time.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. *
  8. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  9. * to make clock more stable (2.4.0-test5). The only thing
  10. * that this code assumes is that the timebases have been synchronized
  11. * by firmware on SMP and are never stopped (never do sleep
  12. * on SMP then, nap and doze are OK).
  13. *
  14. * TODO (not necessarily in this file):
  15. * - improve precision and reproducibility of timebase frequency
  16. * measurement at boot time.
  17. * - get rid of xtime_lock for gettimeofday (generic kernel problem
  18. * to be implemented on all architectures for SMP scalability and
  19. * eventually implementing gettimeofday without entering the kernel).
  20. * - put all time/clock related variables in a single structure
  21. * to minimize number of cache lines touched by gettimeofday()
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. *
  27. * The following comment is partially obsolete (at least the long wait
  28. * is no more a valid reason):
  29. * Since the MPC8xx has a programmable interrupt timer, I decided to
  30. * use that rather than the decrementer. Two reasons: 1.) the clock
  31. * frequency is low, causing 2.) a long wait in the timer interrupt
  32. * while ((d = get_dec()) == dval)
  33. * loop. The MPC8xx can be driven from a variety of input clocks,
  34. * so a number of assumptions have been made here because the kernel
  35. * parameter HZ is a constant. We assume (correctly, today :-) that
  36. * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
  37. * This is then divided by 4, providing a 8192 Hz clock into the PIT.
  38. * Since it is not possible to get a nice 100 Hz clock out of this, without
  39. * creating a software PLL, I have set HZ to 128. -- Dan
  40. *
  41. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  42. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  43. */
  44. #include <linux/config.h>
  45. #include <linux/errno.h>
  46. #include <linux/sched.h>
  47. #include <linux/kernel.h>
  48. #include <linux/param.h>
  49. #include <linux/string.h>
  50. #include <linux/mm.h>
  51. #include <linux/module.h>
  52. #include <linux/interrupt.h>
  53. #include <linux/timex.h>
  54. #include <linux/kernel_stat.h>
  55. #include <linux/mc146818rtc.h>
  56. #include <linux/time.h>
  57. #include <linux/init.h>
  58. #include <linux/profile.h>
  59. #include <asm/io.h>
  60. #include <asm/nvram.h>
  61. #include <asm/cache.h>
  62. #include <asm/8xx_immap.h>
  63. #include <asm/machdep.h>
  64. #include <asm/time.h>
  65. unsigned long disarm_decr[NR_CPUS];
  66. extern struct timezone sys_tz;
  67. /* keep track of when we need to update the rtc */
  68. time_t last_rtc_update;
  69. /* The decrementer counts down by 128 every 128ns on a 601. */
  70. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  71. unsigned tb_ticks_per_jiffy;
  72. unsigned tb_to_us;
  73. unsigned tb_last_stamp;
  74. unsigned long tb_to_ns_scale;
  75. extern unsigned long wall_jiffies;
  76. /* used for timezone offset */
  77. static long timezone_offset;
  78. DEFINE_SPINLOCK(rtc_lock);
  79. EXPORT_SYMBOL(rtc_lock);
  80. /* Timer interrupt helper function */
  81. static inline int tb_delta(unsigned *jiffy_stamp) {
  82. int delta;
  83. if (__USE_RTC()) {
  84. delta = get_rtcl();
  85. if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000;
  86. delta -= *jiffy_stamp;
  87. } else {
  88. delta = get_tbl() - *jiffy_stamp;
  89. }
  90. return delta;
  91. }
  92. #ifdef CONFIG_SMP
  93. unsigned long profile_pc(struct pt_regs *regs)
  94. {
  95. unsigned long pc = instruction_pointer(regs);
  96. if (in_lock_functions(pc))
  97. return regs->link;
  98. return pc;
  99. }
  100. EXPORT_SYMBOL(profile_pc);
  101. #endif
  102. void wakeup_decrementer(void)
  103. {
  104. set_dec(tb_ticks_per_jiffy);
  105. /* No currently-supported powerbook has a 601,
  106. * so use get_tbl, not native
  107. */
  108. last_jiffy_stamp(0) = tb_last_stamp = get_tbl();
  109. }
  110. /*
  111. * timer_interrupt - gets called when the decrementer overflows,
  112. * with interrupts disabled.
