tsb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <asm/system.h>
  7. #include <asm/page.h>
  8. #include <asm/tlbflush.h>
  9. #include <asm/tlb.h>
  10. #include <asm/mmu_context.h>
  11. #include <asm/pgtable.h>
  12. #include <asm/tsb.h>
  13. #include <asm/oplib.h>
  14. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  15. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  16. {
  17. vaddr >>= hash_shift;
  18. return vaddr & (nentries - 1);
  19. }
  20. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  21. {
  22. return (tag == (vaddr >> 22));
  23. }
  24. /* TSB flushes need only occur on the processor initiating the address
  25. * space modification, not on each cpu the address space has run on.
  26. * Only the TLB flush needs that treatment.
  27. */
  28. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  29. {
  30. unsigned long v;
  31. for (v = start; v < end; v += PAGE_SIZE) {
  32. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  33. KERNEL_TSB_NENTRIES);
  34. struct tsb *ent = &swapper_tsb[hash];
  35. if (tag_compare(ent->tag, v)) {
  36. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  37. membar_storeload_storestore();
  38. }
  39. }
  40. }
  41. static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
  42. {
  43. unsigned long i;
  44. for (i = 0; i < mp->tlb_nr; i++) {
  45. unsigned long v = mp->vaddrs[i];
  46. unsigned long tag, ent, hash;
  47. v &= ~0x1UL;
  48. hash = tsb_hash(v, hash_shift, nentries);
  49. ent = tsb + (hash * sizeof(struct tsb));
  50. tag = (v >> 22UL);
  51. tsb_flush(ent, tag);
  52. }
  53. }
  54. void flush_tsb_user(struct mmu_gather *mp)
  55. {
  56. struct mm_struct *mm = mp->mm;
  57. unsigned long nentries, base, flags;
  58. spin_lock_irqsave(&mm->context.lock, flags);
  59. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  60. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  61. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  62. base = __pa(base);
  63. __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
  64. #ifdef CONFIG_HUGETLB_PAGE
  65. if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  66. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  67. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  68. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  69. base = __pa(base);
  70. __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
  71. }
  72. #endif
  73. spin_unlock_irqrestore(&mm->context.lock, flags);
  74. }
  75. #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
  76. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  77. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  78. #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
  79. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
  80. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
  81. #elif defined(CONFIG_SPARC64_PAGE_SIZE_512KB)
  82. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_512K
  83. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_512K
  84. #elif defined(CONFIG_SPARC64_PAGE_SIZE_4MB)
  85. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_4MB
  86. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_4MB
  87. #else
  88. #error Broken base page size setting...
  89. #endif
  90. #ifdef CONFIG_HUGETLB_PAGE
  91. #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
  92. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
  93. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
  94. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
  95. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
  96. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
  97. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
  98. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  99. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  100. #else
  101. #error Broken huge page size setting...
  102. #endif
  103. #endif
  104. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  105. {
  106. unsigned long tsb_reg, base, tsb_paddr;
  107. unsigned long page_sz, tte;
  108. mm->context.tsb_block[tsb_idx].tsb_nentries =
  109. tsb_bytes / sizeof(struct tsb);
  110. base = TSBMAP_BASE;
  111. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  112. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  113. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  114. /* Use the smallest page size that can map the whole TSB
  115. * in one TLB entry.
  116. */
  117. switch (tsb_bytes) {
  118. case 8192 << 0:
  119. tsb_reg = 0x0UL;
  120. #ifdef DCACHE_ALIASING_POSSIBLE
  121. base += (tsb_paddr & 8192);
  122. #endif
  123. page_sz = 8192;
  124. break;
  125. case 8192 << 1:
  126. tsb_reg = 0x1UL;
  127. page_sz = 64 * 1024;
  128. break;
  129. case 8192 << 2:
  130. tsb_reg = 0x2UL;
  131. page_sz = 64 * 1024;
  132. break;
  133. case 8192 << 3:
  134. tsb_reg = 0x3UL;
  135. page_sz = 64 * 1024;
  136. break;
  137. case 8192 << 4:
  138. tsb_reg = 0x4UL;
  139. page_sz = 512 * 1024;
  140. break;
  141. case 8192 << 5:
  142. tsb_reg = 0x5UL;
  143. page_sz = 512 * 1024;
  144. break;
  145. case 8192 << 6:
  146. tsb_reg = 0x6UL;
  147. page_sz = 512 * 1024;
  148. break;
  149. case 8192 << 7:
  150. tsb_reg = 0x7UL;
