966. {
  1967. struct nic *nic = netdev_priv(netdev);
  1968. return mii_nway_restart(&nic->mii);
  1969. }
  1970. static u32 e100_get_link(struct net_device *netdev)
  1971. {
  1972. struct nic *nic = netdev_priv(netdev);
  1973. return mii_link_ok(&nic->mii);
  1974. }
  1975. static int e100_get_eeprom_len(struct net_device *netdev)
  1976. {
  1977. struct nic *nic = netdev_priv(netdev);
  1978. return nic->eeprom_wc << 1;
  1979. }
  1980. #define E100_EEPROM_MAGIC 0x1234
  1981. static int e100_get_eeprom(struct net_device *netdev,
  1982. struct ethtool_eeprom *eeprom, u8 *bytes)
  1983. {
  1984. struct nic *nic = netdev_priv(netdev);
  1985. eeprom->magic = E100_EEPROM_MAGIC;
  1986. memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
  1987. return 0;
  1988. }
  1989. static int e100_set_eeprom(struct net_device *netdev,
  1990. struct ethtool_eeprom *eeprom, u8 *bytes)
  1991. {
  1992. struct nic *nic = netdev_priv(netdev);
  1993. if(eeprom->magic != E100_EEPROM_MAGIC)
  1994. return -EINVAL;
  1995. memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
  1996. return e100_eeprom_save(nic, eeprom->offset >> 1,
  1997. (eeprom->len >> 1) + 1);
  1998. }
  1999. static void e100_get_ringparam(struct net_device *netdev,
  2000. struct ethtool_ringparam *ring)
  2001. {
  2002. struct nic *nic = netdev_priv(netdev);
  2003. struct param_range *rfds = &nic->params.rfds;
  2004. struct param_range *cbs = &nic->params.cbs;
  2005. ring->rx_max_pending = rfds->max;
  2006. ring->tx_max_pending = cbs->max;
  2007. ring->rx_mini_max_pending = 0;
  2008. ring->rx_jumbo_max_pending = 0;
  2009. ring->rx_pending = rfds->count;
  2010. ring->tx_pending = cbs->count;
  2011. ring->rx_mini_pending = 0;
  2012. ring->rx_jumbo_pending = 0;
  2013. }
  2014. static int e100_set_ringparam(struct net_device *netdev,
  2015. struct ethtool_ringparam *ring)
  2016. {
  2017. struct nic *nic = netdev_priv(netdev);
  2018. struct param_range *rfds = &nic->params.rfds;
  2019. struct param_range *cbs = &nic->params.cbs;
  2020. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  2021. return -EINVAL;
  2022. if(netif_running(netdev))
  2023. e100_down(nic);
  2024. rfds->count = max(ring->rx_pending, rfds->min);
  2025. rfds->count = min(rfds->count, rfds->max);
  2026. cbs->count = max(ring->tx_pending, cbs->min);
  2027. cbs->count = min(cbs->count, cbs->max);
  2028. DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
  2029. rfds->count, cbs->count);
  2030. if(netif_running(netdev))
  2031. e100_up(nic);
  2032. return 0;
  2033. }
  2034. static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
  2035. "Link test (on/offline)",
  2036. "Eeprom test (on/offline)",
  2037. "Self test (offline)",
  2038. "Mac loopback (offline)",
  2039. "Phy loopback (offline)",
  2040. };
  2041. #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
  2042. static int e100_diag_test_count(struct net_device *netdev)
  2043. {
  2044. return E100_TEST_LEN;
  2045. }
  2046. static void e100_diag_test(struct net_device *netdev,
  2047. struct ethtool_test *test, u64 *data)
  2048. {
  2049. struct ethtool_cmd cmd;
  2050. struct nic *nic = netdev_priv(netdev);
  2051. int i, err;
  2052. memset(data, 0, E100_TEST_LEN * sizeof(u64));
  2053. data[0] = !mii_link_ok(&nic->mii);
  2054. data[1] = e100_eeprom_load(nic);
  2055. if(test->flags & ETH_TEST_FL_OFFLINE) {
  2056. /* save speed, duplex & autoneg settings */
  2057. err = mii_ethtool_gset(&nic->mii, &cmd);
  2058. if(netif_running(netdev))
  2059. e100_down(nic);
  2060. data[2] = e100_self_test(nic);
  2061. data[3] = e100_loopback_test(nic, lb_mac);
  2062. data[4] = e100_loopback_test(nic, lb_phy);
  2063. /* restore speed, duplex & autoneg settings */
  2064. err = mii_ethtool_sset(&nic->mii, &cmd);
  2065. if(netif_running(netdev))
  2066. e100_up(nic);
  2067. }
  2068. for(i = 0; i < E100_TEST_LEN; i++)
  2069. test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
  2070. msleep_interruptible(4 * 1000);
  2071. }
  2072. static int e100_phys_id(struct net_device *netdev, u32 data)
  2073. {
  2074. struct nic *nic = netdev_priv(netdev);
