nxt6000.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. /*
  2. NxtWave Communications - NXT6000 demodulator driver
  3. Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
  4. Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. */
  17. #include <linux/init.h>
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/string.h>
  21. #include <linux/slab.h>
  22. #include "dvb_frontend.h"
  23. #include "nxt6000_priv.h"
  24. #include "nxt6000.h"
  25. struct nxt6000_state {
  26. struct i2c_adapter* i2c;
  27. struct dvb_frontend_ops ops;
  28. /* configuration settings */
  29. const struct nxt6000_config* config;
  30. struct dvb_frontend frontend;
  31. };
  32. static int debug = 0;
  33. #define dprintk if (debug) printk
  34. static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
  35. {
  36. u8 buf[] = { reg, data };
  37. struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
  38. int ret;
  39. if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
  40. dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
  41. return (ret != 1) ? -EFAULT : 0;
  42. }
  43. static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
  44. {
  45. int ret;
  46. u8 b0[] = { reg };
  47. u8 b1[] = { 0 };
  48. struct i2c_msg msgs[] = {
  49. {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
  50. {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
  51. };
  52. ret = i2c_transfer(state->i2c, msgs, 2);
  53. if (ret != 2)
  54. dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
  55. return b1[0];
  56. }
  57. static void nxt6000_reset(struct nxt6000_state* state)
  58. {
  59. u8 val;
  60. val = nxt6000_readreg(state, OFDM_COR_CTL);
  61. nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
  62. nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
  63. }
  64. static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
  65. {
  66. u16 nominal_rate;
  67. int result;
  68. switch (bandwidth) {
  69. case BANDWIDTH_6_MHZ:
  70. nominal_rate = 0x55B7;
  71. break;
  72. case BANDWIDTH_7_MHZ:
  73. nominal_rate = 0x6400;
  74. break;
  75. case BANDWIDTH_8_MHZ:
  76. nominal_rate = 0x7249;
  77. break;
  78. default:
  79. return -EINVAL;
  80. }
  81. if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
  82. return result;
  83. return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
  84. }
  85. static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
  86. {
  87. switch (guard_interval) {
  88. case GUARD_INTERVAL_1_32:
  89. return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
  90. case GUARD_INTERVAL_1_16:
  91. return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
  92. case GUARD_INTERVAL_AUTO:
  93. case GUARD_INTERVAL_1_8:
  94. return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
  95. case GUARD_INTERVAL_1_4:
  96. return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
  97. default:
  98. return -EINVAL;
  99. }
  100. }
  101. static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
  102. {
  103. switch (inversion) {
  104. case INVERSION_OFF:
  105. return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
  106. case INVERSION_ON:
  107. return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
  108. default:
  109. return -EINVAL;
  110. }
  111. }
  112. static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
  113. {
  114. int result;
  115. switch (transmission_mode) {
  116. case TRANSMISSION_MODE_2K:
  117. if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
  118. return result;
  119. return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
  120. case TRANSMISSION_MODE_8K:
  121. case TRANSMISSION_MODE_AUTO:
  122. if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
  123. return result;
  124. return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
  125. default:
  126. return -EINVAL;
  127. }
  128. }
  129. static void nxt6000_setup(struct dvb_frontend* fe)
  130. {
  131. struct nxt6000_state* state = fe->demodulator_priv;
  132. nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
  133. nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
  134. nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
  135. nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
  136. nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
  137. nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
  138. nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
  139. nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
  140. nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
  141. nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
  142. nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
  143. nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
  144. nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
  145. nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
  146. nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
  147. nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
  148. nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
  149. nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
