ieee1394_transactions.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. /*
  2. * IEEE 1394 for Linux
  3. *
  4. * Transaction support.
  5. *
  6. * Copyright (C) 1999 Andreas E. Bombe
  7. *
  8. * This code is licensed under the GPL. See the file COPYING in the root
  9. * directory of the kernel sources for details.
  10. */
  11. #include <linux/sched.h>
  12. #include <linux/bitops.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/interrupt.h>
  15. #include <asm/errno.h>
  16. #include "ieee1394.h"
  17. #include "ieee1394_types.h"
  18. #include "hosts.h"
  19. #include "ieee1394_core.h"
  20. #include "highlevel.h"
  21. #include "nodemgr.h"
  22. #include "ieee1394_transactions.h"
  23. #define PREP_ASYNC_HEAD_ADDRESS(tc) \
  24. packet->tcode = tc; \
  25. packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
  26. | (1 << 8) | (tc << 4); \
  27. packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
  28. packet->header[2] = addr & 0xffffffff
  29. static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
  30. {
  31. PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
  32. packet->header_size = 12;
  33. packet->data_size = 0;
  34. packet->expect_response = 1;
  35. }
  36. static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
  37. int length)
  38. {
  39. PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
  40. packet->header[3] = length << 16;
  41. packet->header_size = 16;
  42. packet->data_size = 0;
  43. packet->expect_response = 1;
  44. }
  45. static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
  46. quadlet_t data)
  47. {
  48. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
  49. packet->header[3] = data;
  50. packet->header_size = 16;
  51. packet->data_size = 0;
  52. packet->expect_response = 1;
  53. }
  54. static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
  55. int length)
  56. {
  57. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
  58. packet->header[3] = length << 16;
  59. packet->header_size = 16;
  60. packet->expect_response = 1;
  61. packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
  62. }
  63. static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
  64. int length)
  65. {
  66. PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
  67. packet->header[3] = (length << 16) | extcode;
  68. packet->header_size = 16;
  69. packet->data_size = length;
  70. packet->expect_response = 1;
  71. }
  72. static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
  73. int tag, int sync)
  74. {
  75. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  76. | (TCODE_ISO_DATA << 4) | sync;
  77. packet->header_size = 4;
  78. packet->data_size = length;
  79. packet->type = hpsb_iso;
  80. packet->tcode = TCODE_ISO_DATA;
  81. }
  82. static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
  83. {
  84. packet->header[0] = data;
  85. packet->header[1] = ~data;
  86. packet->header_size = 8;
  87. packet->data_size = 0;
  88. packet->expect_response = 0;
  89. packet->type = hpsb_raw; /* No CRC added */
  90. packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
  91. }
  92. static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
  93. int channel, int tag, int sync)
  94. {
  95. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  96. | (TCODE_STREAM_DATA << 4) | sync;
  97. packet->header_size = 4;
  98. packet->data_size = length;
  99. packet->type = hpsb_async;
  100. packet->tcode = TCODE_ISO_DATA;
  101. }
  102. /**
  103. * hpsb_get_tlabel - allocate a transaction label
  104. * @packet: the packet who's tlabel/tpool we set
  105. *
  106. * Every asynchronous transaction on the 1394 bus needs a transaction
  107. * label to match the response to the request. This label has to be
  108. * different from any other transaction label in an outstanding request to
  109. * the same node to make matching possible without ambiguity.
  110. *
  111. * There are 64 different tlabels, so an allocated tlabel has to be freed
  112. * with hpsb_free_tlabel() after the transaction is complete (unless it's
  113. * reused again for the same target node).
  114. *
  115. * Return value: Zero on success, otherwise non-zero. A non-zero return
  116. * generally means there are no available tlabels. If this is called out
  117. * of interrupt or atomic context, then it will sleep until can return a
  118. * tlabel.
