time.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. /*
  2. * linux/arch/v850/kernel/time.c -- Arch-dependent timer functions
  3. *
  4. * Copyright (C) 1991, 1992, 1995, 2001, 2002 Linus Torvalds
  5. *
  6. * This file contains the v850-specific time handling details.
  7. * Most of the stuff is located in the machine specific files.
  8. *
  9. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  10. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  11. */
  12. #include <linux/config.h> /* CONFIG_HEARTBEAT */
  13. #include <linux/errno.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/param.h>
  17. #include <linux/string.h>
  18. #include <linux/mm.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/time.h>
  21. #include <linux/timex.h>
  22. #include <linux/profile.h>
  23. #include <asm/io.h>
  24. #include "mach.h"
  25. #define TICK_SIZE (tick_nsec / 1000)
  26. /*
  27. * Scheduler clock - returns current time in nanosec units.
  28. */
  29. unsigned long long sched_clock(void)
  30. {
  31. return (unsigned long long)jiffies * (1000000000 / HZ);
  32. }
  33. /*
  34. * timer_interrupt() needs to keep up the real-time clock,
  35. * as well as call the "do_timer()" routine every clocktick
  36. */
  37. static irqreturn_t timer_interrupt (int irq, void *dummy, struct pt_regs *regs)
  38. {
  39. #if 0
  40. /* last time the cmos clock got updated */
  41. static long last_rtc_update=0;
  42. #endif
  43. /* may need to kick the hardware timer */
  44. if (mach_tick)
  45. mach_tick ();
  46. do_timer (regs);
  47. #ifndef CONFIG_SMP
  48. update_process_times(user_mode(regs));
  49. #endif
  50. profile_tick(CPU_PROFILING, regs);
  51. #if 0
  52. /*
  53. * If we have an externally synchronized Linux clock, then update
  54. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  55. * called as close as possible to 500 ms before the new second starts.
  56. */
  57. if (ntp_synced() &&
  58. xtime.tv_sec > last_rtc_update + 660 &&
  59. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  60. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  61. if (set_rtc_mmss (xtime.tv_sec) == 0)
  62. last_rtc_update = xtime.tv_sec;
  63. else
  64. last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  65. }
  66. #ifdef CONFIG_HEARTBEAT
  67. /* use power LED as a heartbeat instead -- much more useful
  68. for debugging -- based on the version for PReP by Cort */
  69. /* acts like an actual heart beat -- ie thump-thump-pause... */
  70. if (mach_heartbeat) {
  71. static unsigned cnt = 0, period = 0, dist = 0;
  72. if (cnt == 0 || cnt == dist)
  73. mach_heartbeat ( 1 );
  74. else if (cnt == 7 || cnt == dist+7)
  75. mach_heartbeat ( 0 );
  76. if (++cnt > period) {
  77. cnt = 0;
  78. /* The hyperbolic function below modifies the heartbeat period
  79. * length in dependency of the current (5min) load. It goes
  80. * through the points f(0)=126, f(1)=86, f(5)=51,
  81. * f(inf)->30. */
  82. period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30;
  83. dist = period / 4;
  84. }
  85. }
  86. #endif /* CONFIG_HEARTBEAT */
  87. #endif /* 0 */
  88. return IRQ_HANDLED;
  89. }
  90. /*
  91. * This version of gettimeofday has near microsecond resolution.
  92. */
  93. void do_gettimeofday (struct timeval *tv)
  94. {
  95. #if 0 /* DAVIDM later if possible */
  96. extern volatile unsigned long lost_ticks;
  97. unsigned long lost;
  98. #endif
  99. unsigned long flags;
  100. unsigned long usec, sec;
  101. unsigned long seq;
  102. do {
  103. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  104. #if 0
  105. usec = mach_gettimeoffset ? mach_gettimeoffset () : 0;
  106. #else
  107. usec = 0;
  108. #endif
  109. #if 0 /* DAVIDM later if possible */
  110. lost = lost_ticks;
  111. if (lost)
  112. usec += lost * (1000000/HZ);
  113. #endif
  114. sec = xtime.tv_sec;
  115. usec += xtime.tv_nsec / 1000;
  116. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  117. while (usec >= 1000000) {
  118. usec -= 1000000;
  119. sec++;
  120. }
  121. tv->tv_sec = sec;
  122. tv->tv_usec = usec;
  123. }
  124. EXPORT_SYMBOL(do_gettimeofday);
  125. int do_settimeofday(struct timespec *tv)
  126. {
  127. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  128. return -EINVAL;
  129. write_seqlock_irq (&xtime_lock);
  130. /* This is revolting. We need to set the xtime.tv_nsec
  131. * correctly. However, the value in this location is
  132. * is value at the last tick.
  133. * Discover what correction gettimeofday
  134. * would have done, and then undo it!
  135. */
  136. #if 0
  137. tv->tv_nsec -= mach_gettimeoffset() * 1000;
  138. #endif
  139. while (tv->tv_nsec < 0) {
  140. tv->tv_nsec += NSEC_PER_SEC;
  141. tv->tv_sec--;
  142. }
  143. xtime.tv_sec = tv->tv_sec;
  144. xtime.tv_nsec = tv->tv_nsec;
  145. ntp_clear();
  146. write_sequnlock_irq (&xtime_lock);
  147. clock_was_set();
  148. return 0;
  149. }
  150. EXPORT_SYMBOL(do_settimeofday);
  151. static int timer_dev_id;
  152. static struct irqaction timer_irqaction = {
  153. timer_interrupt,
  154. SA_INTERRUPT,
  155. CPU_MASK_NONE,
  156. "timer",
  157. &timer_dev_id,
  158. NULL
  159. };
  160. void time_init (void)
  161. {
  162. mach_gettimeofday (&xtime);
  163. mach_sched_init (&timer_irqaction);
  164. }