  151. page_sz = 4 * 1024 * 1024;
  152. break;
  153. default:
  154. BUG();
  155. };
  156. tte |= pte_sz_bits(page_sz);
  157. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  158. /* Physical mapping, no locked TLB entry for TSB. */
  159. tsb_reg |= tsb_paddr;
  160. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  161. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  162. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  163. } else {
  164. tsb_reg |= base;
  165. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  166. tte |= (tsb_paddr & ~(page_sz - 1UL));
  167. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  168. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  169. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  170. }
  171. /* Setup the Hypervisor TSB descriptor. */
  172. if (tlb_type == hypervisor) {
  173. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  174. switch (tsb_idx) {
  175. case MM_TSB_BASE:
  176. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  177. break;
  178. #ifdef CONFIG_HUGETLB_PAGE
  179. case MM_TSB_HUGE:
  180. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  181. break;
  182. #endif
  183. default:
  184. BUG();
  185. };
  186. hp->assoc = 1;
  187. hp->num_ttes = tsb_bytes / 16;
  188. hp->ctx_idx = 0;
  189. switch (tsb_idx) {
  190. case MM_TSB_BASE:
  191. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  192. break;
  193. #ifdef CONFIG_HUGETLB_PAGE
  194. case MM_TSB_HUGE:
  195. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  196. break;
  197. #endif
  198. default:
  199. BUG();
  200. };
  201. hp->tsb_base = tsb_paddr;
  202. hp->resv = 0;
  203. }
  204. }
  205. static kmem_cache_t *tsb_caches[8] __read_mostly;
  206. static const char *tsb_cache_names[8] = {
  207. "tsb_8KB",
  208. "tsb_16KB",
  209. "tsb_32KB",
  210. "tsb_64KB",
  211. "tsb_128KB",
  212. "tsb_256KB",
  213. "tsb_512KB",
  214. "tsb_1MB",
  215. };
  216. void __init tsb_cache_init(void)
  217. {
  218. unsigned long i;
  219. for (i = 0; i < 8; i++) {
  220. unsigned long size = 8192 << i;
  221. const char *name = tsb_cache_names[i];
  222. tsb_caches[i] = kmem_cache_create(name,
  223. size, size,
  224. SLAB_HWCACHE_ALIGN |
  225. SLAB_MUST_HWCACHE_ALIGN,
  226. NULL, NULL);
  227. if (!tsb_caches[i]) {
  228. prom_printf("Could not create %s cache\n", name);
  229. prom_halt();
  230. }
  231. }
  232. }
  233. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  234. * do_sparc64_fault() invokes this routine to try and grow it.
  235. *
  236. * When we reach the maximum TSB size supported, we stick ~0UL into
  237. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  238. * will not trigger any longer.
  239. *
  240. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  241. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  242. * must be 512K aligned. It also must be physically contiguous, so we
  243. * cannot use vmalloc().
  244. *
  245. * The idea here is to grow the TSB when the RSS of the process approaches
  246. * the number of entries that the current TSB can hold at once. Currently,
  247. * we trigger when the RSS hits 3/4 of the TSB capacity.
  248. */
  249. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  250. {
  251. unsigned long max_tsb_size = 1 * 1024 * 1024;
  252. unsigned long new_size, old_size, flags;
  253. struct tsb *old_tsb, *new_tsb;
  254. unsigned long new_cache_index, old_cache_index;
  255. unsigned long new_rss_limit;
  256. gfp_t gfp_flags;
  257. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  258. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  259. new_cache_index = 0;
  260. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  261. unsigned long n_entries = new_size / sizeof(struct tsb);
  262. n_entries = (n_entries * 3) / 4;
  263. if (n_entries > rss)
  264. break;
  265. new_cache_index++;
  266. }
  267. if (new_size == max_tsb_size)
  268. new_rss_limit = ~0UL;
  269. else
  270. new_rss_limit = ((new_size / sizeof(struct tsb)) * 3) / 4;
  271. retry_tsb_alloc:
  272. gfp_flags = GFP_KERNEL;
  273. if (new_size > (PAGE_SIZE * 2))
  274. gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
  275. new_tsb = kmem_cache_alloc(tsb_caches[new_cache_index], gfp_flags);
  276. if (unlikely(!new_tsb)) {
  277. /* Not being able to fork due to a high-order TSB
  278. * allocation failure is very bad behavior. Just back
  279. * down to a 0-order allocation and force no TSB
  280. * growing for this address space.
  281. */
  282. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  283. new_cache_index > 0) {
  284. new_cache_index = 0;
  285. new_size = 8192;
  286. new_rss_limit = ~0UL;
  287. goto retry_tsb_alloc;
  288. }
  289. /* If we failed on a TSB grow, we are under serious
  290. * memory pressure so don't try to grow any more.
  291. */
  292. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  293. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  294. return;
  295. }
  296. /* Mark all tags as invalid. */
  297. tsb_init(new_tsb, new_size);
  298. /* Ok, we are about to commit the changes. If we are
  299. * growing an existing TSB the locking is very tricky,
  300. * so WATCH OUT!