  2075. if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  2076. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  2077. mod_timer(&nic->blink_timer, jiffies);
  2078. msleep_interruptible(data * 1000);
  2079. del_timer_sync(&nic->blink_timer);
  2080. mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
  2081. return 0;
  2082. }
  2083. static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
  2084. "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
  2085. "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
  2086. "rx_length_errors", "rx_over_errors", "rx_crc_errors",
  2087. "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
  2088. "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
  2089. "tx_heartbeat_errors", "tx_window_errors",
  2090. /* device-specific stats */
  2091. "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
  2092. "tx_flow_control_pause", "rx_flow_control_pause",
  2093. "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
  2094. };
  2095. #define E100_NET_STATS_LEN 21
  2096. #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
  2097. static int e100_get_stats_count(struct net_device *netdev)
  2098. {
  2099. return E100_STATS_LEN;
  2100. }
  2101. static void e100_get_ethtool_stats(struct net_device *netdev,
  2102. struct ethtool_stats *stats, u64 *data)
  2103. {
  2104. struct nic *nic = netdev_priv(netdev);
  2105. int i;
  2106. for(i = 0; i < E100_NET_STATS_LEN; i++)
  2107. data[i] = ((unsigned long *)&nic->net_stats)[i];
  2108. data[i++] = nic->tx_deferred;
  2109. data[i++] = nic->tx_single_collisions;
  2110. data[i++] = nic->tx_multiple_collisions;
  2111. data[i++] = nic->tx_fc_pause;
  2112. data[i++] = nic->rx_fc_pause;
  2113. data[i++] = nic->rx_fc_unsupported;
  2114. data[i++] = nic->tx_tco_frames;
  2115. data[i++] = nic->rx_tco_frames;
  2116. }
  2117. static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2118. {
  2119. switch(stringset) {
  2120. case ETH_SS_TEST:
  2121. memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
  2122. break;
  2123. case ETH_SS_STATS:
  2124. memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
  2125. break;
  2126. }
  2127. }
  2128. static struct ethtool_ops e100_ethtool_ops = {
  2129. .get_settings = e100_get_settings,
  2130. .set_settings = e100_set_settings,
  2131. .get_drvinfo = e100_get_drvinfo,
  2132. .get_regs_len = e100_get_regs_len,
  2133. .get_regs = e100_get_regs,
  2134. .get_wol = e100_get_wol,
  2135. .set_wol = e100_set_wol,
  2136. .get_msglevel = e100_get_msglevel,
  2137. .set_msglevel = e100_set_msglevel,
  2138. .nway_reset = e100_nway_reset,
  2139. .get_link = e100_get_link,
  2140. .get_eeprom_len = e100_get_eeprom_len,
  2141. .get_eeprom = e100_get_eeprom,
  2142. .set_eeprom = e100_set_eeprom,
  2143. .get_ringparam = e100_get_ringparam,
  2144. .set_ringparam = e100_set_ringparam,
  2145. .self_test_count = e100_diag_test_count,
  2146. .self_test = e100_diag_test,
  2147. .get_strings = e100_get_strings,
  2148. .phys_id = e100_phys_id,
  2149. .get_stats_count = e100_get_stats_count,
  2150. .get_ethtool_stats = e100_get_ethtool_stats,
  2151. .get_perm_addr = ethtool_op_get_perm_addr,
  2152. };
  2153. static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2154. {
  2155. struct nic *nic = netdev_priv(netdev);
  2156. return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
  2157. }
  2158. static int e100_alloc(struct nic *nic)
  2159. {
  2160. nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
  2161. &nic->dma_addr);
  2162. return nic->mem ? 0 : -ENOMEM;
  2163. }
  2164. static void e100_free(struct nic *nic)
  2165. {
  2166. if(nic->mem) {
  2167. pci_free_consistent(nic->pdev, sizeof(struct mem),
  2168. nic->mem, nic->dma_addr);
  2169. nic->mem = NULL;
  2170. }
  2171. }
  2172. static int e100_open(struct net_device *netdev)
  2173. {
  2174. struct nic *nic = netdev_priv(netdev);
  2175. int err = 0;
  2176. netif_carrier_off(netdev);
  2177. if((err = e100_up(nic)))
  2178. DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
  2179. return err;
  2180. }
  2181. static int e100_close(struct net_device *netdev)