  113. * We set it up to overflow again in 1/HZ seconds.
  114. */
  115. void timer_interrupt(struct pt_regs * regs)
  116. {
  117. int next_dec;
  118. unsigned long cpu = smp_processor_id();
  119. unsigned jiffy_stamp = last_jiffy_stamp(cpu);
  120. extern void do_IRQ(struct pt_regs *);
  121. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  122. do_IRQ(regs);
  123. irq_enter();
  124. while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
  125. jiffy_stamp += tb_ticks_per_jiffy;
  126. profile_tick(CPU_PROFILING, regs);
  127. update_process_times(user_mode(regs));
  128. if (smp_processor_id())
  129. continue;
  130. /* We are in an interrupt, no need to save/restore flags */
  131. write_seqlock(&xtime_lock);
  132. tb_last_stamp = jiffy_stamp;
  133. do_timer(regs);
  134. /*
  135. * update the rtc when needed, this should be performed on the
  136. * right fraction of a second. Half or full second ?
  137. * Full second works on mk48t59 clocks, others need testing.
  138. * Note that this update is basically only used through
  139. * the adjtimex system calls. Setting the HW clock in
  140. * any other way is a /dev/rtc and userland business.
  141. * This is still wrong by -0.5/+1.5 jiffies because of the
  142. * timer interrupt resolution and possible delay, but here we
  143. * hit a quantization limit which can only be solved by higher
  144. * resolution timers and decoupling time management from timer
  145. * interrupts. This is also wrong on the clocks
  146. * which require being written at the half second boundary.
  147. * We should have an rtc call that only sets the minutes and
  148. * seconds like on Intel to avoid problems with non UTC clocks.
  149. */
  150. if ( ppc_md.set_rtc_time && ntp_synced() &&
  151. xtime.tv_sec - last_rtc_update >= 659 &&
  152. abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ &&
  153. jiffies - wall_jiffies == 1) {
  154. if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0)
  155. last_rtc_update = xtime.tv_sec+1;
  156. else
  157. /* Try again one minute later */
  158. last_rtc_update += 60;
  159. }
  160. write_sequnlock(&xtime_lock);
  161. }
  162. if ( !disarm_decr[smp_processor_id()] )
  163. set_dec(next_dec);
  164. last_jiffy_stamp(cpu) = jiffy_stamp;
  165. if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
  166. ppc_md.heartbeat();
  167. irq_exit();
  168. }
  169. /*
  170. * This version of gettimeofday has microsecond resolution.
  171. */
  172. void do_gettimeofday(struct timeval *tv)
  173. {
  174. unsigned long flags;
  175. unsigned long seq;
  176. unsigned delta, lost_ticks, usec, sec;
  177. do {
  178. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  179. sec = xtime.tv_sec;
  180. usec = (xtime.tv_nsec / 1000);
  181. delta = tb_ticks_since(tb_last_stamp);
  182. #ifdef CONFIG_SMP
  183. /* As long as timebases are not in sync, gettimeofday can only
  184. * have jiffy resolution on SMP.