  301. *
  302. * We have to hold mm->context.lock while committing to the
  303. * new TSB, this synchronizes us with processors in
  304. * flush_tsb_user() and switch_mm() for this address space.
  305. *
  306. * But even with that lock held, processors run asynchronously
  307. * accessing the old TSB via TLB miss handling. This is OK
  308. * because those actions are just propagating state from the
  309. * Linux page tables into the TSB, page table mappings are not
  310. * being changed. If a real fault occurs, the processor will
  311. * synchronize with us when it hits flush_tsb_user(), this is
  312. * also true for the case where vmscan is modifying the page
  313. * tables. The only thing we need to be careful with is to
  314. * skip any locked TSB entries during copy_tsb().
  315. *
  316. * When we finish committing to the new TSB, we have to drop
  317. * the lock and ask all other cpus running this address space
  318. * to run tsb_context_switch() to see the new TSB table.
  319. */
  320. spin_lock_irqsave(&mm->context.lock, flags);
  321. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  322. old_cache_index =
  323. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  324. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  325. sizeof(struct tsb));
  326. /* Handle multiple threads trying to grow the TSB at the same time.
  327. * One will get in here first, and bump the size and the RSS limit.
  328. * The others will get in here next and hit this check.
  329. */
  330. if (unlikely(old_tsb &&
  331. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  332. spin_unlock_irqrestore(&mm->context.lock, flags);
  333. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  334. return;
  335. }
  336. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  337. if (old_tsb) {
  338. extern void copy_tsb(unsigned long old_tsb_base,
  339. unsigned long old_tsb_size,
  340. unsigned long new_tsb_base,
  341. unsigned long new_tsb_size);
  342. unsigned long old_tsb_base = (unsigned long) old_tsb;
  343. unsigned long new_tsb_base = (unsigned long) new_tsb;
  344. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  345. old_tsb_base = __pa(old_tsb_base);
  346. new_tsb_base = __pa(new_tsb_base);
  347. }
  348. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  349. }
  350. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  351. setup_tsb_params(mm, tsb_index, new_size);
  352. spin_unlock_irqrestore(&mm->context.lock, flags);
  353. /* If old_tsb is NULL, we're being invoked for the first time
  354. * from init_new_context().
  355. */
  356. if (old_tsb) {
  357. /* Reload it on the local cpu. */
  358. tsb_context_switch(mm);
  359. /* Now force other processors to do the same. */
  360. smp_tsb_sync(mm);
  361. /* Now it is safe to free the old tsb. */
  362. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  363. }
  364. }
  365. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  366. {
  367. #ifdef CONFIG_HUGETLB_PAGE
  368. unsigned long huge_pte_count;
  369. #endif
  370. unsigned int i;
  371. spin_lock_init(&mm->context.lock);
  372. mm->context.sparc64_ctx_val = 0UL;
  373. #ifdef CONFIG_HUGETLB_PAGE
  374. /* We reset it to zero because the fork() page copying
  375. * will re-increment the counters as the parent PTEs are
  376. * copied into the child address space.
  377. */
  378. huge_pte_count = mm->context.huge_pte_count;
  379. mm->context.huge_pte_count = 0;
  380. #endif
  381. /* copy_mm() copies over the parent's mm_struct before calling
  382. * us, so we need to zero out the TSB pointer or else tsb_grow()
  383. * will be confused and think there is an older TSB to free up.
  384. */
  385. for (i = 0; i < MM_NUM_TSBS; i++)
  386. mm->context.tsb_block[i].tsb = NULL;
  387. /* If this is fork, inherit the parent's TSB size. We would
  388. * grow it to that size on the first page fault anyways.
  389. */
  390. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  391. #ifdef CONFIG_HUGETLB_PAGE
  392. if (unlikely(huge_pte_count))
  393. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  394. #endif
  395. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  396. return -ENOMEM;
  397. return 0;
  398. }
  399. static void tsb_destroy_one(struct tsb_config *tp)
  400. {
  401. unsigned long cache_index;
  402. if (!tp->tsb)
  403. return;
  404. cache_index = tp->tsb_reg_val & 0x7UL;
  405. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  406. tp->tsb = NULL;
  407. tp->tsb_reg_val = 0UL;
  408. }
  409. void destroy_context(struct mm_struct *mm)
  410. {
  411. unsigned long flags, i;
  412. for (i = 0; i < MM_NUM_TSBS; i++)
  413. tsb_destroy_one(&mm->context.tsb_block[i]);
  414. spin_lock_irqsave(&ctx_alloc_lock, flags);
  415. if (CTX_VALID(mm->context)) {
  416. unsigned long nr = CTX_NRBITS(mm->context);
  417. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  418. }
  419. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  420. }