  2182. {
  2183. e100_down(netdev_priv(netdev));
  2184. return 0;
  2185. }
  2186. static int __devinit e100_probe(struct pci_dev *pdev,
  2187. const struct pci_device_id *ent)
  2188. {
  2189. struct net_device *netdev;
  2190. struct nic *nic;
  2191. int err;
  2192. if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
  2193. if(((1 << debug) - 1) & NETIF_MSG_PROBE)
  2194. printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
  2195. return -ENOMEM;
  2196. }
  2197. netdev->open = e100_open;
  2198. netdev->stop = e100_close;
  2199. netdev->hard_start_xmit = e100_xmit_frame;
  2200. netdev->get_stats = e100_get_stats;
  2201. netdev->set_multicast_list = e100_set_multicast_list;
  2202. netdev->set_mac_address = e100_set_mac_address;
  2203. netdev->change_mtu = e100_change_mtu;
  2204. netdev->do_ioctl = e100_do_ioctl;
  2205. SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
  2206. netdev->tx_timeout = e100_tx_timeout;
  2207. netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
  2208. netdev->poll = e100_poll;
  2209. netdev->weight = E100_NAPI_WEIGHT;
  2210. #ifdef CONFIG_NET_POLL_CONTROLLER
  2211. netdev->poll_controller = e100_netpoll;
  2212. #endif
  2213. strcpy(netdev->name, pci_name(pdev));
  2214. nic = netdev_priv(netdev);
  2215. nic->netdev = netdev;
  2216. nic->pdev = pdev;
  2217. nic->msg_enable = (1 << debug) - 1;
  2218. pci_set_drvdata(pdev, netdev);
  2219. if((err = pci_enable_device(pdev))) {
  2220. DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
  2221. goto err_out_free_dev;
  2222. }
  2223. if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  2224. DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
  2225. "base address, aborting.\n");
  2226. err = -ENODEV;
  2227. goto err_out_disable_pdev;
  2228. }
  2229. if((err = pci_request_regions(pdev, DRV_NAME))) {
  2230. DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
  2231. goto err_out_disable_pdev;
  2232. }
  2233. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2234. DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
  2235. goto err_out_free_res;
  2236. }
  2237. SET_MODULE_OWNER(netdev);
  2238. SET_NETDEV_DEV(netdev, &pdev->dev);
  2239. nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
  2240. if(!nic->csr) {
  2241. DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
  2242. err = -ENOMEM;
  2243. goto err_out_free_res;
  2244. }
  2245. if(ent->driver_data)
  2246. nic->flags |= ich;
  2247. else
  2248. nic->flags &= ~ich;
  2249. e100_get_defaults(nic);
  2250. /* locks must be initialized before calling hw_reset */
  2251. spin_lock_init(&nic->cb_lock);
  2252. spin_lock_init(&nic->cmd_lock);
  2253. spin_lock_init(&nic->mdio_lock);
  2254. /* Reset the device before pci_set_master() in case device is in some
  2255. * funky state and has an interrupt pending - hint: we don't have the
  2256. * interrupt handler registered yet. */
  2257. e100_hw_reset(nic);
  2258. pci_set_master(pdev);
  2259. init_timer(&nic->watchdog);
  2260. nic->watchdog.function = e100_watchdog;
  2261. nic->watchdog.data = (unsigned long)nic;
  2262. init_timer(&nic->blink_timer);
  2263. nic->blink_timer.function = e100_blink_led;
  2264. nic->blink_timer.data = (unsigned long)nic;
  2265. INIT_WORK(&nic->tx_timeout_task,
  2266. (void (*)(void *))e100_tx_timeout_task, netdev);
  2267. if((err = e100_alloc(nic))) {
  2268. DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
  2269. goto err_out_iounmap;
  2270. }
  2271. if((err = e100_eeprom_load(nic)))
  2272. goto err_out_free;
  2273. e100_phy_init(nic);
  2274. memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
  2275. memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
  2276. if(!is_valid_ether_addr(netdev->perm_addr)) {
  2277. DPRINTK(PROBE, ERR, "Invalid MAC address from "
  2278. "EEPROM, aborting.\n");
  2279. err = -EAGAIN;
  2280. goto err_out_free;
  2281. }
  2282. /* Wol magic packet can be enabled from eeprom */
  2283. if((nic->mac >= mac_82558_D101_A4) &&
  2284. (nic->eeprom[eeprom_id] & eeprom_id_wol))
  2285. nic->flags |= wol_magic;
  2286. /* ack any pending wake events, disable PME */