  185. */
  186. if (!smp_tb_synchronized)
  187. delta = 0;
  188. #endif /* CONFIG_SMP */
  189. lost_ticks = jiffies - wall_jiffies;
  190. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  191. usec += mulhwu(tb_to_us, tb_ticks_per_jiffy * lost_ticks + delta);
  192. while (usec >= 1000000) {
  193. sec++;
  194. usec -= 1000000;
  195. }
  196. tv->tv_sec = sec;
  197. tv->tv_usec = usec;
  198. }
  199. EXPORT_SYMBOL(do_gettimeofday);
  200. int do_settimeofday(struct timespec *tv)
  201. {
  202. time_t wtm_sec, new_sec = tv->tv_sec;
  203. long wtm_nsec, new_nsec = tv->tv_nsec;
  204. unsigned long flags;
  205. int tb_delta;
  206. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  207. return -EINVAL;
  208. write_seqlock_irqsave(&xtime_lock, flags);
  209. /* Updating the RTC is not the job of this code. If the time is
  210. * stepped under NTP, the RTC will be update after STA_UNSYNC
  211. * is cleared. Tool like clock/hwclock either copy the RTC
  212. * to the system time, in which case there is no point in writing
  213. * to the RTC again, or write to the RTC but then they don't call
  214. * settimeofday to perform this operation. Note also that
  215. * we don't touch the decrementer since:
  216. * a) it would lose timer interrupt synchronization on SMP
  217. * (if it is working one day)
  218. * b) it could make one jiffy spuriously shorter or longer
  219. * which would introduce another source of uncertainty potentially
  220. * harmful to relatively short timers.
  221. */
  222. /* This works perfectly on SMP only if the tb are in sync but
  223. * guarantees an error < 1 jiffy even if they are off by eons,
  224. * still reasonable when gettimeofday resolution is 1 jiffy.
  225. */
  226. tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id()));
  227. tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
  228. new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
  229. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  230. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  231. set_normalized_timespec(&xtime, new_sec, new_nsec);
  232. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  233. /* In case of a large backwards jump in time with NTP, we want the
  234. * clock to be updated as soon as the PLL is again in lock.
  235. */
  236. last_rtc_update = new_sec - 658;
  237. ntp_clear();
  238. write_sequnlock_irqrestore(&xtime_lock, flags);
  239. clock_was_set();
  240. return 0;
  241. }
  242. EXPORT_SYMBOL(do_settimeofday);
  243. /* This function is only called on the boot processor */
  244. void __init time_init(void)
  245. {
  246. time_t sec, old_sec;
  247. unsigned old_stamp, stamp, elapsed;
  248. if (ppc_md.time_init != NULL)
  249. timezone_offset = ppc_md.time_init();
  250. if (__USE_RTC()) {
  251. /* 601 processor: dec counts down by 128 every 128ns */
  252. tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
  253. /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
  254. tb_to_us = 0x418937;
  255. } else {
  256. ppc_md.calibrate_decr();
  257. tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10);
  258. }
  259. /* Now that the decrementer is calibrated, it can be used in case the
  260. * clock is stuck, but the fact that we have to handle the 601
  261. * makes things more complex. Repeatedly read the RTC until the
  262. * next second boundary to try to achieve some precision. If there
  263. * is no RTC, we still need to set tb_last_stamp and
  264. * last_jiffy_stamp(cpu 0) to the current stamp.