  119. */
  120. int hpsb_get_tlabel(struct hpsb_packet *packet)
  121. {
  122. unsigned long flags;
  123. struct hpsb_tlabel_pool *tp;
  124. tp = &packet->host->tpool[packet->node_id & NODE_MASK];
  125. if (irqs_disabled() || in_atomic()) {
  126. if (down_trylock(&tp->count))
  127. return 1;
  128. } else {
  129. down(&tp->count);
  130. }
  131. spin_lock_irqsave(&tp->lock, flags);
  132. packet->tlabel = find_next_zero_bit(tp->pool, 64, tp->next);
  133. if (packet->tlabel > 63)
  134. packet->tlabel = find_first_zero_bit(tp->pool, 64);
  135. tp->next = (packet->tlabel + 1) % 64;
  136. /* Should _never_ happen */
  137. BUG_ON(test_and_set_bit(packet->tlabel, tp->pool));
  138. tp->allocations++;
  139. spin_unlock_irqrestore(&tp->lock, flags);
  140. return 0;
  141. }
  142. /**
  143. * hpsb_free_tlabel - free an allocated transaction label
  144. * @packet: packet whos tlabel/tpool needs to be cleared
  145. *
  146. * Frees the transaction label allocated with hpsb_get_tlabel(). The
  147. * tlabel has to be freed after the transaction is complete (i.e. response
  148. * was received for a split transaction or packet was sent for a unified
  149. * transaction).
  150. *
  151. * A tlabel must not be freed twice.
  152. */
  153. void hpsb_free_tlabel(struct hpsb_packet *packet)
  154. {
  155. unsigned long flags;
  156. struct hpsb_tlabel_pool *tp;
  157. tp = &packet->host->tpool[packet->node_id & NODE_MASK];
  158. BUG_ON(packet->tlabel > 63 || packet->tlabel < 0);
  159. spin_lock_irqsave(&tp->lock, flags);
  160. BUG_ON(!test_and_clear_bit(packet->tlabel, tp->pool));
  161. spin_unlock_irqrestore(&tp->lock, flags);
  162. up(&tp->count);
  163. }
  164. int hpsb_packet_success(struct hpsb_packet *packet)
  165. {
  166. switch (packet->ack_code) {
  167. case ACK_PENDING:
  168. switch ((packet->header[1] >> 12) & 0xf) {
  169. case RCODE_COMPLETE:
  170. return 0;
  171. case RCODE_CONFLICT_ERROR:
  172. return -EAGAIN;
  173. case RCODE_DATA_ERROR:
  174. return -EREMOTEIO;
  175. case RCODE_TYPE_ERROR:
  176. return -EACCES;
  177. case RCODE_ADDRESS_ERROR:
  178. return -EINVAL;
  179. default:
  180. HPSB_ERR("received reserved rcode %d from node %d",
  181. (packet->header[1] >> 12) & 0xf,
  182. packet->node_id);
  183. return -EAGAIN;
  184. }
  185. HPSB_PANIC("reached unreachable code 1 in %s", __FUNCTION__);
  186. case ACK_BUSY_X:
  187. case ACK_BUSY_A:
  188. case ACK_BUSY_B:
  189. return -EBUSY;
  190. case ACK_TYPE_ERROR:
  191. return -EACCES;
  192. case ACK_COMPLETE:
  193. if (packet->tcode == TCODE_WRITEQ
  194. || packet->tcode == TCODE_WRITEB) {
  195. return 0;
  196. } else {
  197. HPSB_ERR("impossible ack_complete from node %d "
  198. "(tcode %d)", packet->node_id, packet->tcode);
  199. return -EAGAIN;
  200. }
  201. case ACK_DATA_ERROR:
  202. if (packet->tcode == TCODE_WRITEB
  203. || packet->tcode == TCODE_LOCK_REQUEST) {
  204. return -EAGAIN;
  205. } else {
  206. HPSB_ERR("impossible ack_data_error from node %d "
  207. "(tcode %d)", packet->node_id, packet->tcode);
  208. return -EAGAIN;
  209. }
  210. case ACK_ADDRESS_ERROR:
  211. return -EINVAL;
  212. case ACK_TARDY:
  213. case ACK_CONFLICT_ERROR:
  214. case ACKX_NONE:
  215. case ACKX_SEND_ERROR:
  216. case ACKX_ABORTED:
  217. case ACKX_TIMEOUT:
  218. /* error while sending */
  219. return -EAGAIN;
  220. default:
  221. HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
  222. packet->ack_code, packet->node_id, packet->tcode);
  223. return -EAGAIN;
  224. }
  225. HPSB_PANIC("reached unreachable code 2 in %s", __FUNCTION__);
  226. }
  227. struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
  228. u64 addr, size_t length)
  229. {
  230. struct hpsb_packet *packet;
  231. if (length == 0)
  232. return NULL;
  233. packet = hpsb_alloc_packet(length);