  150. nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
  151. nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
  152. nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
  153. nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
  154. if (state->config->clock_inversion)
  155. nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
  156. else
  157. nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
  158. nxt6000_writereg(state, TS_FORMAT, 0);
  159. if (state->config->pll_init) {
  160. nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */
  161. state->config->pll_init(fe);
  162. nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */
  163. }
  164. }
  165. static void nxt6000_dump_status(struct nxt6000_state *state)
  166. {
  167. u8 val;
  168. /*
  169. printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
  170. printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
  171. printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
  172. printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
  173. printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
  174. printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
  175. printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
  176. printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
  177. printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
  178. printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
  179. */
  180. printk("NXT6000 status:");
  181. val = nxt6000_readreg(state, RS_COR_STAT);
  182. printk(" DATA DESCR LOCK: %d,", val & 0x01);
  183. printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
  184. val = nxt6000_readreg(state, VIT_SYNC_STATUS);
  185. printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
  186. switch ((val >> 4) & 0x07) {
  187. case 0x00:
  188. printk(" VITERBI CODERATE: 1/2,");
  189. break;
  190. case 0x01:
  191. printk(" VITERBI CODERATE: 2/3,");
  192. break;
  193. case 0x02:
  194. printk(" VITERBI CODERATE: 3/4,");
  195. break;
  196. case 0x03:
  197. printk(" VITERBI CODERATE: 5/6,");
  198. break;
  199. case 0x04:
  200. printk(" VITERBI CODERATE: 7/8,");
  201. break;
  202. default:
  203. printk(" VITERBI CODERATE: Reserved,");
  204. }
  205. val = nxt6000_readreg(state, OFDM_COR_STAT);
  206. printk(" CHCTrack: %d,", (val >> 7) & 0x01);
  207. printk(" TPSLock: %d,", (val >> 6) & 0x01);
  208. printk(" SYRLock: %d,", (val >> 5) & 0x01);
  209. printk(" AGCLock: %d,", (val >> 4) & 0x01);
  210. switch (val & 0x0F) {
  211. case 0x00:
  212. printk(" CoreState: IDLE,");
  213. break;
  214. case 0x02:
  215. printk(" CoreState: WAIT_AGC,");
  216. break;
  217. case 0x03:
  218. printk(" CoreState: WAIT_SYR,");
  219. break;
  220. case 0x04:
  221. printk(" CoreState: WAIT_PPM,");
  222. break;
  223. case 0x01:
  224. printk(" CoreState: WAIT_TRL,");
  225. break;
  226. case 0x05:
  227. printk(" CoreState: WAIT_TPS,");
  228. break;
  229. case 0x06:
  230. printk(" CoreState: MONITOR_TPS,");
  231. break;
  232. default:
  233. printk(" CoreState: Reserved,");
  234. }
  235. val = nxt6000_readreg(state, OFDM_SYR_STAT);
  236. printk(" SYRLock: %d,", (val >> 4) & 0x01);
  237. printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
  238. switch ((val >> 4) & 0x03) {
  239. case 0x00:
  240. printk(" SYRGuard: 1/32,");
  241. break;
  242. case 0x01:
  243. printk(" SYRGuard: 1/16,");
  244. break;
  245. case 0x02:
  246. printk(" SYRGuard: 1/8,");
  247. break;
  248. case 0x03:
  249. printk(" SYRGuard: 1/4,");
  250. break;
  251. }
  252. val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
  253. switch ((val >> 4) & 0x07) {
  254. case 0x00:
  255. printk(" TPSLP: 1/2,");
  256. break;
  257. case 0x01:
  258. printk(" TPSLP: 2/3,");
  259. break;
  260. case 0x02:
  261. printk(" TPSLP: 3/4,");
  262. break;
  263. case 0x03:
  264. printk(" TPSLP: 5/6,");
  265. break;
  266. case 0x04:
  267. printk(" TPSLP: 7/8,");
  268. break;
  269. default:
  270. printk(" TPSLP: Reserved,");
  271. }
  272. switch (val & 0x07) {
  273. case 0x00:
  274. printk(" TPSHP: 1/2,");
  275. break;
  276. case 0x01:
  277. printk(" TPSHP: 2/3,");
  278. break;
  279. case 0x02:
  280. printk(" TPSHP: 3/4,");
  281. break;
  282. case 0x03:
  283. printk(" TPSHP: 5/6,");
  284. break;
  285. case 0x04:
  286. printk(" TPSHP: 7/8,");
  287. break;
  288. default:
  289. printk(" TPSHP: Reserved,");
  290. }
  291. val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
  292. printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
  293. switch ((val >> 4) & 0x03) {
  294. case 0x00:
  295. printk(" TPSGuard: 1/32,");
  296. break;
  297. case 0x01:
  298. printk(" TPSGuard: 1/16,");
  299. break;
  300. case 0x02:
  301. printk(" TPSGuard: 1/8,");
  302. break;
  303. case 0x03:
  304. printk(" TPSGuard: 1/4,");
  305. break;
  306. }
  307. /* Strange magic required to gain access to RF_AGC_STATUS */
  308. nxt6000_readreg(state, RF_AGC_VAL_1);
  309. val = nxt6000_readreg(state, RF_AGC_STATUS);
  310. val = nxt6000_readreg(state, RF_AGC_STATUS);
  311. printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