  2287. err = pci_enable_wake(pdev, 0, 0);
  2288. if (err)
  2289. DPRINTK(PROBE, ERR, "Error clearing wake event\n");
  2290. strcpy(netdev->name, "eth%d");
  2291. if((err = register_netdev(netdev))) {
  2292. DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
  2293. goto err_out_free;
  2294. }
  2295. DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
  2296. "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
  2297. pci_resource_start(pdev, 0), pdev->irq,
  2298. netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
  2299. netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
  2300. return 0;
  2301. err_out_free:
  2302. e100_free(nic);
  2303. err_out_iounmap:
  2304. iounmap(nic->csr);
  2305. err_out_free_res:
  2306. pci_release_regions(pdev);
  2307. err_out_disable_pdev:
  2308. pci_disable_device(pdev);
  2309. err_out_free_dev:
  2310. pci_set_drvdata(pdev, NULL);
  2311. free_netdev(netdev);
  2312. return err;
  2313. }
  2314. static void __devexit e100_remove(struct pci_dev *pdev)
  2315. {
  2316. struct net_device *netdev = pci_get_drvdata(pdev);
  2317. if(netdev) {
  2318. struct nic *nic = netdev_priv(netdev);
  2319. unregister_netdev(netdev);
  2320. e100_free(nic);
  2321. iounmap(nic->csr);
  2322. free_netdev(netdev);
  2323. pci_release_regions(pdev);
  2324. pci_disable_device(pdev);
  2325. pci_set_drvdata(pdev, NULL);
  2326. }
  2327. }
  2328. #ifdef CONFIG_PM
  2329. static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
  2330. {
  2331. struct net_device *netdev = pci_get_drvdata(pdev);
  2332. struct nic *nic = netdev_priv(netdev);
  2333. int retval;
  2334. if(netif_running(netdev))
  2335. e100_down(nic);
  2336. e100_hw_reset(nic);
  2337. netif_device_detach(netdev);
  2338. pci_save_state(pdev);
  2339. retval = pci_enable_wake(pdev, pci_choose_state(pdev, state),
  2340. nic->flags & (wol_magic | e100_asf(nic)));
  2341. if (retval)
  2342. DPRINTK(PROBE,ERR, "Error enabling wake\n");
  2343. pci_disable_device(pdev);
  2344. retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2345. if (retval)
  2346. DPRINTK(PROBE,ERR, "Error %d setting power state\n", retval);
  2347. return 0;
  2348. }
  2349. static int e100_resume(struct pci_dev *pdev)
  2350. {
  2351. struct net_device *netdev = pci_get_drvdata(pdev);
  2352. struct nic *nic = netdev_priv(netdev);
  2353. int retval;
  2354. retval = pci_set_power_state(pdev, PCI_D0);
  2355. if (retval)
  2356. DPRINTK(PROBE,ERR, "Error waking adapter\n");
  2357. pci_restore_state(pdev);
  2358. /* ack any pending wake events, disable PME */
  2359. retval = pci_enable_wake(pdev, 0, 0);
  2360. if (retval)
  2361. DPRINTK(PROBE,ERR, "Error clearing wake events\n");
  2362. netif_device_attach(netdev);
  2363. if(netif_running(netdev))
  2364. e100_up(nic);
  2365. return 0;
  2366. }
  2367. #endif
  2368. static void e100_shutdown(struct pci_dev *pdev)
  2369. {
  2370. struct net_device *netdev = pci_get_drvdata(pdev);
  2371. struct nic *nic = netdev_priv(netdev);
  2372. int retval;
  2373. #ifdef CONFIG_PM
  2374. retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
  2375. #else
  2376. retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
  2377. #endif
  2378. if (retval)
  2379. DPRINTK(PROBE,ERR, "Error enabling wake\n");
  2380. }
  2381. static struct pci_driver e100_driver = {
  2382. .name = DRV_NAME,
  2383. .id_table = e100_id_table,
  2384. .probe = e100_probe,
  2385. .remove = __devexit_p(e100_remove),
  2386. #ifdef CONFIG_PM
  2387. .suspend = e100_suspend,
  2388. .resume = e100_resume,
  2389. #endif
  2390. .shutdown = e100_shutdown,
  2391. };
  2392. static int __init e100_init_module(void)
  2393. {
  2394. if(((1 << debug) - 1) & NETIF_MSG_DRV) {
  2395. printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
  2396. printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
  2397. }
  2398. return pci_module_init(&e100_driver);
  2399. }
  2400. static void __exit e100_cleanup_module(void)
  2401. {
  2402. pci_unregister_driver(&e100_driver);
  2403. }
  2404. module_init(e100_init_module);
  2405. module_exit(e100_cleanup_module);