  234. if (!packet)
  235. return NULL;
  236. packet->host = host;
  237. packet->node_id = node;
  238. if (hpsb_get_tlabel(packet)) {
  239. hpsb_free_packet(packet);
  240. return NULL;
  241. }
  242. if (length == 4)
  243. fill_async_readquad(packet, addr);
  244. else
  245. fill_async_readblock(packet, addr, length);
  246. return packet;
  247. }
  248. struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
  249. u64 addr, quadlet_t * buffer,
  250. size_t length)
  251. {
  252. struct hpsb_packet *packet;
  253. if (length == 0)
  254. return NULL;
  255. packet = hpsb_alloc_packet(length);
  256. if (!packet)
  257. return NULL;
  258. if (length % 4) { /* zero padding bytes */
  259. packet->data[length >> 2] = 0;
  260. }
  261. packet->host = host;
  262. packet->node_id = node;
  263. if (hpsb_get_tlabel(packet)) {
  264. hpsb_free_packet(packet);
  265. return NULL;
  266. }
  267. if (length == 4) {
  268. fill_async_writequad(packet, addr, buffer ? *buffer : 0);
  269. } else {
  270. fill_async_writeblock(packet, addr, length);
  271. if (buffer)
  272. memcpy(packet->data, buffer, length);
  273. }
  274. return packet;
  275. }
  276. struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
  277. int length, int channel, int tag,
  278. int sync)
  279. {
  280. struct hpsb_packet *packet;
  281. if (length == 0)
  282. return NULL;
  283. packet = hpsb_alloc_packet(length);
  284. if (!packet)
  285. return NULL;
  286. if (length % 4) { /* zero padding bytes */
  287. packet->data[length >> 2] = 0;
  288. }
  289. packet->host = host;
  290. if (hpsb_get_tlabel(packet)) {
  291. hpsb_free_packet(packet);
  292. return NULL;
  293. }
  294. fill_async_stream_packet(packet, length, channel, tag, sync);
  295. if (buffer)
  296. memcpy(packet->data, buffer, length);
  297. return packet;
  298. }
  299. struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
  300. u64 addr, int extcode,
  301. quadlet_t * data, quadlet_t arg)
  302. {
  303. struct hpsb_packet *p;
  304. u32 length;
  305. p = hpsb_alloc_packet(8);
  306. if (!p)
  307. return NULL;
  308. p->host = host;
  309. p->node_id = node;
  310. if (hpsb_get_tlabel(p)) {
  311. hpsb_free_packet(p);
  312. return NULL;
  313. }
  314. switch (extcode) {
  315. case EXTCODE_FETCH_ADD:
  316. case EXTCODE_LITTLE_ADD:
  317. length = 4;
  318. if (data)
  319. p->data[0] = *data;
  320. break;
  321. default:
  322. length = 8;
  323. if (data) {
  324. p->data[0] = arg;
  325. p->data[1] = *data;
  326. }
  327. break;
  328. }
  329. fill_async_lock(p, addr, extcode, length);
  330. return p;
  331. }
  332. struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
  333. nodeid_t node, u64 addr, int extcode,
  334. octlet_t * data, octlet_t arg)
  335. {
  336. struct hpsb_packet *p;
  337. u32 length;
  338. p = hpsb_alloc_packet(16);
  339. if (!p)
  340. return NULL;
  341. p->host = host;
  342. p->node_id = node;
  343. if (hpsb_get_tlabel(p)) {
  344. hpsb_free_packet(p);
  345. return NULL;
  346. }
  347. switch (extcode) {
  348. case EXTCODE_FETCH_ADD:
  349. case EXTCODE_LITTLE_ADD:
  350. length = 8;
  351. if (data) {
  352. p->data[0] = *data >> 32;
  353. p->data[1] = *data & 0xffffffff;
  354. }
  355. break;
  356. default:
  357. length = 16;
  358. if (data) {
  359. p->data[0] = arg >> 32;
  360. p->data[1] = arg & 0xffffffff;
  361. p->data[2] = *data >> 32;
  362. p->data[3] = *data & 0xffffffff;
  363. }
  364. break;
  365. }
  366. fill_async_lock(p, addr, extcode, length);
  367. return p;
  368. }
  369. struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
  370. {
  371. struct hpsb_packet *p;
  372. p = hpsb_alloc_packet(0);
  373. if (!p)
  374. return NULL;
  375. p->host = host;
  376. fill_phy_packet(p, data);
  377. return p;