  312. printk("\n");
  313. }
  314. static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
  315. {
  316. u8 core_status;
  317. struct nxt6000_state* state = fe->demodulator_priv;
  318. *status = 0;
  319. core_status = nxt6000_readreg(state, OFDM_COR_STAT);
  320. if (core_status & AGCLOCKED)
  321. *status |= FE_HAS_SIGNAL;
  322. if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
  323. *status |= FE_HAS_CARRIER;
  324. if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
  325. *status |= FE_HAS_VITERBI;
  326. if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
  327. *status |= FE_HAS_SYNC;
  328. if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
  329. *status |= FE_HAS_LOCK;
  330. if (debug)
  331. nxt6000_dump_status(state);
  332. return 0;
  333. }
  334. static int nxt6000_init(struct dvb_frontend* fe)
  335. {
  336. struct nxt6000_state* state = fe->demodulator_priv;
  337. nxt6000_reset(state);
  338. nxt6000_setup(fe);
  339. return 0;
  340. }
  341. static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
  342. {
  343. struct nxt6000_state* state = fe->demodulator_priv;
  344. int result;
  345. nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */
  346. state->config->pll_set(fe, param);
  347. nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */
  348. if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
  349. return result;
  350. if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
  351. return result;
  352. if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
  353. return result;
  354. if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
  355. return result;
  356. msleep(500);
  357. return 0;
  358. }
  359. static void nxt6000_release(struct dvb_frontend* fe)
  360. {
  361. struct nxt6000_state* state = fe->demodulator_priv;
  362. kfree(state);
  363. }
  364. static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
  365. {
  366. struct nxt6000_state* state = fe->demodulator_priv;
  367. *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
  368. return 0;
  369. }
  370. static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
  371. {
  372. struct nxt6000_state* state = fe->demodulator_priv;
  373. nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
  374. *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
  375. nxt6000_readreg( state, VIT_BER_0 );
  376. nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
  377. return 0;
  378. }
  379. static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
  380. {
  381. struct nxt6000_state* state = fe->demodulator_priv;
  382. *signal_strength = (short) (511 -
  383. (nxt6000_readreg(state, AGC_GAIN_1) +
  384. ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
  385. return 0;
  386. }
  387. static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
  388. {
  389. tune->min_delay_ms = 500;
  390. return 0;
  391. }
  392. static struct dvb_frontend_ops nxt6000_ops;
  393. struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
  394. struct i2c_adapter* i2c)
  395. {
  396. struct nxt6000_state* state = NULL;
  397. /* allocate memory for the internal state */
  398. state = kmalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
  399. if (state == NULL) goto error;
  400. /* setup the state */
  401. state->config = config;
  402. state->i2c = i2c;
  403. memcpy(&state->ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
  404. /* check if the demod is there */
  405. if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
  406. /* create dvb_frontend */
  407. state->frontend.ops = &state->ops;
  408. state->frontend.demodulator_priv = state;
  409. return &state->frontend;
  410. error:
  411. kfree(state);
  412. return NULL;
  413. }
  414. static struct dvb_frontend_ops nxt6000_ops = {
  415. .info = {
  416. .name = "NxtWave NXT6000 DVB-T",
  417. .type = FE_OFDM,
  418. .frequency_min = 0,
  419. .frequency_max = 863250000,
  420. .frequency_stepsize = 62500,
  421. /*.frequency_tolerance = *//* FIXME: 12% of SR */
  422. .symbol_rate_min = 0, /* FIXME */
  423. .symbol_rate_max = 9360000, /* FIXME */
  424. .symbol_rate_tolerance = 4000,
  425. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  426. FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
  427. FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
  428. FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  429. FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
  430. FE_CAN_HIERARCHY_AUTO,
  431. },
  432. .release = nxt6000_release,
  433. .init = nxt6000_init,
  434. .get_tune_settings = nxt6000_fe_get_tune_settings,
  435. .set_frontend = nxt6000_set_frontend,
  436. .read_status = nxt6000_read_status,
  437. .read_ber = nxt6000_read_ber,
  438. .read_signal_strength = nxt6000_read_signal_strength,
  439. .read_snr = nxt6000_read_snr,
  440. };
  441. module_param(debug, int, 0644);
  442. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  443. MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
  444. MODULE_AUTHOR("Florian Schirmer");
  445. MODULE_LICENSE("GPL");
  446. EXPORT_SYMBOL(nxt6000_attach);