  265. */
  266. stamp = get_native_tbl();
  267. if (ppc_md.get_rtc_time) {
  268. sec = ppc_md.get_rtc_time();
  269. elapsed = 0;
  270. do {
  271. old_stamp = stamp;
  272. old_sec = sec;
  273. stamp = get_native_tbl();
  274. if (__USE_RTC() && stamp < old_stamp)
  275. old_stamp -= 1000000000;
  276. elapsed += stamp - old_stamp;
  277. sec = ppc_md.get_rtc_time();
  278. } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
  279. if (sec==old_sec)
  280. printk("Warning: real time clock seems stuck!\n");
  281. xtime.tv_sec = sec;
  282. xtime.tv_nsec = 0;
  283. /* No update now, we just read the time from the RTC ! */
  284. last_rtc_update = xtime.tv_sec;
  285. }
  286. last_jiffy_stamp(0) = tb_last_stamp = stamp;
  287. /* Not exact, but the timer interrupt takes care of this */
  288. set_dec(tb_ticks_per_jiffy);
  289. /* If platform provided a timezone (pmac), we correct the time */
  290. if (timezone_offset) {
  291. sys_tz.tz_minuteswest = -timezone_offset / 60;
  292. sys_tz.tz_dsttime = 0;
  293. xtime.tv_sec -= timezone_offset;
  294. }
  295. set_normalized_timespec(&wall_to_monotonic,
  296. -xtime.tv_sec, -xtime.tv_nsec);
  297. }
  298. #define FEBRUARY 2
  299. #define STARTOFTIME 1970
  300. #define SECDAY 86400L
  301. #define SECYR (SECDAY * 365)
  302. /*
  303. * Note: this is wrong for 2100, but our signed 32-bit time_t will
  304. * have overflowed long before that, so who cares. -- paulus
  305. */
  306. #define leapyear(year) ((year) % 4 == 0)
  307. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  308. #define days_in_month(a) (month_days[(a) - 1])
  309. static int month_days[12] = {
  310. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  311. };
  312. void to_tm(int tim, struct rtc_time * tm)
  313. {
  314. register int i;
  315. register long hms, day, gday;
  316. gday = day = tim / SECDAY;
  317. hms = tim % SECDAY;
  318. /* Hours, minutes, seconds are easy */
  319. tm->tm_hour = hms / 3600;
  320. tm->tm_min = (hms % 3600) / 60;
  321. tm->tm_sec = (hms % 3600) % 60;
  322. /* Number of years in days */
  323. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  324. day -= days_in_year(i);
  325. tm->tm_year = i;
  326. /* Number of months in days left */
  327. if (leapyear(tm->tm_year))
  328. days_in_month(FEBRUARY) = 29;
  329. for (i = 1; day >= days_in_month(i); i++)
  330. day -= days_in_month(i);
  331. days_in_month(FEBRUARY) = 28;
  332. tm->tm_mon = i;
  333. /* Days are what is left over (+1) from all that. */
  334. tm->tm_mday = day + 1;
  335. /*
  336. * Determine the day of week. Jan. 1, 1970 was a Thursday.
  337. */
  338. tm->tm_wday = (gday + 4) % 7;
  339. }
  340. /* Auxiliary function to compute scaling factors */
  341. /* Actually the choice of a timebase running at 1/4 the of the bus
  342. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  343. * It makes this computation very precise (27-28 bits typically) which
  344. * is optimistic considering the stability of most processor clock
  345. * oscillators and the precision with which the timebase frequency
  346. * is measured but does not harm.
  347. */
  348. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) {
  349. unsigned mlt=0, tmp, err;
  350. /* No concern for performance, it's done once: use a stupid
  351. * but safe and compact method to find the multiplier.
  352. */
  353. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  354. if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp;
  355. }
  356. /* We might still be off by 1 for the best approximation.
  357. * A side effect of this is that if outscale is too large
  358. * the returned value will be zero.
  359. * Many corner cases have been checked and seem to work,
  360. * some might have been forgotten in the test however.
  361. */
  362. err = inscale*(mlt+1);
  363. if (err <= inscale/2) mlt++;
  364. return mlt;
  365. }
  366. unsigned long long sched_clock(void)
  367. {
  368. unsigned long lo, hi, hi2;
  369. unsigned long long tb;
  370. if (!__USE_RTC()) {
  371. do {
  372. hi = get_tbu();
  373. lo = get_tbl();
  374. hi2 = get_tbu();
  375. } while (hi2 != hi);
  376. tb = ((unsigned long long) hi << 32) | lo;
  377. tb = (tb * tb_to_ns_scale) >> 10;
  378. } else {
  379. do {
  380. hi = get_rtcu();
  381. lo = get_rtcl();
  382. hi2 = get_rtcu();
  383. } while (hi2 != hi);
  384. tb = ((unsigned long long) hi) * 1000000000 + lo;
  385. }
  386. return tb;
  387. }