  378. }
  379. struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
  380. int length, int channel,
  381. int tag, int sync)
  382. {
  383. struct hpsb_packet *p;
  384. p = hpsb_alloc_packet(length);
  385. if (!p)
  386. return NULL;
  387. p->host = host;
  388. fill_iso_packet(p, length, channel, tag, sync);
  389. p->generation = get_hpsb_generation(host);
  390. return p;
  391. }
  392. /*
  393. * FIXME - these functions should probably read from / write to user space to
  394. * avoid in kernel buffers for user space callers
  395. */
  396. int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  397. u64 addr, quadlet_t * buffer, size_t length)
  398. {
  399. struct hpsb_packet *packet;
  400. int retval = 0;
  401. if (length == 0)
  402. return -EINVAL;
  403. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  404. packet = hpsb_make_readpacket(host, node, addr, length);
  405. if (!packet) {
  406. return -ENOMEM;
  407. }
  408. packet->generation = generation;
  409. retval = hpsb_send_packet_and_wait(packet);
  410. if (retval < 0)
  411. goto hpsb_read_fail;
  412. retval = hpsb_packet_success(packet);
  413. if (retval == 0) {
  414. if (length == 4) {
  415. *buffer = packet->header[3];
  416. } else {
  417. memcpy(buffer, packet->data, length);
  418. }
  419. }
  420. hpsb_read_fail:
  421. hpsb_free_tlabel(packet);
  422. hpsb_free_packet(packet);
  423. return retval;
  424. }
  425. int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  426. u64 addr, quadlet_t * buffer, size_t length)
  427. {
  428. struct hpsb_packet *packet;
  429. int retval;
  430. if (length == 0)
  431. return -EINVAL;
  432. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  433. packet = hpsb_make_writepacket(host, node, addr, buffer, length);
  434. if (!packet)
  435. return -ENOMEM;
  436. packet->generation = generation;
  437. retval = hpsb_send_packet_and_wait(packet);
  438. if (retval < 0)
  439. goto hpsb_write_fail;
  440. retval = hpsb_packet_success(packet);
  441. hpsb_write_fail:
  442. hpsb_free_tlabel(packet);
  443. hpsb_free_packet(packet);
  444. return retval;
  445. }
  446. #if 0
  447. int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  448. u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
  449. {
  450. struct hpsb_packet *packet;
  451. int retval = 0;
  452. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  453. packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
  454. if (!packet)
  455. return -ENOMEM;
  456. packet->generation = generation;
  457. retval = hpsb_send_packet_and_wait(packet);
  458. if (retval < 0)
  459. goto hpsb_lock_fail;
  460. retval = hpsb_packet_success(packet);
  461. if (retval == 0) {
  462. *data = packet->data[0];
  463. }
  464. hpsb_lock_fail:
  465. hpsb_free_tlabel(packet);
  466. hpsb_free_packet(packet);
  467. return retval;
  468. }
  469. int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
  470. quadlet_t * buffer, size_t length, u32 specifier_id,
  471. unsigned int version)
  472. {
  473. struct hpsb_packet *packet;
  474. int retval = 0;
  475. u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
  476. u8 specifier_id_lo = specifier_id & 0xff;
  477. HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
  478. length += 8;
  479. packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
  480. if (!packet)
  481. return -ENOMEM;
  482. packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
  483. packet->data[1] =
  484. cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
  485. memcpy(&(packet->data[2]), buffer, length - 8);
  486. packet->generation = generation;
  487. packet->no_waiter = 1;
  488. retval = hpsb_send_packet(packet);
  489. if (retval < 0)
  490. hpsb_free_packet(packet);
  491. return retval;
  492. }
  493. #endif /* 0 */